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TWISTED SECOND HOMOLOGY GROUPS OF THE
AUTOMORPHISM GROUP OF A FREE GROUP

TAKAO SATOH

ABSTRACT. In this paper, we compute the second homology groups of the automor-
phism group of a free group with coefficients in the abelianization of the free group
and its dual group except for the 2-torsion part, using combinatorial group theory.

1. INTRODUCTION

Let F}, be a free group of rank n, and let Aut F}, denote the automorphism group of Fj,.
There are several remarkable computation of the (co)homology groups of Aut F,, with
trivial coefficients. For example, Gersten [2] showed Hs(Aut F,,Z) = Z/2Z for n > 5,
and Hatcher and Vogtmann [3] showed H,(Aut F,,Q) =0 forn > 1 and 1 < ¢ < 6,
except for Hy(Aut Fy, Q) = Q. In this paper we consider twisted (co)homology groups
of Aut F,,. Let H be the abelianization of F,, and H* := Homgz(H, Z) the dual group
of H. The group Aut F,, naturally acts on H and H*. The main interest of this paper
is to compute the homology groups of Aut F, with coefficients in H and H* using
combinatorial groups theory, in particular using a finite presentation for Aut F,.

In our previous paper [8], we computed the first homology groups of Aut F,, with
coefficients in H and H* for n > 2. In this paper, we show that the second homology
groups Hy(Aut F,,, H) and Ho(Aut F,, H*) are trivial except for the Z/2Z-part for n >
6. Let L be the localization of the ring Z of integers by the prime ideal 2Z. The ring L is
a principal ideal domain in which the element 2 is invertible, and naturally isomorphic
to the subring Z[3] of Q which is obtained from the ring Z by attaching 1/2. For any
Z-module M, we denote by My, the L-module M®zL. Then our main theorem is

Theorem 1.1. Forn > 6,
Hg(Aut Fn, HL) = 0, Hg(Aut Fn, Hz) =0.

Recently, Hatcher and Wahl [4] showed H;(Aut F,,, H) = 0 for n > 3i + 9 using the
stability of the homology groups of the mapping class groups of certain 3-manifolds.
If n > 15, one of our result Hy(Aut F,,, Hy) = 0 is immediately follows from the re-
sults of them. Our computation, however, is based on combinatorial group theory, and
quite different from that of them. Furthermore we remark that the computation of
Hy(Aut F,, Hf ) = 0, to which we cannot apply their method directly, is more compli-
cated than that of Hy(Aut F,,, Hy) = 0.

Here we summarize the proof of Theorem 1.1. To begin with, we review the com-
putation of Hy(AutF,, H) = 0 and Hy(Aut F,,, H*) = Z for n > 4 due to [§]. Let
Aut™F, be the index-2 subgroup of Aut F}, defined by the kernel of the composition
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map of a natural map p : AutF,, - AutH = GL(n,Z) and the determinant map
det : GL(n,Z) — {£1}. To compute the first homology groups of Aut F,,, we com-
puted those of Aut™F,, using a finite presentation for it due to Gersten [2]. Observing
the Lyndon-Hochshild-Serre spectral sequence of

(1) 1 — AuwttF, —» Aut F,, — {£1} — 1,

we obtain the results for Aut F,,. We also computed the homology groups for n = 2
and 3, and showed they have non-trivial 2-torsions. For details, see [8].

Now, we show the outline of the computation of the second homology groups. First,
we compute the second homology groups of Aut™ F},, using a reduced finite presentation
(X | R) for it introduced in Section 2, which is obtained from the Gersten’s presentation
using Tietze transformations. Let F and R be the free group on X and the normal
closure of R in F' respectively. Then, for M = Hy and Hj, we have a five-term exact
sequence

Hy(F, M) — Hy(Aut™F,,M) — H1(R, M) s+ 5,
% Hy(F, M) — Hy(Aut* E,, M) — 0
of L-modules. Since F'is a free group, Ho(F, M) = 0. Furthermore, we see Hy(F, M) =

L#t2n(n*—n)=n} "and we have obtained the rank 7y, of the free L-module H; (Autt F,, M)
by the results of [8]. In Section 3, we show that

H, (R: M)Aut+Fn — [®(2n(n*—n)—n—ra}

by reducing generators of H; (R, M) pui+ 5, - This implies that the map ¢ is injective, and
hence Ho(Aut™F,,, M) = 0. Then, considering the homological Lyndon-Hochsild-Serre
spectral sequence of (1), we obtain Hy(Aut F,,, M) = 0.

In Section 2, we introduce some tools which we use in our computation in Section 3.
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2. TOOLS FOR THE COMPUTATION

In this section, we prepare some tools to compute the second homology groups. First,
we introduce some notation which we use throughout this paper. Then, we review a
finite presentation for Aut* £}, due to Gersten [2] and reduced finite presentation (X | R)
for AuttF, of the Gersten’s presentation. Finally, we show some useful lemmas and
equations which are used in Section 3 to reduce the generators of Hy (R, M) s+ F, Where
M = Hj, and H}, and R is the normal closure of R in the free group on the generating
set X.

Let F,, be a free group of rank n with generators {z1,...,x,}. In this paper, the
group Aut F, acts on F;, on the right. For any o € Aut F}, and = € F},, the action of o
on x is denoted by z?. The elements xgtl € F,, (1 <i<n),are called letters of F,,. Let
H be the abelianization of F;, and H* := Homg(H, Z) the dual group of H. We remark
that although the group H* is isomorphic to H as a free abelian group, both group
are not isomorphic as an Aut F,,-module. For each generator x; € F,, (1 <i < n), set
e; = [z;] € H where [z] means the coset calss of x modulo the commutator subgroup
of F,,. Then {ey,...,e,} is a Z-basis of H. Let denote {e],..., e} the dual basis of it.
In general, in group (co)homology theory, actions of groups on modules are understood
to be left actions. So we consider the modules H and H* as left Aut F,-modules in a
way o -2 :=2° for o € AutF, and x € H or H*.

Now, for any letters @ and b such that a # b*!, let E,, be an automorphism of F},

defined by the rule
B, {a — ab,

c e, c#atl

Clearly, we see Ey, ' = E,_-1. Automorphisms of F,, of E, type are called Nielsen
automorphisms. In this paper, for simplicity, we write Ej+1;+1 for E +1 1.
i g
The actions of Ej+1; on e and e} are given by

Eoi1, e;Fei, k=1
cep = [g;'kzilJ 1] - {62:{: 7 ks&z?
9

Iy

it

and

Brany - = { G k=0

€k k#J
respectively. An automorphism wgy, := Fpe Ey—15Fp-1,-1 is called a monomial automor-
phism a — b, b— a. We see wgp ™t = w1, and write w;z1 =1 for Wy
Let p : Aut F,, - GL(n,Z) be a natural homomorphism induced from the action
of Aut F,, on H, and det : GL(n,Z) — {+£1} the determinant homomorphism. The
kernel Aut™t F}, of the composition map det o p is called the special automorphism group
of a free group. Here we review a finite presentation for Aut™F, due to Gersten. He

2] showed

Theorem 2.1 (Gersten [2]). For n > 3, the group AuttF,, has a finite presentation
whose generators are Ey, subject to relators:

(R].) . EabEab—l ,
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(R2): [Ew, E.d), for a # ¢, d*! and b # ¢+,
(R3) [Eaba Ebc]Eac_la for a 7é Cil;

(R4): wapwy-1p,

(R5) wab4.

Here |, ] denotes the commutator bracket defined by [z,y] := zyz~'y~!. In this
paper we often use fundamental formulae of commutators

(2) [z,y2] = [z, y][z, 2[[2, 2] 4], 2y, 2] = [2, [y, 2]][y, 2] [z, 2].
We call the relators above the Gersten’s relators. In our paper [8], using Tietze trans-
formations, we reduced the Gersten’s presentation to

Lemma 2.1. Forn > 3, the group Aut™F, has a finite presentation whose generators

are F;+1; subject to the relators:

(R2-1): [Eyj, Eij],

(R2-2): [Eyj, By,
(R2-3): [Ej-1y, Eyjl,
(R2-4): [Ei—lj, Ek_lj];
(R2-5): [Eija Ei—lk],
(R2-6): [Eija Ekl];
(R2-7): [Ei—lj, Ekl];
(R2-8): [Ei—lj, Ek_ll];
(R3-1): [Ezk, Ekj]Ez‘j—1;
(R3-2): [Eig—1, Ep—1j] By,
(R3-3) [E,L—lk., Ekj]EZ—lj—l,
(R3-4) [Ez—lk.—l, Ek—lj]EZ—lj—l,
(R4—1)! Wi Wi—1j,
(R5-1) wij‘l

where i, 7, k and | are distinct elements of {1,...,n}.

In Section 3, we use this reduced presentation to compute the twisted second homol-
ogy groups. In the computation of the second homology groups,

Let X and R be the set of generators and relators of the reduced presentation for
Aut™F, introduced in Lemma 2.1 respectively. In the following, we study relations
among the relators of the presentation (X | R), which is often required in the computa-
tion of the second homology groups. Let F be the free group on X, and R the normal
closure of R in F'. Here we define elements r,.(b) and hgp, of F' to be

Tac(D) := [Fap, Epe| Foe—1 for a # b et and b #£ ¢!

and
Rap = WapWe-1p, for a # bt
respectively. Since 7,.(b) and hgp, are the one of relators of the Gersten’s presentation,
we see that these elemets are in R. In this paper, we write T’iiljil(kil) and h;+ =1 for
rxzilxjﬂ(xfl) and hxiixjil respectively.
For letters a,b,c and d, we consider an element (wab_lEcdwab)_lEcada of R where
o is the monomial map defined by wy. More precisely, we study how the elements

(Wap F Eqwap) "t Ewgo are rewritten with the relators of the Gersten’s presentation.
First, we consider the case §{a*!, b*!, ¢! d*'} = 6.
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Lemma 2.2. For letters a,b,c,d, we have
(i) ife=a"",
(Wab ™" Ea-1qWab) ™" Epa
= Eb—laEa—lb—l Thd—1 (a_l) Ea—leb—la—l

+ By10Byg-1 By-1p-1 1-14(0) " Eg-1yBpaBy-1,-1
* [Eb—la’ Ebd—l].

(il) if e = b1,
(wap ™' By-14wap) ™' Ey-14
= Ey-1,E,-1p-1 [Epa-1, By-14-1] Eg-1pEp-14-1
- By1q7a1a-1(b7Y) Ep1g
Eyrg1 Byrgryg(a”) Byrg1 By,
(iii) if d = a,
(Wap ™" EeaWab) ™" Egy1
= Ep1aFa-16-1 [Bpa—1, Beg1] Ea-1pEp-14-1
By 1B ra-1(a) T Bg1 By
By10Ba e (b7 Byt By
(iv) if d =a™",
(Wap ™ Bea—1wap) ™ Eop
= Ey-14B0-10-1 [Bpa1, Bea] Ba-1pEp-14-1
 By10Boqray1(a™") " Eggo1 By1g1
By 10 o1 (071 Byt By .
(v) if d=0,
(War ™ Eywap) " Eea
= Ey10La-14-1 Byt Teq—1(0) By E—1y Ey-14-1

By Ey-1p-1 B rcb(a_l) EopE,-1yEy-14-1
[ Ey-14, Eeg-1].

(vi) if d=b"1,
(wab_lEcb—lwab)_lEca_l
= Eb—laEa—lb—l Eca Tea—1 (b)_l Eca—l Ea—leb—la—l
. Eb—laEca Tep—1 (a_l) Eca—l Eb—la—l

. Eb_laEca [Ecb_la Ea_lb_l] Eca_lEb_la_l
: [Eb_laa Eca]-
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Since these equations follows from easy calculations, we omit the details. In the case
where ¢ = a or ¢ = b, observing
(3) (wab_lEcdwab)_lEc“d“ = (wab_lEcd—lhabEcdwab) : (wab_lhab_lwab)

. (wa_lb_l_lEcdwa_lb_l)_lEc"d":

and Lemma 2.2 above, we see that (we ' Eeqwep) ' Ewgs is also rewritten with the
relators of the Gersten’s presentation. For the case #{a*!,b*!, ¢!, d*'} = 8, we have

Lemma 2.3.
(wab_lEcdwab)_lEcd = E1l)_1(1E1(1_1b_1 [Eba_la cd_l] Ea_leb_la_l
. Eb—la [Ea—lb—l, Ecd—l] Eb—la—l . [Eb—la, Ecd—l].

Next, we consider how rewrite the relators [Eup, Ecd], 7ac(b) and hgp of the Gersten’s

presentation with the relators (R2-1), ..., (R4-1) of the reduced presentation. First,
by an easy calculation, we see that the (R2) type relator [Eg, Feq| is rewritten as a
conjugate of one of the relators (R2-1), ..., (R2-8). For example,

[E’ij_17 Ek‘j_l] == E’ij_lEk‘j_l [E’L]a Ek‘j] E’L]Ek‘j
For the relators 7,.(b) and hgp, we use

Lemma 2.4.
(1) ac-1(0) = (Bpet Bac-170c(0) ™ EacEpe) - [Epe-t, Eoe-1],
(i) ho-1p = Wap " hapWab,  ap-1 = Wap gy W
Finally, we consider two type of equations induced from elements of R:
(Wap ' rea(€)wap) eogr (€7)  and  (wap heqWap) heodo
where o is the monomial map defined by w,;,. Observe
Teorar (€7) = 57" (Wap ™ Eeeap 55" Wap ™" Eee ™ wap)
n (wap ™7 ea(€)Wap)
(Wap " BeaFeaway $1 Wap ™' Eed ™ Eea” ' Wap)
(Wap ™ EeqWab 82 Wap " Eog ™ wap) - 53

where

o -1 -1 -1 o -1 -1 -1
S1 ‘= (wab Ece_lwab) Ecaea s Sg = (wab Eed_lwab) Eeo'do' s

83 1= (Wap " Eeg-1Wap) " Eogo .
Considering the equation (4) in R*®, and tensoring it with e, in R*® ®z Hy, we obtain
Teodgo (€7) @ ey = STt ® ep+ (Wap ™ EeeWap S5 Wap " Eoe " Wap) @ ep
+ (wap M rea(€)wap) @ €,
+ (Wap ' EeaFeqWap $1 Wap " Bed ' Beg 'wap) @ €,
+ (Wap ™ Bodab 52 Wb Bod ™ wap) @ € + 53 R €

For convenience, we denote this equation by (a,b,c,d,e) ® e,. Similarly, we define
(a,b,¢,d,e) ® e
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We also consider
-1
c"d" - t3 (wab Edcwab t2 wab Edc wab)
-1 -1 -1 -1
(5) Wab Edc c—1dWab tl Wabp Ec—ld Edc wab)

- (
(wab_lEd lc Ecd_lwab t4 wab_lEchd_lcwab)
- (

-1
Wab Ed 1c wab t5 wab Ed 1cwab> t6

where
tr 1= Bgryo (e (o Bamre-1wa) ™, by = Ee-yoar (g Eeratan) ™
ts 1= Egocr (W Bacway) ™, ty = (W Bae1wap) ™ Ego (1o,
ts = (W EBeqwap) ' Eeogo, te := (wgy Eg-1cwap) " Elg-1yoco.

For convenience, we denote by {a, b, ¢, d} ® e, the equations obtained by considering (5)
in R**, and tensoring it with e; in R @4 H7. We often use these equations in Section
3 to reduce the generators of Hy(R, M)ay+p, for M = Hy and Hj.

3. THE PROOF OF THE MAIN THEOREM

First we consider Hy(Aut™F,, Hy) for n > 6. Let F, R and R be as above. Then we

have an exact sequence
l1—-R—F — Aut™F, — 1.
This sequence induces a homological five-term exact sequence
HQ(F, HL) — Hg(Aut+Fn,HL) — Hl(R, HL)Aut+Fn
— Hl(F, HL) — Hl(Aut+Fn, HL) — 0.

of Z-modules. Since a Z-equivariant homomorphism between L-modules is naturally
considered as a L-equivariant homomorphism, we see that this sequence is an L-
equivariant exact sequence. Since F' is a free group, Ho(F, Hy) = 0. Furthermore

Hy(Aut™F,, Hy) = 0 from our results of [8]. Hence we have an L-equivariant short
exact sequence

0 — Hy(Awt*F,, Hy) — Hi(R, H) py+ 5, — Hi(F, Hp) — 0.

Since F is a free group of rank 2(n? —n), and since H, is a free L-module of rank n, we
see H'(F, Hy) is a free L-module of rank 2n(n? —n)—n. Hence, by universal coefficients
theorem, we have Hy(F, Hy) ~ Lon*=n)=n} Gince [ is a principal ideal domain, we
can apply the structure theorem to any finitely generated L-modules. Therefore our
required result Hg(Aut+Fn, Hp) = 0 follows from

Proposition 3.1. Forn > 6,
H1(PL: HL)Aut+Fn ~ [F2n(*mn)=n},

We prove this proposition in Subsection 3.1. Then, observing the homological Lyndon-
Hochschild-Serre spectral sequence of

(6) 1 — Awt™F, - Aut F,, — {+1} — 1,
we obtain Hy(Aut F,,, Hy,) = 0 for n > 6.



8 TAKAO SATOH

Next we consider Hy(Aut*F,, H;) for n > 6. Similarly, we obtain a homological
five-term exact sequence

HQ(Fa Hz) - HQ(AUt+Fn7Hz> - Hl(Ra Hz)Aut+Fn
s H\(F, HY) — Hy(Aut™FE,, H}) — 0,
of L-modules, and from the results of [§],
0 — Ho(Aut™F,, H}) — Hi(R, H} ) g+ g, — Hi1(F, H}) — L — 0.

Since we have H,(F, H}) ~ L2 =m=n} our vequired result Hy(Aut™F,, Hi) = 0
follows from

Proposition 3.2. Forn > 6,
Hl(R: HY) auttF, L®{2n(n?—n)-n-1}

We prove this proposition in Subsection 3.2. Then observing the homological Lyndon-
Hochschild-Serre spectral sequence of (6), we obtain Hy(Aut F,, H;) = 0 for n > 6.

3.1. The proof of Proposotion 3.1.

In this subsection, we prove Proposotion 3.1. Since the map H;(R, Hp) pwerp, —
H\(F, Hyp) = L®2n0*=m)=n} jg surjective, Hy (R, Hp) pue+ F, contains a free L-submodule
which rank is greater than or equal to 2n(n? —n) —n. To show it is just 2n(n* —n) —n,
it suffices to show that Hy(R, Hp)su+ 5, is generated by just 2n(n* — n) — n elements.
Let R?® be the abelianization of R. We also denote by 7 the coset class of r € R. By
definifition, we have Hy (R, Hp) pnet F, = R ot r, Hr, and see that

¢:={r®e,|reR, 1<p<n}

is a generating set of R**®, +r Hy as a L-module. In the following, we reduce the
elements of €. We use = for the equality in R**®+p Hr.

Step 0. In the reduction of the generators of R*®+p Hr, we often use the
following lemmas.

Lemma 3.1. Forn > 3,

(Eirjr Epnj-1) ® e, = r® ep, p#z',
r®e; tr® e, p =1,
r® ep, p # 1,

ExijarEmj) ey, =
( iljl i1j> 14 {T®€i:FT®€j7 p=i.

Proof of Lemma 3.1 For any ¢ € Aut™F,, r € R*® and h € H, we have r -0 @ h =
r®o-h. Then observing the equation -0 ®h = o~ ro®h induced from the definition of
the action of Aut™F,, on R*?, we obtain the required results by substituting ¢ = F,+1 jE
and h =e¢, . 1
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Corollary 3.1. Forn > 3,

0
Eusrl®@e, =<
[ ilj ] 14 {:l:?“@@j, p= i,

0 1,
[Eiilj_1,7’]®ep5 { ’ p# )
Fr & e;, pD=1
Proof of Corollary 3.1 Observing
o, r]®e,=0rar T ®e, = (oro ) Re,—1Re,
for o € F and r € R*®, and Lemma 3.1, we immediately obtain the required results. [J
Similarly, we have
Lemma 3.2. Forn > 3,
(roe,  p#ij,
+r & €4, p= i:
\ +r & €i, b= j:

(Wi T w1, @ ey

(T®€p7 p;é/L?j?
(wz‘ilj—l Twiilj) ® ep = :l:/r ® ej: p = 2'7
\:Fr®€i7 p:j

Corollary 3.2. Forn > 3,

0, p# 1,
[wiﬂj,r]@)epz —r®e FrXe;, p=1,

tr®e —rQe;j, P =17

0, p# i,
[wiilj_l,r] Kep =1 —T& ¢ :l:7’®€j, p=t,

Tree —rej, p=7.

Considering any relator of (R2) of the Gersten’s presentation is conjugate to one of
the relator of (R2-1), ..., (R2-8), or considering Lemma 2.4, for any relator r = (R2),
(R3) and (R4), we can rewrite a element r ® e, with the relators (R2-1), ..., (R4-1)
using Lemmas 3.1 and 3.2. The computation is easiest explained with examples, so we
give three examples.

[Eij—1, Bpj—1] ® ep = (Eij—1 Eyj—1 [Eij, Eij] EijEij) © ey,
_ {[Ez‘j: Er;] ® ey, p#i,k,

N [Eij, Exj] ® ep — [Eij, Brj] ® e, p=1i,k.

rij-1 (k) @ ep = {(Brj1 By (k) By Brg) - [Bxj1, Eija]} © e,
{_T’ij(k) ® ep + [Eij, Erj] ® ey, pFik,

—71i5(k) ® (ep — €5) + [Eij, Erj]l @ (e —¢j),  p=1i,k.
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hij®€p7 p#%]:
himi; ® ep = (wi~ hijwig) @ e, = { hij @ ¢, p=i,
—hi; ®ei,  p=J.
Step 1. First we consider the generators w;;* ® e,. Observing the Gersten’s compu-

tation in [2], we see that for any a, b, ¢, and d, the element (w. ' Feg wap) ' Ewagr € R
is in the normal closure of (R2-1), ..., (R4-1) in F', Hence

wi;® = {(wij wiPwi; ) wie?} - {(wie T wi T wi?) " wit) )

is also in it, and we see that

(wi® @ )

N | —

1
wij4 & €p = 5 (2 wij4 ® €p) =

is rewritten as a sum of the generator r ® e, for r = (R2-1), ..., (R4-1). Therefore we
can remove the generators w;;* ® e, from the generationg set €.

Step 2. Here we show that the generators r @ e, for r = (R2-1), ..., (R2-8) is zero
or equal to one of the generators r;+1;(k*') ® e,. We have

Lemma 3.3. Forn > 6 and distinct i, 3, k,l and m,
(i) (R2-2):

0, pFik,
[Eij, Byl @ep = ¢ —rii(l) ®ej,  p=1i,
Tij(l) & €5, p= k.
(il) (R2-3), (R2-4):
0, p#ik,
[Ei1j, Egrj] @ €y =  mies1(1) @ ey, p=i,

Fri()®e;, p=k
(i) (R2-1):
0, p #i,
E’i’aEi_l‘ ®ep = '
[ J J] P {—Tij(k)@)ej_ri_lj(l)@ej’ p=r1
(iv) (R2-6):

0, pF#ik,
[Eij, Eu] @ ey = ¢ —ria(m) ®e;,  p=i,
rij(m) ® ey, p=k.
(v) (R2-7), (R2-8):
0, pFik,
[Ei-1j, Egru] @ ep = { mp1(m) @ ey, p=1i

:l:”f’i—lj(m> ® €r, P = k
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(vi) (R2-5):
0, s
[Eij, Bi-1g] @ €, = p#z
—1i;(l) ® e — ri-1(m) ® e, p = 1.

Proof of Lemma 3.3 Here we prove (i). First we consider the case p # i, k. Since
n > 5, we can choose a number [ € {1,...,n} such that [ # ¢,j,k,p. Set r :=
E; _1[EZ1,EZJ] € R. Since [r, Ey;] is in R, and since p # i, k, we have

[Eij, [, Bl @ e, =0, [r, Bl ® ¢, =0

by Corollary 3.1. Then, using the formula (2) repeatedly, we see

[Eij, Eij] © €, = ([Eiy, [r, Exjll[r, Ewg][Eij, Ekj]) ® €,
= [[Eu, Eij], Exj] @ ep,
= [EaE By E;j 7 Ey] @ ey,
([Ba, [EyEa™ By~ Ey)[ByBa™ Ey~", Byl[Ba, Exj)) © ep,
([Ezj Ey ' Ey™", Byl [Ba, Exy)) @ ep,
([Ey; ™", Eg)[Ea™", Exj)[Ey, Exj)[E, Exj)) © ey,

= [Ey ™ Byl @ ep + [Ea™", Bij) ® e + [Eyj, Exy) ® €, + [Eu, Bij] @ ey,
On the other hand, by (2) we have
1= [EyEy~, By = By, By~ Byl (B Bl (B, i)
Since p # I, we see [Ej;, [Ey; 7", Exj]] ® e, = 0 by Corollary 3.1, and hence
[Eyj, Exj) @ ep + [By ™", Byl @ e, = 0.

Similarly, since p # 1,
[Eit, Eij] @ €y + [Eq ", Exj] ® €, = 0.
Therefore we obtain [E;;, Ex;] ® e, = 0.
Next we consider the case p = i. Since [[Ek;, Eij],rxj(1)] = 0 in R*® and since
[Eij, 16 (1)] @ e; = 1;(1) ® e; by Corollary 3.1, we have
[Eijs Erjl@ei +1i5(1) © ¢
= ([Eij, i (D] [Eijs Eis)[[Erg, Eij], i (D]) @ €5,
= [Eij, [Ew, Ei] ® e,

([Eij, Eul[Eij, By B By [[Ey Eg- By, Eyjl, Eal) @ €3,
([Eij, Bl Eijs Eyj By Ej-]) @ e,
([Eij, En][Eij, -] Eij, Eyl[Eij, Eiy-]) © e
([Eij, B + [Eij, Bu]) © e + ([Ey, Bi] + [Eij, By ]) @ e

Since we have

1 = [Eij, EnEy-1] = [Eij, E)[Eij, Ex-1][[Ew-1, Eijl, Ewl,
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and since [[Ey-1, Eij], Eu] ® e; = 0 by Corollary 3.1, we see
([Eij, Bn] + [Eij, Br—1]) ® e; = 0.

Similarly,
([Eij, Big] + [Eij, Eij-1]) @ e; = 0.

Hence we obtain [E;;, Ey;j] ® e; = —ryj(l) ® e;. Furthermore changing the role of i and
k in the equation [Ey;, Ei;] ® e; = 14;(1) ® e, we also obtain [Ejj, Eii] Qe = 1;(1) Qe

Similarly, we can show (ii), (iv) and (v). We remark that to show (iv) and (v), we
need n > 6 since we use six distinct generators of the free group Fj,. Then using these
results, we obtain (iii) and (vi). Since the calculations are similar to that above, we
leave it to the reader for exercise. (For details, see Subsection 5.1.) O

By the lemma above, we can remove the generators r ® e, for r = (R2-1), ..., (R2-8)
from the generationg set €.

Step 3. Here we consider the generators r;+1;(k*!) ® e, for p # i.
(3-a) The case p # i, k.

First we consider the case p = j. Observing (i) of Lemma 3.3, we see that r;;(l) ® e;
doesn’t depend on the choice of a number [ such that [ # 4, j, k. On the other hand,
since n > 5, there exists another number m such that m # ¢, 7, k, . Similarly, we have
[Eij, Enj] @ e = 1435(k) @ ¢; = 1i;(1) @ e; from (i) of Lemma 3.3. This shows that
ri;(l) ® e; doesn’t depend on the choice of a number [ such that [ # 4, j. Futhermore,
using the relator 74;(I™") instead of rg;(l) in the proof of (i) of Lemma 3.3, we also
obtain

07 p # Z’? k?
[Eij, Bijl ®@ep = —riy(ITH) @€y,  p=1,
T’Z‘j(l_l) X €, p= k.

Hence we can set
ri() @ ej =ri(k) @e; =ry(k7h) ®¢;
for distinct ¢ and j. Similarly, observing (ii) of Lemma 3.3, we can set
riei () @ e = rim(k) @ g = 1o (k71 ® ¢y
for distinct ¢ and j.
For the case p # j, observing (iv) and (v) of Lemma 3.3, we can set
() ® ey =rii(k) @e, =1k @ ey,
T’i—lj(') X €p 357’i—1j(k) & €p = T’i—lj(k_l) X €p.

(3-b) The case p = k.
Set
Sz‘jk = T’ij(k) X e — 7’@(') X e — Tzk() X €.
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We show that S;;, = 0 in Rab®Aut+FnHL. For distinct 4,7,k and [, the equation
(@1, ), x4, x5, x5) @ ey is given by

ra(k) ® ex = 57 @ ex + (wy;  Egwyy sy wy T BT wy) @ e
™ + (wy ™ i (k)wiy) @ ex
+ (wlj_lEijEkjwlj S1 wlj_lEkj_lEi‘_lwlj) ® e
+ (wy; T Ejwyy e wy; T By T wg) @ e+ 53 @ e
where

— -1 -1 -1 ._ -1 -1 -1
s1 1= (wy; = Ey—rwyy) T By, o= (wy;~ Egj—rwyy)” B,

s3 = (wy; ' Eyjrwyy) By
Then using Lemmas 3.1 and 3.2 repeatedly, we obtain
(8) ra(k) @ e = 1i(k) @ e, + 51 @ € + 53 @ e
On the other hand, using Lemma 2.3, we see
s1 = (w; " Eg-rwyy) " By
= EjuBj [Eje, Bg] B B Ejoy [Brgon, B By - [Ejo, By,
and hence
s1@ e =) ®e—rin(+) @ ey
Furthermore, applying (vi) of Lemma 2.2 to s3, we have
s3 = (wi; ' Eyjwy) By
= Ej-yEp1j1 Eqrag1(§) " By Ey1jEjoy - EjyEy vy (I7Y) g Ejonga
By By [Eij-1, Bi-1i1] By By - [Ej-y, By,
and hence
s3 @ e =) ® e —1ij(+) @ ex.
Substituting these results into (8), we obtain S;;;, = Si.
By the same argument, considering the equation (xl_l, Tj, Ti, T, Tk) & ey, we obtain
Sijk = —Sik, and 25;, = 0. Then 2 is invertible in L, we obtain S;j; =0, i.e.,
rij (k) ® er = 1i;(-) @ ex +1in(-) @ €.
Similarly, considering the equations (z; ', 27, 74, 7;, 7;) ® e and (x; ', 27, 27, 7, xfl) ®
e, we obtain

ri(k) @ er =71 () ® ex +ra(c) ® e,
Ti—lj(kil) X €L = Ti—lj(') X €L + Ti—lk(') X 6]‘
respectively. (For details, see Subsection 5.2.)

By the argument above, we can remove the generators T’iilj(kil) ® ey from the gen-
erationg set €.

Step 4. Here we consider the generators h;; ® e,.
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First we consider the case p # ¢, 7. From Lemma 2.3, we have
[wi; ", Euk) = (wi; "' Ey—rwig) ™ By
= Ej1iBi-1j1 [Eji1, By Bi-1Ej-1-1
B [Eijor, Eg] Ejerimr - [Ejvg, Eugl,
and hence
(9) [wi ™" B @ e1 = —15i(-) @ e — 1i-15() @ ey +15-15() @ e
On the other hand, observing (3), we have
[wi; ™ Eu] = (wy ™ Ewhy ™ Ey-wiy) - (wig ™ hijwi) - [wiog, Eig).
Using Lemmas 3.1 and 3.2, we have
(i hijwij) @ e = hyj @ ey,
(wij_lElkhij_lElk—lwij) ®e =—hij ®e — hij @ ey
Furthermore, computing [w;-1;, Ej;] ® €; in a way similar to (9), we have
[wi1j, Eue] @ 1 = 1j-13(+) @ ex +1i5() @ e — 15(-) @ ex.
Hence
(10) [wi; ™ B @ e = —hij @ e +15-1,(1) @ e, +145() @ ex — 15i(+) @ ex.
Comparing (9) with (10), we obtain
hij @ ex = —1i(-) @ ex — ri-1;(+) © ex.

Next we consider the case p = i. Applying (iv) of Lemma 2.2 to {(w;; "' Ej—1w;;) " B }®@
ek, We see

(wij ' Egi-wij) " Erj = Ej1;Ei-1-1 [Ejio1, Brg) Eio1Bjo1i1
BB rjr (i) B Bjo1i
N (j_l)_l Epi-1Ej-1;-1,
and hence
(11) {(wij ™' Brimrwi) T By} ® e = —r5i(-) @ ei + i (17 @ e + 1 (171 @ e

+ (") @ e + () @ e
On the other hand, using (3), we have
(wi ' By wig) ™' By = (Wi~ Epihig Byi-vwig) - (wi; " hig ™ wig)
) (wi_lj_l_lEki_lwi_lj_l)_lEkj'
Tensoring both hands side of the equation above with e, we have
(12)  hij @ e; = {(wi; ' Erimrwig) 7 By} ® e, — {(wi-1-17 Epmiwi—1-1) ' B} ® ey
Applying (iii) of Lemma 2.2 to (w;-1j-1 ' Ep-1w;-1;-1) "' Ey;, we see
(wi—1j1 " g1 wi-1j-1) "' By = Eji-1 Eyj [Ej—v, Bri] By Ej;
- Bjio1 By iy (1) Eng B
- Bji1Ey1ma(j) ' By Eji
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and

{(im1j T Bpimrwi-j-1) T By} @ ex = 1) ® € — 1 (1) @ ex + 1as (1) @ 5
—rki(J) @ ex + () @ 5.

Substituiting (11) and (13) into (12), we obtain

(13)

hij @e; = —1j-1;(-) ® e; —15:(+) ® €; + 135 (1) @ e, + 11 (71 @ e
+rei(J) @ en+ i) @ ex — i () @ €5 + Tril) ® €
— () @ e; + 1 (T @ e
Similarly, considering {(w;; Egi-1w;;—1)"" Ej-1} ® ey, we have
hij@e; =1j-1;() @ e +15i(0) @ e; + 11 (i71) @ e+ 115(1) ® ey,
— () @ e — () @ e — rril) @ €+ i) D g
+r () ®ej — (i) ®¢;
By the argument above, we can remove the generators h;; ® e, from the generationg
set €.
Step 5. Here we consider the generators 7;+1;(k*!) @ e;.

For convenience, we use the following notation. Let V' be the quotient L-module of
R*®® o+ Hy by the L-submodule generated by the elements 7;:1;(+) ® ey for k # i.
We use = for the equality in V.

First we consider the equation (x;, xy, z;, z;,x;) ® e; for distinct 4, j, k and . It is
given by

ri(D) @ e = s7' @ e; + (wi " Egwi, 850w B w) ® e
+ (wir i (k) wg) ® e
+ (wip " By Egjwn $1 wlk_lEk_leij_lwlk) ® e;
+ (w7 Bijwi 52w By o) @ e+ 53 @ e
where
s1:= (wi " Egrwy) " By, so = (wi T Eyjrwg) T BT
sz := (wy " Eijorwy) T Byt
Then using Lemmas 3.1 and 3.2, we obtain
(14) rij(@e =rij(k)@e;+s51@ej+ 52 e — 2 Qe+ 53R e
By an argumet similar to that in (3-b), we can compute
s1@e =ru(-)®@e; —ru(-) ®e; =0
and
s3@e; = —r() ®e; —r-g() @ ey +rp-1(-) ®e; = 0.
On the other hand, using (3), we have

so = (Wi~ Egjhug Exj-1w) - (wi ™ hae ™ ) - (wy-1p-1 7 Bjorwp--1) " By,
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and hence
s2® e; = {(wrp1 T Epgorwpn1) T B} © e,
s ® e = { (w117 Bgjorwp-1p-1) B} @ e + hig ® e,
= {(wi-1p1 7 Eyyrrw--1) T By } @ e — (1) @ €5 — mieag() ® ey
Then, applying (ii) of Lemma 2.2 to (w;-1p-1 ' Egj-1wj-15-1) " Ejj-1, we see
(wWim1h—1 " Bgmrwi-1j-1) " Eyy1 = By By By, Egg) By Egy
- Ey-11(k) By - EjjEg-rgi-1(1) Eg By,
and hence
s2@ej =1i(1) ®ej — () @e; =0,
So®@e =rpi() @ e+ 1-1(-) ®ej +1,(k) @ e
—rii(l) @ e — () @ e — rip(c) ®e; — -1k (4) ® ey,
=) @ e+ r-1(-) ®ej +15(k) @ e
— 1 (1) @ e — () ®ej — (1) ® €5 —ru(+) ® €5 — r-g () ® ey,
= r;(k) @ e
Substituting these results into (14), we obtain
(15) rii (1) ® e; =1i;(k) @ e; — 1i5(k) ® €.
Similarly, considering the equations (z;',z:, zi, 7;, 21) ® e, (Th, 71, Ti, T4, 71 1) @ €
and (z; ', 2, 27t 25, 7, ) ® e;, we obtain
(16) rij(k) ® e; = ri-15(i) ® g — 1-15(k) ® e,
rii(k) @ e = (1) @ e — rp-15(1) @ ey,
ric (kT ®@e =) ®@e — (k) ® e
From the equations above, we see that V' is generated by r;:1,(k) ® e;. We reduce

these generators of V' more. On the equation (15), exchanging the roles of k and [, we
obtain

rii(k) ® e; = 1i;(1) ® e; — 115 (1) @ ey,
and hence
Tk (1) @ e = —11(k) @ e
For any j € {1,...,n}, choose a number p; € {1,...,n} such that u; # j and fix it.
Then we have

Tuii(K) ® ey = —ri;(11) @ e, 1ij(K) @ e = 7ij(11) © e — 1 (1) @ e
Furthermore, from (16), we have
ri-1j(k) ® e = 1 (1) ® e + rim15(15) © e
This shows that the L-module V' is generated by
Taj(,uj)@ea: (1<a<n, @#jaﬂj)

and
rg-1(p) ®es, (1< B<n, B#)).
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Therefore we conclude that the generating set € of R*P®, .+ r, Hr is reduced to
{rie; () @ep|p # i} U {ra;(i) ®ea |1 < j <n} U {rg-1;(n;) @5 |1 < f <n}.

The number of the generators above is just 2n(n* —n) — n. This completes the proof
of Proposition 3.1. [J

3.2. The proof of Proposotion 3.2.

In this subsection, we prove Proposotion 3.2. The outline of the proof is similar to
that of Proposotion 3.1. Since the image of the map Hi(R, H})au+r, — Hi(F, H}) is
isomorphic to the free L-module of rank 2n(n* —n) —n —1, Hi(R, H} ) oys+f, contains
a free L-submodule which rank is greater than or equal to 2n(n* —n) —n — 1. To show
it is just 2n(n* —n) —n — 1, it suffices to show that Hy (R, Hp) s+ p, is generated by
just 2n(n? —n) —n — 1 elements. We have H1(R, H}) s+ 5, = B*P@pue+ i, Hy, and see
that

¢ ={r®e,|reR, 1<p<n}

is a generating set of R*P® .+ r, Hj. In the following, we reduce the elemets of ¢*. We
also use = for the equality in R**® i+ 5, H}.

Step 0. By an argument similar to that of Step 0 in Subsection 3.1, we have

Lemma 3.4. Forn > 3,

(Eiile'Eiilj—l) ®€; = re ep’ p 7£ ‘7.’
ree;Fre;, p =7,
(Eiilj—l T'Eiilj) ®€; = re ep’ p 7£ ‘7.’
ree;tre;, p=7.

Corollary 3.3. Forn > 3,

[Eiilj, 7"] X e

*
p

0, p# 7,
Froe;, P=17

0 .
[Eiilj_l,r]@)e* = ’ p#j’
P +r ® el p=7.

Lemma 3.5. Forn > 3,

(r@e:, p#i.j,
Free;, p=i,
|troe,  p=j,

(Wi 7w ) @ €

(r@ey,  p#ig,
+r® ej, p =1,
(Fr®e, p=1J

(Wi rwisn ) © €
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Corollary 3.4. Forn > 3,

07 p#/L’j?
w1 @y =8 —r@ e Frog,  p=i,

tr®el —r®e;, p =7,

07 p#/L?j?

[wiilj—l,fr] Xe = —r® ej; :l:/r ® e}f’ b= i?

:Fr®e;*—r®ej, D=7

*
p

Considering any relator of (R2) of the Gersten’s presentation is conjugate to one of
the relator of (R2-1), ..., (R2-8), or considering Lemma 2.4, for any relator r = (R2),
(R3) and (R4), we can rewrite a element r ® e; with the relators (R2-1), ..., (R4-1)
using Lemmas 3.1 and 3.2.

Step 1. First we consider the generators w;;* @ e,. By the same argument as that
of Step 1 in Subsection 3.1, we see

4 * 1 4 *_1 8 *
Wi ®€p:§2wi]‘ ®€p:§wi]‘ ® e,

is rewritten as a sum of the generators r ® ey, for r = (R2-1), ..., (R4-1). Therefore we
can remove the generators w;;* ® e, from the generating set €*.

Step 2. Here we show that the generators r @ e for r = (R2-1), ..., (R2-8) is zero
or equal to one of the generators r;+1,;(k*!) ® e,. We have

Lemma 3.6. For n > 6 and distinct i, j, k,l and m, we have
(i) (R2-6):
0, p#Jl
[Eij, En] ® €, =  ru(m) ® €], p=1J
—rij(m)®e;, p=IL.
(ii) (R2-7), (R2-8):
0, p#Jl
[Ei-1j, Bpey] @ €, = § —mpey(m) @ €, p=j,
Fri-1;(m) ® e, p=1.
(iii) (R2-5):

07 p # j7 k?
[Eij, EBi-1g] ® ‘9; = q ri-w(l) @ €, p=17,
Tij(l) X €, p = k.
(iv) (R2-1):
0, p#J

rij(k) @ ef —ri1;(1) ® e, pP=J
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(v) (R2-2):
) ‘ e* _ O’ p 7é j:
[Eij, Exj] ® p = {Tkj([)@)e;‘ —ri(m) ® e, p=17
(vi) (R2-3), (R2-4):

0, p#J
Ei_y,Ekil‘ X er = * * ]
[ J j] p {—T’kilj(l>®€i :Fri_lj(m>®€k‘7 p:j

Since this Lemma is proved by an argument similar to that in Lemma 3.3, we omit
the details. (For details, see Subsection 6.1.)

By the lemma above, we can remove the generators r @ e;, for r = (R2-1), ..., (R2-8)
from the generationg set €*.

Step 3. Here we consider the generators T’iilj(kil) ® e, for p # j.

(3-a) The case p # j, k.

First we consider the case p # k. By an argument similar to that of (3-a) in
Subsection 3.1, observing the results of Lemma 3.6, we can set

rij(+) ® e :=ri; () @ ¢,
T’i—lj(') & 6;; 357’i—1j(k:t1) X 6;;
for p # 7, k.
(3-b) The case p = k.
For the case p = k, set
ik =i (k) @ e —rii () @ e — 1i(4) ® e
By the same argument as that of (3-b) in Subsection 3.1, observing the equations
(xlil, Tj, Ti, Tj, Tp) @ ey, we obtain S = 0. Furthermore, observing (z; ", 2, iy 14, 01) @
ep and (7%, xp, 2, 25, 7)) @ e}, we obtain
(k) @ ep = 13(-) @ e — 114() ® €],
T’i—lj(kil) & 62 = T’i—lj(‘) X 62 F T’kilj(') & 6,?.
By the argument above, we can remove the generators r;+1,;(k*') ® e} from the gen-
erationg set E*.

Step 4. Here we consider the generators h;; ® e, for p # 4, j. By an argument similar
to that of Step 4 in Subsection 3.1, considering the elements [w;; ™!, Ey] ® €], we obtain

hij ® e, = 135(1) ® e + 1i-15(-) ® €.
The cases where p =i or j are mensioned in Step 6 later.

Step 5. Let V be the quotient L-module of R*®,, .+ r, Hj by the L-submodule
generated by the elements 7,+1;(-) ® ef for k # j. Then from the argument above,
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the elements r1;(k*) @ e;, hij ® e} and h;; @ e} generate V. Here we reduce these
generators of V. We use = for the equality in V.

First, considering the equation (z, zx, ;, j, T1) @ e; in a way similar to that of Step
5 in Subsection 3.1, we have

(17) (1) @ e = —ryj(k) @ € + 1y5(1) @ €]

o c 1 -1 -1 -1 -1
Similarly, considering (z; ", 7, Ti, 21, ;) ®ej, (T1, T, 7, 5, )@} and (2,7, x5, 27, Tg, T5)®
ey, we obtain

(18) () @ e = ri(j) ® e +1y5(1) ® €5,
(19) Ti—lk(l_l) & 62 = —T’i—lj(k) & €; + T’i—lj(l> ® 6;,
(20) rie(I71) @ e = 1o () @ e+ 1y (l) @ €5

respectively. Hence we see that the L-module V' is generated by 7+1;(k) ® ex, hij @ €;
and h;; ® e].

Substituting (18) into (17), and substituting (20) into (19), we obtain
(21) Tp(d) ® e = —ris;(k) ® €.
On the other hand, considering the equation (z;, zx, x;, x;, x,;l) ® €}, we obtain

T’Z‘j(l_l) ® 6; = T’ij(k_l) ® 6; + Tik(l_l) & 62.
Hence, rewriting each term of the equation above as a sum of 7,3(7) ®eg, (1>a,p,v>
n), using (17), and using (21), we have 2(ri;(k) ® e} +ru.(I) @ej, — (1) @ e}) = 0. Since
2 is invertible in V', we obtain
(22) T’Z‘j(k) ®€;f +Tik(l)®ez_rij(l> ®€;f = 0.
Similarly, considering (x;, xl_l, Ty, T, Tg) @ e;, we have
ri-1j(k) @ e; = (k) @ e — ri- (1) ® ey,
+rp(iT) @ ef+ () @ el — (i) ® el
Using (17) and (22), we can reduce the equation above to
ri-1j(k) ® €5 + ri-(l) ®@ e+ ri-n(j) @ ef =

Now, using the equations above, we show that each generator r;+1;(k) ®e; is rewritten
as a sum of the generators type of 7+1;(1) ® e} and r1+1;(2) ®e}. For distinct 4,7,k # 1,
we have (k) ®ef = —rp(1)@ep+ry;(1)®e;. If j = 1, we have ry (k) ®e] = —ru(1)@ej.
Ifi =1and j, k # 2, then r1;(k) ® € = —r11(2) ® e +145(2) ® €. Finally, if i = 1 and
J =2, we have ri9(k) ® €5 = —r1;(2) ® e;. Hence any generator r;;(k) ® e} is rewritten
as a sum of the generators r;(1) ® € and r;(2) ® e}. Similarly we see that r;-1;(k) ® €}
is rewritten as a sum of the generators r;-1;(1) ® e} and r1-1;(2) ® €}.

From the argument above, we see that V' is generated by ri1;(1) ® €3, r1+1;(2) ® €7,
hij ® ef and h;; ® e}, and hence R®® ot r, H} is generated by these elements and
T’iilj(') & 62.

Step 6. Finally we consider the generators h;; ® ey for p = i,j. Let V' be the
quotient L-module of R*P® .+ r, H} by the L-submodule generated by the elements
T (1) @ e, miz(1) ® e and 71+15(2) ® €. We use = for the equality in V.
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For distinct 4, j and k, the equation {zy, xi_l, Ti, Tj} @ e; is given by
hi1; ® € = t3 @ € + (w1~ Ejiwgi—1 ty wgi— By 1) @ €]
+ (wg—1 T Eji B jwgi-1 b w1 By T By wg-) ® €5
+ (wri-1 " i) ® €]
+ (whi-1 T By T By w1ty whi T B Ejerjwg-1) ® e;
+ (Wi

-1 -1 -1
Wiei—1 Ej—li Wii—1 b5 Wii—1 Ej—liwk.i—l) & 6; + 1t @ 6;

where

tl = Ej_lk(w];gl—lEj_li_lwki_l)_17 t2 = Ekj(w];il—lEi_ljwki_l)_la

t3 = Lijp— (w,;l_lEﬁwki_l)_l, ty = (w,;l_lEﬁ_lwki_l)_lEjk,

ts = (w];il_lEijwki—l)_lEk—lj, tg 1= (w];il_lEj—liwkiﬂ)_1Ej—1k—1.
Observing Lemma 2.2, we see that all ¢,,, (1 < m < 6), except for t5 belong to the
normal closure of the relators of (R2-1), ..., (R3-4). Hence, using Lemmas 3.4 and
Lemmas 3.5, we obtain
(23) hk_lj & 6; =t 6; + hij & 6;.

From (3), we have
t2_1 = (wki—l_lEi—1j—1wki—1)_1Ekj—1
= (wki—l_1Ei—1jhki—1Ez‘—1j—1wki—1) . (wki—l_lhki—l_lwki—l)
. (wk—li_lEi—1j—1wk—1i)_1Ekj—1,
and hence
t2_1 ® 6; = {(wk—li_lEi—lj—lwk—li)_lEkj—l} ® 6; — hgi-1 ® €;~k.

On the other hand, from Lemma 2.4, we have

hk—lj & 6; = (wkj_lhkj_lwkj) & 6; = —hkj & 62,

hiit @ €f = (g hi ™ wk) ®@ €f = —hy; @ e,
and see that the element {(wy-1; ' Ej-1;-1wy-1;) " Ey;-1} € R belongs to the normal
closure of the relators of (R2-1), ..., (R3-4) by Lemma 2.2. Therefore we obtain

ta ® 6; = —hp @ep.
Substituting these results into (23), we obtain

(24) hij & 6; = hp ® 62 — hkj & 62.
Similarly, considering {xy, z;, 75, 7;} ® €} and {w, o7 w25} ® ef, we obtain
(25) hij; ® 6; = hy; ® 6; — hy ® 63,
(26) hi; ® 6: = —h ® 62 — hi; ® 6;,
(27) hij; ® el = hi; @ ep + he ®e;.
Now we show that all h;; ® €] and h;; ® ej are rewritten as a sum of hi; ® €].
First, from (24), we see h;; ® € = —hj ® ej. Exchanging the roles of i and j on

(26), we have hj; ® € = —hy; @ e — hg; @ ;. Then substituting it into (27), we obtain
hij@e; = —hj®@e;. Set h(i,j) := hijj®@e;+h;;®e;. From (24) and (27), h(i, j) = h(k, ).
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Similarly h(i,j) = —h(k,i) from (25) and (26). Since 2 is invertible in V', h(i,j) =0
and hence h;;®e; = —h;;®e;. For dintinct ¢, j # 1, we have h;; ®e} = hy;®@€; —h; @€}
from (25). Furthermore, if j = 1, hjy ®e] = h1;®@e;. So we see that h;; @ e; and hy; @€}
are rewritten as a sum of the elements hy; ® e} in V.

From the argument above, we conclude that the generating set €* of R*°® .+ H}
is reduced to

{risj() @eplp # 37 U Aris(1) @ ej i, 5 # 1}
U {r2;(2) @ €5 | # 1,2} U {ln; @ €j | # 1}.
The number of the generators above is just 2n(n? —n) — n — 1. Hence it is a basis of
R @y +r, H} as a free L-module. This completes the proof of Proposition 3.2. O
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5. APPENDIX [

In this section, we show the details of the computation which are required in the
proof of Proposition 3.1.

5.1. The proof of Lemma 3.3.
Here we prove (ii), (iv), (v) and (vi) of Lemma 3.3.
e The proof of (ii): (R2-3), (R2-4)

First, let p # i,k and [ € {1,...,n} such that [ # i, j, k,p. Set r = E;-1; ' [Ei-1;, Eyl.
Then we have

[Ei1j, [, Ex+]] @ e, =0, [r, Epx1;] @ e, =0
and
[Ei-1j,Exz15] @ €,
= ([Ei-1, [, Bxall[r, Byl [Bimvy, Erey]) @ e
= [[Ei-u, Eijl, Ex14] @ e
= [Ei-y BBy~ Elj ,Ekilj] ® ep
([Bi-ui, By B ™ By~ Ejen]
[EyEi-v™ By, By [ By, Bpjl) ® e
([EyEin Byt Eyey][Bi, Ereg]) ® e,

= ([Elj_l, Ekilj] [Ei—ll_l, Ekilj] [Elja Ekilj] [Ei—lla Ekilj]) ® €p.

Since p # 1,1, we have
[Eij, Exs1j] @ e+ [Eyy ", Epj] @ e, = 0,
[Ei-1y, Bpej] @ e + [Bimy ™, Epary] @ e, = 0,
and hence [E;-1;, Ey+1;] ® e, = 0.
Next, let p = i and | # i,j, k. Since [Eg-1;, Ei-1;],rpx1;(0)] = 0 in R™ and
[Ei1j, ri1;(1)] ® e; = —rg21;(1) ® e; by Corollary 3.1, we have
[Ei—lj,Ekilj] & €; — Tg*1j (l) X €;
= ([E~—1 iy ThELj (l)] [EZ 15, Ekilj] [[Ekilj, Ei—lj], T’kilj(l)]) X e;
[E —1 [Ekill, Elj]] X €;
= ([Ei-1j, By [Eim1j, Bij By~ By~

By By "By By, Epey)) @ e

[Ei-1j, By [EBi-1j, By [ Eig, Bl [Bievg, B 7' ® e,

Bl )

and hence [E;-1;, Ept1;] ® e; = r21,(1) @ €.
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From the result above, for [ # 4,7, k, we also see [E;-1j, Ep-1;] ® e, = —r;-1;(1) ®

ej. To show [Ej-1;, By @ e, = ri-15(1) ® e;, set r;-1;(1) = [Ei-y, Ejj]Ei-1;7". Since
[Egj,mi-15(1)] ® e = r;-1;(1) ® e; by Corollary 3.1, we have
[Ek‘jaEz_lj] & €L + Ti—lj(l) X 6]‘
= ([Erjy i (D[ By, Eij][[Bimrg, Eigl, rior (1D)]) © e
= [Ej, [Ei-u, Eiy]] @ e

([Exj, Ei-1)[Exj, Bty By By Y[[Ey By By~ By, Biv)) @ ex

and hence [E;-1;, Eyj] ® e, = ri—1;(1) ® e;.

e The proof of (iv): (R2-6)
First, let p # i, k. Since n > 6, we can choose a number m € {1,...,n} such that
m #14,5,k,1,p. Set r = E;;" [ Eim, Em;]. Then we have

[Eij, [, En]]®e, =0, rEy®e,=0
and
[Eij, Ew] @ ep
(B [ Ewl][r, Ew)[Eij, En]) ® €,
[Eim, Emjls Er] ® €
= [EinEmjEim  Em; ™, B @ ¢,
([Bim: [Emj Eim ™ Emj ™" Bu))[EmiBim ™" Emg~", E] [Eim, En)) ® ep
([EmjEim™ Em; ™", Bual[Eim, Er)) ® ¢,
([Bmi ™" Ex)[Eim ™" Exa][Emjs Byl [Eim, Erl) @ ep.
Since p # i, m, we have
[Enmj Bra] @ ep + [Em; ™, En] ® ¢, = 0,
[Eims Exi] @ €y + [Bim ™, Er] ® €, = 0,
and hence [E;;, By ® e, = 0.
Next, let p =1 and m # i, 3, k, .
Since [[Ex, Eij], ra(m)]®@e; = 0in R and [Eyj, ri(m)]®e; = ri(m)®e; by Corollary
3.1, we have
[Eij, Ex] @ e + rig(m) ® e;
= ([Eij, ra(m)][Ejs Ew][[Ew, Eijl, rn(m)]) @ e
[Eij, [Erm, Em]] ® €

Il
o



A SECOND HOMOLOGY OF THE AUTOMORPHISM GROUP OF A FREE GROUP 25

and hence [Ej;, B ® e, = —rp(m) ® e;.

e The proof of (v): (R2-7), (R2-8)
First, let p # i, kand m € {1,...,n} such that m # i, j, k, [, p. Set v = E;-1; ' [Ei-1m, Emjl.
Then we have
[E —1 [7’ Ekill]] & €p = O [7’, Ekill] & €p = 0
and
[Ei—l : Ek‘ill] ® €p
([E 14 [7’ Ekill]][T’ Ekill][E —1 Ekill]) X €p
[EZ 1, m]] Ekill] X €p
= [E;- EmJE Ay BT By @ ey
([EZ 1omy [Em]E —1m E ] ,Ekill]]
[Eiji—lm Emj_l, Ekill] [Ei_lma Ekill]) ® €p
([Eiji—lm_lEmj_l’ Ekill] [Ei_lma Ekill]) & €p

= ([Bmj " Bl [Biin ™ Erev] [Bing, Egl] [Bi-im, Eren]) © €.
Since p # i, m, we have
[Ejs B @ €p + [Ei ™", Ejey) @ e, = 0,
[Ei-tm, Eray] @ €y + [Eii F, Erey] @ e,
and hence [E;-1;, Ep=y] ® e, = 0.

Next, let p = i and m # 4,5, k,l. Since [[Epty, Ei-1j],ry(m)] = 0 in R*® and
[Ei—1j, ri1(m)] ® e; = —rp21(m) @ e; by Corollary 3.1, we have
[Ei—lj,Ekill] X €; — T’kill( ) X €j
= ([E‘—lj, T’kill( )][E —1 Ekill][[Ekill, Ei—lj], T’kill(m)]) X €;
[E —14 [Ekilm,E ]] ®€i

0
and hence [Ej-1;, Eyz1y] ® €; = rp21(m) @ e;.

Il
o

From the result above, for m # 4, j, k, [, we also see [E;-1;, Ey-1]®er, = —r;-1;(m)®e.
To show [Ej-1j, E] ® ey = ri-1;(m) ® e, set ri-15(m) = [Ei-1p, Emj]Ei-1;7'. Since
[Ei-1j, B, mi-15(m)] in R?® and [Ej, ri-15(m)] @ ex = r-1;(m) @ ¢; by Corollary 3.1,
we have

[EklaE ]®€k+rz ]( )®€l
([Ekl: Ti—1j ( )][Ekla i ]HE’L 155 Ekl]: rz‘_lj(m)]) ® ek
= Bk, [Ei-1m, Emj]] @ e,

and hence [E;-1;, Ey] ® e, = r;-1;(m) ® ey
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e The proof of (iii): (R2-1)
First, let p # i and k € {1,...,n} such that k # i, j,p. Set r = E;; ' [Ei, Ex;j]. Then
we have

[Eij7 [7’, Ei_lj]] ® €p = 07 [7’, Ei_lj] ® €p = 0
and

[Eij, Ei-15] ® €
= ([Eijs [r, Eiorg]]lr, Eiogl[Eij, Eivg]) © €

[Eik, Exj, Ei1j] ® €,

= [EEy; B~ Ekj_l E;- ]®€p

(

(

[Eik, [ErjEir By~ Eij)|[Enj B~ By~ Eimrj][Eig, Eimj]) ® ey

[EviEix " Ery ", Ei-vj) B, Eim1j]) @ €y

Il
—
g
L
=

1 [Ea " Ei-] (B, Bio1j)[Eik, Bi-j]) ® e,
Since p # i, k, we have

[Ekj, Ei—lj] & ep + [Ekj_l, Ei—lj] X €p = O,
[Eik, Bi-1j] ® e, + B, Ei-1j] ® e, = 0,

and hence [Ej;, E-1;] ® e, = 0.

Next, let p =i and k # i, j. Since [r;;(k), [Eij, Ei-15]] = 0 in B*® and [ry;(k), Ei-1] ®
e; = ri;(k) ® e; by Corollary 3.1, we have

[Eij, Ei-1j] @ € + 145(k) ® €5
= ([rij(k), (B, Bi-yjl][Eij, Eimay][rig(k), Ei-j]) @ e
= [[Eik, Eij, Ei1j] ® €
= ([Eix, [Exj B~ Exy ", Eij||[Exj B By~ Ei1][Bar, Bivj) ® e

= —[Ekj_l Bl ®er = [Eyj, Bl @ er = —ri5(1) @ 5

and hence [Ej;, Ei-1;] @ e, = —1j(k) @ e; — 1i-1;(1) @ €.
e The proof of (vi): (R2-5)

First, let p # i and [ € {1,...,n} such that | # i,j,k,p. Set r = E;; ' [Eqy, Ey;).
Then we have

[Eij, [, Ei-1)] @ e, =0, 1, Ei-1,®@e, =0
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and
[Eij, Ei1i] @ ep
([Eij, [r, Ei-]][r, -] [Eij, Ei-1i]) ® €
[Eu, Eijl, Ei-1] @ e
[ El] zl El] :E‘—lk] ®€p
(
(

(B, (B Ba™ By ™", B )[EyEa™ By~ B [Ba, Biul) @ ¢,
[EyEa™ By B [Ba, Bi-u]) @ ¢,
= ([By ", Bl [Ba™ Y, B (Bl B [Ba, Eig)) © €,

Since p # 1,1, we have

[Ey, Ei-i] @ € + (B ™, B ® €, = 0,

[Eit, Ei-1k) @ e + [Ey ", B ® €, = 0,
and hence [E;;, Ei-1] ® e, = 0.

Next, let p =4 and [ # i, j, k. Since [ry;(1), [Eij, Ei-1]] = 0 in R* and [r;;(1), Ej-1,] @
e; = ri;(k) ® ey, by Corollary 3.1, we have
[Eij Ei1g) @ €, + 1i;(1) ® eg

([rij (1), [Eij, Eimai])[Eijy Eimrg][r3;(1), Eimil]) @ €
[[Eit, Eij], Ei-k] ® €
= [EaE; Eq Byt By @ e
[EyEq " Ey " B ® ep + [EyEy By By ® e+ [Eq, Ei-y] @ €
= [Eyj, Ei-1] @ e = —ri-1(m) ® e,

and hence [E;-1, Eij] @ e; = r5(1) ® e + 1;-1,(m) ® e; where m is a number such that
m#1,7, k1.

5.2. The computation of (a,b,c,d,e) ® e,.
Here we give the details of the computation of the equation (a,b,c,d, e) ® e,.
o (z;' ), 1515, 78) @ e
For distinct ¢, 7, k and [, the equation (xl_l, Tj, T, T4, Tk) @ ey is given by
ra-1(k) ® ex = 57t ®@ e + (w1, w1y syt wi-y T By T w-y) ® ey,
+ (wi-1; i (k)wi-1;) ® ey,
+ (-1, By Egjwi1y 81 wi-y " By By T w) @ e

-1
+ (wl_lj Eijwl_lj

So Wi-1;5 1Eij_1wl—1j) @ e+ s3 @ e
where

s1:= (w1 Erwpg) T Eg T sy = (T Egriwgg) T g
_1Eij—1wl—1j)_1Eiz.

S3 1 — (wl_lj
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Then using Lemmas 3.1 and 3.2, we obtain
(28) ru-1(k) @ ex = 1ij(k) ® e — 51 @ €1 + 53 ® ey
From Lemma 2.4, we have 7-1(k) @ e, = —ry(k) ® eg. Using Lemma 2.3, we see
s1= Ej-yEj-1 [Ej, Bi) EBijEj-v - Ej-y-1 [Eyj-v, By Ej-y - [Ej-y-1, By,
and hence
s1Qe = —rg(-) @e —rin() ey
On the other hand, applying (vi) of Lemma 2.2 to s3, we have
s3 =By By Eyary(y )~ EyEyEiy - Ejvy-Eyri—(l) By Ejy
cEjy-1 By [Eij-1, Bl | EgEjy - [Ej-1-1, By,
and hence
s3@ ek =—riy() @er —1ii(+) @ ex.
Substituting these results into (28), we obtain S;;;, = —Six.
o (v, 1, 25,15, 7) ® e
For distinct ¢, 7, k and [, the equation (x,;l, Xy, T, T4, 1) @ e is given by
ri(k Y ®e =57 Qe
+ (w1 Bywg—y 53" wi-y” By wg-n) ® e
(w1, g (Dwi-1) @ ey,
(w1~ By Egwi-y 51 we—y By~ By wg-y) ® ey,
(w1~ " Eyjwi- 52 w1 By w-1y) @ ex + 53 ® ey,
where
s1 = (Wi Eyorwp-) " B, s2 0= (W Eyjoiwg-y) T By
s3 = (w1, ' Eyjjrwg-1) By
Then using Lemmas 3.1 and 3.2, we obtain
(29) rii(k Y ®@er = —ry;(l) @ e — 81 @ ej + 83 ® ey
Applying (vi) of Lemma 2.2 to s;, we have
s1 = E-1j-1 Ey-1 Egr i (1) ™' Eig BBy,
B By rig1 (k) B By,
* B B [Eg—1, Eg—1] B By,
B, Big]
and hence
s1Qe;=—ry(-) @e; —ri() ey
On the other hand, using Lemma 2.3, we see
s3 = Ej-i-1 By [Eug, Bij] B Ep-1y - By [Byg—y, Eij] B - [Bp-age-1, Eigl
and hence
s3 @ ep = 135(1) © ex +135(+) @ e
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Substituting these results into (29), we obtain
(k) @ e = 135() @ ex + i) ® e

o (z;7' 2, 1,25, 78) @ e
For distinct ¢, 7, k and [, the equation (xi_l, Ty, Ty, T, x,;l) ® ey is given by

ri1(k) @ ex = 57" @ eg, + (wi—y Egawi-1y sy wi-y” BT wiey) ® ey,
+ (wi-1; (k) wi-1;) @ ex
+ (w1 " By Egjwi-1y sy wi-y By By wiey) @ ey,
+ (wi-1 P By s9 w1y By T wiey) @ ep + 53 @ e
where
s1 = (Wi-y  Eprwi-y) T BT s = (0T Egovwiey) T BT
s3 1= (Wi-1  Epjoiwi-1y) By
Then using Lemmas 3.1 and 3.2, we obtain
(30) ri-1j(k) @ er = 1;(k) ® ex + 51 ® €j + 53 ® e
Applying (3) to s1, we have
s1= (wiy " Eyhin Byrwi-y) - (wiey ™ hiey " i) - (w1 Eyevwg 1) T By,
and hence
s1®¢e; = {(wy1 T Ep-iwy-1) T B} ® e
Then considering (ii) of Lemma 2.2, we have
(wig—1 ' Byrwi—1) " Bmiger = BBy [Brori-1, Ey] Ei-y-1 By
- B ri-1g (1) B
c Bip Byt (i71) By B
and hence
s1Qe; =ri-1(-) ®ej — () @ej.
By the same argument, we have
$3 @ e = 1i-15(1) ® e — 15(+) @ ey
Substituting these results into (30), we obtain
ri-j(k) @ e =i () @ e + () @€

o (z;', 225,70, ) @ex
For distinct ¢, 7, k and [, the equation (xi_l, Zy, Ty, T, x,;l) ® ey is given by

-1 -1 -1 -1 -1
T’i—lj(k ) & € = 5 X er + (wi—ll Elk—lwi—ll Sy " Wi—-1 Elkwi—ll) X €L
-1 -1
-+ (wi—ll le(k )wi—ll) & €L
-1 -1 -1 -1
+ (wi—ll Elek—ljwi—ll S1 Wi-1g Ek—lj Elj wi—ll) X e

~1 1 -1
+ (wi—1; Ejywi-1y So wi-y BT wi-y) @ e + 53 ® ey,

29
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where
s1 1= (wi-y ' Egwi-y) ' Eim, 82 1= (- B jmwi-y) " By
s3 = (Wi ' Epjorwi—1) B
Then using Lemmas 3.1 and 3.2, we obtain
(31) ric (k) @er = (k7)) @ ex — 51 @ ej + 53 @ e
Applying (3) to s1, we have
s1 = (wi—1; " Eym1hi—y Bywi—1y) - (Wi~ himy " wi—ng) - (w1 Egwg—1) ™ By,
and hence
s1®e; = {(wygr  Epwg1) T B} @ e
Then considering (ii) of Lemma 2.2, we have
(wi—1 " Egwy—1) " By, = BBy [Bj-1i-1, Ej1] Ei-1-1 B
cEyrie1 (1) By
- B By rye (i) Eji- By,
and hence
s51®ej = —1i-1(1) ®ej +ru(-) @ ey
By the same argument, we have
3@ €5 = 1i-15()) ® e — r(+) @ ep.
Substituting these results into (31), we obtain
ri-y(K7h) ®@ e = riey(4) @ e + 1o (1) @ ¢y

o (T1, Tk, i, 75, T1) D €
For distinct i, j, k and [, the equation (z;, x, z;, z;, %) @ e€; is given by

rij(l) @ e = s @ e; + (wi " Ewie 53wy~ g™ wig) @ €
+ (wi, i (k) w) ® e
+ (wi " Eij Egjwy, s1 wlk_lEk_leij_lwlk) ® e;
+ (wi, " Bijwi 82w By T o) @ e+ 53 @ e
where
s1:= (wip " Egrwg) " By, se = (wi T Eorwg) T BT
s3 = (wy " Eijovwp) T Byt
Then using Lemmas 3.1 and 3.2, we obtain
(32) rij(@e =rij(k) @e;+s51@ej+52Re; — 2 Qe+ 53R e
Applying (vi) of Lemma 2.2 to s;, we have
s1= BB Eyrg (k) By Ejoip By - By By rig2 (171) Ey-1 By
By By (B, B-1p—] By Ep-1y-1 - [E-y, By,
and hence
s1®e;=ry(-) @e; —rip(-) @e; = 0.
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Using (3), we have
so = (W~ Exjhu Egj—rwi) - (wi ™ ha ™ wi) - (0-1-1 7 Eggmrwp-1—1) T Byt
and hence
so @ ej = {(wi-1p1 " Eyjorwp-1-1) B} @ e,
2@ € = {(wi-1p1 7 Bgjrwi-ap1) B} @ e+ g @ e,
= {(wp-1p-1 " Epjorwp-1p-1) T B} @ e — r(c) @ e — m-1g(+) ® ey

On the other hand, applying (ii) of Lemma 2.2 to (w-14-1 ' Egj-1wp-15-1) "' Ejj-1, we
see

(w-11 " Egjorwp-1g1) T By = By By [Eg-vy, Eyg] Ej—1 By
- Ey-11(k) By - EjjEg-1rigi-1(1) Eg B,
and hence
So®ej =r(-) ®ej — () ®@ej =0,
So®e =) ®e +re-u(t) @e; + (k) e
— (1) @ e — 1 () @ e — rip(4) @ e; — -1 (4) ® e,
=r() @ e+ r-1(-) ®ej +15(k) @ e
— (1) ®er — () @ € — (1) @ e —rue(r) ®ej — () ® e,
= r;(k) @ e.
Finally from Lemma 2.3, we see
83 = Ep-1 B [Ey-r, Bi] B B - By [Ep-age, Byl By - [By-y, Bijl,
and hence
s3Re=—T()®@ej —r-() ®ej + -1y () ®e; = 0.
Substituting these results into (32), we obtain

T’ij(l) X €; = T’ij(k) X €; — le(k) X €.

o (v, i, xi,5,11) ® €
For distinct ¢, 7, k and [, the equation (xl_l, Ti, Ty, T, Tp) @ € is given by

r-1 (k) @e =57 @ e

+(
+ (w —lp B A —lp-1p -1 ) ®
=1 ij Ly Wi—1; 81 Wi—1; kj Tij Wr-154 €

-1 -1 -1
+ (w1, Bijwi-; s2 w1 By wp-1;) @ e + 53 ® ¢
where

— -1 -1 -1 o -1 -1 -1

S1 = (wl—li Eik—lwl—li) El—lk , S2i= (wl—1i Ekj—lwl—li) Ekj s

-1

I -1 -1
S3 = (wl—1i Eij—lwl—li) El_lj
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Then using Lemmas 3.1 and 3.2, we obtain
(33) (k) ®@e = —ri(k) @e; —s1®ej —sa@e€j+ 52 ® e+ 53D €.
Using (3), we have
s1= (w1, By Egeawg-) - (wp-1" =y~ wgeny) - (W By ) T By,
and hence
s1®@e; = {(w—1  Eg-rwy1) T B} ® ey
On the other hand, applying (ii) of Lemma 2.2 to (w;-1 ' Ej-1wy-1) "' Ej-1;-1, we have
(Wi~ Eygmrwyi—) " Epipr = By By [Bi-y—1, Eig) B2 By
- By ri-g(i) By - Bap B rig=1 (171) Eye1 Bj-aje,
and hence
s1Qe; =r-1() @e; —ri(c) @ e; = 0.
By the same arguent, we have
s3® e = {(wy—1 Ejorwy—1) B} ® e,
and from (ii) of Lemma 2.2
(Wi Eyjmrwy—1) T B = By By [Biey-, By Ej-1i-1 By
By, (i) Egor - Bpoa By vy (17 Eyr By 1.
Hence we obtain
s3@ e =135(1) @ e i) @ej + 1) @ e+ i (1) @ ey — (17 @ ey
=7rii() Qe +riy() ®@e; +r-1;(0) @ep +1ii(c) ®e; —15(0) @ e — ralc) ey,
=7r-1;(1) ® e
Finally, applying Lemma 2.3 to s2, we have
sg = Ei-y-1 By [Ey, Byl BBy - By [Ey, Byl By - By, Byl
and hence
$50e, =0, s2Qe,=ru(-)@e; —ru(-) ®e; —ri—y(-) @e; = 0.
Substituting these results into (33), we obtain
ri-1j(k) @ ep = —15(k) @ e; + 1-1(i) @ ey.

L4 (xka Ty, T, Ty, xlzl) ® €
For distinct i, j, k and [, the equation (z, z, z;, 5, x,;l) ® e; is given by

rii(1) @ e; = 57" @ € 4 (Wi Egmrwig 83" ww™ Egwi) @ e;
+ (wkl_lrij(k_l)wkl) X e;
+ (Wi By Bp-1jwg 81w BT By T ) ® e
+ (Wit Eijwig s2 wi By o) @ e + 83 ® e
where
s1 1= (W Egwi) " Ey T s = (Wi Byyoiwg) T E T

— -1 -1 -1
S3 = (wkl Eij—lwkl) Eij .
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Then using Lemmas 3.1 and 3.2, we obtain
(34) rii(l) ® e; = T’ij(k_l) Re+851Re —S2®@e+ S2Q €+ 53R e;.
Applying (v) of Lemma 2.2 to s1, we see
s1= BBy By rig-1 (1) Eg B B
BBy By rg (k71 Eg By B - [Bj-1g, Big-1],
and hence
s1®@e; = —rp() ®e; +ra(r) ®e; = 0.
Similarly, applying (i) of Lemma 2.2 to sq, we see
s = By Ep-1-1 (k7Y Epy Ej-1j-1
- Eorp By Epvmr 1o (1) By By B - [Epoy, Byl
and hence
—r (k) ®@ex + 1) @ e — rp-1;(1) @ e + () @ €5+ 15(4) ® e,
—r-15(1) ® ey,
so®e; =15(-) ®ej+rp-15(-) ®e; = 0.
Finally, using Lemma 2.3, we have
83 = Bi-1p Bp-1-1 By, Big] BB - B [Eg-v, Byl By - [Beg, Eigl,

and hence

S92 ® €

o

s3®e=—1i()®@ej —rp-1() @ej + -1 (c) ®e; = 0.
Substituting these results into (34), we obtain

T’Z‘j(l) X e; = T’Z‘j(k_l) X e; + T’k—lj(l) X ep.

~1 ~1 ~1
L4 (xl y Ly Xy 5 Ljy T, )®€Z
For distinct ¢, 7, k and [, the equation (xl_l, Tk, xi_l, xj, x,;l) ® e; is given by

ri; () @ e =57 ®@e; + (Wi w830 wi-y T B iwpe-1) @ e
+ (w1, e (KD wp-1g) @ e
+ (w-1p B B jwi-y, 81wy, B T By T wg1y,) © e
+ (w1, B w1y, 9w By T wpe1y) @ e+ 83 ® e
where
s1 = (w1 ' Emwp-1g) T By T sei= (wieay T Berjorwg-1g) T E T
s3 = (W1 ' Bmjorwp-1g) T BT
Then using Lemmas 3.1 and 3.2, we obtain
(35) ric()®@e =ri-(k) Qe —s1®ej — 2@ e+ 52 @€+ 83D €.
Applying (v) of Lemma 2.3 to s1, we see
81 = Ep-11-1 By Bi-1p-1 1i-1y(K) B By By
By By Emag-1 rim1y, (1) B By By - [B-1y-1, Ei-y]

33
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and hence
s1@e; =ri-uy(t) ®e; +1ri-1k(r) ® e = 0.
Similarly, applying (ii) of Lemma 2.3 to s2, we see
sy = Ep1-1 By By, Ep1j] BBy
By (k7Y Ep-1y - B Ep-vy-1 rp-1-1(0) By By,
and hence
So®e; =ry(-) ®e; — rp-15(-) ®e; =0,
sa®@e =r-1() Qe +ru() ®@e; + (kT @ e — r-1 () @ e — r-14() @ ey,
= nj(k_l) R €.
Finally, using Lemma 2.3, we have
83 = Ep-11 By [Ey, B BBy
By (B, Biovj] By - (B, B,
and hence
s3Re=—1r() e +ru(-) @e; +rp-1(-) @e; = 0.

Substituting these results into (35), we obtain

ri-1;(l) ®e; = Ti—lj(k_l) ® e+ (k71 @ e
5.3. The reduction of h;; ® e;.

Here we prove
hij@e; =1j-1,() @ e +15i(") @ e; + 11 (171 @ e + 115 (1) ® ey,
—r(j) @er — (G @ er — ril(s) ® € + i () R ey
+r(iT) ®e; — (G ® ey

Applying (iv) of Lemma 2.2 to {(w;j-1 ' Ep-1w;-1) ' Ep-1} ® ey, we see
(wij1 ™ Egimrwyj=1) " By = EjiBy1j [Ej-vim1, Eyi] Eim1j-1 Ejima
By By T (i_l)_l Eri-1 Eji—
- EjiEyi i1 (§) " Epi-1 Ejioa,
and hence
(36)
{(wijr T Epimrwij1) B @ e = —riu(l) @ e — i (1T @ e — i () @ e
+ 7 (J) @ ex + () ® ey
On the other hand, using (3), we have
(wij—1 ™ Bgimrwig—1) ™ B = (wig-1 7 Egihigo Brimrwig—) - (wig— " hig- " wig)
(Wi Egmwi-1g) T By
and hence, tensoring each term of the equation above with e,

hij_l ® €; = {(wi]‘—l_1Eki—1wij—1)_1Ekj—1} ® € — {(wi—lj_lEki—lwi—lj)_lEkj—l} ® Ck.
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Since h;j-1 = wz‘j—lhi]‘_lwi]‘ from Lemma 2.4, we see
hij-1+ @ e; = —h;; @ e

and

(37) hij@e; = —{(wij—1 " Egi-1wij—1) " g1 }@ept+{ (wi-1; 7 Br-1w;-1;) "' Egj1 } ®ey.

Applying (iii) of Lemma 2.2 to (w;-1;7 ' Egi-1w;-1;) ' Ejj-1, we see

(wi-1; 7! Bymrwi-15) T By = Bja-1 Byt [Bji, By By By

By By g1 (0) 7 By By,
B By g G~ Eyj-1Ej-1;

and

{(wi-1; ' Epmrwi—1;) B} @ ex = rii(c) ® €+ 1 (1) @ e 4+ i (1) @ e

— (i) @er — (i) @ e
Substituiting (36) and (38) into (37), we obtain the required result.

(38)
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6. APPENDIX II

In this section, we show the details of the computation which are required in the
proof of Proposition 3.2.

6.1. The proof of Lemma 3.6.
Here we prove Lemma 3.6.

e The proof of (i): (R2-6)
First, let p # j,land m € {1,...,n} suchthat m # i, j, k, 1, p. Set r = E;; [ Ein, Emj)-
Then we have
[Eij, [, En]] @ ey, =0, [r,Bul®e, =0

p
and

[Eij, Bl @ e

([Eij, [r, Eull[r, Eul[Eiy, Ex]) ® e,
[Eim, Emjl, En] @ €,
=
(

EimEmjEin  Enj ', Eu] ® €
([Ezm: [Eijz‘m_lEmj_la Ekl]] [Eijim_lEmj_la Ekl] [Elm? Ekl]) ® 6;
[ErniEim ™" By, Eya) [Bim, Bu]) ® €},

= ([Em;j " Bl [Ein ™", Exi][Emg, Bl [Eim, En]) © €

Since p # 7,1, we have

[Ejs Bt @ €+ [Bp; ' Br] @ €, =0,

[Eim, Br] ® ey, + [Eim ™', Bl ® e, =0,
and hence [Ey;, E] @ e = 0.

Next, let p = j and m # 4, j, k, l. Since [[Ex, Eij], 7 (m)] = 0 in R and [Ey;, 7 (m)]@
e; = —ru(m) ® ej by Corollary 3.3, we have
[EijaEkl] & 6; — rkl(m) & €;<

([Eij, ria(m)][Eijs B [[Eis Eijls ria(m)]) @ €]
[Eijy [Ekm, Eni]] ® €]

and hence [E;j, B] ® €5 = ri(m) ® e;.

From the results above, for m # i, j, k, [, we also see [E;;, By ® ef = —ri;(m) @ e}.

e The proof of (ii): (R2-7), (R2-8)
First, let p # j,land m € {1,...,n} such that m # i, j,k,1,p. Set r = Ei-1;7 " [Ei-1,, Enj]-
Then we have
[Ei_lja [7’, Ekill]] X 6* = O, [T, Ekill] X 6;; = O

P
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and
[Ei1j, By @ ey
= ([Ei-1j, [r, Bye)[r, Been)[Eimvy, Epey)) ® €
[Ei-1m, Emjl, Byey] © €
B BBy B~ By @ €

[Eiji—lm_lEmj_la Ekill] [Ei_lrm Ekill]) ® 6;

= ([Emj_l, Ekill] [Ei—lm_l, Ekill] [Emja Ekill] [Ei_lma Ekill]) X 6;

Since p # 7,1, we have
[Emja Ekill] X 6; + [Emj_l, Ekill] X 6; = O,
[Ei-tm, Bity] @ €+ [Ei-1 ", By @ € = 0
and hence [E;-1;, Ep=y] ® €5 = 0.
Next, let p = j and m # i, j, k,l. Since [[Ejs1-1;, Ei-1;], rg=1,(m)] = 0 in R* and
[Ei-1j, 31 (m)] @ € = rp=1(m) @ ef by Corollary 3.3, we have
[E J,Ekill] & 6 + T’kill(m) & 6:
= ([E‘—lj, T’kill( )] [E~—1 ; Ekill] [[Ekill, Ei_lj]a Tkill(m)]) & €>'f

1T j

i1}, [Bxtim, ] ® €

Il
o

and hence [Ei-1j, Ep+y] @ € = —121(m) @ €}

From the result above, for m # 1, j, k, [, we also see [E;-1;, Ey-1| ®ef = r;-1;(m) ®ej.
To show [E;-1;, By) @ €f = —ri-15(m) @ e, set r3-15(m) = [Ej-1pm, By Ei-1;7". Since
[[Ei-1j, B, mi-15(m)] in R* and [Ey, ri-1;(m)] @ f = —ri-1;(m) @ e by Corollary 3.3,
we have

[Eri, Ei1j] @ €] — ri-1(m) @ e,
(Bt i1 (m)][Brt, Bl [[Eim1j, B, rim15(m)]) @ e
[Ekla [Ei_lma Emj]] & el

Il
o

and hence [E;-1;, Byl ® ¢f = —r;-1;(m) @ e;.

e The proof of (iii): (R2-5)
First, let p # j,k and [ € {1,...,n} such that [ # i, j,k,p. Set r = E;; '[Ey, Eyl.
Then we have

[Eij7 [T: Ez‘—lk]] ®e; =0, [7’, Ei—lk] X 6;; =0

P

[Eitm [Emi Bt B ™Y B[ Bt B ™", Byt [Bi-1n, Ep1)]) @ €

P
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and

[Eij Ei-i] ® €
([Eij, [r, Eimril][r, Eimni][Eij, Eimi]) © €5
(B, Eyj, Ei-1x] @ €,
= [EuEyEqy By~ By @ €))
(
(

[ zl:[Elj il 1El]_1 E 1k]][El]Ezl_1Elj_1 E 1k][EzlaE 1k])® ;
[EyEa " Ey~", B [Eu, Bi-]) @ €],

= ([By~ Bl [Ea™", Bl [By, Ei-i] [Ea, Bio]) ® €,

Since p # 7, k, we have

[Ey, Ep]l @ €} + By~ Byl @ € = 0,

[Eit, Bi-1) @ €+ [Ey ' Ei1] @ e, = 0
and hence [E;-15, E+y] ® e = 0.

Next, let p =k and [ # 4, j, k. Since [ri;(1), [Eij, Ei-1)] = 0in R and [ry;(1), Ei-14] @
e; = —r;(1) ® ef by Corollary 3.3, we have
[Eij, Ei1p) @ e, —1i5(1) @ €]
= ([ri; (1), [Ey, Ei-i]][Eijy Eimai][ri; (1), Ei-1i]) @ e,

[[Eiv, Eijl, Eimr] @ e,
= [EaE By El] ,Ei—lk] ® ey,
[Eit, B [Ea ™", B [ By, B (B~ Ei)) ® e

(
0

and hence [E;;, E;- 1k] ® e = [ri;(1)] ®ef.

€k
and | # i,j, k. Since [[Ej-1x, Eij],ri-1x(1)] = 0 in R and

Finally, let p
e ~1;(1) ® € by Corollary 3.3, we have

[Eij: T’i—lk(l)] ®

|Eij, Ei ] ®e; — [ri(l)] ®ef
= ([Eij, rimu(D][Eij, Eimar] [[Eik, Eigl, rim1i(1)]) © €5
= [Eyj, [Ei-u, Ew]] © €]
= By, B BBy~ Elk_l] ® €;
[Eij, Ei-ul[Eij, Ei-y~ ][EZJ7 Eu][Eij, Elk_l]) ® e;

J

e The proof of (iv): (R2-1)
First, let p # j and k € {1,...,n} such that k # i, j, p. Set r = Ey; "' [Ei, Ex;j]. Then
we have

[Eija [7’, Ei_lj]] Re, = 07 [7’, Ei_lj] ®e, =0

p p
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and

[Eij, Bi-15] ® e

([Eijs [ Ei-yj]][r, Ei-yj][Eij, Ei-g]) @ €,
= [[Eix, Exs], Ei-15] @ €,

= [EiErjEg By~ Byl @ €],

[Eik, [Exj B B ™", Eiej)|[ExsEix Erj =", Bim1j][Ea, Eimvj)) ® €

[ExjEi "Byt By

(
( i J][Eik: Ei—lj]) ® e;

= ([By; " Eivj)[Ea ' Eij)[Exj, Bioj) [ B, Eio1j]) ® €.

Since p # j, we have

[Erj, Bimj]l @ € + [Ey ™' Bi1y] @ € = 0,
(B, E-1j] ® €, + [Ex ™', Eivj] ® e =0

and hence [Ejj, Bi-1j]®e; =0, p# j.

Next, let p = j and k # 4, j. Since [ry;(k), [Eij, Ei-1;]] = 0 in R* and [ry;(k), Ei-1;] @
es = —1ij(k) ® ej by Corollary 3.3, we have

[Bij, Bi-15] @ e — ri5(k) @ €]

([rij(k), [Eij, Eimsjl][Eij, Eim1g][ris(k), Ei-j]) ® €]
[[Eix, Exjl, Ei- J]®€

([Bi, [Bxj Ein™ By~ B )| [Big B~ B ™" Biej) B, Bij]) @ €5
(

17 J
[Ex;Ea By~ B 1] [Eik, Ei-15]) @ €]

[l
™
=

“)[Ea", Eivg]) @ € + ([Bxj, Bij][Br ™, Eigl) @ €5
— By "By Bimy) @ e
= —Ti—lj(l) & 6:

and hence

[Eij, Bi-vj] @ € = 1ij(k) @ €] —ri-1;(1) @ ef.

(2

e The proof of (v): (R2-2)
First, let p # j and [ € {1,...,n} such that [ # 4,5, k,p. Set r = E;; '[Ey, Eyl.
Then we have

[Eij: [7’, Ek‘j]] X 6* = O, [7’, Ekj] X 6; = O

P
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and

[Eij Bk 6
[ Z],[r Exil[r, Exj][Eij, Brj]) ® e,
[Ei, Bij], By ® e,

|®
(
[
= [EaEyEqy By Byl ® e
(
(

[ ily [Elj il lElj - Ek‘j]][Ele’Ll 1Elj_1 Ekj][EzlaEkj])®
[EyEa™ Ey™", Eyl[Ea, Ex)) @ ¢,

p

I
—
gu
§1

N[Eu", Exj|[Ey, Exj][Eu, Exj)) ® €

P

Since p # j, we have

[Ey, Erj) @ €5+ [Ey ", Exj] @ € =0,
[Ei, Exj] @ €} + [Ea™ ', Byl @ €5 = 0

and hence

[Eij, Exjl @ ey =0, p#j.

Next, let p = j and [ # 4,4, k. Since [[Exj, Eij],7;(1)] = 0 in R** and [E;j, ri;(1)] @

es = —r1j(l) @ ef by Corollary 3.3, we have

[Eij Erj] ® e — e (D] @ ef

([ mﬂ“ka( NEij, Exjl[[Exj, Eijl, rig(D)]) @ €]

= [Eij, [Bw, Byl @ €}

([Eij, Bu[Bij, By Eu ™ By [[EyEa™ By~ Eyl, Bul) © €]
([Bij, Eul[Eij, EiyEu ™ Ey ') @€

= ([Eyj, Bu[Eij, B~ ']) @ € + ([Eij, Byl [Eij, By ') @ € + (B By~ Eij) @ ¢
=By 'E; N Byl e

((Bu" By~ Bl By Byl (B~ Eij)) @ ¢

= —ri;(m) ® e

and hence

[Eij, Eij] ® €] = 15(1) @ €] — ri5(m) ® e,

e The proof of (vi): (R2-3), (R2-4)
First, let p # j and [ € {1,...,n} such that [ # i, j,k,p. Set r = E;-1; ' [Ei-1, Eyl.
Then we have

[Ei_lja [7’, Ekilj]] X 6* = O, [T, Ekilj] X 6* = O

p p
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and
[Bi-1j,Ep15] ® ey
= ([Einvy, [r, By, Biey] [Ei-vy, Bpeg]) ® €,
= [[Ei-u, Biy], Bperj] @ e,
[Ei-y BBy~ El] y B ] ® 6
([Biwis [Biy B~ By~ Ejej) [Elei—lz_lElj_la Epej][Ei-n, Eperj]) ® €,
(BB By, By By, Byny]) @ €

= ([By ", Bvey)[Bimu ™ Evej)[ By, By [Bimy, Ega e

Since p # j, we have

[Elj,Ekil ] ® 6 + [El] Ekil ] ® 6* =
[E 1Z,Eki1]®€ +[E 11 Eki1]®€ _O

and hence

[E 14 Eki1]® *EO

p

Next, let p = jand [ # 4, j, k. Since [[Ey+;, Ei-1;], rp=;(1)] = 0in R*® and [E;-1;, rp21,(1)]®
e; = rp15(1) ® e by Corollary 3.3, we have
[Eirj, Bpj] @ € 4 rp(1) @ ef
= ([Bivjs riej (DN i, B[ Erery, iyl mie (1)) © €5
= [Ei1j, [Eren, Eijl] @ €]
Eij, By )[Eivg, BBy By [[Ey By By~ B, Egey)) ® €5

E 14 Ekill][E 14 Elekill_lElj_l])(@e;

1T

= ([Bimj, Byl [Bimrj, By ™)) © €5 + (B, Byl [ By, By 7)) @ ¢
—+ [Ekill_lElj_l, Ei—lj] X 67
= [Ekill_lElj_l, E‘—lj] X 67 = [Ekill_l, Ei_lj] X 67
= Fri-1;(m) ® e,
for m # 1, 4, k,l. and hence

[Ei_1j7 Ekilj] ® 6; = —Tkilj (l) ® 6,? :F Ti—lj (m) ® 62.

6.2. The computation of (a,b,c,d,e) ® e;.

Here we give the details of the computation of the equation (a,b,¢,d, e) ® e,
L4 (xla Xj, Tiy Ty, Jl'k) & 62
For distinct 4, j, k and [, the equation (zy, z;, x;, ¥, x) ® €} is given by
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ra(k) ® ep = syt @ e, + (wy T Egwyy s3 wy;” By wy) ® e
(390 + (wyy ™y (R)wyy) © e

+ (wy; T By Epjwiy 1wy By By T ) ® e
+ (wi; " Eywyy s2 wi T By hwg) @ e, + s3 @ e
where

— -1 -1 -1 o -1 1 -1
s1 = (wy;~ Ey—rwy) " By, s2 = (wy Egj—rwyy)” Eu

s3 1= (wy; " Ey—wy) By
Then using Lemmas 3.4 and 3.5, we obtain
(40) ra(k) @ ey =ri(k) @ e) + s2 ® €] + s3 @ €.
Using (vi) of Lemma 2.2, we see
Sy = Ej-yE-1;-1Ey - (G) By Bl jEjy-1 - By By r-1(I7Y) Ey-1Ej-1y-
By By By, Bij1] Eg-1 B - [Ejv, By,
and hence
so®@e; =r(-) ®el —r(-) el
By the same argument as above, we have
s3 @ ey, = ra(") ® e — 1ij(+) @ ey
Substituting these results into (40), we obtain S, = 5.
o (v, 1), 20,15, 71) @ e
For distinct ¢, 7, k and [, the equation (xl_l, Tj, T, T4, k) @ ey is given by
ra-1(k) @ ep = sy @ e + (w1 Egwi- syt wi-y T By T wgey) @ e
+ (Wi i (k)wiey) © e
+ (W T By Brjwi-ag 51wy By~ By~ lweg) @ e,
+ (w1 By sa wieay T By wey) ®@ e + 53 @ e
where
s1:= (w1 Egmrwi—1) 7 Byt sy = (wi-y T Bygevwgeny) T BT
S3 1= (wl—lj_lEij—lwl—lj)_lEZ‘l.
Then using Lemmas 3.4 and 3.5, we obtain
(41) ra-1(k) @ e, = 1ij(k) @ e + s2 @ €] + 53 R ej.
From Lemma 2.4, we have ry-1(k) ® ef = —ry(k) ® e;. Using (vi) of Lemma 2.2, we see
s2= By By By rg(§) ™ BBy By - By By-1 g1 (1) EnEjyy
B By [Bjr, By ] EqEj-1 - [Ej-1-1, By,
and hence

so®@el = —rp() el — () el

1
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By the same argument as above, we have
s3® e = —ra(-) ® e +7135(1) ® €.
Substituting these results into (41), we obtain S, = —Sj,.
o (v, 1, 25,75, 7)) ® €
For distinct ¢, 7, k and [, the equation (x,;l, Xy, T, T4, 1) @ € is given by

T’Z‘j(k_l) & 62 = 81_1 & 62

+ (w 1 lek 1 Sy wk—ll_lEil_lwk—ll) X 62

+ (wp-1;," sz( Jwi-1;) ® ey,

+ (w1 By Ejjwg-y s1 w1y By T By T wgy) ® €
+ (w1 Eyjwy-1y o w1y By wg-1) @ e + 53 ® e

where
s1 1= (w1 Eyarwy-u) " B, S0 0= (W1 Eyjmiwg-y) T By
S3 1= (wk—ll_lEij—lwk—ll)_1Eij_1.

Then using Lemmas 3.4 and 3.5, we obtain

(42) ri(k Y ®@er = —ry(l) @ ef — sy @ el + 53D e

From (3), we have

43

-1 -1 -1 -1 -1
SS9 = (wk—ll Eljhk_llElj_lwk_ll) . (wk—ll hk_ll wk—ll) . (wkl—l Elj—lwkl—l) Ek—lj—l,

and hence
So & 6: = {(wkl—l_lElj—lwkl—l)_1Ek—1j—1} X 6:.
Applying (ii) of Lemma 2.2 to (wy—1 ' Ejj-1wgg—1) " Ej-1,-1, we have
(wkl_l_lElj_lwkl_l)_1Ek_1j_1 = BBy [El—lk—l, Elj] By Ep—
. Elk T’k—lj(l) Elk—l
. Ek—lelk le—l ((L_l) Elk—l Ek—lj—l
and hence
s2 @ e =rp-15(0) @ ef — () ® e
On the other hand, using Lemma 2.3, we see
83 = B By (B, Bij]) EyEpy - B [Egr, By Ejg - (B, By
and hence
s3®@ep =1ij (1) @ ey + (1) Ve
Substituting these results into (42), we obtain
rig(k™) @ e = ry(-) @ ef — () ® €

o (z;t w20, 75, 78) @€}
For distinct ¢, 7, k and [, the equation (xi_l, Xy, T, T, Tp) @ e is given by
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ri-1;(k) @ ef = sy @ € + (Wi Eywi-ny sy wi-y T BT w-y) ® €
+ (wimy " (R)wi-y) @ e
+ (wi-1; B Egjwi-1; 81 wi—ll_lEkj_lElj_lwi—ll) ® ey,
+ (wi-r Eywi-y s wi-y” By T wiey) @ ef + s3.® e
where
s1 = (Wi-y  Eprwi-y) T BT s = (0T Egovwiey) T BT
s3 = (wi—y  Epjorwi—1y) T By
Then using Lemmas 3.4 and 3.5, we obtain
(43) ri-1j(k) @ep =1;(k) ® e, — s2 @ ef + 53 ® €.
Applying Lemma 2.3 to s9, we have
g = Ep-1-1Ey—1 [Eyi, Eyg] Eq B - B [Ey-v, Byl B - [Ep-1-1, Eigl,
and hence
s2@e; =1ij() @ €5 + 1 () @ €.
On the other hand, Applying (3) to s3, we have
s3 = (Wi-y Eyyhi-yEj-rwi-1) - (wiy~  hi-y  wiey) - (wi- Eeiwg—1) T B,
and hence
s3® e = {(wi—1 ' Ejj-1wy—1) T Ei-1j1} @ e
Then considering (ii) of Lemma 2.2, we have
(Wi Epjrwy—1) T By = BBy (B, By Bi-y-1 By
- Eiiri-1(1) By
BBy (i) By B
and hence
s3® e = 1i-1() © e —ry(+) @ €.
Substituting these results into (43), we obtain
ri-1j(k) ® e, = ri-1;() @ e — 1 () © €.
o (z;' x, 25,2, ) @
For distinct ¢, 7, k and [, the equation (xi_l, Zy, Ty, T, x,;l) ® ey, is given by

-1 -1 -1 -1 -1
i1 (k7)) @ep =51 ®@ep+ (Wi Egwiy sy wi-y - Egwi-y) ® e,
-1 -1 *
+ (wi-1 (B wi—y) ® e,
-1 —1 -1 -1 *
+ (wi—ll Elek—ljwi—ll S1 Wi-1g Ek—lj Elj wi—ll) ® e
-1 -1 -1
+ (wi—u Eljwi—ll So W;-1] Elj wi—ll) X e+ 53X 62
where
i —lE —lE o —lE —lE —1
S1 = (wi—ll lkwi—ll) i—1k s Sg = (wi—ll k—lj—lwi—ll) k=1

- -1 -1 -1
S3 = (wi—ll Elj—lwi—ll) Ei_lj .
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Then using Lemmas 3.4 and 3.5, we obtain
(44) ric (k) ®@ep =r(kT) @ e + 52 @ ef + 83 ® e
Applying Lemma 2.3 to so, we have
sg = Ep-1i-1 By1 By, Bp1j) EgEi-vi - Bivin [By—1, Epj] B - [Ep-1i-1, B,
and hence
sa®@e; =1p15(-) ® e +1p15(0) ® e
On the other hand, Applying (3) to s3, we have
s3 = (w1 Bighiy Eywiy) - (Wi hiy " wiey) - (wi T By ) T B,
and hence
s3®@ef = {(wi—1 " Ejj-iwg—1) T B ® e
Then considering (ii) of Lemma 2.2, we have
(w1 Ejrwy—1) T B oy = BBy (B, By Bi-y-1 By
Eyirioag(l) By
BBy (i7Y) By By,
and hence
s3®ep =71i15(1) @ ep — 1) © €.
Substituting these results into (44), we obtain
ri (k) @ ef = rimy () ® e+ () @ e

° (Jj'l, Tk, i, Jl'j, .Tk) X 6;

For distinct i, j, k and [, the equation (z;, xg, xi, T, T) @ e; is given by

rii() @ € = s7' @ € + (wn ™ Egwn s wi” B wi) @ €]
+ (wi i (k)wi) @ €]
+ (wy, " Eij Egjwn, $1 wlk_lE,;leij_lwlk) ® e
+ (wi ™ Ejjwy 2w By wig) @ € + s3® €]
where
s1 = (wip " Egrwg) " By, se = (wi T Ejorwg) T BT
S3 1= (wlk_lEij—lwlk)_lEij_l.
Then using Lemmas 3.4 and 3.5, we obtain
(45) r(l)@e; =rij(k)®@e; —s1®e —s1®@ef —s523Q¢€; + 53R €]
Applying (vi) of Lemma 2.2 to s;, we have
s1= BB Egrg (k) By E-ip Bym1 - By B rig— (1Y) Ey-1 Ejo1y
Ey-n By [Eyr, g1 ] By By - [y, By,

and hence
$1 @ 67 = —T’ik(l_l) ® 62, $1 & 6: = 0.
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Using (3), we have
s2 = (Wi~ Erjhu By wi) - (wi ™ hae ™ wi) - (0p-1-1 " B wp--1) " By,

and hence
o ® €f = {(wi-1p1 Epjrwp-1p-1) B} @ el
On the other hand, applying (ii) of Lemma 2.2 to (w-14-1 ' Egj-1wp-15-1) "' Ejj-1, we
see
(w-11 " Egjorwp1g1) T By = By By [Eg-vy, Eyg] Ej—1 By
- Ey-11(k) B - EjjEg-rgi-1(1) Eg B,
and hence sy ® ef = 0. From Lemma 2.3, we see
s3 = Ep-1E-1-1 [y, Bij| B By - Epvy [Ej-g-1, Eiy] By - [Eg-y, Ejl,

and hence s3 ® €] = 0. Substituting these results into (45), we obtain

T’ik(l_l) X 62 = —T’Z‘j(k) X 6; -+ T’Z‘j(l) X e:

j.

—1 *
L4 (371 ,.Tj,l'i,l'k,l'j) ® €

For distinct 4, j, k and [, the equation (z, xj, Ti, Tk, i) @ e is given by
ra(l) @ef =57 ® ek
+ (w1, By syt w1 T By T wgey) @ e
+ (wy- 1 Tzk( w-1;4 )®€k
+ (w1, Eg Ejpwp-1; 81 w1 BT By wp-1) ® e
+ (w1, Egwi-j 89w By M we) @ e + 53 ® e

where
= 'E B = B B!
S1 1= (wl—lj ij—lwl—lj) ily S2 1= (wl_lj jk—lwl—lj) -1k,
o -1 17 —1
s3 = (wp-1; 7 Eygerwy-1) " By

Then using Lemmas 3.4 and 3.5, we obtain

(46) ra(l) Qe =rp(j) ®ef —s1@ef +51 Q€ —syQ € + 53R €.
Applying (vi) of Lemma 2.2 to s;, we have
51 = By11 By By ra(§) ™ EuEy By,
cEjy-1 By (1) By By
By By By, B Eg By
B, By
and hence

s1@e =15(l) @€

VR

s1®e; = 0.
Using (3), we have

~1 -1 -1 -1 -1
s2 = (wi-1;" Ejphuj Ejp-rwi—15) - (wimry™ himry ™ wimag) - (w7 Ejrwg—1) ™ By,
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and hence
S92 & 6: = {(wlj—l_lEjk—lwlj—l)_1El—1k—1} X 6:.
On the other hand, applying (ii) of Lemma 2.2 to (wjj-1 ' Ejp-1wyj-1) " Ej-1j-1, we see
(wlj_l_lEjk_lwlj_l)_1El_1k_1 = Elel—lj [Ej—ll—l, E]k] El—lj—lEjl—l
. Ejl Tl—lk(j) Ejl—l . El—lkEjl T’jk—l (l_l) Ejl—lEl—lk—l,
and hence sy ® ef = 0. From Lemma 2.3, we see
S3 = Ej—ll—lElj—l [Ejl: Ezk] Elej—ll . Ej—ll—l [Elj—l, zk] Ej—ll . [Ej—ll—l, Ezk]

and hence s3 ® e} = 0. Substituting these results into (46), we obtain

rin(I7h) @ ef = rin(j) @ e +13;(1) @ €.

-1
o (71,75, , 75, 71) @ €]

For distinct 4, j, k and [, the equation (z;, zy, xi_l, Tj,Tk) ® e; is given by

riy(l) @ el = s7' @ el + (wi T Eipwn 53w By wg) © €5
+ (wi i (R)wi) @ €
+ (wi " Ei-1jEjwy s wlk_lEk_lei—lj_lwlk) ® €
+ (Wi B jwie s2 wie” By~ hwg) ® €5 4 53 @ €]
where
s1 = (Wi ' Eipwg) By T sy o= (wnT Eygoowg) T By
sy 1= (wy, Bi-1jowy,) " By
Then using Lemmas 3.4 and 3.5, we obtain
(47) () @e; =ri(k) @6 — 51 Q€] +51Qef +52@e€ + 530 €.
Applying (vi) of Lemma 2.2 to s;, we have
s1 = Ep-nEp-1p-1 By Ti—lz—l(/f)_l By BBy - By By T’i—lk—l(l_l) By Ejg-1y—
BBy [Eig, Bl By B - [Bg-vy, By,

and hence

o

—1 o
51 Q@ 67 = —Ti—lk(l ) & 62, $1 @ 6: = 0.
Using (3), we have
1 15 -1 —1 —1
so = (Wi~ Erjhie Eg—rwi) - (e b wir) - (W—1p—1" Egjmrw—1—1) " Ejj,
and hence
_ —1 1
S92 X 6: = {(wl—lk—l Ekj—lwl—lk—l) Elj_l} X 6:.

On the other hand, applying (ii) of Lemma 2.2 to (w-14-1 ' Egj-1wp-15-1) "' Ejj-1, we
see

(wl—1k—1_1Ekj—1wl—1k—1)_1Elj—1 = Ekl—lElk [Ek—ll, Ekj] Elk—lEkl
. Ekl—l le(k) Ekl . Elekl—l T’kj—l (l) EklElj—la
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and hence sy ® ef = 0. From Lemma 2.3, we see
S3 = Ek_llEl_lk_l [Ekl_la E’L]] El_lkEk_ll_l . Ek_ll [El_lk_la Ei_lj] Ek_ll_l . [Ek_lla Ei_lj]a
and hence s3 ® € = 0. Substituting these results into (47), we obtain

T’i—lk(l_l) X 62 = —T’i—lj(k) X 6;‘ + Ti—lj(l) & 6;.

-1 -1 *
d (xl gy Ty 7xk7xj) ® ey,
For distinct ¢, 7, k and [, the equation (xl_l, xj, xi_l, T, T;) ® € is given by
—1 ~1
ri-y (7)) ®ep =51 ®ep

1 -1 -1 -1
+ (w1 Eijwiy sy 0wy By T wy) @ e,

-1 . *
+ (w15 rig (F)wi-15) ® ey,
-1 1 -1 -1 .
+ (wl_lj B Ejwi-j sy w1 Ej™ By, wl—lj) ® ey
-1 -1 -1
+ (wl_lj Ei—lkwl—lj S2 Wi-15 Ei1y, wl—lj) & 62 + 83 62

where
81 = (wl—lj_lEi—lj_lwl—lj)_1Ei—1l: 82 i= (wl—lj_lEjk—lwl—lj)_lEl‘lk_l7
s3 1= (W1 Bmprwy-1y) T By
Then using Lemmas 3.4 and 3.5, we obtain
(48) riu(ITh@e=riu(j) @ +s1Q€f +51 Qe + 52 @¢€ + 53R e}
Applying (vi) of Lemma 2.2 to s;, we have
s1 = Ejya EjjaEiyoari(§) ™ By By Ejy
cEjym By rimy-a (1) By B
cEja By [Bivjon, By ] By By
B, B
and hence
s1®e =ri-1;(l) @€

7

s1®e; =0.

Using (3), we have
SS9 = (wl—lj_lEjkhl—lejk—lwl—lj) . (wl—lj_lhl—lj_lwl—lj) . (wlj_l_1Ejk_1wlj_1)_1El_1k_17

and hence
S9 & 6: = {(wlj—l_lEjk—lwlj—l)_1El—1k—1} X 6:.

On the other hand, applying (ii) of Lemma 2.2 to (wjj-1 ' Ejp-1wyj-1) " Ej-1j-1, we see

(wlj_l_lEjk_lwlj_l)_1El_1k_1 = Elel—lj [Ej—ll—l, E]k] El—lj—lEjl—l

. Ejl Tl—lk(j) Ejl—l . El—lkEjl T’jk—l (l_l) Ejl—lEl—lk—l,
and hence sy ® ef = 0. From Lemma 2.3, we see
s3 = By By [Ejp, B EigEjry - Ejovn [Ejyr, By Ejong - [Ejonr, By

and hence s3 ® e} = 0. Substituting these results into (48), we obtain

riek(7) @ e = riea(j) @ e + i (1) ® €5
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o (v, 7" 2y, 15, 71) @ e
For distinct i, j, k and [, the equation (z;, xl_l, Ty, T, Tg) @ e; is given by
ri-i(k) @ €l = 57" @ €} + (wy—r Egwi-r 83" wy— By wy-1) @ €
+ (wi "y (k)wi—) @ €
+ (w1 By Erjwi-1 1wy By By T wg ) ® €5
+ (w1 Ejwg-r sy wy—r By T wg-) @ € + s3 @ €
where
s1:= (w1 Eyrwg-1) T BT sy i= (e T Egavwg) T By
s3 = (wy—1 " Epjmrw-1) T By
Then using Lemmas 3.4 and 3.5, we obtain
(49) rij(k)@e; =r(k) @+ 51 Qe — 51 Qe +s2®ef +s3R@€].
First applying (ii) of Lemma 2.2 to s1, we have
s1= (wy-1 " Eyrwy—1) " B
= BB [Er-1i-1, Bi] Eioy-1 Eji-1 - By v (1) B
s BBy ry (i) By By,
and hence
s1®e; =ri(l)®@ef — (i) ®ej, s1®@e; =0.
By the same argument, we have
ss@e; =ri(l)@e; —rm(i') ®el.
On the other hand, applying Lemma 2.3 to so, we have
s2 = (w1~ Eggrwy—1) " By
= EiiEi-1; [E-1i-1, Eyj] By By - By (B, Byl By - [Byg, Bygl,
and hence
sy ®e; = 0.
Substituting these results into (49), we obtain
ri-1j(k) @ e; = rii(k) @ e — ri- (1) ® ey,

+rp(iT) @ ef+ () @ el — (i) ® el

6.3. The reduction of h;; ® e;,.
Here we give the details with respect to the reduction of h;; ® ;.

® hij® e, for p #1i,j
From Lemma 2.3, we have
[wi; ™, E] = (wij ™' Eyg-1wi;) ™ By
= Ej1iEim o1 [Ejimr, Bu] Ei-1jEj-1-0
- Ejvi [Eimjr, ) Ej-v-1 - [Ej-v, Bl

49
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and hence, tensoring each terms of the equation above with e;,
(50) [wi; ™, Bu] @ ¢f = 75i(-) @ e +1i-1;(-) ® €, — 1) ® e
On the other hand, observing (3), we have
[wi; ™", Bu) = (wi;™ Bl ™ Eyg-rwig) - (wi ™ hijwig) - [wi, En).
Then
(wij ™ hijwi) @ ef = hy; @ e,
(wij T Ephij ' Egowi) @ ef = —hyj @ € + hy @ e},
From Lemma 2.3, we have
[wi-15, Br] = (wi-1j-1 " Egmrwi-1j-1) " By
= Eji-1 Eij [Ej-1i, ] Eij-1 Ej;
FEjiv [Ei, E] Eji - [Ejiov, By,
and hence, tensoring each terms of the equation above with e;,
[Wi-1j, B] @ €] = —rj-1(") @ e, — 135(+) @ e, +715i(+) @ ef.
Therefore
(51) [wi; ™, Bul @ €] = hi; ® e — 1j-1(-) @ e, — 135()) ® e + 153() @ €.
Comparing (50) with (51), we have
hij @ e = ri5(+) ® ex + 1i-15() @ €.
o {Th, i, T4, T} ® €]

For distinct 4, j and k, the equation {zy, ;, x;, ¢} ® e; is given by

hi @ el =t3 e’ + (wki_lEﬁwki to wki_lEj‘_lwki) ® e
J J J J

1 —1 1 1 "
+ (Wi~ Eji B jwgi tr wy ™ By By weg) ® €]

+ (wki_lhijwki) & 6;
+ (wkz‘_lEj—li_lEij_lwki 7 wki_lEijEj—liwki) ® e
+ (Wi By wgg s Wi T Ejo1w) © e;+ile®e;
where
t 1= Ejoaper (Wi Ejori-iwg) ™ ta 1= Eyvj(wy! Eimrjwi)
ts = Ej(wy; Ejwri) ™", ta = (wi Bji-rwii) ™ Ejpet,
ts := (wy; Eijwri) ™ Eyj, to := (Wi Bj-1iwi) ™ Ej-p.

Observing Lemma 2.2, we see that all ¢,,, (1 < m < 6), except for t; belong to the
normal closure of the relators of (R2-1), ..., (R3-4). Hence, using Lemmas 3.4 and
Lemmas 3.5, we obtain

(52) hkj X 6; =15 ® 6; + hz‘j X 6;.
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On the other hand, from (3), we have
ts = (wi; ' Eijwgi) " By
= (Wi Byt hii Bijwg) - (Wi i ™ wig) - (wy-1-1 7 Bijwg-1-1) 7 By,
and hence
ts @ 6; = {(wk—li—l_1Eijwk—1i—1)_1Ekj} X 6; + hy ® 6:.

Since the element {(wy-1;,-1 " E;jwy-1;-1) " Ex;} € R belongs to the normal closure of
the relators of (R2-1), ..., (R3-4) by Lemma 2.2, we see t;®@ e} = hy; ®e;. Substituting
this results into (52), we have

hij ®€; = hkj ®€; — h; ®€;~k.

o {x,x; xz,x]} ® ej

For distinct 4, j and k, the equation {z, x; Uag, xj} @ e} is given by

-1 -1 -1
hy-1; ® e = t3 @ ef + (W1 Ejiwg—1 to W B wy—1) @ e,
-1 -1 -1 -1
+ (wki— E“E‘—l ‘wki—l tl Wgi—1 Ei_lj Eji wki—l) & 62
3
Wii-1 hzgwkz ) & €

-1 -1 -1
(wkz 1 E i—1; Eij Wi;—1 ty Wi;—1 EijEj—liwki—l) & 62

Wyi-1 T By g ts w1 Ejewg) @ e 4+t ® e

where

ty = Ej,(wy; 1E W) T ty 1= Ekj(wgil_lEi—ljwki—l)_l,

ty 1= Ejk—l(wk 1Ejiwkz‘—1)_1, ty = (w,;1 Eji—lwki—l)_lEjk,

ts == (w1 Eijwgi—1) " By, te == (Wit Bj-1i-1wy—1) " By
Observing Lemma 2.2, we see that all ¢,,, (1 < m < 6), except for t5 belong to the
normal closure of the relators of (R2-1), ..., (R3-4). Hence, using Lemmas 3.4 and
Lemmas 3.5, we obtain
(53) hi1;®ep =t ®ep +ta®@ej — hij ®ej.

From (3), we have
t2_1 = (wki—l_lEi—1j—1wki—1)_1Ekj—1
= (wyi1 " B Bieiwgi-) - (wiim g )
. (wk—li_lEi—1j—1wk—1i)_1Ekj—1,
and hence
t2_1 X 62 = {(wk—li_lEi—lj—lwk—li)_lEkj—l} X 62,
t2_1 ® 6; = {(wk—li_lEi—lj—lwk—li)_lEkj—l} ® 6; — hpi—1 e,
Here, from Lemma 2.4, we have
hpi-r ® e} = (wki—l_lhki_lwki) ®er = —hy ® ey,
P 1; ® €k (wkj kkjwkj) ® 62 = hy; ® 6;,
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and see that the element {(wy-1;  Ej-1;-1wy-1;) " Ey;-1} € R belongs to the normal
closure of the relators of (R2-1), ..., (R3-4) by Lemma 2.2. Therefore we obtain

t2®€;i—hki®€z, t2®€zi0.
Substituting this results into (53), we obtain
hij ® e; = —hi ® e, — hi; ® 6;.

° {Jj'k, Tiy Tj, .Tj} X 62

For distinct 4, j and k, the equation {wy, x;, x;, x;} @ e} is given by

* —1 -1 -1
hkj ® €L = t3 ® 62 + (wki Eﬁwki to Wi Ej‘ wki) ® 62
-1 -1 10 -1 *
+ (Wi Eji B jwg t wy BT By weg) ® e,
—1 *
Wi hijwki) X €L

+(
+ (Wi By By T wg ta wi T By Epewg) @ e
+ (wg ™

Wi~ By we B w T Ejiwg) © ef + 1 ® e
where
ty = By (wit Byoviwg) ty 1= By (wy' Eimjwe)
ts = Ej(wy Ejiwgi) ™", ts = (wyy Ejimvwe) ™ Ejr,
ts := (wp;' Bijwg) " By, to := (Wi, Ej-viwpi) ™ Ej-ay.

Observing Lemma 2.2, we see that all t,,, (1 < m < 6), except for t5 belong to the
normal closure of the relators of (R2-1), ..., (R3-4). Hence, using Lemmas 3.4 and
Lemmas 3.5, we obtain

(54) hij @ep, =t5 Qe —ts @€ + hi @ e;.
On the other hand, from (3), we have
ts = (Wi~ Eijws) " Egg
= (Wi Bijor hii Bijwgs) - (Wi~ ™ wig) - (01417 Bjjwg-1-1) T By,
and hence
ts @ ef = {(wy-1,-1  Ejwy-1-1) " By} ® e
ts®e; = {(wp-1-1 " Ejjwp—1-1) B} ® i+ hi ® e}

Since the element {(wy-1;-1 "' E;jwy-1;-1) " Ex;} € R belongs to the normal closure of
the relators of (R2-1), ..., (R3-4) by Lemma 2.2, we see

ts ®ep, =0
ts @e; = hy ®e;.
Substituting this results into (54), we have
hij @ ef = hy; @ e + hy @ €.
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