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Abstract

We give an explicit formula for the Casson-Walker invariant of

double branched covers of S3 branched along ribbon knots of 1-fusion.

1 Introduction

Casson introduced an integer-valued invariant for oriented integral ho-
mology spheres via constructions on representation spaces, which is called
the Casson invariant ([1]). Walker extended the Casson invariant to rational
homology spheres, which is called the Casson-Walker invariant ([15]). There
has been a big deal of work on these invariants. In particular, Mullins gives
a relation between the Jones polynomial of a link with non-zero determinant
and the Casson-Walker invariant of its double branched cover of S3 (Theorem
5.1 in [12]).

In this paper, we give an explicit formula for the Casson-Walker invari-
ant of double branched covers of S3 branched along ribbon knots of 1-fusion
(Theorem 2.17). To do this we consider the Jones polynomial of ribbon
knots of 1-fusion. Giving an explicit formula for the Jones polynomial is
extremely difficult, but we succeed in obtaining a formula for its first deriva-
tive at −1 (Proposition 2.14), which extends a formula in [13] (Example
2.9). This formula, together with Theorem 5.1 in [12] gives a formula for the
Casson-Walker invariant. In [11], we discuss the Casson invariant of Mazur’s
homology sphere by using this formula for the Casson invariant.

Our formula for the first derivative has independent interest, since we
obtain an application as follows: In [10], we define the ribbon number of a
ribbon knot, the minimal number of ribbon singularities needed for a ribbon
disk bounded by the ribbon knot, and by using this formula we determine
the ribbon number of the Kinoshita-Terasaka knot.

2 Definitions and results

Definition 2.1. The Jones polynomial JL(t) ∈ Z[t1/2, t−1/2] is an invariant
of an oriented link L in S3, defined by the following formulas:

t−1JL+
(t) − tJL

−

(t) = (t1/2 − t−1/2)JL0
(t),
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JO(t) = 1;

where L+, L−, L0 are three oriented links, which are identical except near
one point where they are as shown in Figure 1 and O denotes the trivial knot
([4]).

L L+ − 0L

Figure 1:

Definition 2.2. A band sum of K0 and K1, two separable components of a
link in S3, is obtained as follows: Embed I × I in S3 by a homeomorphism
b such that

(i) b(I × I) ∩ (K0 ∪K1) = b(I × {0, 1}),
(ii) b(I × {0}) ⊂ K0; b(I × {1}) ⊂ K1.

The band sum of K0 and K1 along b is the knot

(K0 − b(I × {0})) ∪ (K1 − b(I × {1})) ∪ b({0, 1} × I),

denoted by K0 #b K1 (cf. [3]).

Definition 2.3. A ribbon disk is an immersed 2-disk of D2 into S3 with
only transverse double points such that the singular set consists of ribbon
singularities, that is, the preimage of each ribbon singularity consists of a
properly embedded arc in D2 and an embedded arc interior to D2. A knot
is a ribbon knot if it bounds a ribbon disk in S3 (cf. [6]).

Definition 2.4. We call a knot K in S3 a ribbon knot of 1-fusion, if it
has a knot diagram DK as described in Figure 2 (and Figure 3), where n is
even and each small rectangle named Ci is determined by ci ∈ {−1, 0,+1}
(i = 1, 2, · · · , n) and there are disjointly embedded (n + 1) subbands inside
the “big rectangle”, being knotted, twisted and mutually linked (cf. [8]). We
call the diagram DK 1-fusion diagram of K.

Let αi (i = 1, 2, · · · , n + 1) denote the (right hand full) twisting number
of i-th subband inside the “big rectangle”, and let αi,j (i < j) denote the
relative linking number of i-th subband and j-th subband inside the “big
rectangle”. That is: Direct the subbands from left to right and attach a sign
to each crossing of different subbands, as shown in Figure 4. Then αi,j is half
the sum of the signs of the crossings of i-th and j-th subband (see Figure 3,
where (c1, c2) = (+1,+1), α1 = 1, α2 = 0, α3 = 0, α1,2 = 1, α1,3 = 0 and
α2,3 = 1.).
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Remark 2.5. DK gives a ribbon disk bounded by K.

Remark 2.6. A ribbon knot of 1-fusion is a band sum of 2-component trivial
link and vice versa.

Remark 2.7. For any Laurent polynomial f(t) with f(1) = ±1, there exists
a ribbon knot of 1-fusion whose Alexander polynomial is f(t)f(t−1) ([14]).

Remark 2.8. LetK be a ribbon knot of 1-fusion in Definition 2.4. The Alexan-
der polynomial ofK is written as f(t)f(t−1), where f(t) =

∑n/2
i=1(t

φ(i)−tψ(i))+
1, φ(i) =

∑n
j=2i−1(−1)jcj and ψ(i) =

∑n
j=2i(−1)jcj ([8]).

The main proposition of this paper is to express J ′
K(−1) of a ribbon knot

of 1-fusion K in Definition 2.4 by using data of DK , which are ci(1 ≤ i ≤ n),
αi (1 ≤ i ≤ n + 1) and αi,j(1 ≤ i < j ≤ n + 1). Before stating the main
proposition, we give some examples.

Example 2.9. If K has the 1-fusion diagram with (c1, c2) = (+1,+1) as
shown in the left diagram of Figure 5 (K is called 61-like ribbon knot in
[13]), then Sakai shows

J ′
K(−1) = 16(α1 + α2 + α3 − α1,2 − α1,3 − α2,3) − 8.

Remark 2.10. It is well known that the Alexander polynomial of ribbon knots
is of the form f(t)f(t−1), where f(t) is a Laurent polynomial ([2]). Then it
is natural to ask whether the Jones polynomial of ribbon knots has some
properties reflecting the knots being ribbon. There are few works in this
direction. In [13], Sakai also shows

J ′′′
K(1) = −72(α1 + α2 + α3 − α1,2 − α1,3 − α2,3)

and have
2J ′′′

K(1) = −9J ′
K(−1) − 72.

In the process of extending these formulas, we have succeed in giving formulas
for J ′(−1) and J ′′′(1) for ribbon knots of 1-fusion.

Example 2.11. IfK has the 1-fusion diagram with (c1, c2, c3, c4) = (+1,+1, 0,+1)
as shown in the middle diagram of Figure 5, then

J ′
K(−1) = 48(α2,3 − α2,4 − α3,5 + α4,5) − 24.

Example 2.12. IfK has the 1-fusion diagram with (c1, c2, c3, c4) = (0,+1,+1, 0)
as shown in the right diagram of Figure 5, then J ′

K(−1) = 0. Note that the
Alexander polynomial of K is 1. The cases (c1, c2, c3, c4) = (0,+1,−1, 0),
(0,−1,+1, 0), (0,−1,−1, 0) are the same.
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Figure 5:

We use the following convention;

S = ∅ =⇒
∑

i∈S

ai = 0 and
∏

i∈S

ai = 1.

Now we define the following integers determined by ci ∈ {−1, 0,+1}
(1 ≤ i ≤ n): For 1 ≤ p, q, r, s ≤ n+ 1,























f(p, q) =

q
∏

i=p

(−1)−ci ,

g(q, r) = 2|cq|
r
∏

j=q+1

(−1)−cj ,

and










































v(p, q) =

q
∑

k=p

ck

q
∏

i=p

(−1)−ci,

w(p, q, r) =

(

−4|cq|

q−1
∑

i=p

ci + 2|cq|
r
∑

i=q+1

ci − cq

)

r
∏

j=q+1

(−1)−cj ,

x(p, q) = 2v(p, q)|cq+1| − f(p, q)cq+1,

y(p, q, r) = 2w(p, q, r)|cr+1| − g(q, r)cr+1.

We also define the following integers determined by αi (1 ≤ i ≤ n + 1)
and αi,j (1 ≤ i < j ≤ n+ 1):














































l(p, q) = −

q
∑

i=p

αi − 2

q−1
∑

i=p

q
∑

j=i+1

(−1)j−iαi,j,

l(p, q, r, s) = −

q
∑

i=p

αi −
s
∑

i=r

αi − 2

q−1
∑

i=p

q
∑

j=i+1

(−1)j−iαi,j − 2
s−1
∑

i=r

s
∑

j=i+1

(−1)j−iαi,j

−2(−1)p+r−1

q
∑

i=p

s
∑

j=r

(−1)j−iαi,j.
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Remark 2.13. As will be seen in section 3, l(p, q) is the linking number of
2-component link L(p, q) (R(p, q)) defined in section 3 and l(p, q, r, s) is the
linking number of 2-component link L(p, q, r, s) (R(p, q, r, s), LL(p, q, r, s) or
RR(p, q, r, s)) defined in section 3.

Now we state the main proposition of this paper:

Proposition 2.14. Let K and DK be a ribbon knot of 1-fusion and its 1-
fusion diagram as in Definition 2.4 and let JK(t) be the Jones polynomial of
K. Then we have

J ′
K(−1) =

45
∑

i=1

Ei +
13
∑

i=1

Fi,

where each Ei is expressed by c1, c2, · · · , cn, and αi (1 ≤ i ≤ n+ 1), and αi,j
(1 ≤ i < j ≤ n+1) and each Fi is expressed only by c1, c2, · · · , cn as follows:

E1 = 2

n/2
∑

h=1

g(2h− 1, n)l(2h, n+ 1)

E2 = −4

n/2
∑

k=1

k−1
∑

h=1

n/2
∑

r=k

g(2h− 1, 2k − 2)|c2k−1|g(2r, n)l(2h, 2k − 1)

E3 = −4

n/2
∑

k=1

k−1
∑

h=1

n/2
∑

r=k+1

g(2h, 2k − 2)|c2k−1|g(2r − 1, n)l(2r, n+ 1)

E4 = −4

n/2
∑

k=1

k−1
∑

h=1

n/2
∑

r=k

g(2h, 2k− 2)|c2k−1|g(2r, n)l(2h+ 1, 2k − 1, 2r + 1, n+ 1)

E5 = −4

n/2
∑

k=1

k−1
∑

h=1

g(2h, 2k − 2)|c2k−1|f(2k, n)l(2k, n+ 1)

E6 = −4

n/2
∑

k=1

n/2
∑

r=k+1

f(1, 2k − 2)|c2k−1|g(2r− 1, n)l(2r, n+ 1)

E7 = −4

n/2
∑

k=1

n/2
∑

r=k

f(1, 2k − 2)|c2k−1|g(2r, n)l(1, 2k − 1, 2r + 1, n+ 1)

E8 = −4

n/2
∑

k=1

f(1, 2k − 2)|c2k−1|f(2k, n)l(2k, n+ 1)
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E9 = −4

n/2
∑

k=1

k
∑

h=1

n/2
∑

r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r− 1, n)l(2r, n+ 1)

E10 = −4

n/2
∑

k=1

k
∑

h=1

n/2
∑

r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r, n)l(2h, 2k, 2r+ 1, n+ 1)

E11 = −4

n/2
∑

k=1

k
∑

h=1

g(2h− 1, 2k − 1)|c2k|f(2k + 1, n)l(2h, n+ 1)

E12 = −4

n/2
∑

k=1

k−1
∑

h=1

n/2
∑

r=k+1

g(2h, 2k − 1)|c2k|g(2r, n)l(2h+ 1, 2k)

E13 = −4

n/2
∑

k=1

k−1
∑

h=1

g(2h, 2k − 1)|c2k|f(2k + 1, n)l(2h+ 1, 2k)

E14 = −4

n/2
∑

k=1

n/2
∑

r=k+1

f(1, 2k − 1)|c2k|g(2r, n)l(1, 2k)

E15 = −4

n/2
∑

k=1

f(1, 2k − 1)|c2k|f(2k + 1, n)l(1, 2k)

E16 = 4

n/2
∑

j=1

j−1
∑

h=1

g(2h− 1, 2j − 2)|c2j−1|l(2h, 2j − 1)

E17 = −8

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

j−1
∑

r=k

g(2h− 1, 2k − 2)|c2k−1|g(2r, 2j − 2)|c2j−1|l(2h, 2k − 1)

E18 = −8

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

j−1
∑

r=k+1

g(2h, 2k − 2)|c2k−1|g(2r− 1, 2j − 2)|c2j−1|l(2r, 2j − 1)

E19 = −8

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

j−1
∑

r=k

g(2h, 2k − 2)|c2k−1|g(2r, 2j − 2)|c2j−1|

× l(2h + 1, 2k − 1, 2r + 1, 2j − 1)

E20 = −8

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

g(2h, 2k − 2)|c2k−1|f(2k, 2j − 2)|c2j−1|l(2k, 2j − 1)

E21 = −8

n/2
∑

j=1

j−1
∑

k=1

j−1
∑

r=k+1

f(1, 2k − 2)|c2k−1|g(2r− 1, 2j − 2)|c2j−1|l(2r, 2j − 1)
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E22 = −8

n/2
∑

j=1

j−1
∑

k=1

j−1
∑

r=k

f(1, 2k − 2)|c2k−1|g(2r, 2j − 2)|c2j−1|l(1, 2k − 1, 2r + 1, 2j − 1)

E23 = −8

n/2
∑

j=1

j−1
∑

k=1

f(1, 2k − 2)|c2k−1|f(2k, 2j − 2)|c2j−1|l(2k, 2j − 1)

E24 = −8

n/2
∑

j=1

j−1
∑

k=1

k
∑

h=1

j−1
∑

r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r − 1, 2j − 2)|c2j−1|l(2r, 2j − 1)

E25 = −8

n/2
∑

j=1

j−1
∑

k=1

k
∑

h=1

j−1
∑

r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r, 2j − 2)|c2j−1|

× l(2h, 2k, 2r + 1, 2j − 1)

E26 = −8

n/2
∑

j=1

j−1
∑

k=1

k
∑

h=1

g(2h− 1, 2k − 1)|c2k|f(2k + 1, 2j − 2)|c2j−1|l(2h, 2j − 1)

E27 = −8

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

j−1
∑

r=k+1

g(2h, 2k − 1)|c2k|g(2r, 2j − 2)|c2j−1|l(2h+ 1, 2k)

E28 = −8

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

g(2h, 2k − 1)|c2k|f(2k + 1, 2j − 2)|c2j−1|l(2h+ 1, 2k)

E29 = −8

n/2
∑

j=1

j−1
∑

k=1

j−1
∑

r=k+1

f(1, 2k − 1)|c2k|g(2r, 2j − 2)|c2j−1|l(1, 2k)

E30 = −8

n/2
∑

j=1

j−1
∑

k=1

f(1, 2k − 1)|c2k|f(2k + 1, 2j − 2)|c2j−1|l(1, 2k)

E31 = 4

n/2
∑

j=1

j−1
∑

h=1

g(2h, 2j − 1)|c2j|l(2h+ 1, 2j)

E32 = 4

n/2
∑

j=1

f(1, 2j − 1)|c2j|l(1, 2j)

E33 = −8

n/2
∑

j=1

j
∑

k=1

k−1
∑

h=1

j
∑

r=k+1

g(2h− 1, 2k − 2)|c2k−1|g(2r − 1, 2j − 1)|c2j|l(2h, 2k − 1)
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E34 = −8

n/2
∑

j=1

j
∑

k=1

k−1
∑

h=1

g(2h− 1, 2k − 2)|c2k−1|f(2k, 2j − 1)|c2j|l(2h, 2k − 1)

E35 = −8

n/2
∑

j=1

j
∑

k=1

k−1
∑

h=1

j
∑

r=k+1

g(2h, 2k − 2)|c2k−1|g(2r− 1, 2j − 1)|c2j|

× l(2h+ 1, 2k − 1, 2r, 2j)

E36 = −8

n/2
∑

j=1

j
∑

k=1

k−1
∑

h=1

j−1
∑

r=k

g(2h, 2k − 2)|c2k−1|g(2r, 2j − 1)|c2j|l(2r + 1, 2j)

E37 = −8

n/2
∑

j=1

j
∑

k=1

k−1
∑

h=1

g(2h, 2k − 2)|c2k−1|f(2k, 2j − 1)|c2j|l(2h+ 1, 2j)

E38 = −8

n/2
∑

j=1

j−1
∑

k=1

j
∑

r=k+1

f(1, 2k − 2)|c2k−1|g(2r− 1, 2j − 1)|c2j|l(1, 2k − 1, 2r, 2j)

E39 = −8

n/2
∑

j=1

j−1
∑

k=1

j−1
∑

r=k

f(1, 2k − 2)|c2k−1|g(2r, 2j − 1)|c2j|l(2r + 1, 2j)

E40 = −8

n/2
∑

j=1

j
∑

k=1

f(1, 2k − 2)|c2k−1|f(2k, 2j − 1)|c2j|l(1, 2j)

E41 = −8

n/2
∑

j=1

j−1
∑

k=1

k
∑

h=1

j
∑

r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r − 1, 2j − 1)|c2j|l(2h, 2k, 2r, 2j)

E42 = −8

n/2
∑

j=1

j−1
∑

k=1

k
∑

h=1

j−1
∑

r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r, 2j − 1)|c2j|l(2r + 1, 2j)

E43 = −8

n/2
∑

j=1

j−1
∑

k=1

k
∑

h=1

g(2h− 1, 2k − 1)|c2k|f(2k + 1, 2j − 1)|c2j|l(2k + 1, 2j)

E44 = −8

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

j
∑

r=k+1

g(2h, 2k − 1)|c2k|g(2r− 1, 2j − 1)|c2j|l(2h+ 1, 2k)

E45 = −8

n/2
∑

j=1

j−1
∑

k=1

j
∑

r=k+1

f(1, 2k − 1)|c2k|g(2r − 1, 2j − 1)|c2j|l(1, 2k)
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F1 =

n/2
∑

h=1

w(1, 2h, n), F2 = v(1, n)

F3 =

n/2
∑

j=1

j−1
∑

h=1

y(1, 2h, 2j − 2), F4 =

n/2
∑

j=1

x(1, 2j − 2)

F5 =

n/2
∑

j=1

j
∑

h=1

y(1, 2h− 1, 2j − 1), F6 = 2

n/2
∑

j=1

c2j−1

F7 = −4

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

g(2h, 2k − 2)|c2k−1|c2j−1

F8 = −4

n/2
∑

j=1

j−1
∑

k=1

f(1, 2k − 2)|c2k−1|c2j−1

F9 = −4

n/2
∑

j=1

j−1
∑

k=1

k
∑

h=1

g(2h− 1, 2k − 1)|c2k|c2j−1

F10 = 2

n/2
∑

j=1

c2j , F11 = −4

n/2
∑

j=1

j
∑

k=1

k−1
∑

h=1

g(2h, 2k − 2)|c2k−1|c2j

F12 = −4

n/2
∑

j=1

j
∑

k=1

f(1, 2k − 2)|c2k−1|c2j

F13 = −4

n/2
∑

j=1

j−1
∑

k=1

k
∑

h=1

g(2h− 1, 2k − 1)|c2k|c2j.

By substituting l(p, q) and l(p, q, r, s) into each Ei and expanding them,
we obtain

Theorem 2.15. Let K and DK be a ribbon knot of 1-fusion and its 1-fusion
diagram as in Proposition 2.14 and let JK(t) be the Jones polynomial of K.
Then J ′

K(−1) is a linear expression of αi and αi,j:

J ′
K(−1) =

∑

1≤i≤n+1

Aiαi +
∑

1≤i<j≤n+1

Ai,jαi,j +B,

where each Ai, Ai,j and B is expressed by c1, c2, · · · , cn. To be more precise,

45
∑

i=1

Ei =
∑

1≤i≤n+1

Aiαi +
∑

1≤i<j≤n+1

Ai,jαi,j,
13
∑

i=1

Fi = B.

10



Remark 2.16. In [9], we discuss some properties of Ai, Ai,j and B.

By Theorem 5.1 in [12] we obtain the following theorem from Proposition
2.14.

Theorem 2.17. Let K and DK be a ribbon knot of 1-fusion and its 1-fusion
diagram as in Proposition 2.14. Let ΣK be a double branched cover of S3

branched along K. Then λCW (ΣK), the Casson-Walker invariant of ΣK , is
written as follows:

λCW (ΣK) = −
1

6M

(

45
∑

i=1

Ei +

13
∑

i=1

Fi
)

,

where M = (f(−1))2 = (
∑n/2

i=1(−1)c2i−1 +1)2 (Remark 2.8), Ei and Fi are in
Proposition 2.14.

In particular, when ΣK is an integral homology sphere that gives M = 1,
the Casson invariant λ = λCW/2 and

λ(ΣK) = −
1

12

(

45
∑

i=1

Ei +

13
∑

i=1

Fi
)

.

3 Some links associated to 1-fusion diagram

Let DK be the 1-fusion diagram in Definition 2.4. We shall introduce
important 2-component links associated to DK and prove a lemma for their
Jones polynomials.

From now on we often denote a link and its diagram by the same symbol.
Let p, q be the integers satisfying 1 ≤ p < q ≤ n + 1.

Definition of L(p, q). Suppose that p is even and q is odd. We define a 2-
component link L(p, q) obtained from DK as follows (Figure 6): We erase the
outside of the big rectangle of DK and erase subbands except i-th subbands
(p ≤ i ≤ q). Then we add subbands in the trivial manner as shown in the
last picture in Figure 6.

Definition of R(p, q). Suppose that p is odd and q is even. We define a
2-component link R(p, q) obtained from DK as follows (see the left diagram
in Figure 7, where n = 10, p = 3 and q = 4): We erase the outside of the big
rectangle of DK and erase subbands except i-th subbands (p ≤ i ≤ q). Then
we add subbands in the trivial manner as shown in the figure.

Let p, q, r, s be the integers satisfying 1 ≤ p < q < r < s ≤ n+ 1.

11
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Figure 6:
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Definition of L(p, q, r, s). Suppose that p and q are even and r and s are
odd. We define a 2-component link L(p, q, r, s) obtained from DK as follows
(see the middle diagram in Figure 7, where n = 10, p = 2, q = 4 r = 7 and
s = 9): We erase the outside of the big rectangle of DK and erase subbands
except i-th subbands (p ≤ i ≤ q) and j-th subbands (r ≤ j ≤ s). Then we
add subbands in the trivial manner as shown in the figure.

Definition of R(p, q, r, s). Suppose that p and q are odd and r and s are
even. We define a 2-component link R(p, q, r, s) obtained from DK as follows
(see the right diagram in Figure 7, where n = 10, p = 1, q = 3 r = 6 and
s = 8): We erase the outside of the big rectangle of DK and erase subbands
except i-th subbands (p ≤ i ≤ q) and j-th subbands (r ≤ j ≤ s). Then we
add subbands in the trivial manner as shown in the figure.

Definition of LL(p, q, r, s). Suppose that p, q, r and s are even. We define
a 2-component link LL(p, q, r, s) obtained from DK as follows (see the left
diagram in Figure 8, where n = 10, p = 2, q = 4 r = 8 and s = 10): We
erase the outside of the big rectangle of DK and erase subbands except i-th
subbands (p ≤ i ≤ q) and j-th subbands (r ≤ j ≤ s). Then we add subbands
in the trivial manner as shown in the figure.

Definition of RR(p, q, r, s). Suppose that p, q, r and s are odd. We define
a 2-component link LL(p, q, r, s) obtained from DK as follows (see the right
diagram in Figure 8, where n = 10, p = 1, q = 3 r = 7 and s = 9): We
erase the outside of the big rectangle of DK and erase subbands except i-th
subbands (p ≤ i ≤ q) and j-th subbands (r ≤ j ≤ s). Then we add subbands
in the trivial manner as shown in the figure.

The following lemma is used in section 7.

Lemma 3.1. The following formulas hold:

JL(p,q)(−1) = JR(p,q)(−1) = (2i)l(p, q),

JL(p,q,r,s)(−1) = JR(p,q,r,s)(−1) = (2i)l(p, q, r, s),

JLL(p,q,r,s)(−1) = JRR(p,q,r,s)(−1) = (2i)l(p, q, r, s).

For l(p, q) and l(p, q, r, s) see before Proposition 2.14.

Proof. Recall that JL(−1) = ∆L(−1), where ∆ denotes the normalized
Alexander polynomial ([4], cf. [6] and [7]). L(p, q) bounds an annulus as
a Seifert surface. Its Seifert matrix is 1 × 1-matrix whose entry is −l(p, q).

Hence JL(p,q)(−1) = ∆L(p,q)(−1) = (−1)−
1

2 (−2)l(p, q) = (2i)l(p, q). �
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Figure 7:

4 A formula for the Jones polynomial

The following proposition is useful for calculating the Jones polynomial.

Proposition 4.1. Let L be a link diagram which has the part c as in

Figure 9, where c ∈ {−1, 0,+1}. Then we have

JL(t) = (1 − tc)JL1
(t) + t−

c
2 (1 − t2c)JL2

(t) + t−cJL3
(t)

+(1 − tc)JL4
(t) + t−

c
2 (1 − tc)JL5

(t),

where L1, L2, L3, L4, L5 are the following oriented link diagrams obtained
from L, which are identical with L except inside of the rectangle (Figure 10).

Proof. We apply the recursive formula of the Kauffman bracket ([5]) to
four crossings in the rectangle of L. If c = −1, then we have

< L >= (2 + A2d) < L1 > +(A2 +B2 + A4d) < L2 > +B4 < L3 >

+(2 + A2d) < L4 > +(2B2 + d) < L5 >,

14
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L1 L2 L4L3 L5

Figure 10:

where d = −(A2 +B2), B = A−1. Here we notice that the writhes of L and
these five diagrams are the same, so we have

JL(t) = (1 − t−1)JL1
(t) + t

1

2 (1 − t−2)JL2
(t) + tJL3

(t)

+(1 − t−1)JL4
(t) + t

1

2 (1 − t−1)JL5
(t).

The case c = +1 is similar.

If c = 0, L is isotopic to L3, so we have JL(t) = JL3
(t). �

Remark 4.2. JL(t) is obtained by weighting JL1
(t), JL2

(t), JL3
(t), JL4

(t) and
JL5

(t) and adding them. Note that the weight of JL1
(t) and the weight of

JL1
(t) are the same.

5 Calculation of the Jones polynomial

To apply Proposition 4.1 to the 1-fusion diagram DK in Proposition 2.14
we introduce some links obtained from DK .

We denote DK by [C1, · · · , Cn].

5.1 A notation

We denote by [X1, · · · , Xi, Ci+1, · · · , Cn] the diagram obtained from
[C1, · · · , Cn] by changing C1 to X1, · · · , Ci to Xi, where X1, · · · , Xi ∈
{S, U, T, P,Q} and S, T, U, P and Q are the figures as shown in the follow-
ing table (see Figure 11). Note that figures T in Xodd and in Xeven are
the same. So are U and Q, but for S and P they are not same. For ex-
ample, [U, U, S, S, S, U ] is in Figure 12, [S, U, T, S, U, S] is in Figure 13 and
[U, S, U, T, S, U, P, C8] is in Figure 14. Note that the diagram in Figure 12
gives a split link which consists of the trivial knot and L(6, 7) defined in
section 3.

When i = 1, [X1, · · · , Xi−1, Y, Ci+1, · · · , Cn] is nothing but [Y, C2, · · · , Cn].
We denote [X1, · · · , Xi−1, P, Ci+1, · · · , Cn], [X1, · · · , Xi−1, Q, Ci+1, · · · , Cn]

by [X1, · · · , Xi−1, P ], [X1, · · · , Xi−1, Q] respectively, since their link types do

16



S T U P Q

Xi (i: odd)

(i: even)Xi

Figure 11:

not depend on the values of ci+1, · · · , cn. For example, as is seen from Figure
14 the link type of [U, S, U, T, S, U, P, C8] does not depend on the value of c8.

∼∼

[U, U, S, S, S, U]

U

S

S

U

S

U

∼∼ O(L(6,7)

Figure 12:

5.2 Symbols

We prepare the following symbols by the connection with Proposition
2.14. Let

S(c) = 1 − tc, T (c) = t−
c
2 (1 − t2c), U(c) = t−c, P (c) = 1 − tc, Q(c) =

t−
c
2 (1 − tc), where c ∈ {−1, 0,+1}.
Note that S(c) = P (c) (Remark 4.2).

5.3 A notation

We denote
∑

X1∈J

∑

X2∈J

· · ·
∑

Xm∈J

F (X1, · · · , Xm) by
∑

Xi∈J

F (X1, · · · , Xm). From

now on we use this convention.
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∼∼

[S, U, T, S, U, S]

S

T

U

U

S

S

L(2,3)∼∼

Figure 13:

U

U

S

S

T

U

P

~~ ~~ ~~

[U, S, U, T, S, U, P, C  ]8 

C8

c 8= 1 c 8= 0 c 8= 1- +

Figure 14:
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5.4 Calculations

We apply Proposition 4.1 to C1 in [C1, · · · , Cn] and we have

JK(t) = S(c1)J[S,C2,··· ,Cn](t) + T (c1)J[T,C2,··· ,Cn](t) + U(c1)J[U,C2,··· ,Cn](t)

+P (c1)J[P,C2,··· ,Cn](t) +Q(c1)J[Q,C2,··· ,Cn](t)

=
∑

X1∈{S,U,T}

X1(c1)J[X1,C2,··· ,Cn](t) + P (c1)J[P ](t) +Q(c1)J[Q](t).

Next we apply Proposition 2.14 to C2 of [X1, C2, · · · , Cn] (X1 ∈ {S, T, U})
and we have

J[X1,C2,··· ,Cn](t) = S(c2)J[X1,S,··· ,Cn](t)+T (c2)J[X1,T,··· ,Cn](t)+U(c2)J[X1,U,··· ,Cn](t)

+P (c2)J[X1,P,C3,··· ,Cn](t)+Q(c2)J[X1,Q,C3,··· ,Cn](t)

=
∑

X2∈{S,U,T}

X2(c2)J[X1,X2,C3,··· ,Cn](t)+P (c2)J[X1,P ](t)+Q(c2)J[X1,Q](t).

So we have

JK(t) =
∑

X1∈{S,U,T}

X1(c1)
∑

X2∈{S,U,T}

X2(c2)J[X1,X2,C3,··· ,Cn](t)

+
∑

1≤j≤2

∑

Xi∈{S,U,T}

j−1
∏

i=1

Xi(ci)P (cj)J[X1,··· ,Xj−1,P ](t)

+
∑

1≤j≤2

∑

Xi∈{S,U,T}

j−1
∏

i=1

Xi(ci)Q(cj)J[X1,··· ,Xj−1,Q](t).

Note that we use the convention in section 5.3.
We continue this until we come to Cn, and then we have

Proposition 5.1. Let [C1, · · · , Cn] be the 1-fusion diagram as above. Then
JK(t) is written as follows.

JK(t) =
∑

Xi∈{S,U,T}

n
∏

i=1

Xi(ci)J[X1,··· ,Xn](t)

+
∑

1≤j≤n

∑

Xi∈{S,U,T}

j−1
∏

i=1

Xi(ci)P (cj)J[X1,··· ,Xj−1,P ](t)
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+
∑

1≤j≤n

∑

Xi∈{S,U,T}

j−1
∏

i=1

Xi(ci)Q(cj)J[X1,··· ,Xj−1,Q](t).

Moreover, by decomposing
∑

1≤j≤n into the sum of
∑

j:odd and
∑

j:even,
JK(t) becomes the sum of five parts:

(∗) JK(t) = J1(t) + J2(t) + J3(t) + J4(t) + J5(t),

where

J1(t) =
∑

Xi∈{S,U,T}

n
∏

i=1

Xi(ci)J[X1,··· ,Xn](t),

J2(t) =

n/2
∑

j=1

∑

Xi∈{S,U,T}

2j−2
∏

i=1

Xi(ci)P (c2j−1)J[X1,··· ,X2j−2,P ](t),

J3(t) =

n/2
∑

j=1

∑

Xi∈{S,U,T}

2j−1
∏

i=1

Xi(ci)P (c2j)J[X1,··· ,X2j−1,P ](t),

J4(t) =

n/2
∑

j=1

∑

Xi∈{S,U,T}

2j−2
∏

i=1

Xi(ci)Q(c2j−1)J[X1,··· ,X2j−2,Q](t),

J5(t) =

n/2
∑

j=1

∑

Xi∈{S,U,T}

2j−1
∏

i=1

Xi(ci)Q(c2j)J[X1,··· ,X2j−1,Q](t).

6 Lemmas

To calculate J ′
K(−1) we prepare some lemmas.

Lemma 6.1. Let ci ∈ {−1, 0,+1}. Then we have

∑

Xi∈{S,U}

q
∏

i=p

Xi(ci) =

q
∏

i=p

(t−ci + 1 − tci) (1-1)

∑

Xi∈{S,U}

q
∏

i=p

Xi(ci)|t=−1 = 1 (1-2)





∑

Xi∈{S,U}

q
∏

i=p

Xi(ci)





′

(−1) = −2

q
∑

i=p

ci (1-3)
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Proof. (1-1) follows from

{S(cp) + U(cp)}{S(cp+1) + U(cp+1)} · · · {S(cq) + U(cq)}

=
∑

Xp∈{S,U}

∑

Xp+1∈{S,U}

· · ·
∑

Xq∈{S,U}

q
∏

i=p

Xi(ci)

=
∑

Xi∈{S,U}

q
∏

i=p

Xi(ci)

and
S(ci) + U(ci) = (1 − tci) + t−ci = t−ci + 1 − tci.

(1-2) is trivial from (1-1).

(1-3) follows from (1-1) and
(

q
∏

i=p

(t−ci + 1 − tci)

)′

(−1)

=

q
∑

i=p

(−ci(−1)−ci−1 − ci(−1)ci−1) =

q
∑

i=p

(−2ci).�

The following are lemmas for calculations with Jones polynomials, so we
adopt the convention (−1)

1

2 = −i.

We often use the following in the proof of the lemmas:

{(1 + t)2f(t)}′(−1) = 0,

{(1 + t)f(t)}′(−1) = f(−1).

Lemma 6.2. Let G(t) be a Laurent polynomial. Let d(t) denote −t−
1

2 (1+ t).
Let S(c) etc. be in section 5.2. Then the following holds.

{G(t)d(t)}′(−1) = −iG(−1) (2-1)

{T (c)G(t)}′(−1) = 2|c|iG(−1) (2-2)

S(c)|t=−1 = P (c)|t=−1 = 2|c| (2-3)

{T (c)d(t)G(t)}′ (−1) = 0 (2-4)

({S(c)}′(−1) = {P (c)}′(−1) = −c (2-5)

Q(c)|t=−1 = 2ci (2-6)

{Q(c)}′(−1) = 0 (2-7)
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Let






















V (p, q) =

q
∏

i=p

U(ci),

W (p, q, r) =
∑

Xi∈{S,U}

q−1
∏

i=p

Xi(ci)S(cq)

r
∏

j=q+1

U(cj).

Then we have

Lemma 6.3.
V (p, q)|t=−1 = f(p, q) (3-1)

W (p, q, r)|t=−1 = g(q, r) (3-2)

{V (p, q)}′(−1) = v(p, q) (3-3)

{W (p, q, r)}′(−1) = w(p, q, r) (3-4)

{V (p, q)P (cq+1)}
′(−1) = x(p, q) (3-5)

{W (p, q, r)P (cr+1)}
′(−1) = y(p, q, r) (3-6)

Note that the right hand side of (3-2) does not depend on p.

Proof. (3-1) follows from

V (p, q) =

q
∏

i=p

U(ci) =

q
∏

i=p

t−ci

and

V (p, q)|t=−1 =

q
∏

i=p

(−1)−ci = f(p, q).

(3-2) follows from (1-2), (2-3) and (3-1). (3-3) follows from
∏q

i=p U(ci) =
∏q

i=p t
−ci = t−

Pq
i=p ci. (3-4) follows from (1-2), (1-3), (2-3), (2-5), (3-1) and

(3-3). �

7 Proof of Proposition 2.14

Now we begin to calculate J ′
K(−1).

Note that the first derivative at −1 of a Laurent polynomial which has
(1+ t)2 as a factor is 0. If at least two of Xi’s in a term of (∗) in Proposition
4.1 are T , then the first derivative at −1 of the term is 0. In fact, let Xi and

Xj be T . Then the term has T (ci)T (cj) = t−
ci
2 (1 − t2ci)t−

cj

2 (1 − t2cj ) as a
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factor. So if ci 6= 0 and cj 6= 0, the term has (1 + t)2 as a factor. If at least
one of ci or cj is 0, then the term is 0.

Thus, to calculate J ′
K(−1), it is enough to consider the terms of (∗) in

Proposition 4.1 without T and with a single T and calculation proceeds as
follows: In [i-0] (1 ≤ i ≤ 5), we consider the terms in Ji(t) without T . In
[i-1], we consider the terms in Ji(t) with a single T . Moreover, [i-1] divides
into [i-1-odd] and [i-1-even] in terms of position of the T being right or left.
In [i-1-odd], we consider the terms with a single T which appears in Xodd

(i.e. in the right). In [i-1-even], we consider the terms with a single T which
appears in Xeven (i.e. in the left).

7.1 We consider the part J1(t) in Proposition 4.1

[1-0] Picking up the terms without T from J1(t), we obtain

∑

Xi∈{S,U}

n
∏

i=1

Xi(ci)J[X1,··· ,Xn](t).

We divide these terms into three groups by the link type of

[X1, · · · , Xn] (Xi ∈ {S, U}) ;

1: [X1, · · · , X2h−2, S, U, · · · , U ] (1 ≤ h ≤ n/2). Precisely X2h−1 = S, Xi ∈
{S, U} (1 ≤ i ≤ 2h− 2), Xj = U (2h ≤ j ≤ n).
2: [X1, · · · , X2h−1, S, U, · · · , U ] (1 ≤ h ≤ n/2). Precisely X2h = S, Xi ∈
{S, U} (1 ≤ i ≤ 2h− 1), Xj = U (2h+ 1 ≤ j ≤ n).
3: [U, · · · , U ]. Precisely Xi = U (1 ≤ i ≤ n).

The link type of [X1, · · · , Xn] is as follows, where O is the trivial knot
and ∪ means the split sum. Note that in group 1 the link type does not
depend on X1, · · · , X2h−2:

1 O ∪ L(2h, n+ 1)
2 O
3 O

For example [U, U, S, S, S, U ] = O ∪ L(6, 7) (see Figure 12).

The derivative at −1 of the sum of the terms in each group is calculated
as follows:

1: The sum of the terms in this group is

n/2
∑

h=1

∑

Xi∈{S,U}

2h−2
∏

i=1

Xi(ci)S(c2h−1)
n
∏

j=2h

U(cj)JO∪L(2h,n+1)(t)
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=

n/2
∑

h=1

W (1, 2h− 1, n)JL(2h,n+1)(t)d(t).

By using (2-1) and (3-2), the derivative at −1 is E1.

2: The sum is

n/2
∑

h=1

∑

Xi∈{S,U}

2h−1
∏

i=1

Xi(ci)S(c2h)

n
∏

j=2h+1

U(cj)JO(t) =

n/2
∑

h=1

W (1, 2h, n).

By using (3-4), the derivative is F1.

3: The term is
n
∏

i=1

U(ci)JO(t) = V (1, n).

By using (3-3), the derivative is F2.

[1-1]Picking up the terms with a single T from J1(t), we obtain

n
∑

l=1

∑

Xi∈{S,U}

l−1
∏

i=1

Xi(ci)T (cl)
n
∏

i=l+1

Xi(ci)J[X1,··· ,Xl−1,T,Xl+1,··· ,Xn](t).

We divide
∑

1≤l≤n into two parts
∑

l:odd ([1-1-odd]) and
∑

l:even([1-1-even]).

[1-1-odd] We consider the following terms (in which l is odd).

n/2
∑

k=1

∑

Xi∈{S,U}

2k−2
∏

i=1

Xi(ci)T (c2k−1)

n
∏

i=2k

Xi(ci)J[X1,··· ,X2k−2,T,X2k,··· ,Xn](t).

We divide these terms into nine groups by the link type of

[X1, · · · , X2k−2, T,X2k, · · · , Xn] (Xi ∈ {S, U}) ;

[X1, · · · , X2k−2] is divided into three groups;

1: [X1, · · · , X2h−2, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h− 1, 2k − 2)
2: [X1, · · · , X2h−1, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h, 2k − 2)
3: [U, · · · , U ] ; f(1, 2k − 2)

[X2k, · · · , Xn] is divided into three groups;
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a: [X2k, · · · , X2r−2, S, U, · · · , U ] (k + 1 ≤ r ≤ n/2) ; g(2r − 1, n)
b: [X2k, · · · , X2r−1, S, U, · · · , U ] (k ≤ r ≤ n/2) ; g(2r, n)
c: [U, · · · , U ] ; f(2k, n)

(The reason why g, f are written there will be found in (1,b).)

Then we have nine groups (1,a)–(3,c). The link type of
[X1, · · · , X2k−2, T,X2k, · · · , Xn] is as follows, where each link in (1,a) and
(1,c) is a split link which consists of the trivial knot and some link:

a b c
1 L(2h, 2k − 1)
2 L(2r, n+ 1) RR(2h+ 1, 2k − 1, 2r + 1, n+ 1) L(2k, n + 1)
3 L(2r, n+ 1) RR(1, 2k − 1, 2r + 1, n+ 1) L(2k, n + 1)

As an example of (1,b) [S, U, T, S, U, S] = L(2, 3) (see Figure 13).

The derivative at −1 of the sum of the terms in each group is calculated
as follows:

(1,b): The sum of the terms is

n/2
∑

k=1

k−1
∑

h=1

n/2
∑

r=k

∑

Xi∈{S,U}

2h−2
∏

i=1

Xi(ci)S(c2h−1)

2k−2
∏

j=2h

U(cj)T (c2k−1)

2r−1
∏

i=2k

Xi(ci)S(c2r)

n
∏

j=2r+1

U(cj)

×JL(2h,2k−1)(t)

=

n/2
∑

k=1

k−1
∑

h=1

n/2
∑

r=k

W (1, 2h− 1, 2k − 2)T (c2k−1)W (2k, 2r, n)JL(2h,2k−1)(t).

By using (2-2) and (3-2), the derivative is

n/2
∑

k=1

k−1
∑

h=1

n/2
∑

r=k

g(2h− 1, 2k − 2)(2i)|c2k−1|g(2r, n)(2i)l(2h, 2k− 1)

= −4

n/2
∑

k=1

k−1
∑

h=1

n/2
∑

r=k

g(2h− 1, 2k − 2)|c2k−1|g(2r, n)l(2h, 2k− 1).

This is E2.

As we see from this calculation, we can calculate the derivative of the
terms with a single T automatically by the following procedure:
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[X1, · · · , X2h−2, S, U, · · · , U, T,X2k, · · · , X2r−1, S, U, · · · , U ] = L(2h, 2k − 1)

1 b

↓ ↓ ↓ ↓

g(2h− 1, 2k − 2) (2i)|c2k−1| g(2r, n) (2i)l(2h, 2k − 1)

⇓

−4g(2h− 1, 2k − 2)|c2k−1|g(2r, n)l(2h, 2k− 1).

By summing up we have E2.

By using this procedure we have the following, where each link in (1,a)
and (1,c) is a split link which consists of the trivial knot and some link, and
hence by using (2-4) the derivative of the terms is 0:

a: g(2r − 1, n) b: g(2r, n) c: f(2k, n)
1: g(2h− 1, 2k − 2) 0 E2 0

2: g(2h, 2k − 2) E3 E4 E5

3: f(1, 2k − 2) E6 E7 E8

[1-1-even] We consider the following terms (in which l is even).

n/2
∑

k=1

∑

Xi∈{S,U}

2k−1
∏

i=1

Xi(ci)T (c2k)

n
∏

i=2k+1

Xi(ci)J[X1,··· ,X2k−1,T,X2k+1,··· ,Xn](t).

We divide these terms into nine groups by the link type of

[X1, · · · , X2k−1, T,X2k+1, · · · , Xn] (Xi ∈ {S, U}) ;

[X1, · · · , X2k−1] is divided into three groups;

1: [X1, · · · , X2h−2, S, U, · · · , U ] (1 ≤ h ≤ k) ; g(2h− 1, 2k − 1)
2: [X1, · · · , X2h−1, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h, 2k − 1)
3: [U, · · · , U ] ; f(1, 2k − 1)

[X2k+1, · · · , Xn] is divided into three groups;

a: [X2k+1, · · · , X2r−2, S, U, · · · , U ] (k + 1 ≤ r ≤ n/2) ; g(2r− 1, n)
b: [X2k+1, · · · , X2r−1, S, U, · · · , U ] (k + 1 ≤ r ≤ n/2) ; g(2r, n)
c: [U, · · · , U ] ; f(2k + 1, n)

Then we have nine groups (1,a)–(3,c). The link type of
[X1, · · · , X2k−1, T,X2k+1, · · · , Xn] is as follows, where each link in (2,a) and
(3,a) is a split link which consists of the trivial knot and some link:
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a b c
1 L(2r, n+ 1) L(2h, 2k, 2r + 1, n+ 1) L(2h, n+ 1)
2 R(2h+ 1, 2k) R(2h+ 1, 2k)
3 R(1, 2k) R(1, 2k)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r − 1, n) b: g(2r, n) c: f(2k + 1, n)
1: g(2h− 1, 2k − 1) E9 E10 E11

2: g(2h, 2k − 1) 0 E12 E13

3: f(1, 2k − 1) 0 E14 E15

Each link in (2,a) and (3,a) is a split link which consists of the trivial knot
and some link. By using (2-4) the derivative of the terms is 0.

7.2 We consider the part J2(t)

[2-0] Picking up the terms without T from J2(t), we obtain

n/2
∑

j=1

∑

Xi∈{S,U}

2j−2
∏

i=1

Xi(ci)P (c2j−1)J[X1,··· ,X2j−2,P ](t).

We divide these terms into three groups by the link type of

[X1, · · · , X2j−2, P ] (Xi ∈ {S, U}) ;

1: [X1, · · · , X2h−2, S, U, · · · , U, P ] = O ∪ L(2h, 2j − 1) (1 ≤ h ≤ j − 1).
2: [X1, · · · , X2h−1, S, U, · · · , U, P ] = O (1 ≤ h ≤ j − 1).
3: [U, · · · , U, P ] = O.

The sum of the terms in each group and its derivative at −1 are as follows:

1:

n/2
∑

j=1

j−1
∑

h=1

W (1, 2h−1, 2j−2)P (c2j−1)JL(2h,2j−1)(t)d(t). The derivative is E16.

2:

n/2
∑

j=1

j−1
∑

h=1

W (1, 2h, 2j − 2)P (c2j−1). By using (3-6), the derivative is F3.

3:

n/2
∑

j=1

V (1, 2j − 2)P (c2j−1). By using (3-5), the derivative is F4.
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[2-1] Picking up the terms with a single T from J2(t), we obtain

n/2
∑

j=1

2j−2
∑

l=1

∑

Xi∈{S,U}

l−1
∏

i=1

Xi(ci)T (cl)

2j−2
∏

i=l+1

Xi(ci)P (c2j−1)J[X1,··· ,Xl−1,T,Xl+1,··· ,X2j−2,P ](t).

[2-1-odd] We consider the following terms (in which l is odd).

n/2
∑

j=1

j−1
∑

k=1

∑

Xi∈{S,U}

2k−2
∏

i=1

Xi(ci)T (c2k−1)

2j−2
∏

i=2k

Xi(ci)P (c2j−1)J[X1,··· ,X2k−2,T,X2k,··· ,X2j−2,P ](t).

We divide these terms into nine groups by the link type of

[X1, · · · , X2k−2, T,X2k, · · · , X2j−2, P ] (Xi ∈ {S, U}) ;

[X1, · · · , X2k−2] is divided into three groups;

1: [X1, · · · , X2h−2, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h− 1, 2k − 2)
2: [X1, · · · , X2h−1, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h, 2k − 2)
3: [U, · · · , U ] ; f(1, 2k − 2)

[X2k, · · · , X2j−2] is divided into three groups;

a: [X2k, · · · , X2r−2, S, U, · · · , U ] (k + 1 ≤ r ≤ j − 1) ; g(2r − 1, 2j − 2)
b: [X2k, · · · , X2r−1, S, U, · · · , U ] (k ≤ r ≤ j − 1) ; g(2r, 2j − 2)
c: [U, · · · , U ] ; f(2k, 2j − 2)

The link type of [X1, · · · , X2k−2, T,X2k, · · · , X2j−2, P ] is as follows, where
each link in (1,a) and (1,c) is a split link which consists of the trivial knot
and some link:

a b c
1 L(2h, 2k − 1)
2 L(2r, 2j − 1) RR(2h+ 1, 2k − 1, 2r + 1, 2j − 1) L(2k, 2j − 1)
3 L(2r, 2j − 1) RR(1, 2k − 1, 2r + 1, 2j − 1) L(2k, 2j − 1)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r− 1, 2j − 2) b: g(2r, 2j − 2) c: f(2k, 2j − 2)
1: g(2h− 1, 2k − 2) 0 E17 0

2: g(2h, 2k− 2) E18 E19 E20

3: f(1, 2k − 2) E21 E22 E23

Each link in (1,a) and (1,c) is a split link which consists of the trivial knot
and some link. By using (2-4) the derivative of the terms is 0.
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[2-1-even] We consider the following terms (in which l is even).

n/2
∑

j=1

j−1
∑

k=1

∑

Xi∈{S,U}

2k−1
∏

i=1

Xi(ci)T (c2k)

2j−2
∏

i=2k+1

Xi(ci)P (c2j−1)J[X1,··· ,X2k−1,T,X2k+1,··· ,X2j−2,P ](t).

We divide these terms into nine groups by the link type of

[X1, · · · , X2k−1, T,X2k+1, · · · , X2j−2, P ] (Xi ∈ {S, U}) ;

[X1, · · · , X2k−1] is divided into three groups;

1: [X1, · · · , X2h−2, S, U, · · · , U ] (1 ≤ h ≤ k) ; g(2h− 1, 2k − 1)
2: [X1, · · · , X2h−1, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h, 2k − 1)
3: [U, · · · , U ] ; f(1, 2k − 1)

[X2k+1, · · · , X2j−2] is divided into three groups;

a: [X2k+1, · · · , X2r−2, S, U, · · · , U ] (k + 1 ≤ r ≤ j − 1) ; g(2r − 1, 2j − 2)
b: [X2k+1, · · · , X2r−1, S, U, · · · , U ] (k + 1 ≤ r ≤ j − 1) ; g(2r, 2j − 2)
c: [U, · · · , U ] ; f(2k + 1, 2j − 2)

The link type of [X1, · · · , X2k−1, T,X2k+1, · · · , X2j−2, P ] is as follows,
where each link in (2,a) and (3,a) bounds a disconnected Seifert surface:

a b c
1 L(2r, 2j − 1) L(2h, 2k, 2r + 1, 2j − 1) L(2h, 2j − 1)
2 R(2h+ 1, 2k) R(2h+ 1, 2k)
3 R(1, 2k) R(1, 2k)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r− 1, 2j − 2) b: g(2r, 2j − 2) c: f(2k + 1, 2j − 2)
1: g(2h− 1, 2k − 1) E24 E25 E26

2: g(2h, 2k− 1) 0 E27 E28

3: f(1, 2k − 1) 0 E29 E30

Each link in (2,a) and (3,a) bounds a disconnected Seifert surface (see Figure
14 for an example of (2,a)), so the Alexander polynomial is 0 (cf. Proposition
6.14 in [7]), and then the Jones polynomial evaluated at −1 is 0. Hence the
derivative is 0.
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7.3 We consider the part J3(t)

[3-0] Picking up the terms without T from J3(t), we obtain

n/2
∑

j=1

∑

Xi∈{S,U}

2j−1
∏

i=1

Xi(ci)P (c2j)J[X1,··· ,X2j−1,P ](t).

We divide these terms into three groups by the link type of

[X1, · · · , X2j−1, P ] (Xi ∈ {S, U}) ;

1: [X1, · · · , X2h−2, S, U, · · · , U, P ] = O (1 ≤ h ≤ j).
2: [X1, · · · , X2h−1, S, U, · · · , U, P ] = O ∪ L(2h+ 1, 2j) (1 ≤ h ≤ j − 1).
3: [U, · · · , U, P ] = O ∪ L(1, 2j).

The sum of the terms in each group and its derivative at −1 are as follows:

1:

n/2
∑

j=1

j
∑

h=1

W (1, 2h− 1, 2j − 1)P (c2j). The derivative is F5.

2:

n/2
∑

j=1

j−1
∑

h=1

W (1, 2h, 2j − 1)P (c2j)JL(2h+1,2j)(t)d(t). The derivative is E31.

3:

n/2
∑

j=1

V (1, 2j − 1)P (c2j)JL(1,2j)(t)d(t). The derivative is E32.

[3-1] Picking up the terms with a single T from J3(t), we obtain

n/2
∑

j=1

2j−1
∑

l=1

∑

Xi∈{S,U,}

l−1
∏

i=1

Xi(ci)T (cl)

2j−1
∏

i=l+1

Xi(ci)P (c2j)J[X1,··· ,Xl−1,T,Xl+1,··· ,X2j−1,P ](t).

[3-1-odd] We consider the following terms (in which l is odd).

n/2
∑

j=1

j
∑

k=1

∑

Xi∈{S,U}

2k−2
∏

i=1

Xi(ci)T (c2k−1)

2j−1
∏

i=2k

Xi(ci)P (c2j)J[X1,··· ,X2k−2,T,X2k,··· ,X2j−1,P ](t).

We divide these terms into nine groups by the link type of

[X1, · · · , X2k−2, T,X2k, · · · , X2j−1, P ] (Xi ∈ {S, U}) ;

[X1, · · · , X2k−2] is divided into three groups;
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1: [X1, · · · , X2h−2, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h− 1, 2k − 2)
2: [X1, · · · , X2h−1, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h, 2k − 2)
3: [U, · · · , U ] ; f(1, 2k − 2)

[X2k, · · · , X2j−1] is divided into three groups;

a: [X2k, · · · , X2r−2, S, U, · · · , U ] (k + 1 ≤ r ≤ j) ; g(2r− 1, 2j − 1)
b: [X2k, · · · , X2r−1, S, U, · · · , U ] (k ≤ r ≤ j − 1) ; g(2r, 2j − 1)
c: [U, · · · , U ] ; f(2k, 2j − 1)

The link type of [X1, · · · , X2k−1, T,X2k+1, · · · , X2j−1, P ] is as follows,
where each link in (1,b) bounds a disconnected Seifert surface:

a b c
1 L(2h, 2k − 1) L(2h, 2k − 1)
2 R(2h + 1, 2k − 1, 2r, 2j) R(2r + 1, 2j) R(2h+ 1, 2j)
3 R(1, 2k − 1, 2r, 2j) R(2r + 1, 2j) R(1, 2j)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r− 1, 2j − 1) b: g(2r, 2j − 1) c: f(2k, 2j − 1)
1: g(2h− 1, 2k − 2) E33 0 E34

2: g(2h, 2k− 2) E35 E36 E37

3: f(1, 2k − 2) E38 E39 E40

Each link in (1,b) bounds a disconnected Seifert surface, so the Alexander
polynomial is 0, and then the Jones polynomial evaluated at −1 is 0. Hence
the derivative is 0.

[3-1-even] We consider the following terms (in which l is even).

n/2
∑

j=1

j−1
∑

k=1

∑

Xi∈{S,U}

2k−1
∏

i=1

Xi(ci)T (c2k)

2j−1
∏

i=2k+1

Xi(ci)P (c2j)J[X1,··· ,X2k−1,T,X2k+1,··· ,X2j−1,P ](t).

We divide these terms into nine groups by the link type of

[X1, · · · , X2k−1, T,X2k+1, · · · , X2j−1, P ] (Xi ∈ {S, U}) ;

[X1, · · · , X2k−1] is divided into three groups;

1: [X1, · · · , X2h−2, S, U, · · · , U ] (1 ≤ h ≤ k) ; g(2h− 1, 2k − 1)
2: [X1, · · · , X2h−1, S, U, · · · , U ] (1 ≤ h ≤ k − 1) ; g(2h, 2k − 1)
3: [U, · · · , U ] ; f(1, 2k − 1)
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[X2k+1, · · · , X2j−1] is divided into three groups;

a: [X2k+1, · · · , X2r−2, S, U, · · · , U ] (k + 1 ≤ r ≤ j) ; g(2r − 1, 2j − 1)
b: [X2k+1, · · · , X2r−1, S, U, · · · , U ] (k + 1 ≤ r ≤ j − 1) ; g(2r, 2j − 1)
c: [U, · · · , U ] ; f(2k + 1, 2j − 1)

The link type of [X1, · · · , X2k−2, T,X2k, · · · , X2j−1, P ] is as follows, where
each link in (2,b), (2,c), (3,b), (3,c) is a split link which consists of the
trivial knot and some link:

a b c
1 LL(2h, 2k, 2r, 2j) R(2r + 1, 2j) R(2k + 1, 2j)
2 R(2h+ 1, 2k)
3 R(1, 2k)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r− 1, 2j − 1) b: g(2r, 2j − 1) c: f(2k + 1, 2j − 1)
1: g(2h− 1, 2k − 1) E41 E42 E43

2: g(2h, 2k− 1) E44 0 0
3: f(1, 2k − 1) E45 0 0

Each link in (2,b), (2,c), (3,b), (3,c) is a split link which consists of the
trivial knot and some link. By using (2-4) the derivative of the terms is 0.

7.4 We consider the part J4(t)

[4-0] Picking up the terms without T from J1(t), we obtain

n/2
∑

j=1

∑

Xi∈{S,U}

2j−2
∏

i=1

Xi(ci)Q(c2j−1)J[X1,··· ,X2j−2,Q](t).

The link type of [X1, · · · , X2j−2, Q], Xi ∈ {S, U} is the 2-component
trivial link. So we have

n/2
∑

j=1

∑

Xi∈{S,U}

2j−2
∏

i=1

Xi(ci)Q(c2j−1)d(t).

By using (2-1), (1-2) and (2-6), the derivative at −1 is F6.
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[4-1] Picking up the terms with a single T from J1(t), we obtain

n/2
∑

j=1

2j−2
∑

l=1

∑

Xi∈{S,U}

l−1
∏

i=1

Xi(ci)T (cl)

2j−2
∏

i=l+1

Xi(ci)Q(c2j−1)J[X1,··· ,Xl−1,T,Xl+1,··· ,X2j−2,Q](t).

[4-1-odd] We consider the following terms (in which l is odd).

n/2
∑

j=1

j−1
∑

k=1

∑

Xi∈{S,U}

2k−2
∏

i=1

Xi(ci)T (c2k−1)

2j−2
∏

i=2k

Xi(ci)Q(c2j−1)J[X1,··· ,X2k−2,T,X2k,··· ,X2j−2,Q](t).

We divide these terms into three groups by the link type of

[X1, · · · , X2k−2, T,X2k, · · · , X2j−2, Q] (Xi ∈ {S, U}) ;

1: [X1, · · · , X2h−2, S, U, · · · , U, T,X2k, · · · , X2j−2, Q] (1 ≤ h ≤ k − 1) is a
split link which consists of the trivial knot and some link. By using (2-4) the
derivative of the terms is 0.
2: [X1, · · · , X2h−1, S, U, · · · , U, T,X2k, · · · , X2j−2, Q] = O (1 ≤ h ≤ k − 1).
So the sum of the terms is

n/2
∑

j=1

j−1
∑

k=1

k−1
∑

h=1

W (1, 2h, 2k − 2)T (c2k−1)

2j−2
∏

i=2k

(t−ci + 1 − tci)Q(c2j−1).

The derivative is F7.
3: [U, · · · , U, T,X2k, · · · , X2j−2, Q] = O. So the sum of the terms is

n/2
∑

j=1

j−1
∑

k=1

V (1, 2k − 2)T (c2k−1)

2j−2
∏

i=2k

(t−ci + 1 − tci)Q(c2j−1).

The derivative is F8.

[4-1-even] We consider the following terms (in which l is even).

n/2
∑

j=1

j−1
∑

k=1

∑

Xi∈{S,U}

2k−1
∏

i=1

Xi(ci)T (c2k)

2j−2
∏

i=2k+1

Xi(ci)Q(c2j−1)J[X1,··· ,X2k−1,T,X2k+1,··· ,X2j−2,Q](t).

We divide these terms into three groups by the link type of

[X1, · · · , X2k−1, T,X2k+1, · · · , X2j−2, Q] (Xi ∈ {S, U}) ;

33



1: [X1, · · · , X2h−2, S, U, · · · , U, T,X2k+1, · · · , X2j−2, Q] = O (1 ≤ h ≤ k). As
in 2 in [4-1-odd], the derivative of the terms is F9.
2: [X1, · · · , X2h−1, S, U, · · · , U, T,X2k+1, · · · , X2j−2, Q] (1 ≤ h ≤ k − 1) is a
split link which consists of the trivial knot and some link. By using (2-4) the
derivative of the terms is 0.
3: [U, · · · , U, T,X2k+1, · · · , X2j−2, Q] is a split link which consists of the triv-
ial knot and some link. By using (2-4) the derivative of the terms is 0.

7.5 We consider the part J5(t)

[5-0] Picking up the terms without T from J5(t), we obtain

n/2
∑

j=1

∑

Xi∈{S,U}

2j−1
∏

i=1

Xi(ci)Q(c2j)J[X1,··· ,X2j−1,Q](t).

The link type of [X1, · · · , X2j−1, Q], Xi ∈ {S, U} is the 2-component
trivial link. So we have

n/2
∑

j=1

∑

Xi∈{S,U}

2j−1
∏

i=1

Xi(ci)Q(c2j)d(t).

By using (2-1), (1-2) and (2-6), the derivative is F10.

[5-1] Picking up the terms with a single T from (5), we obtain

n/2
∑

j=1

2j−1
∑

l=1

∑

Xi∈{S,U}

l−1
∏

i=1

Xi(ci)T (cl)

2j−1
∏

i=l+1

Xi(ci)Q(c2j)J[X1,··· ,Xl−1,T,Xl+1,··· ,X2j−1,Q](t).

[5-1-odd] We consider the following terms (in which l is odd).

n/2
∑

j=1

j
∑

k=1

∑

Xi∈{S,U}

2k−2
∏

i=1

Xi(ci)T (c2k−1)

2j−1
∏

i=2k

Xi(ci)Q(c2j)J[X1,··· ,X2k−2,T,X2k,··· ,X2j−1,Q](t).

We divide these terms into three groups by the link type of

[X1, · · · , X2k−2, T,X2k, · · · , X2j−1, Q] (Xi ∈ {S, U}) ;

1: [X1, · · · , X2h−2, S, U, · · · , U, T,X2k, · · · , X2j−1, Q] (1 ≤ h ≤ k − 1) is a
split link which consists of the trivial knot and some link. By using (2-4) the
derivative of the terms is 0.
2: [X1, · · · , X2h−1, S, U, · · · , U, T,X2k, · · · , X2j−1, Q] = O (1 ≤ h ≤ k − 1).
The derivative of the terms is F11.
3: [U, · · · , U, T,X2k, · · · , X2j−1, Q] = O. The derivative of the terms is F12.
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[5-1-even] We consider the following terms (in which l is even).

n/2
∑

j=1

j−1
∑

k=1

∑

Xi∈{S,U}

2k−1
∏

i=1

Xi(ci)T (c2k)

2j−2
∏

i=2k+1

Xi(ci)Q(c2j−1)J[X1,··· ,X2k−1,T,X2k+1,··· ,X2j−2,Q](t).

We divide these terms into three groups by the link type of

[X1, · · · , X2k−1, T,X2k+1, · · · , X2j−2, Q] (Xi ∈ {S, U}) ;

1: [X1, · · · , X2h−2, S, U, · · · , U, T,X2k+1, · · · , X2j−2, Q] = O (1 ≤ h ≤ k).
The derivative of the terms is F13.
2: [X1, · · · , X2h−1, S, U, · · · , U, T,X2k+1, · · · , X2j−2, Q] (1 ≤ h ≤ k − 1) is a
split link which consists of the trivial knot and some link. By using (2-4) the
derivative of the terms is 0.
3: [U, · · · , U, T,X2k+1, · · · , X2j−2, Q] is a split link which consists of the triv-
ial knot and some link. By using (2-4) the derivative of the terms is 0.

This completes the proof of Proposition 2.14. �
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