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Abstract. We consider Maxwell’s equations for an isomagnetic anisotropic, non-stationary and

inhomogeneous medium in two dimensions. We discuss an inverse problem of determining the permittivity

€1 2
tensor and the permeability p in the constitutive relations from a finite number of lateral

€2 &3
boundary measurements. Applying a Carleman estimate, we prove an estimate of the Lipschitz type for

stability, provided that €1, €3, €3, pu satisfy some a priori conditions.

1 Introduction

We consider Maxwell’s equations for an isomagnetic anisotropic, non-stationary and inhomoge-

neous medium (e.g., [16, 17]) in two dimensions:

¢

0Dy (2,) — Do Hy(z,8) =0, (2,8) € G =Q x (0,T),

0, Ds(2,1) + O Ha(w t) =0, (w.4) € G,

0,Bs(w.) + OnFa(w,t) — OuFr(m,t) =0,  (a,8) € G, -
01Dy (2,8) + DaDo(2,) =0, (w.4) € G,

Di(z,0) = di(z), Da(z,0) =da(z), Bs(z,0)=0b(z), z €,

vi(x)Es(x,t) — vo(x)Ey(z,t) =0, (x,t) e X =00 x (0,T),
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with the constitutive relations

Dl(x,t) _ 61(33) 62(%) El(ﬂj,t) ’ (1-775) c G,
Ds(z,1) ea(z) e3(x) Ey(z,) (1.2)

Bs(z,t) = p(x)Hs(z,t), (z,t) € G,

where x = (x1,22) € R%, Q is a bounded domain in R? with the C%2-boundary 052, 9y, = 8%;@ for
k=12 0, = %, and (v1(x),v2(z)) denotes the outward unit normal vector to 9 at x. Here

€1
is the permittivity tensor and p is the permeability. The boundary condition of E

E2 €3
means that  is bounded by a superconductive material. For mathematical treatments, see also

[3]. Throughout this paper, we assume that £;(-)(j = 1,2, 3), u(-)€ C*(Q) satisfy

e1(z), e3(x), e1(x)es(x) —ea(z), p(z) >0, x € Q.

These conditions guarantee the hyperbolicity of (1.1), that is, the well-posedness of the boundary-
value/initial-value problem follows.
We assume that the initial data di, da, b in (1.1) are sufficiently smooth and satisfy sufficient

compatibility conditions. Throughout this paper, we set

€ = (e1,e2,e3), ®=(d1,d2,b), z3=t,
03 = 0Oy, Vo= (01,02), Vgi=(01,02,0).
By Dy(e, p; @) (x,t), Ex(e, u; P)(x,t), Bs(e, u; ®)(z,t) and Hs(e, u; P)(x,t), we denote the suffi-
ciently smooth solution to (1.1) and (1.2).
In this paper, we consider an inverse problem of determining (¢1(z), e2(x), e3(z), u(x)) for

x € ) from the observation data
Dy (e, p; D) (x,t), Bs(e,u; P)(x,t), (x,t) € 9Q x (0,T), k=1,2.

For inverse problems for Maxwell’s equations, we can refer to Romanov [18, 19], Romanov and
Kabanikhin [20], Sun and Uhlmann [21], Yamamoto [22, 23]. However, to our knowledge, there
are few results on inverse problems of determining the coefficients in the constitutive relations
for Maxwell’s equations in an anisotropic medium with a finite number of measurements. This

is the motivation of our consideration. In this paper, we will establish the uniqueness and the



Lipschitz stability for our inverse problem with a finite number of measurements provided that
unknown coefficients satisfy some a priori conditions.

To state our main results, we define some notation. Denote

A=, /inf |z —20)* > 0, A:\/sup]x—x0\2—/\2>0 (1.3)
zeQ €N

with some fixed 2 = (29,29) € R?\ Q.

The following sets are concerned with unknown coefficients (e1x, ok, €3k, tk) (K =1,2):

V = Vo, M1,6,00,01

= {(a1,02,03) € (C*(D))* : |larlleo (@ lasllc2 @y < Mis lazllco (@) <9,

IVaaalle(ay: 1 Vaasllc (@) < Mo, a1(x), as(z) > 61, 2 €0, (1.4)
win {ar () [2+ [o1 (10 28] - (01— )], as(e) 2 [0 (10 29)] - (w2 - 0]}

—a1(2) [0 (Inaz(@))] - (v1 — 2Y) — az(z) [0z (In a1 (2))] - (x2 — 23) > fo, z € Q},

and

U = Uiy, My ,6,00,61 170,140

—\\ 4
={(e1,e2,83,0) € (C?(Q)) "+ 2 =0, 1= o on O
letlloz (@) lesllez @)y Il ez @) < Ma;

(1.5)

e1(z), e3(z), e1(x)es(x) — €3(x), p(z) > 61, z € Q;

£1 £ £3 .
(u(ﬁlsrfg)’ p(e1es—e3)’ u(€163*6§)) € VMo, M1 6,00,01

HDk(eaU;\I’(j))HWiOO(G) ’ HB3(67N;\II(j))HW3a°°(G) < M for k=1,2, J=1... 75}

where My > 0, My 0y, 61 > 0,0 < § < min {6y, 6y/Ms} and smooth functions 7o, po on 92 are

suitably given. Here

2V A2 + \2 M0 M
My = Ms(Mo, My, 61, A, \) = VA? + (2 161 +Mo1/71 +3M0+291> ) (1.6)
1

0, A2 + )2
The set U is an admissible set where unknown coefficients are considered, and we extra require
the last inequality in (1.4) as well as the positivity. If HVEjHC(ﬁ) (U = 13), lle2llc2(m)> and

||V,u||c(§) are sufficiently small and €1, €3, €163 — €3, u> 0 on Q, then

( €1 €2 €3 ) cy
Mo, M1,6,00,01 -
p(eres —€3)” pleres —€3)’ pleres —€3) o



Therefore the set U is restrictive but can contain sufficiently many elements.

Furthermore we can take a constant § satisfying

AN (0, — 6) 4(0 — Ms5)26?

0 < [ < min 5 2
A2+ 00, — 5) (SMOA\/Ml + /2502 N2, + 16(0y — Mga)ef)

(17

To guarantee the uniqueness and the stability of the inverse problem, we will use five sets of

the initial data: W(j) = (di(j),d2(4),b(j)), 7 =1,...,5, and we state our main result.

Theorem 1.1 (Stability). We assume that d(5),b(5)€ C?(Q) (k =1,2, j =1,...,5) satisfy

dp(1)(z) =b(m)(z) =0, z€Q, k=12, m=2,...,5, (1.8)
[01d1(m)](x) + [Dada(m)](x) =0, x€Q, m=2,...,5, (1.9)
b(1)(z)| > 602 >0, z€Q, (1.10)

|det(Dg(z))| > 62 >0, 2€Q, k=1,2, (1.11)

with a constant 65 > 0. Here we set

[O1da(2)](z) —[02d1(2)](z) d2(2)(z) —di(2)()

Dy(z) = [O1d2(3)](z)  —[02d1(3)](x) d2(3)(z) —di(3)() seq
[O1da(4)](z) —[02d1(4)](z) da(4)(z) —di(4)(x)
[O1da(5)](z) —[02d1(5)](x) da(5)(z) —di(5)()

0 20:1di(2)](z) 0 0
]D)1<JZ‘) .

2[01d1(2)](z) O 0 O

2[01d1(5)](z) O 0 0
Let the observation time 7" > 0 satisfy

(1.12)

Sl=



where [ satisfies (1.7). Then there exists a constant C' > 0 such that
Z lenn — €wll 2q) + I — p2ll2(q)

2
> 10000 [Di (ex, pa; U (5)) — Di (e2, 23 W) 12 9 (0.1
k=1

Mm

. (1.13)
+ 11010k [Bs (€1, 15 ¥ (4)) — Bs (€2, po; \II(]))}”LQ(E?QX(O,T))}
2
+ 3 1100 [Dr (€1, 113 ¥ (5)) — Di (€2, 12; € (1)) 22062 (0.1)
k=1

+ (|0 [Bs (e1, 119 (j)) — Bs (627:u27\I/(j))]HLQ(aﬁx(O,T))}
for all (1, p1)=(e11, €21, €31, 1), (€2, p2) =(c12, €22, €32, p2)€ U.

Here the constant C' > 0 is independent of (1, pi1), (€2, u2) € U. For the Lipschitz stability in
the inverse problem, we have to choose particular initial inputs di(j), b(j), k =1,2,j=1,...,5
satisfying (1.8)—(1.11).

Similar kinds of positivity conditions are needed for inverse problems for a scalar hyperbolic
equation (e.g., [7]) and it is extremely difficult to relax those conditions drastically. Moreover
we need to change initial values five times and it may be possible to reduce the number, but
here we do not further exploit. We can choose di(m) (k =1, 2, m = 2,...,5) satisfying (1.9)
and (1.11) as the following example shows.

Example. We assume that

0¢Q and ﬁﬂ{(fvl,xg);x%:x%} = 0. (1.14)
We choose
d1(2)(x) 1 d2(2)(2) T2
dai(3)(@) | _ ) eE)@) | _ | @
di(4)(2) 2 | da(4) () 2012
dy(5)(x) 2x129 da(5)(x) 3
Then (1.9) is satisfied and
|det (D1 (x))] = 22122 (:):% - x%)} , |det (Dy(z))| = 122323 (:15‘11 + 2323 + :v%) ,

so that (1.14) implies (1.11).



In Section 2, we will show Carleman estimates as preliminaries for a hyperbolic equation and
a first-order differential equation. We will prove Theorem 1.1 in Section 3.

Our proof is based on the methodology of Bukhgeim and Klibanov [2] or Klibanov [13].
Their methodology is by means of a Carleman estimate and there are succeeding publications
[1], [4]-[12], [14], [15], [24] for example (see also the references therein). In this paper, we mainly
use the argument of [7] which modifies [2] and further apply the ideas in Chapter 3.5 in Klibanov
and Timonov [14] and Klibanov and Yamamoto [15] to prove the Lipschitz stability as well as

the uniqueness.

2 Carleman Estimate for A Hyperbolic Equation
For 3, A and 2°€ R? \ Q, we define the functions ¢ = ¢(z,t) and ¢ = ¢(z,t) by
Yo t) = |z —a%? = B = X%, pla,t) = e (2.1)

with some large parameter o > 0. We set Q = Q x (=7,T) for T' > 0. Moreover we set, for

(z,1) € Q,
(Pv) (z,t) = (87v) (z,t) — [a1(2) (07) (z,t) + 2a2(x) (81020) (z,t) + az(z) (O3v) (z,1)] . (2.2)

We show a Carleman estimate for a general second-order hyperbolic equation in two dimen-
sions which is derived from Theorem 2.1 in [10] (or Theorem 3.2.1 in [9]).

Proposition 2.1. We assume that (a1, a2,a3)€ V. Let [ satisfy (1.7) and let o(z,t), P

be given by (2.1), (2.2), respectively. Then there exists a constant 0 < ¥ < 1 such that for

€ <0, % + 19), for some g > 0, there exists a constant K1 = K1 (9,0, My,Mj, §, 6y, 01, 5, Q,

T, 2°)> 0 such that
/ (S|V:c,ty|2 + S3y2) e drdt
Q
<K; (/ | Py|?e**?dadt —i—/ (S\meP + s3y2) ezwda)
Q 0Q
for all s > K , provided that y € H'(Q), Py € L*(Q).

For the proof of Proposition 2.1, in terms of Theorem 2.1 in [10], it is sufficient to verify

that the weight function ¢ given by (2.1) satisfies some conditions called the pseudoconvexity



for (a1,a2,a3) € V. For completeness, we will give the verification of these conditions in the
appendix.
Proposition 2.2. Let ¢(z,t) be given by (2.1). Then there exists K2 > 0 such that for

s > Ko we have

/s\wQeQS‘p(x’O)deKg/ |Vw\2e23@(x’0)dx
Q Q

for all w € C} (Q).

For the proof of Proposition 2.2, we refer to Lemma 3.6 in [4].

3 Proof of Theorem 1.1

We note that 0 < 9 < 1 and ¢ > 0 are given in Proposition 2.1, 5 > 0 and ¢ are given by (1.7)

and (2.1) respectively, and (eg, ux) € U (k = 1,2). For any 9y € (0,1), we set

A
T ="+ (3.1)
VB
Then T € (0, % + 1) and under the assumption of Proposition 2.1, Carleman estimate (2.3)

holds on Q = Q x (=T,T).
In order to prove Theoreml.1, it suffices to prove Theorem 1.1 for T" which is given by (3.1).
We extend the functions Dy (e, p; (7)), Ex(er, p; Y(5)), Bs(er, p; (7)) and Hs(eg, pg; ¥(5))
(k,l=1,2and j=1, ..., 5) from G =Q x (0,T) by the following formulae:

Dyt s ¥(m)) (&, t) = Dy(et, i3 ¥ (m)) (&, —t), Bxleq, s ¥(m)) (e, t) = Ei(er, pus ¥m)) (x, ~1),

Bs(er, pu; W(m))(x, ) = —Bs(er, pu; ¥(m))(x, —t),  Hs(er, pu; ¥(m)) (@, t) = —Hs(er, pu; ¥(m))(z, —1),
Dy (er, p; W(1))(w, ) = —Dy(er, s Y(1)) (2, —t),  Eg(er, s (1)) (2, t) = —Ep(eq, pu; ¥ (1)) (0, —1),
Bs (e, pu; W(1)) (0, t) = Ba(er, pu; Y(1)) (w, —t),  Hz(er, s W(1))(, ) = Ha(er, p; ¥(1)) (2, —1)

for all (z,t) € Q@ x (=T,0), k, I =1, 2, and m= 2, ..., 5. For simplicity, we denote the extended
functions by the same notation. By (1.8), we have Dy (e, g3 ¥(1))(+,0) = Bs(eg, py; ¥(m))(-,0)=
0in Q for k,l =1,2 and m = 2,...,5. Therefore, for k,l =1,2, m=2,...,5,and j=1,...,5,



by (1.1), (1.2), and Dy (e, ;¥ (5)), Bs(er, pu; ¥(5))€ W3(G), we can verify that

Hs(er, pu; ¥(m)) (-, 0) = (9 Dy (€1, pu; ¥ (m))) (+,0) = (9B (e, pu; ¥(m))) (-, 0)
= (07 Bs(er, pu; W (m))) (-,0) = (87 Hs (e, pu; ¥(m))) (-, 0) = Ex(er, pr; ¥(1))(-, 0)
= (OeBs(er, a3 ¥(1))) (-, 0) = (O Hs(er, py; ¥(1))) (-,0) = (07 Di(er, pu; ®(1))) (-, 0)
= (07 Bxler, ju; ¥(1))) (,0) =0 in €.

Therefore, Dy, (e, pu; Y (5)), Bs(er, 3 U(5))€ W3%°(Q), and in both (1.1) and (1.2), G and X can
be replaced with @ and 02 x (=T,T), respectively.

For all (z,t) € Q,k=1,2,j=1,...,5and m,l =1,2,3, we set
Yi(@,t;J) = [0 Di(er, p; V(1)) (. ) — [0 Di(e2, p2; ¥ (5))] (@, 1),

y3(x,t;5) = [0:Ba(ex, pa; V(1)) (2, ) — [0: Bs(e2, po; ¥ (4))] (, 1),

Ry (z,t;j) = [0 Dr(€, p2; ¥(5))] (2,),  Rs(x,t;5) = [01Bs(e2, pa; ¥ ()] (, 1),

3
Zml(x7t7.7):amyl(xat7j)v Y(wat;j):<y17y27y3) (xatuy)a .’IJ t.j Z .%' tj
=1
Z(,t;5) = (2m (2,6 ) 1 <<z 1Z(@,65)] Z |2 (2, 15 7))
m,l=1
_ ek () _
V() = 5 filz) = va(z) — (),

e1n(w)esk(z) — e3, ()’

M;»”U) - Mltx), f5(l') = alfl(x) + (92f2(13), fG(;L') = alf2($) + 62f3(l’).

Moreover we set (F17 F27 F37 F4)($) :al(fla f3a f57 f6>(x)a (F57 FG; F?a Fg)((L‘) :aQ(fh f37 f57
fe)(x), and

fa(x) =

2 6
= D N@df) @+ D 1oufi@))* + > Ifile)]? (3:2)
k=1 1<k =1

for z € Q. Then we have, for j = 1,...,5 and m,l = 1,2,3, 5(7), Ri(-;j) € W>®(Q),
zmi(37) € WH(Q),

Ory1(-37) — 02 [Mlly:a(-;j)} = =02 [faR3(:; )] in Q, (3.3)
Duya(-55) + O [: s(-: >] = 0\ [iRs(+7)] n Q. (3.4)

8



Oy (57) + 01 [=y21y1(55 5) + v11y2(59)] — O2 [va1y1 (55 5) — v2192(+5 7))

(3.5)

= [01R2(+3 7)) f1 — 2[00 R1(+:9)] fo — [02R1 (55 5)] f3 + Ra(+55) fs — Ri(+5 ) fe in Q,
(1) (557) + (92y2) (55) =0 in Q, (3.6)
y1(-,055) = =02 [f4b(7)], w2(+,0;5) = 01 [f1b(j)] in €, (3.7)

y3(+, 0;7) = [O1da(j)] f1 — 2[01d1(4)] f2 — [O2d1(4)] f3 + [da(4)] f5 — [d1(j)] f6 in €. (3.8)

In fact, by (1.2), we have

Hs(er, a3 W (j)) — Ha(ez, po; ©(5)) = 5 Bs(er, s ¥ (5)) — 75 Bs(ea, pi2; ¥(5))

= o7 [Bs(er, 13 W(5)) — Bs(ea, p2; W(5))] — faBs(e2, p2; ¥(j)) in Q.

Using (1.2) and noting

€ € — 1 0 _
1k €2k Y3k Y2k _ on @, k=12,
€2k €3k —Yok Y1k 0 1

we have,
(ENQMUWU»—Eﬂ@meUD)
Es(e1, 1139 (5)) — Ea(e2, pa; ¥(j))
_ ( V31— ) ( Di(ex, p1;9(5)) ) B ( Yi2 o —7e2 ) ( Di(e2, p2; ¥ (j)) )
—Y21 Da(er, pa; ¥ (35)) —Y22 M2 Ds(e2, p2; ¥ (4)) (3.10)
[ o Di(ex, pa3W(j)) — Dilez, po; ¥(j))
( —Y21 ) ( Da (€1, p1;¥(j)) — Da(ea, p2; ¥ (j)) )
( fs —f ) ( D (€2, p2; ¥ (j)) ) n Q.
—-f2 f Ds(e2, p2; ¥(4))

Differentiating (3.9) and (3.10) with respect to ¢ and noting t-independence of p1, 1, fi (I =1,

2, 3), fa, we have

[0cH3(e1, a5 W (4))] (-) — [OcH3(e2, po; ¥ (4))] (+) = :1113(';]') — faR3(57), (3.11)
( [00Bx (1, 13 U(5)] () — (OB (2, o U())] () )
[0cEa (€1, 1113 Y (5))] (+) — [0 Ea (€2, p2; Y (4))] (¢) (3.12)
_ ( Y31 =721 ) ( y1(54) ) B ( f3 —f ) ( R1(+7) ) w0
—Y21 Y11 ya(+5 ) —fa N1 Ra(+57)

9



By (1.1), we have

y1(1J) = {02 [Hs(er, p1; ¥ (4)) — Hs(ez, 23 ¥ (5))]} (), (3.13)

Y2(59) = — {0 [Hs(e1, pa; ¥ (4)) — Ha(e2, u2; ¥(5))]} (), (3.14)

y3(:55) = — {01 [Baler, pa; W(5)) — Ealez, po; U(5)]} ()
+ {02 [Er(e1, p1; ¥ (5)) — Erle2, p2; (5))} () in Q.
Differentiating (3.13) and (3.14) with respect to ¢ and using (3.11), we can obtain (3.3) and

(3.15)

(3.4). Differentiating (3.15) with respect to ¢ and using (3.12), we have

Oy3(+59) + 01 [=v2151 (5 7) + ym1y2(59)] — 02 [ys1ya (55) — v21y2(+5 )]
= =01 [foRi(:35) — fiRa (5 )] + Oz [= fsRa (-1 5) + f2Ra(+54)]
= [01R2(+5 )] 1 + [02Ra (5 ) — O1Ra(+59)] f2 — [02R1(55)] f3
—(01f2 4+ 02f3) R1(54) + (O1f1 + 02 f2) Ra(5j) in Q.
Therefore, using d1 Ry (- j) + &2 Ra(-: j) = 0 in Q and noting the definitions of f; and fi, we have
(3.5). By (1.1), we have (3.6). Moreover, by (1.1), (3.9), (3.13) and (3.14), we can obtain (3.7).
By (1.1), (3.10) and (3.15), we have

y3(+,057) = =01 [fod1(j) — frda(§)] + 02 [— f3d1(j) + fad2(])]
= [01 (d2(5))] f1 + [02d2(5) — O1dr(5)] f2 — [02 (dr(5))] f5
—(01f2 + 0af3) di(j) + (01 f1 + O2f2) da(j) in Q.

Therefore, using (1.8) and (1.9) and noting the definitions of f5 and fs, we have (3.8).
Furthermore, for j = 1,...,5, by the extensions of Dy (e, ;Y (5)), Bs(er, p; V(j)) (k,1 =

1,2), and the definitions of Y'(+;5), Z(-;j), we see that
YDl =1Y6=6)) 12660 =120, -t5)], t>0. (3.16)
Differentiating (3.3) with respect to ¢, we have

Sy1(57) — 0y U <aty3<-;j>>} [ @Ry (59))] i Q (3.17)

10



for j =1,...,5. We can replace dyys(-; j) in the second term of (3.17) by using (3.5) and obtain
that
OFy1(:59) — 201001 (-5 §) + LLD10oy2(+5 §) — LLOZY1 (5 5) + 22203ya (-5 j)
= A1 (555 2(57),Y (7)) + 05 {ﬁ [(O1R2(+59)) fr = 2(01Ra(57)) f2 (3.18)
—(02R1(54)) f3 + Ra(55) fs — Ba(55) fol} — 02 { fa [0 R5(;5)]} in @
for j = 1,...,5. Here and henceforth, Ay(+j;Z(-;5),Y (7)) (k =1,2,...) denote linear func-
tions of elements of Z(+;j) and Y(;j) with C (Q)-coefficients. Furthermore, we can replace
O2y2(+; 7) in the left-hand side of (3.18) with —01y1(-;j) by using (3.6) and arrive at
Opyr () — [ 220301 (+5) + 2201001 (3.7) + 2208y ()
= A1 (453 2(39), Y (53)) + 0 {5 [0 Ra(5.0)) fi = 2 (01 Ra(359)) fo
— (02 R1(559)) f5 + Ra(+55) f5s — Ra(57) fel} — O2 {4 [0eRR3(+ 5)]} in Q
for j =1,...,5. By the same argument, we can obtain that
ORya(57) — [0k ) + B2 01001( ) + 220313
= Az (55:2(30), Y (55) — A {;11 [(01Ra(+55)) fr = 2 (01 Ra(+54)) fa
—(02R1(15)) f5 + Ra(-:9) f5 — Ra(59) fol} + 01 { fa [0:R3(+5 5)]} in @,
Oys () — [0 s(5) + 220100y (5 ) + 2203 (+)|
= A3 (555 2(57), Y (57)) — 01 {n21 [02 (faR3(:;9))] + 1 [On (faRs(-59))]}
—02 {31 102 (faR3(+57))] + 721 [O1 (faR3(55)]} + [010:Ra(-35)] 1 — 2[010: R (5 4)] fa
— [0 R1 (7)) f3 + [0cR2 (5 9)] f5 — [OeR1 (5 5)] fo in Q
for j=1,...,5. Therefore, by (e1, 1) € U, we have (m 221 M) € V and can apply Proposi-

M1t opr )
tion 2.1 to y;(;5) (I = 1,2,3), so that by [[Ri(;; j)lly2eeg) < M1 (1=1,2,3),

/Q (s \Z(x, t; ) + 2 |Y (z, t;j)]2) 2@ dgdt
<Oy { /Q F(2)e??@Ddzdt + /Q (s Z(2,T;5)% + 83 |Y (2, T j)\2> 2507 (3.19)
+5%e?5%0 + /Q (8 \Z(x, =T;§)]> + s |V (x, —T;j)|2> eQS‘P(:”’T)dx}

for all sufficiently large s > 0 and j =1,...,5 where ® = e?)” > 1 and

0= JZ:/_Z /dQ (|Z(1:,t;j)|2 + |Y(:c,t;j)|2> dodt. (3.20)
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Here and henceforth, Cy (kK =1,2,...), C,, C,, denote positive constants which are dependent
on Q, T, 20, ¥(1), U(2), U(3), ¥(4), ¥(5), My, M, 6, by, 61, 02, Y0, f10, 0, 3, but independent
of s and 1. By (3.16), we can eliminate the last term in (3.19).

Noting the definition of (z,(+; 7))1<m,<3 and differentiating (3.3)-(3.5) with respect to x,,

we can obtain that

Orzm1(+5J) — 02 [mzmg(-;y)] = Agmt1 (5735 2(557), Y (57)) — 020m [faR3(-;5)] in Q,  (3.21)
Otzma(+3J) + 01 [mzms(n)] = Asmi2 (55 Z2(557), Y (555)) + 010m [faR3(+;:5)] in Q, (3.22)
Orzm3(+57) + 01 [=7212m1 (5 7) + M12m2(+59)] — 02 [v312m1 (55 5) — Y212m2(+; )]
= Asm+3 (555 2(55), Y (555)) + Om {[01R2(+5 5)] f1 — 2[01R1 (5 )] fo (3.23)
—[02R1(59)] fs + Ra(59)fs — Ri(+57) fe} in Q
form=1,23and j=1,...,5. Forany —T <t; <ty <T,s>0andn > 0, multiplying (3.21),
(3.22) and (3.23) by [ys12m1(3) —v212m2(55)] €77, [=212m1(34) +r112me(5 )] 97,

Zm3 (7.7)

m e25#~ 1 respectively, adding them and integrating over Q x (t1,t2), we can obtain

and

that

~/t12 /Q {;@Zm(a:,t;j) - 82 [W (731($)Zm1($,t;j) - 721(];)Zm2($,t;j))

m3(Z, ;] . . so(zt)—
+01 [zz(x(x)]) (=21 (z)zm1(z, t; 7) + 111 () 2ma(z, t;j))] } 2P @)=t Q¢
1

ta 3
:/ / {ZA9+3m+z (.t Z(55), Y (+59)) 2o (2, 85 5)
no (3.24)
—[020m, (fa(z)R3(z,t; 5))] [v31 (%) 2m1 (z, £5 §) — y21() 2m2 (2, t; 7)]

+[010m (fa(x)R3(x,t;7))] [=721(2) 2m1 (2, t; ) + y11(2) 2ma(x, t; )]
+ {0 [(01Ra(w,t; §)) fi(z) — 2 (D1 Ra(,t; 5)) fo(w) — (O2Ra(z,t;7)) f3(2)

+Ro(z,t;5) f5(x) — Ri(x, t;7) fo(x)]} 'W’t’])} e25P (@) =Nt g7 q¢
pa(z)

2 (s
where Zm(7.]) = 731Z72n1(7.7) - 27212m1(7j>zm2(7j) + 711'27%7,2(7.7) + %27(17-7)7 m = 172737 and
j=1,...,5. We denote the left- and the right-hand sides of (3.24) by I}, and I2j,, respectively.
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Integrating by parts, we can obtain that
1 1
Tijm = 5 / Z (1, ty; ) A Dd — o / Zom (a1, t1; )T g
Q

/2/ {Zm3 nlJ) [—y21()2m1 (2, 5 §) + Y11 (%) 2ma(z, 5 5)] 1 ()

M [ys1()zm1 (2, 85 ) — Y21(2) 2ma (2, £ )] V2($)}e2sgo(x’t)ntd‘7dt

t2
—/ /Z (z,t;7) [25 (Orp(z, 1)) — ] 2P @D dzdt
t1

.CC

_23/:/ {st r)) [—721(2) 2m1 (2, 15 7) + Y11 (%) 2ma (2, t5 5)] [Or0(2, 1)]

Zm3(w t; .7

(@) (V31(%) 2ma (7, 85 5) — 721 (%) 2ma(7, t5 5)] [32<P(1‘7t)]}GQS“Q(x’t)_"tdxdt

form=1,2,3,j=1,...,5 n >0, and s > 0. Therefore, by the definition of ¢, the inequality:
2|ab| < a? + b% and (e1, 1) € U, we have

1 1
Lijm > 2/QZm(m,t2§j)€2s‘p(x’t2)_"t2dx— Z/QZ (z,t1; §)e @)= qy
n (" 2sip(a,t)—nt 2 2sip(a,t)—nt & 2
+/ /Z (x,t; 7)e=P\H0=N da:dt—Cg/ / e*sP\HY =N E |Zmi(z, t;7)|” dodt
2y Joao" o Joo m (3.25)

=1
to 3
035/ / e?s¢(@t)—mt Z |z (2, t; 7) |2 daedt
t JQ I=1

form=1,2,3,j=1,...,5, 7> 0, and s > 0. Furthermore, by (3.2), the definition of Z,,(-; ),
the inequality: 2|ab| < a® + b2, (e1,11) € U, and 1R (5 ) w2 gy < M1 (I =1,2,3), we can

obtain

Iojm < C. / 12 1:) 4 Y (2, 1)) 290 s
t
+Cy / 2 / F(z)e?* @Dt dzdt

form=1,2,3,7=1,...,5, 7> 0, and s > 0. By (€1,1) € U, we have uy(x), y11(z)/p1(x),

(3.26)

y31(x) /p1(z) > 61 for x € Q, HulHCQ( q) < M, and H“’21 HCQ( q) < 5. Therefore, by the inequality:
2|ab| < a? + b%, § < 01 and the definition of Z,,(-;7), we have

1 ) x . 1 .
LZa(eti) 2 M0 g2 6 (2 +z,%ﬁ) + 01550} (06) + o 2o i)

0, 3 (3.27)
> 5(91 6) (272711+Z72n2) (.’L‘,t;]) M m3(m L ] >hz Zml IL‘,t,j)

=1
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where (z,t) € Q, j = 1,...,5, m = 1,2,3, and h = min {61(01 — 6),1/M;} /2 > 0. Summing
(3.24) over m = 1,2, 3 and using (3.25), (3.26), and (3.27), we can obtain that

to
h / | Z (2, ta; )% 2@ t2) b2 4y / / | Z (2, t; 5) > 222 @)=t 2t

t
< Cs {/ | Z (z,t1;7)] 2 e?splety) "tldm+/2/ (x,t;7)] 2 28—t 45y

to
+s/ /]Z(a:,t;j)|2eQS“"(z’t)_"tdxdt+/ /]:(:U)ezss"(x’t)_”tdwdt}
t1 Q

+3C, / (z,t: ) + Y (2, t; 7)) ) 2P @ = gt

(3.28)

for j=1,...,5, 7> 0, and s > 0. Moreover, using (3.3)-(3.5) and repeating the procedure of
deriving (3.28) from (3.21)-(3.23), we can obtain

/yY 7,1 )| €29(@2) "th:H—nh/ /\Y 2,1 )2 2@

to
<Cﬁ{/ Y (2, 15 §)|? e25¢(@t1)= nt1d$—|—/ / (z,t;§)|? e2¢@D =t dodt

t
o [ [t i [ [ i v

—|—C'**/ /|Y z,t; §)[2 2@t 4 gdt
t1

(3.29)

for j =1,...,5, 7 >0 and s > 0. Adding (3.28) and (3.29), taking n > (3Cx + Cyx) /h, and

noting —7T < t; < to < T and (3.20), we can obtain that
| (1205 + ¥ @125 ) 902200
< { (126t Iy o3 )F) 52020000z 4 20 (3.30)
—|—/Q.7-'(ac)625¢($’t)dxdt+s/c2 (12, )1 + 1Y (28:)) ezw(‘c’t)dxdt}

forj=1,...,5and s > 0.

Taking to = 0, t; = —T, and s > 0 sufficiently large in (3.30), we can appply (3.19) to
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replace the last term in (3.30) and arrive at
/Q (122,00 ) +1Y (,0: ) ) €*#= 0tz
< Cq { /Q <\Z(x, —T;5) + Y (2, -T; j)]2> T dg 4 %e*%0
+/Qf(x)e2w<xvt>dxdt +/Q (s \Z (2, T )% + s° \Y(:J:,T;j)\Q) eQSSO(vaT)dx} (3.31)
< Cy {sgeQST/ﬂ (yZ(x,T;j)P + \Y(a:,T;j)\Q) dz + s3e*%0
+ /Q f(w)er“O(’”’t)dwdt}

for all sufficiently large s > 0 and j = 1,...,5. For the second inequality in (3.31), we have used

(3.16) and p(z,T) = ¢(z,-T) = eelle=a®P=pT2=3%) o = oo(A?=AT?) By (1.12), we see that
0<T<1L (3.32)

Furthermore, taking to =T, t; = 0 and s = 0 in (3.30), we see that

/Q (IZ(%,T;J')I2 + IY(x,T;j)|2> dx

(3.33)
< Co {/ (12(2,0: /) + Y (2,0 )) de + © +/ ]—"(x)dxdt}
Q Q
for j =1,...,5. Substituting (3.33) into (3.31), we obtain
(120 ¥ (@05 ) 20z < O {5
Q (3.34)
+/ .7:(1‘) (6254P($,t) + 83623T) dxdt—{—/ 83e2sT (‘Z(I,O,j)ﬁ + |Y(l’,0,j)|2> da:}
Q Q
for all sufficiently large s > 0 and j = 1,...,5. Here we have used T < . By
o(z,0) = ee(le=a®P=3%) > 1, z€Q (3.35)
and (3.32), we have
0 < 3T < 32T De259@0) for 1 € Q@ and  lim %7~ =, (3.36)
Therefore, we can eliminate the last term in (3.34). Then, summing (3.34) over j = 1,...,5,
we can obtain that
5
> [ (1205 + (@05 ) 24O
=179 (3.37)

< Cr2 {8362s¢@ + / F(z) <625‘p(z’t) + s?’eQST) dxdt}
Q
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for all sufficiently large s > 0.
One the other hand, by (1.10), (3.7), and the definitions of Z(-;7), Y (+;7), we have

2
S 10kfal” < Cus (Y (50D + [£7) in €,

k=1

2 2
> 00k fa]* < Cua (Z(',O; D+ [0kfal + |f4|2> in 2.
k=1

=1

k
Furthermore, by (3.8) and the definitions of Z(-;j), Y(+;j) and D;, we see that

fi y3(+,0;2) [01d1(2)] f2
D, f3 _ ys(+,0;3) Lo [01d1(3)] f2 Q.
I5 y3(-,0;4) [01d1(4)] f2
fe y3(-,0;5) [01d1(5)] f2
Ok f1 2k3(+, 05 2) Ok {[01d1(2)] f2} bil
D, Ok f3 _ 2k3(+, 05 3) N Il (3] f2} | (OuDy) f3 -
O f5 2k3(+, 05 4) O {[01d1(4)] f2} fs
. fo 2k3(+, 0;5) Ok {[01d1(5)] f2} fo
where k = 1,2. Noting the definitions of Fy, Fb, ..., Fg, f5, fg, we have

hfe=fe—Fs, Oafo=fs—Fy, in (L

Noting the definition of Dy and using (3.41) and (3.42), we can obtain that

z13(7,0;2) [01d1(2)] fo 07di1(2)
P s : s f
D, Bl | #s(4055) o [01d1(5)] fo Y 97d:(5) _( oDy ) f3
: 293(+,0;2) [01d1(2)] f5 01021 (2) Doy fs
Fy : : : fe
293(+,0;5) [01d1(5)] f5 0102d1(5)

in Q. Therefore, by (1.11), (3.40) and (3.43), we have

Jj=2

6 5
M IAP < Cs (Z V(-0 0)7 + |2 + f42) in Q,
=1
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5

8 6
SRR <O [ 126002+ S| e (3.45)
=1 =1

j=2
Furthermore, by (3.42), we have

2

Z 0kfo”> < Crr (|F1? + | Fol* + | fs|* + [fe]?) in (3.46)
=1

Then it follows from (3.2), (3.38), (3.39), (3.44), (3.45) and (3.46) that

5
F<Cs{> (12600 + Y 00P) + 1R+ AP i @ (3.47)
j=1

Consequently (3.37) and (3.47) imply
/ F(x)e*?@0dz < Cyg {/ (Ifo(@)]? + | fa(x)]?) 2@z
Q Q

(3.48)
+5%%*?0 +/ F(x) (625“"(”””5) + s3e2ST) dxdt}
Q

for all sufficiently large s > 0.
Noting (e, p1), (€2, u2) € U and the definitions of fa, f4, we can apply Proposition 2.2, so

that

/Q (f2(2) + Ifa(o) ) €00y < C20 / (Z 1Ok f2 () + |0 fal)] )) e¢(@0dg (3.49)
k=1
for all sufficiently large s > 0. By (3.2), (3.48) and (3.49), we can obtain
/Q]-'(a:)eZS‘P(x’O)dx < Coy {8362S¢@ + /QJ’:(SC) (62550(3”’” + sgeQST) dazdt} (3.50)
for all sufficiently large s > 0. By (3.35), we have
o(z,t) — ¢(x,0) = ee(le—a"1=2%) <e_9’8t2 - 1) <e 9 _q

for (x,t) € Q and consequently
erap(z,t) + g3e2sT — (625(@(:):,15)7@(:1:,0)) + 83628(T7§0(‘T’0))) e2sgp(x,0)

52
< (ezs | + 33e25(T1)> e25¢(z,0) (z,t) € Q.

Therefore we have

/ F(x) (eQS‘p(x’t) + 53623Y) dzdt
Q

T —oBt2
< {/ <e28 o8t _q +S3623(T—1)) dt} (/ f(x)GQSw(m,O)dx) '
- Q

17
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Noting (3.32), we have

T —oBt2
lim <e25 el + 53e25(T_1)> dt =0. (3.52)

s—oo J_p

It follows from (3.35), (3.50), (3.51), and (3.52) that
/ f(l')dx < 6_28/ f(x)e25<ﬁ($70)dx < C22536—2s+2s‘1>®
Q Q

for all sufficiently large s > 0. Hence, taking s > 0 sufficiently large, and noting (3.2), we obtain

that ,
[ 1@k ) o< [ Fae < cxe. (3.5
€ \i=1 Q
Moreover, by direct calculations, we can verify that uy — ps = e f1 and

S (vvst — 31) + v (22 + 721) f2 — 2 fs — s fil
(’712732 - ’752) (711731 - 7221)

€2 — €1 =

in  where [ = 1,2,3. Therefore we have

3

4
S llen — el 2 + i — pall 2y < Cos D ill 2y - (3.54)
=1 =1

In terms of (3.16), (3.20), (3.53), (3.54) and the definitions of Z(-;j), Y(;7) ( =1,...,5),

the proof of Theorem1.1 is complete.
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Appendix. Verification of the conditions for Carleman estimate (2.3)
We note that P and 8 > 0 are given by (2.2) and (1.7) respectively, 2° € R? \ Q and
T e (O, % + 19) where 0 < 9 < 1 is sufficiently small.

We set

P(z;¢) = =G + a1(2)(F + 2a2(2)1G + az(x)(3, € Q, ¢ = (1,2, (3) € C. (A1)
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Then, under the condition (a1, as,a3) € V, we have to verify that o (z,t)= |z — 2°> — Bt% —
satisfies (A.2), (A.3) and (A.5):

|(Vz1) (x,t)] >0, (z,t) € Q. (A.2)

3
1=3 @000) xtgé_)gf(xf )+ lim 7! Zakp = (€ 4+ VIR (Ve ) > KIEP (A3)
J,k=1

for some positive constant K, for any & = (£1,&2,&3) € R? and any point (x,t) of Q such that
P(x;€) =0, Z ag )(05¢)(x, ) = 0. (A4)
j

P (x; (V) (z,t)) #0 for all (x,t) € Q. (A.5)

Here & means the imaginary part. Then by Theorem 2.1 in [10] we see Carleman estimate (2.3).

First, by direct calculations, we have
(Vaa)(z,t) = (2(z1 — V), 2(z2 — 23), ~261),

(81827[))($at) = (81331[))(1',75) = (8283¢)($3t) =0,
(OF9) (w, 1) = (939) (. ) = 2, (83Y)(x,1) = =20,

(OrP)(2:¢) = (Trar)()CF + 2(0paz)CiCz + (Fas) ()¢5 for k= 1,2, (93P)(x;¢) =0,

ggu; ¢) = 201 (2)C1 + 2a(x)Co, Zg

Verification of (A.2)
By 20 € R?\ Q, we have |(V,)(z,t)]> = 4|z — 2°12 +458%2 > 0 for (z,t) € Q. Therefore (A.2)

has been verified.

(z;¢) = 2a(x)C1 + 2a3(x)C2, = (75¢) = —2(3.

or
9

Verification of (A.3)

By direct calculations, we have, for x € Q,
I=38 {[ 1(@)&1 + a2(2)&)* + [az()61 + as(x)&]” — ﬁfgz,}
+4Z {2[ar(@)& + ari1(2)&] [(Orar(x))(x1 — 29)& + (Oras(x))(z2 — 29)E2

+(Oraz(x)) ((x2 — 29)&1 + (21 — 29)&)]
— [(z1 — 2D)ar(x) + (z2 — 29)ar41(2)] [(Orar(2))EF + 2(Opaz(z))&1 6 + (Dpas(x))E3] } -
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We divide the right hand side of (A.6) into two terms: the first term I; is independent of as(x)

and the second term I is dependent on ag(z). That is, I = I + Iy where

I = 4{2a3(2)&} + 2a3(2)&3
+ay(z) [rar(2)] (21 — 29)& + 2a1(x) [Oraz(@)] (22 — 23)&1&
—a1(z) [Draz(@)] (w1 — 29)&5 + 2a3(x) [D2a1(2)] (1 — 2Y)&1 &
+a3(z) [D2a3(x)] (z2 — 29)&5 — a3(x) [Ora1 (x)] (x2 — 29)EF — 2883},

(A7)

I = 8a3(x) (& + £€3) + 4az(w) {4a1(2)&1& + 4ag(x)61&e + 2 [01a1 (3)] (21 — 29)61&

+[O1a3(@)] (w2 — 23)&3 — [Ora1 (2)] (x2 — 23)&F + [O2an (2)] (21 — 29)E7

+2[02a3(2)] (22 — 29)61&2 — [D2a3(2)] (21 — 29)&3 + 2[D1a2(2)] (21 — 29)&3

+2[D2a2(2)] (w2 — 29)&7 } + 8ai (2) [O1az(w)] (w2 — 29)&F + 8as(x) [D2a2(2)] (x1 — 27)&3-
4)

On the other hand, condition (A.4) implies that, for (z,t) € Q,

a1(2)&f + 2a2(2)&1 & + as(2)€3 = &5, (A.8)

a1(2)& (21 — 29) + az(2)&2(z2 — 29) = —Bt&s — az(x)&o(z1 — 27) — az(z)é1(z2 — 29).  (A.9)

Moreover, by Ha2H02(§) <6 <01, a1(), ag(x) > 01, z € Q and the inequality: 2|ab| < a® + b2,

we see by (A.8) that for z € Q,

& = a1(2)€F + 2a2(2)&1 &2 + as(2)&3
< al(l')&'% +as ( 52 \/0?7@3 ‘ vV a 51 V a3 2‘ (AlO)

< a1(2)é] + az(2)&3 + 9*1 [a1(2)€] + as(2)&3] < 2 [a1(2)€] + as(2)&3] -
Consequently, again by a1(z), asz(z)> 6, for z € Q, we have
4 [ar ()€} + a3(2)&3] > 2 [a1(2)€] + as(2)€3] + &5 > min {261, 1} [, 2 € Q. (A1)
Next we estimate I;. By (A.9), we obtain

a1(x) [D1a3(z)] (z2 — 29)&1& = ai(2) [01 (Inaz(x))] &1 [as(x)(xe — 29)&2)]
= ay(z) [0 (Inaz(x))] & [—ar ()& (21 — o) — Bigs (A.12)
—az(x)éx(x1 — 2) — ag(x)€1 (22 — 29)]
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as(z) [02a1(2)] (21 — 21)61&2 = as(2) [0z (In a1 (2))] & [ar(z) (21 — 21)&1]
= az(x) [0z (Inay ()] & [—as(z)6a(xo — 25) — Btés (A.13)
—az(w)&2 (w1 — 2) — az(z)&i (22 — 29)] .
Substituting (A.12) and (A.13) into (A.7) and arranging it according to £2, &3, 8 and ag(x), we
can obtain, for (x,t) € Q,

I = 4a1(2)&7 {2a1(x) + [Dra1(2)] (21 — 29) — az(z) [D2(In a1 (2))] (z2 — 29)

—2a1(z) [01(Inaz(x))] (x1 — 29) } + das(2)€3 {2a3(x) + [O2as(2)] (w2 — x9)

—ai(z) [01(Inaz(@))] (x1 — 27) — 2a3(2) [D2(Inax(z))] (v2 — 23) } — 86&3

—8ft{a1(z) [01(Inas(x))] &1&3 + as(z) [O2(Inar(z))] £263}

—8az(z) {a1(z) [01(Inaz())] (z1 — 29)&1&2 + ar(2) [01(In az(2))] (z2 — 29)€F
+az(x) [O2(Inar(2))] (z1 — 29)&35 + az(2) [O2(In a1 (2))] (w2 — 29)&i&a} -

(A.14)

Moreover, using (1.3), (A.lO), ||a1HCQ( ) ||a3H02( )< M1 ”an1||0( ) HV ag”c( )< Mo

||a2|\02(§)< 9, a1(x), ag(x)> 01, we have,

‘\/al x)&1+/as(x 52‘<a1 2)€7 + a3(2)&3, ’\/al f1§3’<a1 )& + &3,
‘\/a;; 5253)§a3 DG+, 10 [Inay(@)]] < %o for j=1,2 and k = 1,3,
Ora1(x) = a1(x)01 [Inay(x)], Oras(x) = asz(x)ds [Inas(z)], z € Q.

Therefore, for = € Q,

I > 401 ()¢} {201 (2) + aa (@) [0 (0 283 | (21 - 29)

—az(z) [02(In a1 (2))] (w2 — 29) — a1 (z) [01 (Inaz(2))] (21 — 21) }

+as(2)&3 {203(2) — as(x) [8 (0 23] (22— 49)

—~a1(z) [01(Inas(x))] (21 — 29) — a3(z) [a(In ax (x))] (22 — 23)} (A.15)
168 [a1 ()&} + as(2)€3] — ML [a (2)6F + a(0)€F + 263]

— SMMVATEAD [0 (2)63 + ag(w)&3] — ST [q, (2)62 + ag(w)é3]

> 4 (2)¢] + a3(2)e3] [0 — 4 — DMIIOT _ MVAZAN ([0 1))

For the second inequality, we have used (a1, ag,as) € V and (A.10). Furthermore we can similarly

estimate I to have

I > —85\/ A2 + )2

My 2Mo 0
A2 + )\2) 01 01

[a1(2)e] + az(z)€3], € Q. (A.16)
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Then (A.15) and (A.16) imply

I=11+ Iy > 4 [0y (2)} + as(2)¢3] [0 — 49 — Moy MiET
_2vA;1+/\25 (2\/ Aj‘ﬁsz + My 19\4711 +3Mo+0 + 91)}

> min {26, 1} [90 — 44 — SMoy/MD (% + 19) (A.17)
2/ (5, [ M 4 Moy B0+ 300 +261) | ¢

— min {261} [90 — M6 — 4 — BMoy N5 (% + 19)} €2, zeq.

For the second inequality and the last equality, we have used 0 < T' < A/\/B + 9, § < 04,
(A.11) and (1.6), respectively. By (1.7), we have 6y — M3d — 48 — (5Mov/MiA/61) /B >
0. Therefore, taking 0 < ¥ < [0y — M3 — 43 — (5Mov/Mi1A/01) /B / (5Mo\/M;i3/61), we obtain
0o — M3 — 43 — (5Mg\/ﬁ15/01) (A/\/B + 79) > 0. Hence we have completed the verification of
(A.3).

Verification of (A.5)

By 0 <9 < 1,8 <6 and (1.7), we have 39 + AvV/B — M0, — 5 < B+ AV/B— A0 — 6 < 0.
Consequently, noting 0 < T < % + 9, we can see A\ — 4 > Y + A/B > BT. Therefore,

noting Ha2||02( q) < 5, a1(z), ag(x) > 6; for x € Q and the inequality 2|ab| < a® + b%, we have

P(z; (V) (2, 1))
=4[ + ai(2) (21 — 2)* + 2a2(2) (21 — 29) (22 — 23) + az(2) (22 — 29)?]
> 4[-B*T? + 01 (z1 — 29)? — 8lz — 20| + 01 (w2 — 29)?]
= 4 [-B2T2 + (01 — ) & — 202 > 4 [~ 32T + (61 — 6) 2]
=4(AWb0 =6+ 6T) (W0, —6—-0T) >0, (z,t) €Q.
We have verified (A.5).
Thus we have completed the verification of the conditions (A.2), (A.3) and (A.5). We can

apply Theorem 2.1 in [10] to obtain Carleman estimate (2.3) in Q if (a1, az2,a3) € V.
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