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1 Introduction

Recently, harmonic analysis on Rd with non-doubling measures has been developed very
rapidly ; here, by a doubling measure we mean a Radon measure µ on Rd satisfying µ(B(x, 2r)) ≤
c0 µ(B(x, r)), x ∈ supp (µ), r > 0. In what follows B(x, r) is the closed ball centered at x of
radius r. In this paper we deal with measures which does not necessarily satisfy the doubling
condition.

We can list [7, 8, 12] as important works in this field. X. Tolsa proved subadditivity and
bi-Lipschitz invariance of the analytic capacity [13, 14]. Many function spaces and many linear
operators for such measures stem from their works. For example, X. Tolsa has defined the
Hardy space H1(µ) [12]. Y. Han and D. Yang have defined the Triebel-Lizorkin spaces [3].

In the present paper, we mainly deal with the fractional integral operators. We occasionally
postulate the growth condition on µ :

µ is a Radon measure on Rd with µ(B(x, r)) ≤ c0 rn for some c0 > 0 and 0 < n ≤ d. (1)
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A growth measure is a Radon measure µ satisfying (1). We define the fractional integral
operator Iα associated with the growth measure µ as

Iαf(x) :=
∫

Rd

f(y)
|x− y|nα

dµ(y), 0 < α < 1. (2)

Let 1/q = 1/p − (1 − α) with 1 < p < q < ∞. Lp(µ)-Lq(µ) boundedness of Iα in more
general form was proved by V. Kokilashvili in [4]. On general non-homogeneous spaces, that is,
on metric measure spaces it was also proved in [5] (see [1]). In [2], the limit case p = 1

1−α was
considered. In general, the integral defining Iαf(x) does not converge absolutely for µ-a.e., if
f ∈ L

1
1−α (µ). J. Garćıa-Cuerva and E. Gatto considered some modified operator and showed

its boundedness from L
1

1−α (µ) to some BMO-like space defined in [12].

This paper deals mainly with the Morrey spaces. By a cube we mean a set of the form

Q(x, r) := [x1 − r, x1 + r]× . . .× [xd − r, xd + r], x = (x1, . . . , xd) ∈ Rd, 0 < r ≤ ∞. (3)

Given a cube Q = Q(x, r), κ > 0, we denote κQ := Q(x, κr) and `(Q) = 2r. We define Q(µ) by

Q(µ) := {Q ⊂ Rd : Q is a cube with 0 < µ(Q) < ∞}.

Now we are in the position of describing the Morrey spaces for non-doubling measures.

Definition 1.1. [11, §1] Let 0 < q ≤ p < ∞, k > 1. We denote by Mp
q(k, µ) a set of Lq

loc(µ)
functions f for which the quasi-norm

‖f : Mp
q(k, µ)‖ := sup

Q∈Q(µ)

µ(kQ)
1
p− 1

q

(∫

Q

|f(y)|q dµ(y)
) 1

q

< ∞.

Note that this definition does not involve the growth condition (1). So in this paper we
assume µ is just a Radon measure unless otherwise stated.

Key properties that we are going to use can be summarized as follows :

Proposition 1.2. [11, Proposition 1.1] Let 0 < q ≤ p < ∞, k1 > k2 > 1. Then there exists
cd,k1,k2,q so that, for every µ-measurable function f ,

‖f : Mp
q(k2, µ)‖ ≤ ‖f : Mp

q(k1, µ)‖ ≤ Cd,k1,k2,q ‖f : Mp
q(k2, µ)‖. (4)

The proof is omitted : Interested readers may consult [11]. However we deal with similar
assertion whose proof is wholly included in this present paper.

Lemma 1.3. [11, §1]

1. Let 0 < q1 ≤ q2 ≤ p < ∞ and k > 1. Then

‖f : Mp
q1

(k, µ)‖ ≤ ‖f : Mp
q2

(k, µ)‖ ≤ ‖f : Mp
p(k, µ)‖ = ‖f : Lp(µ)‖. (5)

2. Let µ(Rd) < ∞ and 0 < q ≤ p1 ≤ p2 < ∞. Then

‖f : Mp1
q (k, µ)‖ ≤ µ(Rd)

1
p1
− 1

p2 ‖f : Mp2
q (k, µ)‖. (6)
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Proof. (5) is straightforward by using the Hölder inequality.

As for (6), thanks to the finiteness of µ writing out the left side in full, we have

‖f : Mp1
q (k, µ)‖ = sup

Q∈Q(µ)

µ(kQ)
1

p1
− 1

q

(∫

Q

|f(y)|q dµ(y)
) 1

q

≤ sup
Q∈Q(µ)

µ(Rd)
1

p1
− 1

p2 µ(k Q)
1

p2
− 1

q

(∫

Q

|f(y)|q dµ(y)
) 1

q

= µ(Rd)
1

p1
− 1

p2 ‖f : Mp2
q (k, µ)‖.

Lemma 1.3 is therefore proved.

Keeping Proposition 1.2 in mind, for simplicity we denote

Mp
q(µ) := Mp

q(2, µ), ‖ · : Mp
q(µ)‖ := ‖ · : Mp

q(2, µ)‖.

In [11, Theorem 3.3], we showed that Iα is bounded from Mp
q(µ) to Ms

t (µ), if

q/p = t/s, 1/s = 1/p− (1− α), 1 < q ≤ p < ∞, 1 < t ≤ s < ∞, 0 < α < 1. (7)

Having described the main function spaces, we present our problem. In the present paper,
from the viewpoint different from [2] we shall consider the limit case of the boundedness of Iα

as “p → 1
1−α” or “s →∞”, where p and s satisfy (7) :

Problem 1.4. Let 0 < α < 1 and assume that µ is a finite growth measure. Find a nice

function space X to which Iα sends M
1

1−α
q (µ) continuously, where 1 < q ≤ 1

1− α
.

Although the Morrey spaces are the function spaces coming with two parameters, we ar-
range Mp

q(µ) to Mp
βp(µ) with β ∈ (0, 1] fixed and regard them as a family of function spaces

parameterized only by p : We turn our attention to the family of spaces {Mp
βp(µ)}p∈(0,∞). We

also consider the generalized version of Problem 1.4.

Problem 1.5. Let µ be finite and 0 < p0 < p < r < ∞, 0 < β ≤ 1, 1/s = 1/p− 1/r. Suppose
that we are given an operator T from

⋃
p>p0

Mp
βp(µ) to

⋃
s>0

Ms
βs(µ). Assume, restricting T to

Mp
βp(µ), we have a precise estimate

‖Tf : Ms
βs(µ)‖ ≤ c(s) ‖f : Mp

βp(µ)‖, (8)

where 1/s = 1/p − 1/r with p, r, s > 0. Then what can we say about the boundedness of T on
the limit function space Mr

βr(µ)?

Here we describe the organization of this paper. Section 2 is devoted to the definition of
the function spaces to answer Problems 1.4 and 1.5. In Section 3 we give a general machinery
for Problems 1.4 and 1.5. Iα appearing here will be an example of the theorem in Section 3.
Besides Iα, we take up two types of other fractional integral operators. The task in Section 4
is to determine c(s) in (8) precisely. We skillfully use two types of fractional integral operators
as well as Iα to see the size of c(s). In Section 5 we exhibit an example showing the sharpness
of the estimate of c(s) obtained in Section 4. The example will reveal us the difference between
the Morrey spaces and the Lp spaces.
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2 Orlicz-Morrey spaces MΦ
β (µ)

In this section we introduce function spaces MΦ
β (µ) to formulate our main results. E. Nakai

defined MΦ
β (µ) for Lebesgue measure µ = dx. We denote by |E| the volume of a measurable

set E. Let Φ : [0,∞) → [0,∞) be a Young function, i.e. Φ is convex with Φ(0) = 0 and
lim

x→∞
Φ(x) = ∞.

For β ∈ (0, 1], E. Nakai has defined the Orlicz-Morrey spaces : The space MΦ
β (dx) consists

of all measurable functions f for which the norm

‖f : MΦ
β (dx)‖ := inf

{
λ > 0 : sup

Q∈Q(dx)

|Q|β−1

∫

Q

Φ
( |f(y)|

λ

)
dy ≤ 1

}
< ∞.

For details we refer to [6].

Motivated by this definition and that of Mp
q(µ) with 0 < q ≤ p < ∞, we define the

Orlicz-Morrey spaces MΦ
β (µ) as follows :

Definition 2.1. Let β ∈ (0, 1], k > 1 and Φ be a Young function. Then we define

‖f : MΦ
β (k, µ)‖ := inf

{
λ > 0 : sup

Q∈Q(µ)

µ(kQ)β−1

∫

Q

Φ
( |f(y)|

λ

)
dµ(y) ≤ 1

}
. (9)

We define the function space MΦ
β (k, µ) as a set of µ-measurable functions f for which the norm

is finite.

The function space MΦ
β (k, µ) is independent of k > 1. More precisely, we have

Proposition 2.2. Let k1 > k2 > 1. Then there exists constant cd,k1,k2 such that

‖f : MΦ
β (k1, µ)‖ ≤ ‖f : MΦ

β (k2, µ)‖ ≤ cd,k1,k2 ‖f : MΦ
β (k1, µ)‖. (10)

Here, cd,k1,k2 > 0 is independent of f .

Proof. By the monotonicity of ‖f : MΦ
β (k, µ)‖ with respect to k the left inequality is obvious.

What is essential in (10) is the right inequality. The monotonicity allows us to assume that
k1 = 2k2 − 1. We take Q ∈ Q(µ) arbitrarily. We have to majorize

inf
{

λ > 0 : µ(k2Q)β−1

∫

Q

Φ
( |f(x)|

λ

)
dµ(x) ≤ 1

}

by λ0 := ‖f : MΦ
β (k1, µ)‖ uniformly over Q.

Bisect Q into 2d cubes and we label Q1, Q2, . . . , QL to those in Q(µ). Then the distance
between the boundary of k2Q and the center of Qj is

(
k2

2
− 1

4

)
`(Q) =

k1

4
`(Q).

Consequently we have k1 Qj ⊂ k2Q for j = 1, 2, . . . , L. This inclusion gives us that

µ(k2Q)β−1

∫

Q

Φ
( |f(x)|

λ0

)
dµ(x) ≤

L∑

j=1

µ(k1Qj)β−1

∫

Qj

Φ
( |f(x)|

λ0

)
dµ(x) ≤ 2d.
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Note that Φ(tx) ≤ tΦ(x) for 0 ≤ t ≤ 1 by convexity. As a result we obtain

sup
Q∈Q(µ)

µ(k2Q)β−1

∫

Q

Φ
( |f(x)|

2dλ0

)
dµ(x) ≤ 1.

Thus we have obtained

‖f : MΦ
β (k2, µ)‖ ≤ 2dλ0 = 2d‖f : MΦ

β (k1, µ)‖.

Hence we have established that we can take cd,2k2−1,k2 = 2d.

Keeping this proposition in mind, we set MΦ
β (µ) := MΦ

β (2, µ). The same argument as
Proposition 2.2 works for Proposition 1.2.

3 Extrapolation theorem on the Morrey spaces

In this section, we shall prove the key lemma dealing with an extrapolation theorem on the
Morrey spaces. Assume that µ is finite and

0 < p0 < p < r < ∞, 0 < β ≤ 1, 1/s = 1/p− 1/r.

Let T be an operator from Mp
βp(µ) to Ms

βs(µ) with a precise estimate

‖Tf : Ms
βs(µ)‖ ≤ c sρ‖f : Mp

βp(µ)‖, ρ > 0.

Then we can say the limit result of

T : Mp
βp(µ) →Ms

βs(µ), p0 < p < r, 1/s = 1/p− 1/r,

as p → r, s →∞, is
T : Mr

βr(µ) →MΦ
β (µ),

where Φ(x) = exp(x
1
ρ )− 1. More precisely, our main extrapolation theorem is the following.

Theorem 3.1. Suppose µ(Rd) < ∞. Let 0 < p0 < r, 0 < ρ ≤ 1 and 0 < β ≤ 1. Suppose the
sublinear operator T satisfies

‖Tf : Ms
βs(µ)‖ ≤ C0 sρ‖f : Mp

βp(µ)‖ ∀f ∈Mp
βp(µ) (11)

for each p0 ≤ p < r with 1/s = 1/p− 1/r. Here, C0 > 0 is a constant independent of p and s.
Then there exists a constant δ > 0 such that

sup
Q




∫

Q


exp


δ

∣∣∣∣∣
Tf(x)

‖f : Mr
βr(µ)‖

∣∣∣∣∣

1
ρ


− 1


 dµ(x)

µ(2Q)1−β


 ≤ 1 ∀ f ∈Mr

βr(µ) (12)

or equivalently
‖Tf : MΦ

β (µ)‖ ≤ δ−
1
ρ ‖f : Mr

βr(µ)‖ ∀f ∈Mr
βr(µ) (13)

for Φ(t) = exp(t
1
ρ )− 1.

More can be said about this theorem : The case when β = 1 corresponds to the Zygmund
type extrapolation theorem (See [16]). Set LΦ(µ) = MΦ

1 (µ).
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Corollary 3.2. We keep to the same assumption as Theorem 3.1 on µ, ρ, p0, r and T . Suppose

‖Tf : Ls(µ)‖ ≤ C0 sρ‖f : Lp(µ)‖ ∀f ∈ Lp(µ) (14)

for s, p with 1/s = 1/p− 1/r. Here, C0 > 0 is a constant independent of p and s. Then there
exists some constant δ > 0 such that

∫

Rd

[
exp

(
δ

∣∣∣∣
Tf(x)

‖f : Lr(µ)‖

∣∣∣∣
1
ρ

)
− 1

]
dµ(x) ≤ 1 ∀f ∈ Lr(µ) (15)

or equivalently
‖Tf : LΦ(µ)‖ ≤ δ−

1
ρ ‖f : Lr(µ)‖ ∀f ∈ Lr(µ). (16)

Before we come to the proof, a remark may be in order.

Remark 3.3. Suppose that Ω is a bounded open set in Rd. Applying T = Iα with µ = dx|Ω,
Lebesgue measure on Ω, we obtain a result corresponding to the one in [15].

The proof of Theorem 3.1 is after the one of Zygmund’s extrapolation theorem in [16].

Proof of Theorem 3.1. By sub-additivity it can be assumed that ‖f : Mr
βr(µ)‖ = 1. From (11)

and Lemma 1.3, we have ‖Tf : Ms
βs(µ)‖ ≤ c sρ‖f : Mp

βp(µ)‖ ≤ c sρ.

Let Q ∈ Q(µ). Then by Taylor’s expansion
∫

Q

{
exp

(
δ |Tf(x)| 1ρ

)
− 1

} dµ(x)
µ(2Q)1−β

=
∞∑

k=1

δk

k!

∫

Q

|Tf(x)| k
ρ

dµ(x)
µ(2Q)1−β

≤
∞∑

k=1

δk

k!

∥∥∥∥Tf : M
k

ρβ
k
ρ

(µ)
∥∥∥∥

k
ρ

=
L∑

k=1

δk

k!

∥∥∥∥Tf : M
k

ρβ
k
ρ

(µ)
∥∥∥∥

k
ρ

+
∞∑

k=L+1

δk

k!

∥∥∥∥Tf : M
k

ρβ
k
ρ

(µ)
∥∥∥∥

k
ρ

,

where L is the largest integer not exceeding βρp0. If we invoke Lemma 1.3, we see
L∑

k=1

δk

k!

∥∥∥∥Tf : M
k

ρβ
k
ρ

(µ)
∥∥∥∥

k
ρ

≤ c

L∑

k=1

δk

k!

∥∥∥∥Tf : M
L
ρβ
L
ρ

(µ)
∥∥∥∥

k
ρ

≤ c

L∑

k=1

δk. (17)

By (11) we have
∞∑

k=L+1

δk

k!

∥∥∥∥Tf : M
k

ρβ
k
ρ

(µ)
∥∥∥∥

k
ρ

≤
∞∑

k=L+1

(c δ)k kk

k!
. (18)

We put (17) and (18) together.
∫

Q

{
exp

(
δ |Tf(x)| 1ρ

)
− 1

} dµ(x)
µ(2Q)1−β

≤
∞∑

k=1

(c δ)k kk

k!
.

lim
k→∞

(
kk

k!

) 1
k

= e implies that the function ψ(δ) :=
∞∑

k=1

(C0 δ)k kk

k!
is a continuous function

in the neighborhood of 0 in [0, 1) with ψ(0) = 0. Consequently if δ is small enough, then
∫

Q

{
exp

(
δ |Tf(x)| 1ρ

)
− 1

} dµ(x)
µ(2Q)1−β

≤ ψ(δ) ≤ 1

for all f ∈Mr
βr(µ) with ‖f : Mr

βr(µ)‖ = 1. Theorem 3.1 is therefore proved.

Remark 3.4. To obtain Theorem 3.1, the growth condition is unnecessary. Thus, the proof is
still available, if µ is just a finite Radon measure.
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4 Precise estimate of the fractional integrals

Our task in this section is to see the size of c(s) in (8) with T = Iα. The estimates involve
the modified uncentered maximal operator given by

Mκf(x) := sup
x∈Q∈Q(µ)

1
µ(κQ)

∫

Q

|f(y)| dµ(y), κ > 1.

We make a quick view of the size of the constant. First, we see that

µ{x ∈ Rd : Mκf(x) > λ} ≤ Cd,κ

λ

∫

Rd

|f(x)| dµ(x)

by Besicovitch’s covering lemma. Then thanks to Marcinkiewicz’s interpolation theorem we
obtain a precise estimate of the operator norm of Mκ :

‖Mκ‖Lp(µ)→Lp(µ) ≤
Cd,κ p

p− 1
. (19)

Finally examining the proof in [11, Theorem 2.3] gives us the estimate of the operator norm on
Mp

q(µ) :

‖Mκ‖Mp
q(µ)→Mp

q(µ) ≤
Cd,κq

q − 1
. (20)

We shall make use of (19) and (20) in this section.

4.1 Fractional integral operators Jα,κ and I[
α,κ

For the definition of Iα the growth condition on µ is indispensable. However in [10] the
theory of fractional integral operators without the growth condition was developed. The con-
struction of the fractional integral operators without the growth condition involves a covering
lemma. In this present paper we intend to define another substitute. We take advantage of the
simple definition of the new fractional integral operator.

Definition 4.1. [10, Definitions 13, 14] Let α ∈ (0, 1) and κ > 1. For k ∈ Z, we can take
Q(k) ⊂ Q(µ) that satisfies the following.

1. For all Q ∈ Q(k), we have 2k < µ(κ2Q) ≤ 2k+1.

2. sup
x∈Rd

∑

Q∈Q(k)

χκQ(x) ≤ Nκ < ∞, where Nκ depends only on κ and d.

3. For any cube with 2k−1 < µ(κ2Q′) ≤ 2k we can find Q ∈ Q(k) such that Q′ ⊂ κQ.

By way of {Q(k)}k∈Z, for f ∈ L1
loc(µ), we define the operator Jα,κ as

Jα,κf(x) :=
∫

Rd

∑

k∈Z

∑

Q∈Q(k)

χκQ(x) χκQ(y)
2k α

f(y) dµ(y). (21)

If we define

jα,κ(x, y) :=
∑

k∈Z

∑

Q∈Q(k)

χκQ(x)χκQ(y)
2k α

, (22)

then we can write Jα,κf(x) =
∫

Rd

jα,κ(x, y)f(y) dµ(y) in terms of the integral kernel.
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What is important about Jα,κ is that it is linear, it can be defined for any Radon measure
µ and, if µ satisfies the growth condition, it plays a role of the majorant operator of Iα. We
give a more simpler fractional maximal operator which substitutes for Jα,κ.

Definition 4.2. Let α ∈ (0, 1) and κ > 1. For x, y ∈ Rd ∈ supp (µ) we set

K[
α,κ(x, y) = sup

x,y∈Q∈Q(µ)

µ(κQ)−α.

It will be understood that K[
α,κ(x, y) = 0 unless x, y ∈ supp (µ). For a positive µ-measurable

function f we set

I[
α,κf(x) =

∫

Rd

K[
α,κ(x, y)f(y) dµ(y).

Suppose that µ satisfies the growth condition (1). Then the comparison of the kernel reveals
us that Iαf(x) ≤ c I[

α,κf(x) µ-a.e. for all positive µ-measurable functions f .

I[
α,κ and Jα,κ are comparable in the following sense.

Lemma 4.3. Let α ∈ (0, 1) and κ > 1. There exists constant C > 0 so that, for every positive
µ-measurable function f ,

I[
α,κ2f(x) ≤ Jα,κf(x) ≤ C I[

α,κf(x). (23)

Proof. It suffices to compare the kernel.

First we shall deal with the left inequality. Suppose that Q ∈ Q(µ) contains x, y and satisfies

2k0 < µ(κ2Q) ≤ 2k0+1, k0 ∈ Z.

Then by Definition 4.1 we can find Q∗ ∈ Q(k0) such that Q ⊂ κQ∗. Since κQ∗ contains both x
and y, we obtain

µ(κ2Q)−α ≤ 2−k0α =
χκQ∗(x)χκQ∗(y)

2k0α
≤ jα,κ(x, y).

Consequently the left inequality is established.

We turn to the right inequality. Assume that

2−α(k1+1) ≤ K[
α,κ(x, y) < 2−αk1 , k1 ∈ Z.

Let Q ∈ Q(k). Suppose that κQ contains x, y. Then by definition

µ(κ2Q)−α ≤ K[
α,κ(x, y) < 2−αk1

and hence µ(κ2Q) > 2k1 . Since Q ∈ Q(k), we have k ≥ k1. Thus if Q ∈ Q(k) and κQ contains
x, y, then k ≥ k1. From the definition of jα,κ it follows that

jα,κ(x, y) =
∑

k≥k1

∑

Q∈Q(k)

χκQ(x) χκQ(y)
2k α

≤ cNκ

∑

k≥k1

1
2k α

= c 2−k1α ≤ cK[
α,κ(x, y).

As a result the right inequality is proved.

We summarize the relations between three operators.

Corollary 4.4. If µ satisfies the growth condition (1), then we have, for every positive µ-
measurable function f

Iαf(x) . Jα,κf(x) ∼ I[
α,κf(x), (24)

, and µ-a.e. x ∈ Rd, where the implicit constants in . and ∼ depend only on α, κ and c0 in
(1).
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4.2 Lp-estimates

Here we will prove the Lp-estimates associated with fractional integral operators.

Theorem 4.5. Let κ > 1, 0 < α < 1 and p0 > 1. Assume that p, s > 1 satisfy

p0 ≤ p, 1/s = 1/p− (1− α).

Then there exists a constant C > 0 depending only on α and p0 so that, for every f ∈ Lp(µ),

‖Jα,κf : Ls(µ)‖ ≤ C sα‖f : Lp(µ)‖ (25)

‖I[
α,κf : Ls(µ)‖ ≤ C sα‖f : Lp(µ)‖. (26)

If µ additionally satisfies the growth condition (1), then

‖Iαf : Ls(µ)‖ ≤ C sα‖f : Lp(µ)‖. (27)

Proof. We have only to prove (26). The rest is immediate once we prove it. We may assume
that f is positive. Let R > 0 be fixed. We will split I[

α,κf(x). For fixed x ∈ supp (µ) let us set

Dj :=
{

y ∈ Rd \ {x} : 2j−1R < inf
x,y∈Q∈Q(µ)

µ(κQ) ≤ 2jR

}
, j ∈ Z.

We decompose I[
α,κf(x) by using the partition {Dj}∞j=−∞∪{x} of supp (µ). For the time being

we assume that µ charges {x}. By definition we have

I[
α,κf(x) =

0∑

j=−∞

∫

Dj

K[
α,κ(x, y)f(y) dµ(y) +

∫
S∞

j=1Dj

K[
α,κ(x, y)f(y) dµ(y) + µ({x})1−αf(x).

Suppose that Dj is non-empty. By the Besicovitch covering lemma, we can find N ∈ N,
independent of x, j and R, and a collection of cubes Qj

1, Q
j
2, . . . , Q

j
N which contain x such that

Dj ⊂
√

κQj
1 ∪

√
κQj

2 ∪ . . . ∪√κQj
N and that µ(κQj

l ) ≤ 2j+1R for all 1 ≤ l ≤ N and j ∈ Z.

From this covering and the definition of Dj , we obtain µ(Dj) ≤ c 2jR. With these observa-
tions, it follows that

0∑

j=−∞

∫

Dj

K[
α,κ(x, y)f(y) dµ(y) ≤ c

0∑

j=−∞

N∑

l=1

1
2jαRα

∫
√

κQj
l

f(y) dµ(y) ≤ cR1−αM√
κf(x).

The estimate of the second term will be accomplished by the Hölder inequality.
∫
S∞

j=1Dj

K[
α,κ(x, y)f(y) dµ(y)

≤
(∫

S∞
j=1Dj

K[
α,κ(x, y)p′ dµ(y)

) 1
p′

‖f : Lp(µ)‖

=




∞∑

j=1

∫

Dj

K[
α,κ(x, y)p′ dµ(y)




1
p′

‖f : Lp(µ)‖

≤ c




∞∑

j=1

(2jR)1−αp′




1
p′

‖f : Lp(µ)‖ ≤ c (α− 1/p′)−1/p′R1/p′−α‖f : Lp(µ)‖,
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where we use an inequality 1/(2a−1) ≤ 1/(log 2·a), a > 0. Taking into account these estimates,
we obtain

0∑

j=−∞

∫

Dj

K[
α,κ(x, y)f(y) dµ(y) +

∫
S∞

j=1Dj

K[
α,κ(x, y)f(y) dµ(y)

≤ Cα,κ

(
R1−αM√

κf(x) + R−(α−1/p′)(α− 1/p′)−1/p′‖f : Lp(µ)‖
)

.

We have to deal with µ({x})1−αf(x). If µ({x}) ≤ R, then µ({x})1−αf(x) ≤ R1−αM√
κf(x).

Conversely if µ({x}) ≥ R, then µ({x})1−αf(x) ≤ R−(α−1/p′)‖f : Lp(µ)‖. As a result we can
incorporate µ({x})1−αf(x) to the above formula. The result is

I[
α,κf(x) ≤ Cα,κ

(
R1−αM√

κf(x) + R−(α−1/p′)(α− 1/p′)−1/p′‖f : Lp(µ)‖
)

for all R ∈ (0,∞). Taking R =

(
(α− 1/p′)−1/p′‖f : Lp(µ)‖

M√
κf(x)

)p

, we have

I[
α,κf(x) ≤ Cα,κ (α− 1/p′)−(1−α)(p−1)M√

κf(x)p(α−1/p′)‖f : Lp(µ)‖1−p(α−1/p′).

Recall that 1/s = α− 1/p′ by assumption. Thus the above estimate can be restated as

I[
α,κf(x) ≤ Cα,κ s(1−α)(p−1)M√

κf(x)
p
s ‖f : Lp(µ)‖1− p

s .

Inserting p(1− α)− 1 = −p/s, we see s(1−α)(p−1) = sα− p
s ≤ sα. As a consequence, we have

‖I[
α,κf : Ls(µ)‖ ≤ Cα,κ,p0 sα‖f : Lp(µ)‖.

This is the desired estimate.

Consequently if we use Theorem 3.1, then we obtain

Theorem 4.6. Assume that µ is a finite Radon measure. Let T be either Jα,κ or I[
α,κ with

0 < α < 1 and κ > 1. Then there exists C > 0 so that, for every f ∈ L
1

1−α (µ),

‖Tf : LΦ(µ)‖ ≤ C
∥∥∥f : L

1
1−α (µ)

∥∥∥ , (28)

where Φ(x) = exp(x
1
α ) − 1. If µ satisfies the growth condition (1), then (28) is still available

for T = Iα.

4.3 Morrey estimates

Now we will prove the Morrey estimates associated with fractional integral operators.

Theorem 4.7. Let 0 < α < 1, 0 < β ≤ 1, κ > 1 and p0 > 1/β. Assume that p and s satisfy

p0 ≤ p < ∞, 1 < s < ∞ and 1/s = 1/p− (1− α).

Then there exists a constant C > 0 depending only on α, β and p0 so that, for every f ∈Mp
βp(µ),

‖Jα,κf : Ms
βs(µ)‖ ≤ C s‖f : Mp

βp(µ)‖ (29)

‖I[
α,κf : Ms

βs(µ)‖ ≤ C s‖f : Mp
βp(µ)‖. (30)

10



If µ additionally satisfies the growth condition (1), then

‖Iαf : Ms
βs(µ)‖ ≤ C s‖f : Mp

βp(µ)‖. (31)

Proof. It is enough to prove (30) for a positive µ-measurable function f . We have only to make
a minor change of the proof of Theorem 4.5. So we indicate the necessary change. Under the
notation in the proof of Theorem 4.5, we change the estimate of

∫
S∞

j=1Dj

K[
α,κ(x, y)f(y) dµ(y).

By using the Morrey norm we obtain

∫
S∞

j=1Dj

K[
α,κ(x, y)f(y) dµ(y) =

∞∑

j=1

∫

Dj

K[
α,κ(x, y)f(y) dµ(y)

≤ c

∞∑

j=1

N∑

l=1

1
2jαRα

∫
√

κQj
l

f(y) dµ(y) ≤ c

∞∑

j=1

N∑

l=1

2−j(α−1/p′)R−(α−1/p′)‖f : Mp
1(µ)‖

≤ cR−(α−1/p′)(α− 1/p′)‖f : Mp
βp(µ)‖.

Proceeding in the same way as Theorem 4.5, we obtain

I[
α,κf(x) ≤ Cα,κ (R1−αM√

κf(x) + R1/p′−α(α− 1/p′)‖f : Mp
βp(µ)‖).

Now R is still at our disposal again. Thus, if we put R =

(
(α− 1/p′)‖f : Mp

βp(µ)‖
M√

κf(x)

)p

, we

have the pointwise estimate :

I[
α,κf(x) ≤ Cα,κ (α− 1/p′)−p(1−α)M√

κf(x)p(α−1/p′)‖f : Mp
βp(µ)‖1−p(α−1/p′). (32)

Using α − 1/p′ = 1/s, we have (α − 1/p′)−p(1−α) = s1−p(α−1/p′) = s1−p/s ≤ s. If we insert
this estimate, (32) is simplified to I[

α,κf(x) ≤ Cα,κ sM√
κf(x)

p
s ‖f : Mp

βp(µ)‖1− p
s . By using the

boundedness of M√
κ, we finally have

‖I[
α,κf : Ms

βs(µ)‖ ≤ Cα,κ,p0 s‖f : Mp
βp(µ)‖.

This is the desired result.

If we use our extrapolation machinery, we obtain

Theorem 4.8. Assume that µ is a finite Radon measure. Let T be either Jα,κ or I[
α,κ with

0 < α < 1, 1− α < β ≤ 1 and κ > 1. Then there exists C > 0 such that

‖Tf : MΦ
β (µ)‖ ≤ C

∥∥∥∥f : M
1

1−α
β

1−α

(µ)
∥∥∥∥ (33)

for all f ∈ L
1

1−α (µ), where Φ(x) = exp(x)−1. If µ satisfies the growth condition (1), then (33)
is still valid for T = Iα.
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5 Sharpness of the results

Finally we show that Theorems 4.7 and 4.8 are sharp. The notations in this section are
valid here only.

Example 5.1. Let µ = dx|(0, 1) be the restriction of 1-dimensional Lebesgue measure to (0, 1),
n = 1, α = 1

2 and f(x) = |x|− 1
2 .

We claim

Claim 5.2. f ∈M2
2β(µ) for all 0 < β < 1.

Claim 5.3. I 1
2
f(x) differs from log

1
x

by some constant C1 independent of x. In particular

‖I 1
2
f : Ms

βs(µ)‖ ≥ ‖I 1
2
f : Lβs(µ)‖ ≥ cβ s− C1 (34)

for all s ≥ 1/β.

Proof of Claim 5.2. By definition of the Morrey norm ‖ · : M2
2β(µ)‖ we have

‖f : M2
2β(µ)‖ = sup

Q∈Q(µ)
Q⊂[0,1]

µ(2Q)
1
2− 1

2β

(∫

Q

|f(y)|2β dµ(y)
) 1

2β

Writing it out in full, we obtain

‖f : M2
2β(µ)‖ ≤ sup

0≤a≤b≤1
(b− a)

1
2− 1

2β

(∫ b

a

|x|−β dx

) 1
2β

If 0 ≤ a ≤ b ≤ 1 satisfies b− a = h, then
∫ b

a

|x|−β dx attains its maximum at a = 0 and b = h.

Consequently we have

‖f : M2
2β(µ)‖ ≤ sup

0≤h≤1
h

1
2− 1

2β

(∫ h

0

|x|−β dx

) 1
2β

= (1− β)−
1
2β < ∞.

Thus Claim 5.2 is proved.

Proof of Claim 5.3. By definition of I 1
2
f we have I 1

2
f(x) =

∫ 1

0

dy√
y|x− y| . Changing the vari-

ables, we can rewrite the integral as I 1
2
f(x) =

∫ 1
x

0

dz√
z|1− z| . With x < 1 in mind, we decom-

pose

I 1
2
f(x) =

∫ 1

0

dz√
z(1− z)

+
∫ 1

x

1

dz√
z(z − 1)

=
∫ 1

0

dz√
z(1− z)

+
∫ 1

x

1

(
1√

z(z − 1)
− 1

z

)
dz +

∫ 1
x

1

dz

z

=
∫ 1

0

dz√
z(1− z)

+
∫ 1

x

1

dz√
z2(z − 1)(

√
z +

√
z − 1)

+ log
1
x

.
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The integrals of the last formula remain bounded since

1√
z(1− z)

and
1√

z2(z − 1)(
√

z +
√

z − 1)

are Lebesgue-integrable on (0, 1) and (1,∞) respectively. As a consequence log
1
x

and I 1
2
f(x)

differ by some absolute constant for all x ∈ (0, 1).

Finally let us see (34). By virtue of the triangle inequality
(∫ 1

0
I 1

2
f(x)βsdx

) 1
βs

can be
bounded from below by

(∫ 1

0

(
log

1
x

)βs

dx

) 1
βs

− C1 ≥
(∫ e−s

0

(
log

1
x

)βs

dx

) 1
βs

− C1 ≥ cβ s− C1.

As a result Claim 5.3 is proved.

Corollary 5.4. 1. We have
‖I 1

2
‖Mp

βp(µ)→Ms
βs(µ) ∼ s,

where the parameters p, s, β satisfy

0 < β < 1, 0 < p < 2, 0 < s < ∞ and
1
s

=
1
p
− 1

2
,

where the implicit constants in ∼ depend only on β.

2. Let 0 < β, ρ < 1 and λ > 0. Then

sup
Q




∫

Q


exp


λ

∣∣∣∣∣
I 1

2
f(x)

‖f : M2
β2(µ)‖

∣∣∣∣∣

1
ρ


− 1


 dµ(x)

µ(2Q)1−β


 = ∞. (35)

In particular Theorem 4.8 is sharp in the sense that the conclusion of Theorem 4.8 fails
if we replace Φ by Ψ(x) = exp

(
x

1
ρ

)
− 1.
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