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Abstract

For the solution to ∂2
t u(x, t) −△u(x, t) + q(x)u(x, t) = δ(x1)δ

′(t) and

u|t<0 = 0, we consider an inverse problem of determining q(x), x ∈ Ω from

data f = u|ST
and g = ∂u

∂ν
|ST

. Here Ω ⊂ {(x1, . . . , xn) ∈ R
n|x1 > 0},

n ≥ 2, is a bounded domain, ST = {(x, t); x ∈ ∂Ω, x1 < t < T + x1} and

T > 0. For suitable T > 0, we prove an L2(Ω)-size estimation of q:

‖q‖
L2(Ω) ≤ C

n

‖f‖
H1(ST ) + ‖g‖

L2(ST )

o

,

provided that q satisfies a priori uniform boundedness conditions. We use

an inequality of Carleman type in our proof.

1 Introduction and main results

We consider an inverse problem of determining a coefficient in a hyperbolic

equation by an impulsive source located outside the domain where a coefficient

is unknown. Let u(x, t), x = (x1, . . . , xn), n ≥ 2 solve the Cauchy problem

∂2
t u(x, t) −△u(x, t) + q(x)u(x, t) = δ(x1)δ

′(t), u|t<0 = 0, (1.1)
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where δ and δ′ are the Dirac delta function and the t-derivative:

〈δ(x1), ψ〉 = ψ (0, x2, . . . , xn, t) ,

and

〈δ′(t), ψ〉 = −∂tψ(x, 0), ∀ψ ∈ C∞

0

(
R

n+1
)
.

Let R
n
+ = {(x1, . . . , xn) ∈ R

n|x1 > 0} and let Ω ⊂ R
n
+ be a bounded domain

with C1-piecewise smooth boundary ∂Ω. Furthermore let T > 0 be suitably

given. Set

GT = {(x, t); x ∈ Ω, x1 < t < T + x1} , (1.2)

Σ0 = {(x, t); x ∈ Ω, t = x1 + 0} ,

ΣT = {(x, t); x ∈ Ω, t = T + x1} ,

ST = {(x, t); x ∈ ∂Ω, x1 < t < T + x1} .

We consider:

Inverse problem. Let Cauchy data of the solution u to (1.1) be given on ST :

u(x, t) = f(x, t),
∂u

∂ν
(x, t) = g(x, t), (x, t) ∈ ST , (1.3)

where ν = ν(x) is the unit outward normal vector to ∂Ω at x ∈ ∂Ω. Then

determine q(x), x ∈ Ω from given data (1.3).

In order to state the main result, we introduce the notations. Let r =(diam

Ω)/2. Assume that

Ω ⊆ B
(
x0, r

)
=
{
x ∈ R

n;
∣∣x− x0

∣∣ < r
}

where x0 =
(
x0

1, 0, . . . , 0
)
∈ R

n
+ and x0

1 > r > 0.
(1.4)

Set

K = K
(
x0, T, r

)
=
{
(x, t); |x1| < t <

(
T + x0

1 + 2r
)
−
∣∣x− x0

∣∣} .

Noting that x1 > 0 and T + x1 ≤ T + x0
1 + r ≤

(
T + x0

1 + 2r
)
−
∣∣x− x0

∣∣ for

x ∈ Ω, we see that GT ⊆ K. Denote by

P = P
(
x0, T, r

)
=
{
x ∈ R

n; |x1| <
(
T + x0

1 + 2r
)
−
∣∣x− x0

∣∣}
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the projection ofK on the space R
n. Throughout this paper, H1(ST ), Hn+2(P ),

etc. denote usual Sobolev spaces (e.g. Adams [1]), and [α] denotes the greatest

integer not exceeding α. We set

UM =
{
q ∈ Hn+2(P )

∣∣‖q‖Hn+2(P ) ≤M
}

(1.5)

for any fixed M > 0. Furthermore, we take a constant β such that

0 < β < 1 and 0 < β
(
rβ + x0

1 + 2r
)2
< (x0

1 − r)2. (1.6)

Now we state the main result.

Theorem 1.1. Assume that Ω satisfies (1.4). Let

T > 2r +
4(x0

1 + 2r)

β
(1.7)

where β satisfies (1.6). Furthermore, let u be the solution to (1.1) with q ∈ UM

and let Cauchy data of u be given by (1.3). Then there exists a constant C =

C
(
Ω, T, x0, r,M

)
> 0 such that

‖q‖L2(Ω) ≤ C
{
‖f‖H1(ST ) + ‖g‖L2(ST )

}
. (1.8)

In our inverse problem we assume that the initial values are identically zero

and we are requested to determine a coefficient by a single measurement on the

boundary.

If we can be allowed to repeat infinitely many measurements, then the Dirich-

let to Neumann map can guarantee the uniqueness and the stability also with

the zero initial condition (e.g., Sun [20]).

If we can assume the positivity condition u(·, 0) > 0 on Ω, then the method

on the basis of a Carleman estimate which was discussed first in Bukhgeim and

Klibanov [2], implies the uniqueness. As for the stability, see Imanuvilov and

Yamamoto [5, 6], Khăıdarov [10], Yamamoto [21], and we refer also to Isakov

[7, 8, 9], Klibanov [11], Klibanov and Timonov [12].
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The above results by a Carleman estimate or the Dirichlet to Neumann

map, hold without smallness assumptions of unknown coefficients or the spatial

domain Ω under consideration.

On the other hand, the infinitely many repeat of the measurements are

not realistic and the positivity of the initial displacement may be difficult to

be realized in practise even though a single measurement can guarantee the

uniqueness and the stability in the inverse problem.

In (1.1) we take impulsive inputs δ(x1)δ
′(t) and the initial values can be

zero. The impulsive input is acceptable from the practical viewpoint.

In the case where the spatial dimension is greater than 1, it is a hard open

problem that in the inverse problem for (1.1), one can establish the uniqueness

without any smallness conditions on the coefficients or Ω. In Romanov and

Yamamoto [17], if ‖p‖Hn+2(P ) and ‖q‖Hn+2(P ) are sufficiently small, then with

suitable T , we can prove the Lipschitz stability for ‖p− q‖L2(Ω) by means of the

boundary data. As related results, see Glushkov [3], Glushkov and Romanov

[4], Romanov [13, 14, 15, 16], Romanov and Yamamoto [17, 18, 19].

To the above long standing open problem, Theorem 1.1 is a partial answer

: we can estimate the difference between a not necessarily small q and p(x) ≡ 0

by means of the boundary data. We note that in Romanov and Yamamoto [17],

one has the estimate between two sufficienly small coefficients p and q. We can

interpret Theorem 1.1 as L2(Ω)-size estimation of the coefficient by means of

boundary output.

Our proof is inspired by the argument in §4.1 in [16] and [17], but we will

use an inequality of Carleman type.
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2 Proof of Theorem 1.1

First we show a lemma, which is different from Lemma 4.1.4 in [16]. For T > 0,

x0
1 > 0 and β ∈ (0, 1), we define a function ϕ = ϕ(x, t) by

ϕ(x, t) =
1

4
|x|2 −

1

8
β

(
t− x0

1 −
T

2

)2

. (2.1)

Furthermore, we set

∂t =
∂

∂t
, ∂j =

∂

∂xj

, 1 ≤ j ≤ n, ∇x = (∂1, . . . , ∂n) ,

∇x,t = (∂1, . . . , ∂n, ∂t) , ∇x′ = (∂2, . . . , ∂n) , �y = ∂2
t y −△y.

Lemma 2.1. Let v ∈ H2(GT ). Assume (1.4), (1.6) and (1.7). Then there ex-

ists a constant ϑ > 0 such that for T ∈
(
2r + 4

(
x0

1 + 2r
)
/β, 2r + 4

(
x0

1 + 2r
)
/β + ϑ

)

there exist s0 > 0 and C1 = C1(s0, T, x
0, r, β) > 0 such that

∫

GT

(
s |∇x,tv|

2 + s3v2
)

e2sϕdxdt

+

∫

Σ0∪ΣT

[
s (∂tv + ∂1v)

2 + s |∇x′v|2 + s3v2
]
e2sϕdx

≤ C1

{∫

GT

(�v)
2
e2sϕdxdt+

∫

ST

[
s |∇x,tv|

2
+ s3v2

]
e2sϕdsdt

}
(2.2)

for all s ≥ s0.

We shall prove Lemma 2.1 in §3.

In [16, 17], the following proposition is proved.

Proposition 2.2 ([16] or [17]). Let q ∈ UM . Then the solution to (1.1) can be

represented in the form

u(x, t) =
1

2
δ (t− |x1|) + û(x, t)θ0 (t− |x1|) (2.3)

where û ∈ Hm(K), m =
[

n+1
2

]
+1, θ0(t) is the Heaviside step function: θ0(t) = 1

if t ≥ 0 and θ0(t) = 0 if t < 0. Moreover

û(x, |x1| + 0) = −
1

4
(sign x1)

∫ x1

0

q(ξ, x′)dξ, x ∈ P (2.4)
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with x′ = (x2, . . . , xn), and there exists a constant C2 = C2(T, x
0, r,M) > 0

such that

|û(x, t)| ≤ C2M, (x, t) ∈ K. (2.5)

The constant C2 is a non-decreasing function of Parameters T , r, M .

Remark 2.1 ([16] or [17]). The representation (2.3) means that the regular

part of the solution u(x, t) coincides with û(x, t) for (x, t) ∈ K. Moreover

u ∈ H1(ST ) and ∂u
∂ν

∈ L2(ST ) by the trace theorem (e. g., [1]), because ∂Ω is

piecewise C1 smooth and u ∈ Hm(K) with m ≥ 2.

Now we prove Theorem 1.1.

Proof of Theorem 1.1. For any T > 0 satisfying (1.7), we set

T̃ = min

{
T, 2r +

4
(
x0

1 + 2r
)

β
+
ϑ

2

}
, (2.6)

where ϑ is given by Lemma 2.1. Therefore, estimate (2.2) holds in GeT .

Let u be the solution to problem (1.1) with q ∈ UM and f , g be the data in

(1.3) for u. By (1.1), we have

�u(x, t) + q(x)u(x, t) = 0, (x, t) ∈ GeT . (2.7)

By q ∈ UM and the embedding theorem, we see that q ∈ Cm(P ) with

m =
[

n+1
2

]
+ 1 and there exists a constant C∗l = C∗l(T, x

0, r) > 0 such that

‖q‖Cl(P ) ≤ C∗l‖q‖Hn+2(P ) ≤ C∗lM, l = 0, 1, . . . ,m. (2.8)

By Proposition 2.2 and Remark 2.1, we have u ∈ H2(GeT ). It follows from (2.7)

and (2.8) that

(�u(x, t))2 ≤ C2
∗0M

2u2(x, t), (x, t) ∈ GeT . (2.9)
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Then, by Lemma 2.1, there exists s0 > 0 such that

∫

G eT

(
s |∇x,tu|

2
+ s3u2

)
e2sϕdxdt

+

∫

Σ0∪Σ eT

(
s (∂tu+ ∂1u)

2
+ s |∇x′u|

2
+ s3u2

)
e2sϕdx

≤ C1

(∫

G eT

(�u)
2
e2sϕdxdt +

∫

S eT

(
s |∇x,tu|

2
+ s3u2

)
e2sϕdsdt

)

≤ C1

(
C2

∗0M
2

∫

G eT

u2e2sϕdxdt+

∫

S eT

(
s |∇x,tu|

2
+ s3u2

)
e2sϕdsdt

)

(2.10)

for all s > s0, where ϕ is defined by (2.1). In the last inequality in (2.10), we

have used (2.9).

By relation (2.4) in Proposition 2.2, we have

∂tu+ ∂1u = −
1

4
q(x), (x, t) ∈ Σ0. (2.11)

It follows from (2.10) and (2.11) that

∫

G eT

[
s |∇x,tu|

2
+
(
s3 − C1C

2
∗0M

2
)
u2
]
e2sϕdxdt

+
s

16

∫

Ω

q2e2sϕ(x,x1)dx

≤ C1

∫

S eT

(
s |∇x,tu|

2
+ s3u2

)
e2sϕdsdt

(2.12)

for all s > s0. We can take s0 > 0 sufficiently large such that

∫

G eT

[
s |∇x,tu|

2
+

1

2
s3u2

]
e2sϕdxdt+

s

16

∫

Ω

q2e2sϕ(x,x1)dx

≤ C1

∫

S eT

(
s |∇x,tu|

2
+ s3u2

)
e2sϕdsdt

(2.13)

for all s > s0. We take s > s0 and fix it. By (1.4) and (2.1), we have

1

4
(x0

1 − r)2 −
β

8

(
T̃

2
+ r

)2

≤ ϕ ≤
1

4
(x0

1 + r)2, (x, t) ∈ GeT . (2.14)

Therefore, by (1.3), (2.6), (2.13) and (2.14), we can obtain (1.8). We have

completed the proof of Theorem 1.1. �
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3 Proof of Lemma 2.1

First of all, we note that the following inequalities hold:

0 < x0
1 − r ≤ x1 ≤ x0

1 + r, 0 < |x|2 ≤
(
r + x0

1

)2
, x ∈ Ω, (3.1)

and − r −
T

2
≤ t− x0

1 −
T

2
≤
T

2
+ r, (x, t) ∈ GT . (3.2)

In fact, the first inequality in (3.1) follows from (1.4). The second inequality in

(3.1) can be proved as follows:

|x|2 = |x−x0|2 +x2
1− (x1−x

0
1)

2 ≤ r2 +2x1x
0
1− (x0

1)
2 ≤ r2 +2x0

1(x
0
1 +r)− (x0

1)
2.

(3.2) can be proved by (1.2) and (3.1).

By (1.6), there exists a constant ϑ such that

0 <
1

16
β3

[
4r +

4
(
x0

1 + 2r
)

β
+ ϑ

]2

< (x0
1 − r)2. (3.3)

By (1.7), we can assume that T ∈
(
2r + 4

(
x0

1 + 2r
)
/β, 2r + 4

(
x0

1 + 2r
)
/β + ϑ

)
.

Then we have

4r +
4
(
x0

1 + 2r
)

β
< T + 2r < 4r +

4
(
x0

1 + 2r
)

β
+ ϑ. (3.4)

It follows from (3.3) and (3.4) that

(x0
1 − r)2 >

1

16
β3 (T + 2r)2 . (3.5)

Therefore we can take a constant ρ > 0 such that

0 < 2β < ρ < min

{
2,

64
(
x0

1 − r
)2

β2 (T + 2r)
2 − 2β

}
. (3.6)

Furthermore, by (1.7), we can get

β2

16

(
T

2
− r

)2

>
1

4

(
2r + x0

1

)2
and

βT

4
−
βr

2
− x0

1 > 2r. (3.7)

Let s > 0, w = esϕv and Lw = esϕ
� (e−sϕw). Then we can obtain that

Lw =
{
�w + s2

[
(∂tϕ)

2
− |∇xϕ|

2
]
w + 1

4sρw
}

+s
{[
−�ϕ− 1

4ρ
]
w − 2 (∂tϕ) (∂tw) + 2 (∇xϕ · ∇xw)

}

=
(
�w + s2dw + 1

4sρw
)

+ s [cw + b (∂tw) + a · ∇xw]
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where a = 2∇xϕ = x, b = −2 (∂tϕ) = β
(
t− x0

1 − T/2
)
/2, c = −�ϕ − ρ/4 =

β/4+n/2−ρ/4 and d = (∂tϕ)2−|∇xϕ|
2 = β2

(
t− x0

1 − T/2
)2
/16−|x|2/4. We

note that c is a constant. Furthermore, by ρ < 2, we have

c >
β

4
+
n

2
−

1

2
≥
β

4
. (3.8)

Using the inequality: (α+ γ)2 ≥ 2αγ, we have

(Lw)
2
≥ 2s

(
�w + s2dw +

1

4
sρw

)
[cw + b (∂tw) + a · ∇xw] . (3.9)

Noting that

a = x, b =
1

2
β

(
t− x0

1 −
T

2

)
, and c =

β

4
+
n

2
−
ρ

4
, (3.10)

we can verify that

2 (�w) [cw + b (∂tw) + a · ∇xw] = ∂tP + ∇x ·Q+R

where

P = b
[
(∂tw)

2
+ |∇xw|

2
]

+ 2 (∂tw) (a · ∇xw + cw) , (3.11)

Q =
[
|∇xw|

2
− (∂tw)

2
]
a− 2 [a · ∇xw + b (∂tw) + cw] (∇xw) , (3.12)

R =
1

2
(ρ− 2β) (∂tw)

2
+

1

2
(4 − ρ) |∇xw|

2
. (3.13)

Therefore,

2

∫

GT

(�w) [cw + b (∂tw) + a · ∇xw] dxdt

=

∫

ΣT

(P −Q1) dx+

∫

Σ0

(Q1 − P ) dx+

∫

ST

Q · νdσdt+

∫

GT

Rdxdt.

(3.14)

By (3.11) and (3.12), we can obtain that

P −Q1 = (b+ a1) (∂tw + ∂1w)
2

+ (b− a1) |∇x′w|
2

+2 (∂tw + ∂1w) (a′ · ∇xw + cw) ,
(3.15)
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where a′ = (0, a2, . . . , an). Then by x0
1 > 0 and the inequality: |A · B| ≤ |A| |B|,

we have

P −Q1 ≥ (b+ a1) (∂tw + ∂1w)2 + (b− a1) |∇x′w|2

−2x0
1 (∂tw + ∂1w)

2
−

1

2x0
1

(a′ · ∇xw)
2

+ 2c (∂tw + ∂1w)w

≥
(
b+ a1 − 2x0

1

)
(∂tw + ∂1w)2 +

(
b − a1 −

1

2x0
1

|a′|
2
)
|∇x′w|2

+2c (∂tw + ∂1w)w.

By (3.1) and (3.7), we have

b+ a1 − 2x0
1 =

1

2
β

(
x1 − x0

1 +
T

2

)
+ x1 − 2x0

1

≥
1

2
β

(
T

2
− r

)
+ x0

1 − r − 2x0
1 =

1

4
βT −

1

2
βr − x0

1 − r

> r, (x, t) ∈ ΣT .

By (1.4), (3.1) and (3.7), we have

b− a1 −
1

2x0
1

|a′|
2

=
1

2
β

(
x1 − x0

1 +
T

2

)
− x1 −

1

2x0
1

n∑

j=2

xj
2

≥
1

2
β

(
T

2
− r

)
− x0

1 − r −
r2

2r
=

1

4
βT −

1

2
βr − x0

1 −
3

2
r

>
r

2
, (x, t) ∈ ΣT .

Therefore,

P −Q1 ≥ r (∂tw + ∂1w)
2
+

1

2
r |∇x′w|

2
+ ∂1

[
cw2

∣∣
ΣT

]
, (x, t) ∈ ΣT . (3.16)

Similarly, by (3.15), we have

Q1 − P = (−b− a1) (∂tw + ∂1w)
2
+ (a1 − b) |∇x′w|

2

−2 (∂tw + ∂1w) (a′ · ∇xw + cw)

≥
(
−b− a1 −

r

2

)
(∂tw + ∂1w)

2
+

(
a1 − b−

2

r
|a′|

2
)
|∇x′w|

2

−2c (∂tw + ∂1w)w.

By (3.1) and (3.7), we have

−b− a1 −
r

2
=

1

2
β

(
x0

1 − x1 +
T

2

)
− x1 −

r

2

≥
1

2
β

(
T

2
− r

)
− x0

1 − r −
r

2
=

1

4
βT −

1

2
βr − x0

1 −
3

2
r

>
r

2
, (x, t) ∈ Σ0.
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By (1.4), (3.1) and (3.7), we have

a1 − b−
2

r
|a′|

2
= x1 −

1

2
β

(
x1 − x0

1 −
T

2

)
−

2

r

n∑

j=2

xj
2

≥ x0
1 − r −

1

2
β

(
x0

1 + r − x0
1 −

T

2

)
−

2

r
r2 =

1

4
βT −

1

2
βr + x0

1 − 3r

≥
(
2r + x0

1

)
+ x0

1 − 3r = 2x0
1 − r > r, (x, t) ∈ Σ0.

Therefore,

Q1 − P ≥
1

2
r (∂tw + ∂1w)

2
+ r |∇x′w|

2
− ∂1

[
cw2

∣∣
Σ0

]
, (x, t) ∈ Σ0. (3.17)

By (3.12), we have

Q · ν =
[
|∇xw|

2
− (∂tw)

2
]
(a · ν) − 2 [a · ∇xw + b (∂tw) + cw] [(∇xw) · ν] .

Then by (3.1), (3.2) and (3.10), we have

|Q · ν| ≤ C3

(
|∇x,tw|

2
+ w2

)
, (x, t) ∈ ST . (3.18)

Here and henceforth, Ck(k = 3, 4, . . . ) denote generic positive constants which

may depend on x0
1, r, T , n, β, ρ, s0, and s1, but are independent of s. It follows

from (3.14), (3.16), (3.17) and (3.18) that

2

∫

GT

(�w) [cw + b (∂tw) + a · ∇xw] dxdt

≥
1

2
r

∫

Σ0

S
ΣT

[
(∂tw + ∂1w)

2
+ |∇x′w|

2
]
dx

−c

∫

∂Σ0

S
∂ΣT

w2dσ − C3

∫

ST

(
|∇x,tw|

2
+ w2

)
dσdt

+
1

2

∫

GT

[
(ρ− 2β) (∂tw)

2
+ (4 − ρ) |∇xw|

2
]
dxdt,

where ∂Σ0 and ∂ΣT denote the boundaries of Σ0 and ΣT , respectively, and dσ

is an area element of ∂Ω. Furthermore, as (4.1.40) in [16], we can show that

∫

∂Σ0

S
∂ΣT

w2dσ ≤ T

∫

ST

(
w2

t +
3

T 2
w2

)
dσdt.
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Therefore,

2

∫

GT

(�w) [cw + b (∂tw) + a · ∇xw] dxdt

≥
1

2
r

∫

Σ0

S
ΣT

[
(∂tw + ∂1w)

2
+ |∇x′w|

2
]
dx

−C4

∫

ST

(
|∇x,tw|

2 + w2
)

dσdt

+
1

2

∫

GT

[
(ρ− 2β) (∂tw)2 + (4 − ρ) |∇xw|

2
]
dxdt.

(3.19)

Moreover, we can verify that

2dw [cw + b (∂tw) + a · ∇xw]

= ∇x ·
(
dw2a

)
+ ∂t

(
dbw2

)
− w2 [∇x · (da)] − w2∂t (bd) + 2dcw2.

Then we have

2

∫

GT

dw [cw + b (∂tw) + a · ∇xw] dxdt

=

∫

ΣT

dw2 (b− a1) dx+

∫

Σ0

dw2 (a1 − b) dx

+

∫

ST

dw2 (a · ν) dσdt+

∫

GT

w2 [2dc−∇x · (da) − ∂t (bd)] dxdt.

(3.20)

By (1.4), (3.1) and (3.7), we have

d =
1

16
β2

(
x1 − x0

1 +
T

2

)2

−
1

4
|x|2 ≥

1

16
β2

(
T

2
− r

)2

−
1

4

(
r + x0

1

)2

>
1

4

(
2r + x0

1

)2
−

1

4

(
r + x0

1

)2
=

1

4

(
3r2 + 2x0

1r
)
≥

5

4
r2, (x, t) ∈ ΣT .

By (3.1) and (3.7), we have

b− a1 =
1

2
β

(
x1 − x0

1 +
T

2

)
− x1 ≥

1

2
β

(
T

2
− r

)
−
(
x0

1 + r
)
> r, (x, t) ∈ ΣT .

(3.21)

Therefore,

dw2 (b− a1) ≥
5

4
r3w2, (x, t) ∈ ΣT . (3.22)

Similarly, we have

d =
1

16
β2

(
x1 − x0

1 −
T

2

)2

−
1

4
|x|2

≥
1

16
β2

(
T

2
− r

)2

−
1

4

(
r + x0

1

)2
≥

5

4
r2, (x, t) ∈ Σ0,

12



and

a1 − b = x1 −
1

2
β

(
x1 − x0

1 −
T

2

)
≥
(
x0

1 − r
)
−

1

2
β

(
r −

T

2

)

>
(
x0

1 − r
)

+
(
2r + x0

1

)
= 2x0

1 + r ≥ 3r, (x, t) ∈ Σ0.

(3.23)

Therefore,

dw2 (a1 − b) ≥
15

4
r3w2, (x, t) ∈ Σ0. (3.24)

Furthermore we can verify that

2dc−∇x · (da) − ∂t (bd)

=
1

2

[
|x|2 −

1

16
ρβ2

(
t− x0

1 −
T

2

)2

+
1

4
ρ|x|2 −

1

8
β3

(
t− x0

1 −
T

2

)2
]
.

Then by (3.1), (3.2) and (3.6), we have

2dc−∇x · (da) − ∂t (bd)

≥
1

2

{
(
x0

1 − r
)2

−
1

16
β2

(
T

2
+ r

)2
[

64
(
x0

1 − r
)2

β2(T + 2r)2
− 2β

]

+
1

4
ρ
(
x0

1 − r
)2

−
1

8
β3

(
T

2
+ r

)2
}

=
1

8
ρ
(
x0

1 − r
)2
, (x, t) ∈ GT .

(3.25)

It follows from (3.20), (3.22), (3.24) and (3.25) that

2

∫

GT

dw [cw + b (∂tw) + a · ∇xw] dxdt

≥
5

4
r3
∫

Σ0

S
ΣT

w2dx+
1

8
ρ
(
x0

1 − r
)2
∫

GT

w2dxdt− C5

∫

ST

w2dσdt.
(3.26)

Furthermore, by (3.10), (3.20), (3.21) and (3.23), we have

2

∫

GT

w [cw + b (∂tw) + a · ∇xw] dxdt

=

∫

ΣT

(b− a1)w
2dx+

∫

Σ0

(a1 − b)w2dx

+

∫

ST

w2 (a · ν) dσdt+

∫

GT

(2c−∇x · a− ∂tb)w
2dxdt

≥ r

∫

Σ0

S
ΣT

w2dx−
1

2
ρ

∫

GT

w2dxdt− C6

∫

ST

w2dσdt.

(3.27)
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Hence, by (3.9), (3.19), (3.26) and (3.27), there exists s1 > 0 such that, for

all s ≥ s1,

∫

GT

(�v)
2
e2sϕdxdt =

∫

GT

(Lw)
2
dxdt

≥ min

(
r

2
,
5

4
r3
)∫

Σ0

S
ΣT

[
s (∂tw + ∂1w)2 + s |∇x′w|2 + s3w2

]
dx

+
1

2

∫

GT

[
(ρ− 2β)s (∂tw)2 + (4 − ρ)s |∇xw|

2

+
1

8
ρ
(
x0

1 − r
)2
s3w2

]
dxdt− C7

∫

ST

[
s |∇x,tw|

2
+ s3w2

]
dσdt.

(3.28)

Furthermore, by (1.4) and (3.6), we see that

min

(
r

2
,
5

4
r3
)
> 0, ρ− 2β > 0, 4 − ρ > 0, and ρ

(
x0

1 − r
)2
> 0. (3.29)

On the other hand, by w = esϕv, we have

∇x,tw = sesϕv (∇x,tϕ) + esϕ (∇x,tv) = s (∇x,tϕ)w + esϕ (∇x,tv) .

Therefore, we have

(∂tv + ∂1v)
2
e2sϕ ≤ 2s2 (∂tϕ+ ∂1ϕ)

2
w2 + 2 (∂tw + ∂1w)

2
,

(∂tv)
2
e2sϕ ≤ 2s2 (∂tϕ)

2
w2 + 2 (∂tw)

2
,

|∇xv|
2
e2sϕ ≤ 2s2 |∇xϕ|

2
w2 + 2 |∇xw|

2
,

|∇x′v|2 e2sϕ ≤ 2s2 |∇x′ϕ|2 w2 + 2 |∇x′w|2 ,

and

|∇x,tw|
2
≤ 2 |∇x,tv|

2
e2sϕ + 2s2 |∇x,tϕ|

2
e2sϕv2.

14



Using (3.28), (3.29), and the above inequalities, we have
∫

GT

[
s |∇x,tv|

2
+ s3v2

]
e2sϕdxdt

+

∫

Σ0

S
ΣT

[
s (∂tv + ∂1v)

2
+ s |∇x′v|

2
+ s3v2

]
e2sϕdx

≤ C8

{∫

GT

[
s |∇x,tw|

2
+ s3w2

]
dxdt

+

∫

Σ0

S
ΣT

[
s (∂tw + ∂1w)

2
+ s |∇x′w|

2
+ s3w2

]
dx

}

≤ C9

{∫

ST

[
s |∇x,tw|

2
+ s3w2

]
dσdt+

∫

GT

(�v)
2
e2sϕdxdt

}

≤ C10

{∫

ST

[
s |∇x,tv|

2 + s3v2
]
e2sϕdσdt+

∫

GT

(�v)2 e2sϕdxdt

}

We have completed the proof of Lemma 2.1. �
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