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Abstract

In [1], the author showed the absolute continuity of a measure induced by infinite
dimensional stochastic differential equations of the type dXt = dWt + A(Xt)dWt +
b(Xt)dt under the condition that the modified Malliavin covariance is non-degenerate.
We give a sufficient condition for the non-degeneracy of the modified Malliavin co-
variance.

1 Introduction

Let (B,H, µ) be an abstract Wiener space. We consider the following type of (infinite
dimensional) stochastic differential equations on (B,H, µ):

dXt = dWt +A(Xt)dWt + b(Xt)dt, 0 ≤ t ≤ T (1.1)

with X0 = 0, where Wt is a B-valued Wiener process and A : B → H ⊗H, b : B → H
are measurable maps. In the previous work [1], we showed that the distribution of XT is
absolute continuous with respect to µT (the distribution of x ∈ B 7→

√
Tx ∈ B under µ)

if

E
[

|(tIH + σ(t))−1|pL(H;H)

]

<∞, for all p ∈ (1,∞) and t ∈ (0, T ], (1.2)

where σ(t) is the modified Malliavin covariance defined in Section 3 of [1] and | · |L(H;H)

is the operator norm on H. We also showed that (1.2) holds in the uniformly elliptic
case in Section 6 of [1]. The main purpose in the present paper is to give more general
sufficient condition for (1.2).

We briefly provide the notation used in the present paper. The reader refers to [1]
for details.

Let W = {w ∈ C([0, T ] → B);w0 = 0}, H = {h ∈ W;
∫ T
0 |ḣ(t)|2Hdt < ∞} and P

be a standard Wiener measure on W. The triple (W,H, P ) is also an abstract Wiener
space. Let Ft = σ{ws; 0 ≤ s ≤ t}. The modified Malliavin covariance σ(t) ∈ H ⊗H is
defined by

〈(tIH + σ(t))h, g〉H =
(

D〈Xt, h〉H ,D〈Xt, g〉H
)

H

, h, g ∈ H,

where D is the H-derivative.
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Let E and F be separable Hilbert spaces. Lk
(2)(E;F ) denotes the Hilbert space

consisting of Hilbert-Schmidt multi-linear operators from E × · · · × E
︸ ︷︷ ︸

k

to F . We denote

L1
(2)(E;F ) simply by L(2)(E;F ) and often identify L(2)(E;F ) with E ⊗ F . Lp

2(H ⊗ E),

p ∈ (1,∞) denotes the collection of (Ft)-adapted H ⊗ E-valued processes Φ such that

E
[{ ∫ T

0
|Φt|2H⊗Edt

}p/2]

<∞.

For Φ ∈ Lp
2(H ⊗ E), we can define the stochastic integral

∫ t
0 ΦsdWs with respect to the

B-valued Wiener process Wt as an element of Lp(W;E). In the case where E = R, we
often denote

∫ t
0 ΦsdWs by

∫ t
0 〈Φs, dWs〉H . Lp

1(E), p ∈ (1,∞) denotes the collection of
(Ft)-adapted E-valued processes φ such that

∫ T

0
E[|φt|pE ]1/pdt <∞.

Given a separable Hilbert space E, we say that a map f : B → E is continuously

H-Fréchet differentiable if there exists a continuous map f (1) : B → L(2)(H;E) such that

lim
|h|H→0

|f(x+ h) − f(x) − f (1)(x)h|E
|h|H

= 0

for each x ∈ B. We can define inductively n-times continuously H-Fréchet differentiabil-
ity and n-times H-Fréchet derivative f (n) by f (n) = (f (1))(n−1), n = 2, 3, . . . . We denote
by CH∞

b (E) the collection of infinitely many times continuously H-Fréchet differentiable
function f : B → E such that supx∈B |f (n)(x)|Ln

(2)
(H;E) <∞ for all n ∈ Z+.

Let us restate the main theorem in [1]:

Theorem 1.1. Assume that A ∈ CH∞
b (H ⊗ H), b ∈ CH∞

b (H) and (1.2) holds. Then

the distribution of XT is absolutely continuous with respect to µT . Moreover, its Radon-

Nikodým density ρT (x) with respect to µT satisfies

∫

B
ρT (x)(log ρT (x) ∨ 1)αµT (dx) <∞ (1.3)

for any α ∈ [0, 1/2).

Let E be a separable Hilbert space. We say that a bounded bilinear operator T :
H ×H → E is in T (E) if

|T |T (E) = sup
∞∑

i=1

|T (ei, fi)|E <∞,

where the supremum is taken over all complete orthonormal systems {ei} and {fi} in
H. It is easy to see that T (E) forms a Banach space with the norm | · |T (E). For F ∈
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Lk
(2)(H,E), k ≥ 2, define a map F[2] : H×H → Lk−2

(2) (H;E) by F[2](h, g) = F [h, g, · · · , · ].
We denote by T H∞

b (E) the collection of f ∈ CH∞
b (E) such that, for every x ∈ B and

k = 2, 3, . . . , the map f
(k)
[2] (x) : H ×H → Lk−2

(2) (H;E) is in T (Lk−2
(2) (H;E)) and

sup
x∈B

|f (k)
[2] (x)|T (Lk−2

(2)
(H;E)) <∞.

For U, V ∈ CH∞
b (H), the Lie bracket [U, V ] ∈ CH∞

b (H) is defined by

[U, V ](x) = V (1)(x)[U(x)] − U (1)(x)[V (x)], x ∈ B.

Fix a complete orthonormal system {ei} in H. Let Vi(x) = ei +A(x)ei. For j ∈ N, define

Σj = {[Vi1 , [Vi2 · · · [Vij−1 , Vij ], · · · ]]; i1, i2, . . . , ij = 1, 2, · · · }

and Σ̃j =
⋃j

i=1 Σi.
Throughout this paper, we assume the following conditions.

(C1) A ∈ T H∞
b (H ⊗H) and b ∈ CH∞

b (H).

(C2) There exists N ∈ N such that the closure of the linear subspace of H spanned by
{V (0);V ∈ Σ̃N} coincides to H.

Our main theorem is following:

Theorem 1.2. Under the conditions (C1) and (C2),

E[|(tIH + σ(t))−1|pL(H;H)] <∞

holds for all p ∈ (1,∞) and t ∈ (0, T ]. In particular, the distribution of XT is absolutely

continuous with respect to µT and (1.3) holds.

2 Preliminary results

Let

σ̃(t) = (IH + J̃t)(tIH + σ(t))(IH + J̃∗
t ) − tIH ,

where J̃t ∈ H ⊗H is determined by

J̃th = −
∫ t

0
(IH + J̃s)A

(1)(Xs)[h]HdWs −
∫ t

0
(IH + J̃s)b

(1)(Xs)[h]Hds

+

∫ t

0

( ∞∑

i=1

(IH + J̃s)A
(1)(Xs)

[

A(1)(Xs)[h]Hei

]

H
ei

)

ds, h ∈ H.

Then E[|J̃t|pH⊗H ] <∞ for all p ∈ (1,∞) and

tIH + σ̃(t) =

∫ t

0
(IH + J̃s)(IH +A(Xs))(IH +A(Xs)

∗)(IH + J̃s
∗
)ds (2.1)

(cf. Section 3 in [1]). The following is well known (cf. Kusuoka-Stroock [3]).
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Lemma 2.1. Let E be a separable Hilbert space. Let Φ ∈ Lp
2(H⊗E) and It =

∫ t
0 ΦsdWs.

If K ≡ sup
0≤t<∞

sup
w∈W

|Φt(w)|H⊗E <∞, then

E

[

exp
{ α

2K2t
sup

0≤s≤t
|Is|2E

}]

≤ e

(1 − α)1/2

for every α ∈ (0, 1) and t ∈ (0,∞). In particular, there exist constants C,C ′ > 0 such

that

P
(

sup
0≤s≤t

|Is|E ≥ r
)

< Ce−C′r2/t

for any t > 0 and r > 0

The following is easily derived from Lemma 2.1 (cf. Section 6 in [1]).

Lemma 2.2. There exist constants C,C ′ > 0 such that

P
(

sup
0≤s≤t

|Xs|B ≥ r
)

+ P
(

sup
0≤s≤t

|J̃t|H⊗H ≥ r
)

≤ Ce−C′r2/t

for any t > 0 and r ∈ (0, 1).

The following is also well known (see Section 6 in Shigekawa [5] for the proof).

Lemma 2.3. Let Mt be an R-valued local martingale with M0 = 0 and 〈M〉t be its

quadratic variation. Then

P
[

sup
0≤s≤t

|Ms| ≥ δ, 〈M〉t ≤ ε
]

≤ 2e−δ2/2ε

for any t ≥ 0

Using the idea in Norris [4], we have the following.

Lemma 2.4. Let Y (t) be an R-valued semimartingale expressed as

Y (t) = y +

∫ t

0
〈ψ(s), dWs〉H +

∫ t

0
a(s)ds

for some ψ ∈ Lp
2(H) and a ∈ Lp

1(R), p ∈ (1,∞). Then, for every α, β > 0, there exists

a constant C = C(α, β) > 0 such that

P
[ ∫ ε

0
Y (t)2dt ≤ αε11n,

∫ ε

0
|ψ(t)|2Hdt ≥ βεn, sup

0≤t≤ε
(|ψ(t)|H ∨ |a(t)|) ≤ ε−n

]

≤ Ce−1/2ε

for any ε > 0 and n ∈ N.
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Proof. Let

ε0 =
1

α+ 4
√
α

(

1 ∧ β2

4

)

.

It suffices to show the claim for ε ∈ (0, ε0). Using Itô formula, we have

∫ t

0
|ψ(s)|2ds

= Y (t)2 − y2 − 2

∫ t

0
Y (s)dY (s)

= Y (t)2 − y2 − 2

∫ t

0
Y (s)a(s)ds− 2

∫ t

0
〈Y (s)ψ(s), dWs〉H

≤ Y (t)2 + 2
{ ∫ t

0
|Y (s)|2ds

}1/2{
∫ t

0
|a(s)|2ds

}1/2
+ 2

∣
∣
∣

∫ t

0
〈Y (s)ψ(s), dWs〉H

∣
∣
∣.

(2.2)

If sup
0≤t≤ε

∣
∣
∣

∫ t

0
〈Y (s)ψ(s), dWs〉H

∣
∣
∣ <

√
αε4n,

∫ ε

0
Y (t)2dt ≤ αε11n and sup

0≤t≤ε
(|ψ(t)|H∨|a(t)|) ≤

ε−n, then we have, by (2.2),

∫ ε

0

( ∫ t

0
|ψ(s)|2Hds

)

dt

≤
∫ ε

0
Y (t)2dt+ 2ε3/2−n

{ ∫ ε

0
|Y (t)|2dt

}1/2
+ 2ε sup

0≤t≤ε

∣
∣
∣

∫ t

0
〈Y (s)ψ(s), dWs〉H

∣
∣
∣

≤ αε11n + 2
√
αε(9n+3)/2 + 2

√
αε4n+1

≤ (α+ 4
√
α)ε4n+1.

Hence, letting γ = (α+ 4
√
α)1/2ε3n+1/2, we have

∫ ε

0
|ψ(t)|2Hdt =

∫ ε−γ

0
|ψ(t)|2Hdt+

∫ ε

ε−γ
|ψ(t)|2Hdt

≤ γ−1

∫ ε

ε−γ

(∫ t

0
|ψ(s)|2Hds

)

dt+

∫ ε

ε−γ
|ψ(t)|2Hdt

≤ γ−1(α+ 4
√
α)ε4n+1 + γε−2n

= 2(α+ 4
√
α)1/2εn+1/2 < βεn.

Hence, by Lemma 2.2, we have

P
[ ∫ ε

0
Y (t)2dt ≤ αε11n,

∫ ε

0
|ψ(t)|2dt ≥ βεn, sup

0≤t≤ε
(|ψ(t)|H ∨ |a(t)|) ≤ ε−n

]

≤ P
[ ∫ ε

0
|Y (t)ψ(t)|2Hdt ≤ αε9n, sup

0≤t≤ε

∣
∣
∣

∫ t

0
〈Y (s)ψ(s), dWs〉H

∣
∣
∣ ≥

√
αε4n

]

≤ 2e−1/2εn
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≤ 2e−1/2ε.

Lemma 2.5. (1) For any V ∈ CH∞
b (H),

sup
x∈B

∞∑

i=1

|[Vi, V ](x)|2H <∞.

(2) If U, V ∈ T H∞
b (H), then [U, V ] ∈ T H∞

b (H). In particular,
⋃∞

j=1 Σj ⊂ T H∞
b (H).

Proof. (1) By definition, we have

[Vi, V ](x) = V (1)(x)[ei] + V (1)(x)[A(x)ei] −A(1)(x)[V (x)]ei.

Note that
∑∞

i=1 |V (1)(x)[ei]|2H ≤ |V (1)(x)|2L(2)(H;H),

∞∑

i=1

|V (1)(x)[A(x)ei]|2H ≤ |V (1)(x)|2L(2)(H;H)|A(x)|2H⊗H

and

∞∑

i=1

|A(1)(x)[V (x)]ei|2H ≤ |V (x)|2H |A(1)(x)|2L(2)(H;H⊗H).

These imply our assertion.
(2) Let F (x) = U (1)(x)[V (x)], U, V ∈ T H∞

b (H). It suffices to show that F ∈
T H∞

b (H). Let {ei} and {fi} be complete orthonormal systems in H. By Leibniz’ rule,
we have

∣
∣
∣F

(k)
[2] (x)[ei, fi]

∣
∣
∣
Lk−2

(2)
(H;H)

≤
k∑

l=0

(
k − 2

l

)∣
∣
∣U

(k−l+1)
[2] (x)[ei, fi]

∣
∣
∣
Lk−l−1

(2)
(H;H)

∣
∣
∣V (l)(x)

∣
∣
∣
Ll

(2)
(H;H)

+

k∑

l=1

(
k − 2

l − 1

)∣
∣
∣U

(k−l+1)
[2] (x)[ei, · ]

∣
∣
∣
Lk−l

(2)
(H;H)

∣
∣
∣V

(l)
[2] (x)[fi, · ]

∣
∣
∣
Ll−1

(2)
(H;H)

+
k∑

l=1

(
k − 2

l − 1

)∣
∣
∣U

(k−l+1)
[2] (x)[fi, · ]

∣
∣
∣
Lk−l

(2)
(H;H)

∣
∣
∣V

(l)
[2] (x)[ei, · ]

∣
∣
∣
Ll−1

(2)
(H;H)

+

k∑

l=2

(
k − 2

l − 2

)∣
∣
∣U (k−l+1)(x)

∣
∣
∣
Lk−l+1

(2)
(H;H)

∣
∣
∣V

(l)
[2] (x)[ei, fi]

∣
∣
∣
Ll−2

(2)
(H;H)

for k = 2, 3, . . . . Hence

∞∑

i=1

∣
∣
∣F

(k)
[2] (x)[ei, fi]

∣
∣
∣
Lk−2

(2)
(H;H)
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≤
k∑

l=0

(
k − 2

l

)∣
∣
∣U

(k−l+1)
[2]

(x)
∣
∣
∣
T (Lk−l−1

(2)
(H;H))

∣
∣
∣V (l)(x)

∣
∣
∣
Ll

(2)
(H;H)

+2

k∑

l=1

(
k − 2

l − 1

)∣
∣
∣U (k−l+1)(x)

∣
∣
∣
Lk−l+1

(2)
(H;H)

∣
∣
∣V (l)(x)

∣
∣
∣
Ll

(2)
(H;H)

+
k∑

l=2

(
k − 2

l − 2

)∣
∣
∣U (k−l+1)(x)

∣
∣
∣
Lk−l+1

(2)
(H;H)

∣
∣
∣V

(l)
[2] (x)

∣
∣
∣
T (Ll−2

(2)
(H;H))

.

This implies our assertion.

3 Proof of Theorem

Let S = {h ∈ H; |h|H = 1}, H0 = {h ∈ H; (IH + A(0)∗)h = 0} and S0 = S ∩ H0. For
m, j ∈ N, let

Σm
j = {[Vi1 , [Vi2 · · · [Vij−1 , Vij ], · · · ]]; i1, i2, . . . , ij = 1, 2, · · · ,m}

and Σ̃m
j =

⋃j
i=1 Σm

i . Define

Im
j (t;h) =

∫ t

0

∑

V ∈Σ̃m
j

〈(I + J̃s)V (Xs), h〉2Hds, h ∈ H.

Note that

Im
1 (t;h) =

∫ t

0

m∑

i=1

〈(I + J̃s)Vi(Xs), h〉2Hds ≤ 〈(tIH + σ̃(t))h, h〉H

for any m ∈ N.

Lemma 3.1. Let

τ1 = inf{t ≥ 0 ; |J̃t|H⊗H ≥ 1}.

For m, j ∈ N and α > 0, there exists a constant C = C(α,m, j) > 0 such that

sup
h∈S

P
[

τ1 ≥ ε, Im
j+1(ε;h) ≥ αεn, Im

j (ε;h) < αε11n
]

≤ Ce−1/2ε

for any ε > 0 and n ∈ N.

Proof. Let h ∈ S. For U ∈ ⋃∞
j=1 Σj , define

YU(t) = 〈(I + J̃t)U(Xt), h〉H .

Using Itô formula, we have

YU(t) = 〈U(0), h〉H +

∫ t

0
〈ψU (s), dWs〉H +

∫ t

0
aU (s)ds,
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where

ψU (s) =

∞∑

i=1

〈(I + J̃s)[Vi, U ](Xs), h〉Hei

and

aU (s) = 〈(IH + J̃s)[b, U ](Xs), h〉H

+
1

2

∞∑

i=1

〈(IH + J̃s)U
(2)(Xs)[ei, (IH +A(Xs)(IH +A(Xs)

∗)ei], h〉H

+

∞∑

i=1

〈(IH + J̃s)V
(1)
i (Xs)[[U,Vi](Xs)], h〉H .

By Lemma 2.5, there is a constant K = K(m, j) > 0 such that

sup
0≤t≤τ1

(|ψU (t)|H ∨ |aU (t)|) < K

for all U ∈ Σ̃m
j . We may assume ε < 1 ∧K−1. Since Im

j+1(ε;h) ≤
∫ ε
0

∑

U∈Σ̃m
j
|ψU (s)|2Hds,

we have

{Im
j+1(ε;h) ≥ αεn, Im

j (ε;h) < αε11n}

⊂
⋃

U∈Σ̃m
j

{∫ ε

0
|ψU (s)|2Hds ≥ α′εn,

∫ ε

0
YU(t)2dt < αε11n

}
(3.1)

where α′ = α/](Σ̃m
j ). Here ](A) denotes the cardinal of a set A. But by Lemma 3.1, we

have

P
[

τ1 ≥ ε,

∫ ε

0
|ψU (s)|2Hds ≥ α′εn,

∫ ε

0
YU(t)2dt < αε11n

]

≤ P
[ ∫ ε

0
|ψU (s)|2Hds ≥ α′εn,

∫ ε

0
YU (t)2dt < αε11n,

sup
0≤t≤ε

(|ψU (t)|H ∨ |a(t)|) < ε−n
]

≤ C(α,m, j)e−1/2ε.

Combining this with (3.1), we have our assertion.

Lemma 3.2. There exists M ∈ N such that

min
h∈S0

∑

V ∈Σ̃M
N

〈V (0), h〉2H > 0.
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Proof. Let Um =
{

h ∈ H;
∑

V ∈Σ̃m
N
〈V (0), h〉2H > 0

}

, m ∈ N. Note that for each m ∈ N

the map h 7→ ∑

V ∈Σ̃m
N
〈V (0), h〉2H is continuous. Then each Um is a open set and S0 ⊂

⋃∞
m=1 Um by virtue of (C2). Since S0 is compact, we can find M such that S0 ⊂ UM .

Namely,
∑

V ∈Σ̃M
N
〈V (0), h〉2H > 0 for all h ∈ S0. Hence minh∈S0

∑

V ∈Σ̃M
N
〈V (0), h〉2H >

0.

Throughout the sequel, we fix M ∈ N such as in Lemma 3.2. Let

αN =
1

4
min
h∈S0

∑

V ∈Σ̃M
N

〈V (0), h〉2H > 0.

We can find η ∈ (0, 1] such that

∑

V ∈Σ̃M
N

|(IH + J)V (x) − V (0)|2H < αN

for any x ∈ B and J ∈ H ⊗H with |x|B < η and |J |H⊗H < η. Define

τ = inf{t ∈ [0, T ] ; |Xt| ≥ η or |J̃t| ≥ η}.

Lemma 3.3. There exist constants C,C ′ > 0 such that

sup
h∈S0

P
[

IM
1 (ε;h) < αNε

11N−1
]

≤ Ce−C′/ε

for any ε > 0.

Proof. Let h ∈ S0. If τ ≥ ε, then

IM
N (ε;h) =

∫ ε

0

∑

V ∈Σ̃M
N

〈(I + J̃t)V (Xt), h〉2Hdt

≥ 1

2
ε

∑

V ∈Σ̃M
N

〈V (0), h〉2H −
∫ ε

0

∑

V ∈Σ̃M
N

|(IH + J̃t)V (Xt) − V (0)|2Hdt

≥ αNε.

Hence we see that

{τ ≥ ε} ⊂ {IM
N (ε;h) ≥ αNε}. (3.2)

Let

W(ε;h) =

N−1⋃

j=1

{τ ≥ ε, IM
j+1(ε;h) ≥ αNε

11N−j−1
, IM

j (ε;h) < αNε
11N−j}.

Then, by Lemma 3.1 we see that there exists a constant C > 0 such that

sup
h∈S0

P (W(ε;h)) ≤ Ce−1/2ε. (3.3)
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If w /∈ W(ε;h) and IM
1 (ε;h) < αNε

11N−1
, then IM

j (ε;h) < αNε for j = 1, 2, . . . , N .
Therefore we see that

{IM
1 (ε, h) < αNε

11N−1} ∩W(ε;h)c ⊂ {IM
N (ε, h) < αNε}.

Hence, by (3.2), we have

P (IM
1 (ε, h) < αNε

11N−1
) ≤ P (τ < ε) + P (W(ε;h)).

So we have our assertion by (3.3) and Lemma 2.3.

Let cN =
αN

16(1 +
√

2)(1 +A∞)2
, where A∞ = supx∈B |A(x)|H⊗H . Define

S̃(ε) = {h ∈ S; |(IH − P0)h|H < cNε
11N−1−1}

where P0 is the orthogonal projection from H onto H0.

Proposition 3.4. There exist constants C1, C2 > 0 such that

P
(

inf
h∈S̃(ε)

IM
1 (ε;h) <

1

2
αNε

11N−1
)

≤ C1ε
−C1 exp (−C2/ε)

for any ε > 0.

Proof. Let n0 = dimH0. Since S0 is contained in an n0-dimensional hypercube with
side-length 2, for every δ > 0 there exist h1, h2, . . . , hd ∈ S0 such that

S0 ⊂
d⋃

k=1

B(hk; δ)

and d ≤ (4
√
n0)

n0δ−n0 , where B(hk; δ) = {h ∈ H; |h− hk|H ≤ δ}. Applying this fact for

δ = cNε
11N−1−1, we can find h1, h2, . . . , hd ∈ S0 such that

S̃(ε) ⊂
d⋃

k=1

B
(

hk; (1 +
√

2)cNε
11N−1−1

)

(3.4)

and d ≤ Cε−C′

, where C = (4
√
n0)

n0cN and C ′ = (11N−1 − 1)n0. On the other hand, if
τ ≥ ε, then

|IM
1 (ε;h) − IM

1 (ε; g)|

=
∣
∣
∣

∫ ε

0

M∑

i=1

{

〈(I + J̃s)Vi(Xs), h〉2H − 〈(I + J̃s)Vi(Xs), g〉2H
}

ds
∣
∣
∣

≤
∫ ε

0

{ M∑

i=1

〈(I + J̃s)Vi(Xs), h+ g〉2H
}1/2{

M∑

i=1

〈(I + J̃s)Vi(Xs), h− g〉2H
}1/2

ds

≤
∫ ε

0

∣
∣
∣(IH +A(Xs)

∗)(I + J̃∗
s )(h+ g)

∣
∣
∣

∣
∣
∣(IH +A(Xs)

∗)(I + J̃∗
s )(h− g)

∣
∣
∣ds

≤ (1 +A∞)2(1 + η)2|h+ g|H |h− g|Hε
≤ 8(1 +A∞)2|h− g|Hε

(3.5)
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for h, g ∈ S. By (3.4) and (3.5), for every h ∈ S̃(ε), there exists hk ∈ {h1, h2, . . . , hd}
such that if τ ≥ ε, then

|IM
1 (ε;h) − IM

1 (ε;hk)| ≤ 1

2
αNε

11N−1
.

Therefore, we have

P
(

inf
h∈S̃(ε)

IM
1 (ε;h) <

1

2
αNε

11N−1
)

≤ P (τ < ε) + P
(

τ ≥ ε, inf
h∈S̃(ε)

IM
1 (ε;h) <

1

2
αNε

11N−1
)

≤ P (τ < ε) +
d∑

k=1

P
(

τ ≥ ε, IM
1 (ε;hk) < αNε

11N−1
)

≤ P (τ < ε) + Cε−C′

sup
h∈S0

P
(

IM
1 (ε;h) < αNε

11N−1
)

.

So we have our assertion by Lemma 2.3 and Lemma 3.3.

Proposition 3.5. For each t ∈ (0, T ], there exist constants C3, C4 > 0 such that

P
(

inf
h∈S\S̃(ε)

〈(tIH + σ̃(t))h, h〉H < ε4·11
N−1−1

)

≤ C3 exp(−C4/ε)

for any ε > 0.

Proof. Let α = 2·11N−1. Since A(0) is a compact operator, we can find a constant λ0 > 0
such that |(IH +A(0)∗)h|H ≥ λ0|h|H holds for all h ∈ H⊥

0 . Then, for all h ∈ S\S̃(ε), we
have

|(IH +A(0)∗)h|H = |(IH +A(0)∗)(IH − P0)h|H
≥ λ0|(IH − P0)h|H
≥ λ0cNε

(α−2)/2.

(3.6)

Moreover, using Itô formula, we have

A(Xt) −A(0) = It +

∫ t

0
a(s)ds (3.7)

where It =
∫ t
0 A

(1)(Xs)[IH +A(Xs)]dWs and

a(s) = A(1)(Xs)[b(Xs)] +
1

2

∞∑

i=1

A(2)(Xs)[ei, (IH +A(Xs)(IH +A(Xs)
∗)ei].

Since A ∈ T H∞
b (H ⊗H), there exists a constant K > 0 such that sup0≤t≤T |a(t)|H⊗H ≤

K. Let

ε0 = t ∧ 3λ2
0c

2
N

4(K2 + 3)
.
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We may assume that 0 < ε < ε0. Then εα ≤ t and

1

2
λ2

0c
2ε2α−2 − 2

3
K2ε3α ≥ 2ε2α−1. (3.8)

By (3.6), (3.7) and (3.8), we have

inf
h∈S\S̃(ε)

〈(tIH + σ̃(t))h, h〉H

≥ inf
h∈S\S̃(ε)

∫ εα

0
|(IH +A(Xs)

∗)(IH + J̃∗
s )h|2Hds

≥ 1

2

∫ εα

0
|(IH +A(0)∗)h|2Hdt−

∫ εα

0

{

|A(0) −A(Xs)|H⊗H + (1 +A∞)|J̃s|H⊗H

}2
ds

≥ 1

2
λ2

0c
2
Nε

2α−2 − 2

∫ εα

0
K2s2ds− 2

∫ εα

0
{|Is|H⊗H + (1 +A∞)|J̃s|H⊗H}2ds

≥ 2ε2α−1 − 2 sup
0≤s≤εα

{|Is|H⊗H + (1 +A∞)|J̃s|H⊗H}2εα,

where A∞ = supx∈B |A(x)|H⊗H . Hence, by Lemma 2.1 and Lemma 2.2,

P
(

inf
h∈S\S̃(ε)

〈(tIH + σ̃(t))h, h〉H < ε2α−1
)

≤ P
(√

2 sup
0≤s≤εα

{|Is|H⊗H + (1 +A∞)|J̃s|H⊗H} > ε(α−1)/2
)

≤ C3e
−C4/ε

for some constants C3, C4 > 0.

Now, let us prove Theorem 1.2.
Since E[|J̃t|pH⊗H ] <∞ for all p ∈ (1,∞), it suffices to show the claim for σ̃(t) instead

of σ(t). By Proposition 3.4 and Proposition 3.5, if ε ≤ t and ε3·11
N−1−1 ≤ 1

2αN , then

P
(

inf
h∈S

〈(tIH + σ̃(t))h, h〉H < ε4·11
N−1−1

)

≤ P
(

inf
h∈S̃(ε)

〈(tIH + σ̃(t))h, h〉H < ε4·11
N−1−1

)

+P
(

inf
h∈S\S̃(ε)

〈(tIH + σ̃(t))h, h〉H < ε4·11
N−1−1

)

≤ P
(

inf
h∈S̃(ε)

IM
1 (ε;h) <

1

2
αNε

11N−1
)

+P
(

inf
h∈S\S̃(ε)

〈(tIH + σ̃(t))h, h〉H < ε4·11
N−1−1

)

≤ Cε−Ce−C′/ε
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for some constants C,C ′ > 0. Hence, for given p ∈ (1,∞), there exists n0 ∈ N such that
if n ≥ n0, then

P
(

inf
h∈S

〈(tIH + σ̃(t))h, h〉H < 2−n
)

≤ 2−n(p+1).

Hence we have

E[|(tIH + σ̃(t))−1|pL(H;H)]

≤ 1 +
∞∑

n=0

E[|(tIH + σ̃(t))−1|p, 2−(n+1) ≤ inf
h∈S

〈(tIH + σ̃(t))h, h〉H < 2−n ]

≤ 1 +

∞∑

n=0

2(n+1)pP
(

inf
h∈S

〈(tIH + σ̃(t))h, h〉H < 2−n
)

≤ 1 +

n0−1∑

n=0

2(n+1)p +

∞∑

n=n0

2(n+1)p2−n(p+1)

= 1 +

n0−1∑

n=0

2(n+1)p +
∞∑

n=n0

2p−n <∞.

This completes the proof of Theorem 1.2.
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