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t. We consider an inverse problem of determining spatially varying density

and two Lamé coefficients in a non-stationary isotropic elastic equation by a single

measuerment of data on the whole lateral boundary. We prove the Lipschitz stability

provided that initial data are suitablty chosen. The proof is based on a Carleman

estimate which can be obtained by the decomposition of the Lamé system into the

rotation and the divergence components.

§1. Introduction and the main result.

We consider the three dimensional isotropic non-stationary Lamé system:

ρ(x)∂2
tu(x, t) − (Lλ,µu)(x, t) = f(x, t),

(x, t) ∈ Q ≡ Ω × (−T, T ), (1.1)

where

(Lλ,µv)(x) ≡ µ(x)∆v(x) + (µ(x) + λ(x))∇divv(x)

+(divv(x))∇λ(x) + (∇v + (∇v)T )∇µ(x), x ∈ Ω (1.2)

(e.g., Gurtin [12]). Throughout this paper, Ω ⊂ R
3 is a bounded domain whose

boundary ∂Ω is of class C3, t and x = (x1, x2, x3) denote the time variable and the
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2 M. BELLASSOUED AND M. YAMAMOTO

spatial variable respectively, and u = (u1, u2, u3)
T where ·T denotes the transpose

of matrices,

∂jφ =
∂φ

∂xj
, j = 1, 2, 3, ∂tφ =

∂φ

∂t
.

For α = (α1, α2, α3) ∈ {N∪ {0}}3, we set ∂αx = ∂α1

1 ∂α2

2 ∂α3

3 and |α| = α1 +α2 +α3,

and ∂αx,t is similarly defined. We set ∇v = (∂kvj)1≤j,k≤3, ∇x,tv = (∇v, ∂tv)

for a vector function v = (v1, v2, v3)
T . Moreover the coefficients ρ, λ, µ under

consideration, satisfy

ρ, λ, µ ∈ C2(Ω), ρ(x) > 0, µ(x) > 0, λ(x) + µ(x) > 0 for x ∈ Ω. (1.3)

Let u = u(λ, µ, ρ;p,q)(x, t) be sufficiently smooth and satisfy

ρ(x)(∂2
tu)(x, t) = (Lλ,µu)(x, t), (x, t) ∈ Q, (1.4)

u(x, 0) = p(x), (∂tu)(x, 0) = q(x), x ∈ Ω. (1.5)

We consider

Inverse problem with finite measurements. Let ω ⊂ Ω be a suitable subdo-

main and let pj ,qj , 1 ≤ j ≤ N , be appropriately given. Then determine λ(x),

µ(x), ρ(x), x ∈ Ω, by

u(λ, µ, ρ;pj,qj)|ω×(−T,T ). (1.6)

As for the inverse problem of determining some (or all) of λ, µ and ρ with finite

measurements, we can first refer to:

Isakov [26] where the author proved the uniqueness in determining a single coeffi-

cient ρ(x), using four measurements (i.e., N = 4).

Ikehata, Nakamura and Yamamoto [14] which reduced the number N of measure-

ments to three for determining ρ.
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Imanuvilov, Isakov and Yamamoto [16] which proved conditional stability and the

uniqueness in the determination of the three functions λ(x), µ(x), ρ(x), x ∈ Ω, with

two measurements (i.e., N = 2). See also Isakov [30].

Imanuvilov and Yamamoto [23] - [25] which reduced N = 2 to N = 1 (i.e., a single

measurement) in determining all of λ, µ, ρ by a single measurement u|ω×(−T,T ),

and established conditional stability of Hölder type by means of an H−1-Carleman

estimate. See also [21].

As for similar inverse problems for the Lamé system with residual stress, see

Isakov, Wang and Yamamoto [31], Lin and Wang [44].

Our method is based on the tool of Carleman estimates, which was originally

introduced in the field of coefficient inverse problems by Bukhgeim and Klibanov [8]

simultaneously and independently on each other for the proofs of global uniqueness

and stability theorems for these problems. Also see Klibanov [36]. In particular,

for the Lamé system, we use a modification of the method in [8] by Imanuvilov

and Yamamoto [23]. In [23], only a Hölder stability estimate is proved, but by the

ideas in Klibanov and Timonov [40], Klibanov and Yamamoto [41], we can prove

the Lipschitz stability for our inverse problem with N = 1. For a related technique,

see Chapter 3.5 in Klibanov and Timonov [39]. In [16] and [23], an H−1-Carleman

estimate is a key but requires more technical details. Here we will use a Carleman

estimate for the Lamé system which is derived from a usual L2-Carleman estimate

for a scalar hyperbolic equation.

Thus the advantages of this paper are:

(1) the Lipschitz stability in our inverse problem with N = 1.

(2) use of a conventional Carleman estimate.
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On the other hand, for (2) we have to choose a neighbourhood ω of ∂Ω, although

it is sufficient that ω is a neighbourhood of a sufficiently large subboundary ([23]

- [25]). Then, u(λ, µ, ρ;p,q)(·, t), t ∈ (−T, T ), is given in a neighbourhood of

∂Ω, so that we do not directly assign boundary values but the observation data in

ω × (−T, T ) include information of boundary values.

For the statement of the main result, we introduce notations and an admissible

set of unknown coefficients λ, µ, ρ. Set

d = (sup
x∈Ω

|x− x0|2 − inf
x∈Ω

|x− x0|2)
1

2 , (1.7)

where x0 6∈ Ω is arbitrarily fixed. Let M0 ≥ 0, 0 < θ0 ≤ 1 and θ1 > 0 be arbitrarily

fixed and let us introduce the conditions on a scalar function β:




β(x) ≥ θ1 > 0, x ∈ Ω,

‖β‖C3(Ω) ≤M0,
(∇β(x) · (x− x0))

2β(x)
≤ 1 − θ0, x ∈ Ω \ ω.

(1.8)

For fixed functions a(ℓ), a
(ℓ)
j , a

(ℓ)
jk , b, bj , 1 ≤ ℓ ≤ 2, 1 ≤ j, k ≤ 3 on ∂Ω, we set

W = WM0,θ0,θ1 =

{
(λ, µ, ρ) ∈ {C3(Ω)}3;λ = a(1), ∂jλ = a

(1)
j , ∂j∂kλ = a

(1)
jk ,

µ = a(2), ∂jµ = a
(2)
j , ∂j∂kµ = a

(2)
jk on ∂Ω,

λ+ 2µ

ρ
,
µ

ρ
satisfy (1.8)

}
.

(1.9)

We choose θ > 0 such that

θ +
M0d√
θ1

√
θ < θ0θ1, θ1 inf

x∈Ω
|x− x0|2 − θ sup

x∈Ω
|x− x0|2 > 0. (1.10)

Here we note that since x0 6∈ Ω, such θ > 0 exists.

Let E3 the 3 × 3 identity matrix. We note that (Lλ,µp)(x) is a 3-column vector

for 3-column vector p. Moreover by {a}j we denote the matrix (or vector) obtained

from a after deleting the j-th row and detj A means det {A}j for a square matrix

A. Let (λ, µ, ρ) be an arbitrary element of W.

Now we are ready to state
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Theorem. Let ω ⊂ Ω be a subdomain such that ∂ω ⊃ ∂Ω. For p = (p1, p2, p3)
T

and q = (q1, q2, q3)
T , we assume that there exist j1, j2 ∈ {1, 2, 3, 4, 5, 6} such that

detj1

(
(Lλ,µp)(x) (divp(x))E3 (∇p(x) + (∇p(x))T )(x− x0)
(Lλ,µq)(x) (divq(x))E3 (∇q(x) + (∇q(x))T )(x− x0)

)
6= 0,

∀x ∈ Ω, (1.11)

detj2

(
(Lλ,µp)(x) ∇p(x) + (∇p(x))T (divp)(x− x0)
(Lλ,µq)(x) ∇q(x) + (∇q(x))T (divq)(x− x0)

)
6= 0, ∀x ∈ Ω, (1.12)

and that

T >
1√
θ
d. (1.13)

Then, for any M1 > 0, there exists a constant C1 = C1(W,M1, ω,Ω, T, λ, µ, ρ)> 0

such that

‖λ̃− λ‖H2(Ω) + ‖µ̃− µ‖H2(Ω) + ‖ρ̃− ρ‖H1(Ω)

≤C1

(
‖u(λ, µ, ρ;p,q)− u(λ̃, µ̃, ρ̃;p,q)‖H5(−T,T ;H2(ω))

+‖u(λ, µ, ρ;p,q)− u(λ̃, µ̃, ρ̃;p,q)‖
H4(−T,T ;H

5

2 (ω))

)
, (1.14)

provided that (λ̃, µ̃, ρ̃) ∈ W and

‖u(λ, µ, ρ;p,q)‖W 7,∞(Q), ‖u(λ̃, µ̃, ρ̃;p,q)‖W 7,∞(Q) ≤M1. (1.15)

Inequality (1.14) gives the Lipschitz stability by a single measurement in a neigh-

bourhood of the whole boundary, and after artificial choice (1.11) and (1.12) of ini-

tial values, a single measurement yields such stability. Moreover conditions (1.11)

and (1.12) depend on a fixed (λ, µ, ρ), so that in our conclusion (1.14), we can not

change both (λ, µ, ρ), (λ̃, µ̃, ρ̃) ∈ W.

As the following example shows, we can take such p and q.
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Example of p, q satisfying (1.11) and (1.12). For simplicity, we assume that

λ, µ are positive constants. Noting that the fifth columns of the matrices in (1.11)

and (1.12) have x−x0 as factors, we will take quadratic functions in x. For example,

we take

p(x) =




0
x1x2

0


 , q(x) =



x2

2

0
x2

2


 .

Then, by choosing j1 = 6 and j2 = 5, we can satisfy (1.11) and (1.12).

We conclude this section with the references to other publications concerning

inverse problems by Carleman estimates after the originating paper Bukhgeim and

Klibanov [8].

(1) Baudouin and Puel [2], Bukhgeim [6] for an inverse problem of determining

potentials in Schrödinger equations,

(2) Imanuvilov and Yamamoto [17], [20], Isakov [27], [28], Klibanov [37] for the

corresponding inverse problems for parabolic equations,

(3) Amirov and Yamamoto [1], Bellassoued [3], [4], Bellassoued and Yamamoto

[5], Bukhgeim, Cheng, Isakov and Yamamoto [7], Imanuvilov and Yamamoto

[18], [19], [22] (especially for conditional stability), Isakov [27] - [29], Isakov

and Yamamoto [32], Khăıdarov [34], [35], Klibanov [36], [37], Klibanov and

Timonov [39], [40], Klibanov and Yamamoto [41], Puel and Yamamoto [45],

[46], Yamamoto [48] for inverse problems of determining potentials, damp-

ing coefficients or the principal terms in scalar hyperbolic equations.

(4) Li [42], Li and Yamamoto [43] for Maxwell’s equations.

(5) Yuan and Yamamoto [49] for plate equations.

§2. Proof of Theorem.
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We set

ψ(x, t) = |x− x0|2 − θt2, ϕ(x, t) = eτψ(x,t), (x, t) ∈ Q

and

Qω = ω × (−T, T ).

First, in terms of (1.9) and (1.10), we can deduce the following lemma in the same

way as in [23]. Henceforth C, Cj denote constants which are independent of s but

dependent on Ω, ω, T and the choice of fixed λ, µ, ρ.

Lemma 2.1. Let (λ, µ, ρ) ∈ W and let (1.10) and (1.13) hold. There exists

τ̂ > 0 such that for any τ > τ̂ , we can choose s0 = s0(τ) > 0 and C1 =

C1(s0, τ0,Ω, ω, T ) > 0 such that

∫

Q

(s4|y|2 + s2|∇x,ty|2 +
∑

|α|=2

|∂αxy|2

+s2|∇x,t(roty)|2 + s4|roty|2 + s2|∇x,t(divy)|2 + s4|divy|2)e2sϕdxdt

≤C1

∫

Q

(s|div f |2 + s|rot f |2 + s|f |2)e2sϕdxdt+ CeCs‖y‖2
H1(−T,T ;H2(ω)), s ≥ s0

(2.1)

for any y ∈ H3(Q) such that

ρ∂2
t y − Lλ,µy = f , ∂

j
ty(·,±T ) = 0, j = 0, 1.

The constants in (2.1) can be taken uniformly as long as (λ, µ, ρ) ∈ W.

Proof. Let us set v = divy and w = roty. Then we have (e.g., Eller, Isakov,

Nakamura and Tataru [11], Imanuvilov and Yamamoto [23]):

ρ∂2
t y − µ∆y +Q1(y, v) = f in Q,

ρ∂2
t v − (λ+ 2µ)∆v +Q2(y, v,w) = div f in Q
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and

ρ∂2
tw − µ∆w +Q3(y, v,w) = rot f in Q,

whereQ1(y, v) =
∑

|α|=1 a
(1)
α (x)∂αxy+

∑
|α|≤1 b

(1)
α (x)∂αx v, Qj(y, v,w) =

∑
|α|=1 a

(j)
α (x)∂αxy+

∑
|α|=1 b

(j)
α (x)∂αx v+

∑
|α|=1 c

(j)
α (x)∂αxw, j = 2, 3 and a

(j)
α , b

(j)
α , c

(j)
α ∈ L∞(Q). There-

fore we apply a Carleman estimate by Imanuvilov [15] to the system, so that

∫

Q

{s3(|roty|2 + |divy|2 + |y|2) + s(|∇x,t(roty)|2 + |∇x,t(divy)|2 + |∇x,ty|2)}e2sϕdxdt

≤C
∫

Q

(|div f |2 + |rot f |2 + |f |2)e2sϕdxdt+ CeCs‖y‖H1(−T,T ;H1(ω)) (2.2)

and

∫

Q

(s4|y|2 + s2|∇x,ty|2)e2sϕdxdt

≤C
∫

Q

(s|div f |2 + s|rot f |2 + s|f |2)e2sϕdxdt+ CeCs‖y‖2
H1(−T,T ;H1(ω)).

(2.3)

Next for all large s > 0, we have

∆(yesϕ) = ∇(div (yesϕ)) − rot (rot (yesϕ))

=
3∑

j=1

{{∇(∂je
sϕ)}yj + (∂je

sϕ)∇yj} + s(∇ϕ)esϕdivy + esϕ∇(divy)

+(y · ∇)(∇esϕ) − ((∇esϕ) · ∇)y

+(∇esϕ)divy − ydiv (∇esϕ) − (∇esϕ) × roty − esϕrot (roty)

=esϕ∇(divy) +O(s2)K1(y)esϕ +O(s)K2(∇y)esϕ − (rot (roty))esϕ,

where K1, K2 are linear operators. Therefore

|∆(yesϕ)| ≤ Cesϕ{s2|y| + s|∇y| + |∇(divy)| + |∇(roty)|},

so that

∫

Ω

|∆(y(x, t)esϕ(x,t))|2dx

≤C
∫

Ω

(s4|y|2 + s2|∇y|2 + |∇(divy)|2 + |∇(roty)|2)e2sϕdx (2.4)
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for any t ∈ [−T, T ]. The elliptic regularity and (2.4) yield

∑

|α|=2

∫

Ω

|∂αx (y(x, t)esϕ(x,t))|2dx

≤C
∫

Ω

(|∆(yesϕ)|2 + |yesϕ|2)dx+ C‖yesϕ‖2

H
3

2 (∂Ω)

≤C
∫

Ω

(s4|y|2 + s2|∇y|2 + |∇(divy)|2 + |∇(roty)|2)e2sϕdx+ C‖yesϕ‖2
H2(ω).

Therefore

∑

|α|=2

∫

Q

|(∂αxy)(x, t)esϕ(x,t)|2dxdt− Cs2
3∑

j=1

∫

Q

|∂jy|2e2sϕdxdt− Cs4
∫

Q

|y|2e2sϕdxdt

≤C
∫

Q

(s4|y|2 + s2|∇y|2 + |∇(divy)|2 + |∇(roty)|2)e2sϕdxdt

+CeCs‖y‖2
L2(−T,T ;H2(ω)). (2.5)

Thus, in terms of (2.2), (2.3) and (2.5), we have

∫

Q

(s4|y|2 + s2|∇x,ty|2 +
∑

|α|=2

|∂αxy|2

+s2|∇x,t(roty)|2 + s4|roty|2 + s2|∇x,t(divy)|2 + s4|divy|2)e2sϕdxdt

≤C
∫

Q

(s|div f |2 + s|rot f |2 + s|f |2)e2sϕdxdt+ CeCs‖u‖2
H1(−T,T ;H2(ω)).

Thus the proof of Lemma 2.1 is complete.

As for Carleman estimates, see also Hörmander [13], Triggiani and Yao [47].

Next we consider a first order partial differential operator

(P0g)(x) = B(x) · ∇g(x) +B0(x)g(x), x ∈ Ω, (2.6)

where B = (b1, b2, b3) ∈ {W 2,∞(Ω)}3 and B0 ∈W 2,∞(Ω). Then

Lemma 2.2. We assume

|(B(x) · (x− x0))| > 0, x ∈ Ω. (2.7)
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Then there exists a constant τ0 > 0 such that for all τ > τ0, there exist s0 = s0(τ) >

0 and C2 = C2(s0, τ0,Ω, ω) > 0 such that

s2
∫

Ω


∑

|α|≤2

|∂αx g(x)|2

 e2sϕ(x,0)dx ≤ C2

∫

Ω


∑

|α|≤2

|∂αx (P0g)(x)|2

 e2sϕ(x,0)dx

(2.8)

for all s > s0 and g ∈ C2
0 (Ω).

Proof of Lemma 2.2. We set F = P0g and ϕ0(x) = ϕ(x, t). By integration by

parts, we can prove

s2
∫

Ω

|g|2e2sϕ0dx ≤ C2

∫

Ω

|F |2e2sϕ0dx (2.9)

(e.g., [23]). Since P0(∂jg) = ∂jF − (∂jP0)g and ∂jg|∂Ω = 0, we apply (2.9) to ∂jg,

so that

s2
∫

Ω

|∂jg|2e2sϕ0dx

≤C2

∫

Ω

(|g|2 + |∇g|2)e2sϕ0dx+ C2

∫

Ω

|∂jF |2e2sϕ0dx

≤C2

∫

Ω

(|F |2 + |∂jF |2)e2sϕ0dx+ C2

∫

Ω

|∇g|2e2sϕ0dx.

Therefore

s2
∫

Ω

|∇g|2e2sϕ0dx

≤C2

∫

Ω

(|F |2 + |∇F |2)e2sϕ0dx+ C2

∫

Ω

|∇g|2e2sϕ0dx.

Taking s0 > 0 sufficiently large, we have

s2
∫

Ω

|∇g|2e2sϕ0dx ≤ C2

∫

Ω

(|F |2 + |∇F |2)e2sϕ0dx. (2.10)

Next we have

P0(∂k∂ℓg) = ∂k∂ℓF

−
3∑

j=1

{(∂kbj)(∂ℓ∂jg) + (∂ℓbj)(∂k∂jg) +K(g,∇g),
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where K is a linear operator of g and ∇g. Noting that ∂k∂ℓg = 0 on ∂Ω, we apply

(2.9) to ∂k∂ℓg, and, similarly to (2.10), we can complete the proof of Lemma 2.2.

Finally we show an observability inequality, which may be an independent interest.

Lemma 2.3. Let (λ, µ, ρ) ∈ W and let us assume (1.13). Let u ∈ H3(Q) satisfy

(ρ∂2
t − Lλ,µ)u = f . Then there exists a constant C3 > 0 such that

∫

Ω

(
∑

|α|≤2

|∂αxu(x, t)|2 + |∂tu(x, t)|2)dx+

∫

Q

|∇∂tu(x, t)|2dxdt

≤C3

∫

Q

(|div f |2 + |rot f |2 + |f |2)dxdt+ C3(‖u‖2
H1(−T,T ;H2(ω)) + ‖u‖2

L2(−T,T ;H
5

2 (ω))
)

for all t ∈ [−T, T ].

Starting from works of Klibanov and Malinsky [38] and Kazemi and Klibanov

[33], this kind of of inequality is usually proved by Carleman estimate. See e.g.,

Cheng, Isakov, Yamamoto and Zou [9], and we will prove it in Appendix for com-

pleteness.

Now we proceed to

Proof of Theorem. The proof is similar to Imanuvilov and Yamamoto [23].

Henceforth, for simplicity, we set

u = u(λ, µ, ρ;p,q), v = u(λ̃, µ̃, ρ̃;p,q) (2.11)

and

y = u − v, f = ρ− ρ̃, g = λ− λ̃, h = µ− µ̃. (2.12)

Then

ρ̃∂2
t y = Leλ,eµ

y +Gu in Q (2.13)

and

y(x, 0) = ∂ty(x, 0) = 0, x ∈ Ω. (2.14)
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Here we set

Gu(x, t) = −f(x)∂2
t u(x, t) + (g + h)(x)∇(divu)(x, t) + h(x)∆u(x, t)

+(divu)(x, t)∇g(x) + (∇u(x, t) + (∇u(x, t))T )∇h(x). (2.15)

By (1.13), we have the inequality θT 2 > d2. Therefore, by the definition of d

and the definition of the function ϕ, we have

ϕ(x, 0) ≥ d1, ϕ(x, T ) = ϕ(x,−T ) < d1, x ∈ Ω

with d1 = exp(τ infx∈Ω |x−x0|2). Thus, for given ε > 0, we can choose a sufficiently

small δ = δ(ε) > 0 such that

ϕ(x, t) ≥ d1 − ε, (x, t) ∈ Ω × [−δ, δ] (2.16)

and

ϕ(x, t) ≤ d1 − 2ε, x ∈ Ω, t ∈ [−T,−T + 2δ] ∪ [T − 2δ, T ]. (2.17)

In order to apply Lemma 2.1, it is necessary to introduce a cut-off function χ

satisfying 0 ≤ χ ≤ 1, χ ∈ C∞(R) and

χ =

{
0 on [−T,−T + δ] ∪ [T − δ, T ],

1 on [−T + 2δ, T − 2δ].
(2.18)

In the sequel, Cj > 0 denote generic constants depending on s0, τ , M0, M1, θ0, θ1,

Ω, T , x0, ω, χ and p, q, ε, δ, but independent of s > s0.

Setting z1 = χ∂2
t y, z2 = χ∂3

t y and z3 = χ∂4
t y, we have





ρ̃∂2
t z1 = Leλ,eµ

z1 + χG(∂2
t u) + 2ρ̃(∂tχ)∂3

t y + ρ̃(∂2
t χ)∂2

t y,

ρ̃∂2
t z2 = Leλ,eµ

z2 + χG(∂3
t u) + 2ρ̃(∂tχ)∂4

t y + ρ̃(∂2
t χ)∂3

t y,

ρ̃∂2
t z3 = Leλ,eµ

z3 + χG(∂4
t u) + 2ρ̃(∂tχ)∂5

t y + ρ̃(∂2
t χ)∂4

t y in Q.

(2.19)
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We set

D = ‖y‖2
H5(−T,T ;H2(ω)) + ‖y‖2

H4(−T,T ;H
5

2 (ω))
.

Noting that u ∈ W 7,∞(Q), in view of (2.18) and Lemma 2.1, we can Carleman

estimate (2.1) to (2.19), so that

4∑

j=2

∫

Q

(
s4|∂jty|2χ2 + s2|∇∂jty|2χ2 +

∑

|α|=2

|∂αx ∂jty|2χ2

)
e2sϕdxdt

≤Cs
∫

Q

4∑

j=2

(χ2|∇(G(∂jtu))|2 + χ2|G(∂tu)|2)e2sϕdxdt

+Cs

∫

Q

(|∂tχ|2 + |∂2
t χ|2)





5∑

j=2

(|div (∂jty)|2 + |rot (∂jty)|2 + |∂jty|2)



 e2sϕdxdt

+CeCsD. (2.20)

Here we used div (ρ̃(∂tχ)∂jty) = ∇(ρ̃∂tχ)·∂jty+ρ̃(∂tχ)div (∂jty) and rot (ρ̃(∂tχ)∂jty) =

∇(ρ̃∂tχ) × ∂
j
ty + ρ̃(∂tχ)rot (∂jty) for j = 2, 3, 4, 5.

Moreover by (1.15) we see that

|∇(G(∂jtu))| ≤ C

{
|∇f | + |f | +

∑

|α|≤2

|∂αx g(x)|+
∑

|α|≤2

|∂αxh(x)|
}

in Q,

|G(∂jtu)| ≤ C(|f | + |∇g| + |∇h| + |g| + |h|) in Q (2.21)

and

|∂tχ|, |∂2
t χ| 6= 0 only for t ∈ (T − 2δ, T − δ) ∪ (−T + δ,−T + 2δ). (2.22)

On the other hand, (2.13) implies

ρ̃∂2
t (∂

j
ty) = Leλ,eµ

∂
j
ty +G(∂jtu) in Q, j = 0, 1, 2, 3, 4.
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Therefore Lemma 2.3 and (2.21) yield

∫

Q





5∑

k=2

(|∇∂kt y|2 + |∂kt y|2) +

4∑

j=2

∑

|α|=2

|∂jt ∂αxy|2


 dxdt

≤C
4∑

j=0

(
‖G(∂jtu)‖2

L2(Q) + ‖∇G(∂jtu)‖2
L2(Q)

)
+ CD

≤C
∫

Q


∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2 + |f(x)|2 + |∇f(x)|2

 dxdt+ CD

≤C(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CD. (2.23)

Hence inequalities (2.20), (2.21), (2.22) and (2.23) yield

4∑

j=2

∫

Q

(
s4|∂jty|2χ2 + s2|∇∂jty|2χ2 +

∑

|α|=2

|∂αx∂jty|2χ2

)
e2sϕdxdt

≤Cs
∫

Q


|f |2 + |∇f(x)|2 +

∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2

 e2sϕdxdt

+Cse2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CeCsD

≡CsE + Cs(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω))e

2s(d1−2ε) + CeCsD.
(2.24)

On the other hand, for |α| = 2, we use (2.23) and

∫

Ω

|(∂2
t ∂

α
xy)(x, 0)|2e2sϕ(x,0)dx

=

∫ 0

−T

∂

∂t

(∫

Ω

|(∂2
t ∂

α
xy)(x, t)|2χ(t)2e2sϕdx

)
dt

=

∫ 0

−T

∫

Ω

2((∂3
t ∂

α
xy) · (∂2

t ∂
α
xy))χ2e2sϕdxdt

+2s

∫ 0

−T

∫

Ω

|∂2
t ∂

α
xy|2χ2(∂tϕ)e2sϕdxdt+

∫ 0

−T

∫

Ω

|∂2
t ∂

α
xy|2(∂t(χ2))e2sϕdxdt

≤C
∫

Q

sχ2(|∂3
t ∂

α
xy|2 + |∂2

t ∂
α
xy|2)e2sϕdx

+Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CDeCs.

Therefore (2.24) yields

∑

|α|=2

∫

Ω

|(∂2
t ∂

α
xy)(x, 0)|2e2sϕ(x,0)dx

≤Cs2(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω))e

2s(d1−2ε) + Cs2E + CeCsD
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for all large s > 0. Similarly we can estimate
∑

|α|=2

∫
Ω
|(∂3

t ∂
α
xy)(x, 0)|2e2sϕ(x,0)dx

to obtain

3∑

j=2

∑

|α|=2

∫

Ω

|∂αx ∂jty(x, 0)|2e2sϕ(x,0)dx

≤Cs2e2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + Cs2E + CeCsD

(2.25)

for all large s > 0.

Now we will consider first order partial differential equations satisfied by h, g

and f . That is, by (2.13), (2.14) and (1.15), we have

ρ̃∂2
t y(x, 0) = Gu(x, 0), ρ̃∂3

t y(x, 0) = G∂tu(x, 0). (2.26)

For simplicity, we set





a =

(− 1
ρ
Lλ,µp

− 1
ρ
Lλ,µq

)
,

b1 =




divp
0
0

divq
0
0



, b2 =




0
divp

0
0

divq
0



, b3 =




0
0

divp
0
0

divq



,

(d1,d2,d3) =

(
∇p + (∇p)T

∇q + (∇q)T

)
,

G =

(
ρ̃∂2
t y(x, 0) − (g + h)∇(divp) − h∆p

ρ̃∂3
t y(x, 0) − (g + h)∇(divq) − h∆q

)
on Ω.

(2.27)

Then we can rewrite (2.26) as

af + b1∂1g + b2∂2g + b3∂3g = G− d1∂1h− d2∂2h− d3∂3h.

Therefore for j1 ∈ {1, 2, 3, 4, 5, 6}, we have

{a}j1f + {b1}j1∂1g + {b2}j1∂2g + {b3}j1∂3g

={G}j1 − {d1}j1∂1h− {d2}j1∂2h− {d3}j1∂3h on Ω. (2.28)
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Equality (2.28) is a system of five linear equations with respect to four unknowns

f , ∂1g, ∂2g, ∂3g, and so for the existence of solutions, we need the consistency of

the coefficients, that is,

detj1 (a,b1,b2,b3,G− d1∂1h− d2∂2h− d3∂3h) = 0 on Ω,

that is,

3∑

k=1

detj1 (a,b1,b2,b3,dk)∂kh = detj1 (a,b1,b2,b3,G) on Ω (2.29)

by the linearity of the determinant. Here by (1.15) we note that p,q ∈ W 5,∞(Ω)

and

∑

|α|≤2

|∂αxG(x)| ≤ C

3∑

j=2

∑

|α|≤2

|∂αx ∂jty(x, 0)|

+C
∑

|α|≤2

|∂αx g(x)|+ C
∑

|α|≤2

|∂αxh(x)|.

In terms of condition (1.11) and h ≡ µ− µ̃ ∈ C2
0 (Ω), considering (2.29) as a first

order partial differential operator in h, we can apply Lemma 2.2 to obtain

s2
∫

Ω

∑

|α|≤2

|∂αxh|2e2sϕ(x,0)dx ≤ C

∫

Ω

3∑

j=2

∑

|α|≤2

|∂αx ∂jty(x, 0)|2e2sϕ(x,0)dx

+C

∫

Ω


∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2

 e2sϕ(x,0)dx

≤Cs2e2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + Cs2E + CeCsD

+C

∫

Ω


∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2

 e2sϕ(x,0)dx (2.30)

for all large s > 0. Here we used (2.25). Similarly to (2.30), in terms of (1.12), we
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can argue for g. Hence with (2.30), we have

∫

Ω


∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2

 e2sϕ(x,0)dx

≤Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω))

+C

∫

Q


|f(x)|2 + |∇f(x)|2 +

∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2

 e2sϕdxdt+ CeCsD

+
C

s2

∫

Ω


∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2

 e2sϕ(x,0)dx

for all large s > 0. Here we recall the definition of E in (2.24). Taking s > 0

sufficiently large, we can absorb the last term into the left hand side:

∫

Ω


∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2

 e2sϕ(x,0)dx

≤Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω))

+C

∫

Q


|f(x)|2 + |∇f(x)|2 +

∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2

 e2sϕdxdt+ CeCsD.

(2.31)

Finally, by (2.28), we have

af = −b1∂1g − b2∂2g − b3∂3g + G− d1∂1h− d2∂2h− d3∂3h in Ω.

Moreover, by (1.11) or (1.12), we see that |a(x)| > 0 for x ∈ Ω, so that

f(x) = K̃1G + K̃2(∇g,∇h) in Ω,

where K̃1, K̃2 are linear operators with W 1,∞-coefficients. Thus

|∇f(x)| ≤ C


|∇G(x)| +

∑

|α|≤2

|∂αx g(x)| +
∑

|α|≤2

|∂αxh(x)|




≤C





3∑

j=2

(|∇(∂jty)(x, 0)|+ |∂jty(x, 0)|) +
∑

|α|≤2

|∂αx g(x)|+
∑

|α|≤2

|∂αxh(x)|



 ,

and

|f(x)| ≤ C





3∑

j=2

|∂jty(x, 0)| +
∑

|α|≤2

|∂αx g(x)|+
∑

|α|≤2

|∂αxh(x)|




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for x ∈ Ω. Hence

∫

Ω

(|∇f(x)|2 + |f(x)|2)e2sϕ(x,0)dx

≤C
∫

Ω





3∑

j=2

∑

|α|≤1

|∂αx∂jty(x, 0)|2 +
∑

|α|≤2

|∂αx g(x)|2 +
∑

|α|≤2

|∂αxh(x)|2


 e2sϕ(x,0)dx.

(2.32)

On the other hand, for j = 2, 3, we have by (2.23) and (2.24),

∫

Ω

|∇(∂jty)(x, 0)|2e2sϕ(x,0)dx

=

∫ 0

−T

∂

∂t

∫

Ω

χ2|∇(∂jty)|2e2sϕdxdt

≤C
∫

Q

(s|∇(∂jty)|2χ2 + |∇(∂j+1
t y)|2χ2)e2sϕdxdt

+Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CeCsD

≤Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CeCsD + CE

(2.33)

and

∫

Ω

|(∂jty)(x, 0)|2e2sϕ(x,0)dx =

∫ 0

−T

∂

∂t

∫

Ω

χ2|(∂jty)|2e2sϕdxdt

≤C
∫

Q

(s|∂jty|2χ2 + |∂j+1
t y|2χ2)e2sϕdxdt

+Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CeCsD

≤Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CeCsD + CE

(2.34)

for all large s > 0.

Substituting (2.31), (2.33) and (2.34) into (2.32), we obtain

∫

Ω

(|∇f(x)|2 + |f(x)|2)e2sϕ(x,0)dx

≤Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CE + CeCsD.
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Here with (2.31), we have

∫

Ω


∑

|α|≤2

|∂αx g|2 +
∑

|α|≤2

|∂αxh|2 + |∇f |2 + |f |2

 e2sϕ(x,0)dx

≤Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CeCsD

+C

∫

Q


∑

|α|≤2

|∂αx g|2 +
∑

|α|≤2

|∂αxh|2 + |∇f |2 + |f |2

 e2sϕdxdt.

Since

∫

Q


∑

|α|≤2

|∂αx g|2 +
∑

|α|≤2

|∂αxh|2 + |∇f |2 + |f |2

 e2sϕdxdt

=

∫

Ω


∑

|α|≤2

|∂αx g|2 +
∑

|α|≤2

|∂αxh|2 + |∇f |2 + |f |2

 e2sϕ(x,0)

(∫ T

−T

e2s(ϕ(x,t)−ϕ(x,0))dt

)
dx

=o(1)

∫

Ω


∑

|α|≤2

|∂αx g|2 +
∑

|α|≤2

|∂αxh|2 + |∇f |2 + |f |2

 e2sϕ(x,0)dx,

as s −→ ∞ by the Lebesgue theorem and ϕ(x, t) < ϕ(x, 0) for t 6= 0, we can absorb

the last term at the right hand side into the left hand side, and

∫

Ω


∑

|α|≤2

|∂αx g|2 +
∑

|α|≤2

|∂αxh|2 + |∇f |2 + |f |2

 e2sϕ(x,0)dx

≤Ce2s(d1−2ε)(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CeCsD

for all large s > 0. By ϕ(x, 0) ≥ d1, we divide the both sides by e2sd1 , we have

∫

Ω


∑

|α|≤2

|∂αx g|2 +
∑

|α|≤2

|∂αxh|2 + |∇f |2 + |f |2

 dx

≤Ce−4sε(‖f‖2
H1(Ω) + ‖g‖2

H2(Ω) + ‖h‖2
H2(Ω)) + CeCsD

for all large s > 0. Choosing s > 0 sufficiently large, we can absorb the first term

at the right hand side into the left hand side, so that we have conclusion (1.14).

Appendix. Proof of Lemma 2.3.

Let us set v = divu and w = rotu. Then, as in the proof of Lemma 2.1, we have

ρ∂2
t u − µ∆u +Q1(u, v) = f in Q, (1)
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ρ∂2
t v − (λ+ 2µ)∆v +Q2(u, v,w) = div f in Q (2)

and

ρ∂2
tw − µ∆w +Q3(u, v,w) = rot f in Q, (3)

whereQ1(u, v) =
∑

|α|=1 a
(1)
α (x)∂αxu+

∑
|α|≤1 b

(1)
α (x)∂αx v, Qj(u, v,w) =

∑
|α|=1 a

(j)
α (x)∂αxu+

∑
|α|=1 b

(j)
α (x)∂αx v +

∑
|α|=1 c

(j)
α (x)∂αxw, j = 2, 3 and a

(j)
α , b

(j)
α , c

(j)
α ∈ L∞(Q).

Let t ≥ 0. We set

E1(t) ≡
∫

Ω

(|∇x,tu(x, t)|2 + |∇x,tv(x, t)|2 + |∇x,tw(x, t)|2)dx.

Taking the scalar products of (1) and (3) with ∂tu and ∂tw respectively and mul-

tiplying (2) with ∂tv, we integrate by parts to have

E1(t) ≤ CE1(0) + C

(∫ t

0

E1(ξ)dξ + ‖f‖2
L2(Q) + ‖div f‖2

L2(Q) + ‖rot f‖2
L2(Q)

)

+C(‖∂tu‖2
L2(∂Ω×(−T,T )) + ‖∂νu‖2

L2(∂Ω×(−T,T )) + ‖∂tv‖2
L2(∂Ω×(−T,T )) + ‖∂νv‖2

L2(∂Ω×(−T,T ))

+‖∂tw‖2
L2(∂Ω×(−T,T )) + ‖∂νw‖2

L2(∂Ω×(−T,T ))).

Applying the trace theorem, we have

E1(t) ≤ CE1(0) + CF + C

∫ t

0

E1(ξ)dξ, 0 ≤ t ≤ T.

Here we set

F = ‖u‖2
H1(−T,T ;H2(ω))+‖u‖2

L2(−T,T ;H
5

2 (ω))
+‖div f‖2

L2(Q)+‖rot f‖2
L2(Q)+‖f‖2

L2(Q).

The Gronwall inequality implies E1(t) ≤ C(F + E1(0)), 0 ≤ t ≤ T . Similarly we

can prove C−1E1(0) ≤ E1(t) + CF , 0 ≤ t ≤ T . For −T ≤ t ≤ 0, we can simiarly

argue to obtain

E1(t1) ≤ CE1(t2) + CF, −T ≤ t1, t2 ≤ T. (4)
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Next we will include ‖u(·, t)‖2
L2(Ω) into E1(t). By the Sobolev extension theorem

and the trace theorem, we can find u∗(·, t) ∈ H1(Ω) such that u∗(·, t) = u(·, t)

on ∂Ω and ‖u∗(·, t)‖H1(Ω) ≤ C‖u(·, t)‖
H

1

2 (∂Ω)
≤ C‖u(·, t)‖H1(ω) for −T ≤ t ≤ T .

Then (u − u∗)(·, t) ∈ H1
0 (Ω) and the Poincaré inequality yield

‖(u−u∗)(·, t)‖L2(Ω) ≤ C‖(∇u−∇u∗)(·, t)‖L2(Ω) ≤ C‖∇u(·, t)‖L2(Ω)+C‖u(·, t)‖H1(ω).

Moreover the Sobolev embedding theorem implies

‖u(·, t)‖2
H1(ω) ≤ C‖u‖2

H1(−T,T ;H1(ω)) ≤ CF.

That is,

‖u(·, t)‖2
L2(Ω) ≤ C‖∇u(·, t)‖2

L2(Ω) + CF, −T ≤ t ≤ T.

Therefore

E1(t) ≤ E(t) ≡
∫

Ω

(|u(x, t)|2 + |∇x,tu(x, t)|2 + |∇x,tdivu(x, t)|2 + |∇x,trotu(x, t)|2)dx

≤CE1(t) + CF, −T ≤ t ≤ T,

so that (4) implies

E(t1) ≤ CE(t2) + CF, −T ≤ t1, t2 ≤ T. (5)

Let χ ∈ C∞
0 (R) satisfy 0 ≤ χ ≤ 1 and (2.18). We set v = χu. Then ∂jtv(·,±T ) =

0, j = 0, 1 and

ρ∂2
t v − Lλ,µv = χf − ρ(2(∂tχ)∂tu + (∂2

t χ)u).

We can apply (2.1) to v:

∫

Q

(|v|2 + |∇x,tv|2 + |∇x,tdivv|2 + |∇x,trotv|2)e2sϕdxdt

≤CeCsF + C

∫

Q

(|∂tχ|2 + |∂2
t χ|2)

1∑

j=0

(|∂jtu|2 + |div ∂jtu|2 + |rot ∂jtu|2)e2sϕdxdt.



22 M. BELLASSOUED AND M. YAMAMOTO

Taking δ > 0 small and shrinking the domain Q into Ω × (−δ, δ) at the left hand

side and using (2.16) and (2.18), we have

e2s(d1−ε)
∫ δ

−δ

∫

Ω

(|u|2 + |∇x,tu|2 + |∇x,tdivu|2 + |∇x,trotu|2)dxdt

≤CeCsF + Ce2s(d1−2ε)

∫

Q

1∑

j=0

(|∂jtu|2 + |div ∂jtu|2 + |rot ∂jtu|2)dxdt.

Therefore by (5), we have

2δe2s(d1−ε)(E(0)− CF ) ≤ CeCsF + 2TCe2s(d1−2ε)(E(0) + F ),

that is,

E(0)(2δ − 2CTe−2sε) ≤ CeCsF + CF.

Taking s > 0 sufficiently large, we obtain E(0) ≤ CF . By (5), we have

E(t) ≤ CF, −T ≤ t ≤ T. (6)

By the Sobolev extension theorem, we can find u∗(·, t) ∈ H2(Ω) such that ‖u∗(·, t)‖H2(Ω) ≤

C‖u(·, t)‖H2(ω) and u∗(·, t) = u(·, t) on ∂Ω. Set v = u − u∗. Then ∆v =

∆u − ∆u∗ = ∇(divu) − rot (rotu) − ∆u∗ and v|∂Ω = 0. Hence the a priori

estimate for the boundary value problem for ∆ implies

‖v(·, t)‖H2(Ω) ≤ C(‖∇divu(·, t)‖L2(Ω) + ‖rot (rotu)(·, t)‖L2(Ω) + ‖∆u∗(·, t)‖L2(Ω)).

Since u = v + u∗, we have

‖u(·, t)‖H2(Ω) ≤ C(‖∇divu(·, t)‖L2(Ω) + ‖rot (rotu)(·, t)‖L2(Ω) + ‖u∗(·, t)‖H2(Ω))

≤C(‖∇divu(·, t)‖L2(Ω) + ‖rot (rotu)(·, t)‖L2(Ω) + ‖u(·, t)‖H2(ω)).

Since ‖u(·, t)‖H2(ω) ≤ C‖u‖H1(−T,T ;H2(ω)), we have

‖u(·, t)‖2
H2(Ω) ≤ C(‖∇divu(·, t)‖2

L2(Ω) + ‖rot (rotu)(·, t)‖2
L2(Ω) + F ),
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with which (6) yields

∫

Ω


∑

|α|≤2

|∂αxu(x, t)|2 + |∂tu(x, t)|2 + |∂tdivu(x, t)|2 + |∂trotu(x, t)|2

 dx ≤ CF.

(7)

Finally we will estimate ∇(∂tu) at the right hand side of the conclusion. By the

Sobolev extension theorem and the trace theorem, for −T ≤ t ≤ T we can find

u∗
1 such that u∗

1(·, t) = ∂tu(·, t) on ∂Ω and ‖u∗
1(·, t)‖H1(Ω) ≤ C‖∂tu(·, t)‖

H
1

2 (∂Ω)
≤

C‖∂tu(·, t)‖H1(ω). Applying Theorem 6.1 (pp.358-359) in Duvaut and Lions [10],

we have

‖∂tu(·, t)− u∗
1(·, t)‖H1(Ω) ≤ C‖∂tu(·, t)− u∗

1(·, t)‖L2(Ω)

+C‖div (∂tu(·, t) − u∗
1(·, t))‖L2(Ω) + C‖rot (∂tu(·, t)− u∗

1(·, t))‖L2(Ω),

that is,

∫

Ω

|∂t∇u(x, t)|2dx

≤C
∫

Ω

(|∂tu(x, t)|2 + |∂tdivu(x, t)|2 + |∂trotu(x, t)|2)dx+ C‖∂tu(·, t)‖2
H1(ω).

Hence by (7), we obtain

∫

Q

|∂t∇u|2dxdt

≤C
∫

Q

(|∂tu(x, t)|2 + |∂tdivu(x, t)|2 + |∂trotu(x, t)|2)dxdt+ CF ≤ CF.

(8)

Inequality (7) and (8) completes the proof of Lemma 2.3.
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Lamé system and the application to an inverse problem, ESAIM Control Optim.
Calc. Var. 11, no.1 (2005), 1–56 (electronic).

24. O. Imanuvilov and M. Yamamoto, Carleman estimates for the three-dimensional
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