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Abstract

X. Tolsa defined the space of type BMO for a positive Radon measure satisfy-
ing some growth condition on Rd. This space is very suitable for the Calderón-
Zygmund theory with non-doubling measures. Especially, the John-Nirenberg type
inequality remains true. In this paper we introduce the localized and weighted
version of this inequality and, as an application, we obtain some vector-valued
inequalities.

1 Introduction

In this paper we discuss the (weighted) John-Nirenberg type inequality for the sharp
maximal operator defined by X. Tolsa.

By “cube” Q ⊂ Rd we mean a compact cube whose edges are parallel to the
coordinate axes. Its center will be denoted by zQ and its side length by `(Q). For
ρ > 0, ρQ will denote a cube concentric to Q of sidelength ρ `(Q). Q(x, l) will denote
the cube centered at x and of sidelength l. Throughout this paper we assume that µ
is a positive Radon measure satisfying the growth condition :

µ(Q(x, l)) ≤ C0 ln for all x ∈ supp (µ) and l > 0, (1)

where C0 and n ∈ (0, d] are some fixed numbers. We emphasize that we do not assume
µ is doubling. By Q(µ) we will denote the set of all cubes Q ⊂ Rd with positive
µ-measures.

1 The first author is supported by Research Fellowships of the Japan Society for the Promotion of
Science for Young Scientists. The second author is supported by the 21st century COE program at
Graduate School of Mathematical Sciences, the University of Tokyo and by Fūjyukai foundation.
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It is well known that the doubling property of the underlying measure is a basic
condition in the classical Calderón-Zygmund theory of harmonic analysis. Recently,
more attention has been paid to non-doubling measures. It has been shown that many
results of this theory still hold without the doubling property.

To investigate the analytic capacity on the complex plane Nazarov, Treil and Vol-
berg developed the theory of the singular integrals for the measures with growth con-
dition [4], [5]. Tolsa proved subadditivity and bi-Lipschitz invariance of the analytic
capacity, which had been left open for a long time, [13], [14]. The research, which
was started from their pioneer works using the modified maximal operator, has been
developed in many ways : Tolsa defined for the growth measures RBMO (regular
bounded mean oscillation), the Hardy space H1(µ) and the Littlewood-Paley decom-
position [10], [11]. He also gave his H1(µ) space in terms of the grand maximal operator
[12]. Deng, Han and Yang defined for the growth measures the Besov spaces and the
Triebel-Lizorkin spaces [1], [2]. The authors defined for such measures the Morrey
spaces and established some inequalities [8], [9]. The aim of this paper is to introduce
the (weighted) John-Nirenberg type inequality for the growth measures, which can be
applied to the vector-valued sharp maximal inequality for the Morrey spaces.

Given two cubes Q ⊂ R, we denote

δ(Q,R) :=
∫ `(QR)

`(Q)

µ(Q(zQ, l))
ln

dl

l
,

where QR denotes the smallest cube concentric to Q containing R. We say that Q
is a doubling cube if µ(2Q) ≤ 2d+1 µ(Q). By Q(µ, 2) we will denote the set of all
doubling cubes. Given Q ∈ Q(µ), we set Q∗ as the smallest doubling cube R of the
form R = 2jQ with j = 0, 1, . . ..2

Our BMO here is RBMO (regular bounded mean oscillation) introduced by Tolsa
[10], which are the suitable substitutes for the classical spaces. Denoting the average

of f over the cube Q by mQ(f) :=
1

µ(Q)

∫

Q
f dµ, we say that f ∈ L1

loc(µ) is an element

of RBMO if it satisfies

‖f‖∗ := sup
Q∈Q(µ)

1

µ
(

3
2Q

)
∫

Q
|f(x)−mQ∗(f)| dµ(x) + sup

Q⊂R
Q,R∈Q(µ,2)

|mQ(f)−mR(f)|
1 + δ(Q,R)

< ∞.

(Many other equivalent norms may be found in [10, Section 2].) The advantage of
RBMO would be the following John-Nirenberg lemma due to Tolsa.

Theorem 1 Let f ∈RBMO and Q ∈ Q(µ).

2 By the growth condition (1) there are a lot of big doubling cubes. Precisely speaking, given any
cube Q ∈ Q(µ), we can find j ∈ N with 2jQ ∈ Q(µ, 2). Meanwhile, for µ-a.e. x ∈ Rd, there exists a
sequence of doubling cubes {Qk}k centered at x with `(Qk) → 0 as k →∞. So we can say that there
are a lot of small doubling cubes too (see [10]).
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(1) There exist positive constants C and C ′ independent of f so that, for every λ > 0,

µ {x ∈ Q | |f(x)−mQ∗(f)| > λ} ≤ C µ

(
3
2
Q

)
exp

(
− C ′λ
‖f‖∗

)
.

(2) Let q ∈ [1,∞). Then there exists a constant C independent of f so that, for every
cube Q ∈ Q(µ),


 1

µ
(

3
2Q

)
∫

Q
|f(x)−mQ∗(f)|q dµ(x)




1
q

≤ C ‖f‖∗.

The purpose of this paper is to establish the localized and weighted version of
Theorem 1 (2) (Theorem 2). And, as a corollary, we obtain a vector-valued extension
of Theorem 1 (2) (Corollary 13).

For f ∈ L1
loc(µ), we define two maximal operators also due to Tolsa : The sharp

maximal operator M ]f(x) is defined as

M ]f(x) := sup
x∈Q∈Q(µ)

1

µ
(

3
2Q

)
∫

Q
|f(x)−mQ∗(f)| dµ(x) + sup

x∈Q⊂R
Q,R∈Q(µ,2)

|mQ(f)−mR(f)|
1 + δ(Q,R)

and Nf(x) is defined as Nf(x) := sup
x∈Q∈Q(µ,2)

mQ(|f |). It is well known that N is a

bounded operator on Lp(µ) with p > 1 and by ‖N‖p we will denote the operator
norm. Since there are a lot of small doubling cubes, we have also a pointwise estimate
: |f(x)| ≤ Nf(x) for µ-a.e. x ∈ Rd. In this paper the weight w will be a non-negative
function on Rd satisfying a (mild) condition :

w ∈ Lp0(µ) for some p0 > 1 (2)

and w(A), A ⊂ Rd, will denote
∫

A
w(x) dµ(x). We shall prove the following theorem.

Theorem 2 Suppose that w satisfies (2). For every f ∈ L1
loc(µ), Q0 ∈ Q(µ), q ∈ [1,∞)

and α ∈ (0, 1), there exists a constant C independent of f such that

(∫

Q0

|f(x)−m(Q0)∗(f)|q w(x)α dµ(x)
) 1

q ≤ C

(∫
3
2
Q0

M ]f(x)q W (x)α dµ(x)

) 1
q

.

Here, denoting N j as the j-th composition of the operator N , we put

W (x) :=
∞∑

j=1

(2β)1−jN jw(x), β ≥ ‖N‖p0 . (3)

For the weighted inequalities on nonhomogeneous spaces, we refer to [3] and [7].
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2 Proof of Theorem 2

The letter C will be used for constants that may change from one occurrence to
another. Constants with subscripts, such as C0 and C1, do not change in different
occurrences.

The cubes with generation In the sequel we follow [12] with minor modifications.

Lemma 3 The following properties hold :

(1) For ρ > 1 and Q ∈ Q(µ), we have δ(Q, ρQ) ≤ C0 log ρ.

(2) Let Q ∈ Q(µ). Then δ(Q,Q∗) ≤ C0 2n+1 log 2.

(3) Let Q ∈ Q(µ), k0 ∈ N and α > 0. Suppose that, for some θ > 0,

α ≤ µ(Q) ≤ µ(2k0Q) ≤ θ α.

Then δ(Q, 2k0Q) ≤ 2n log 2 · θ C0 cn, where cn :=
∞∑

k=0

2−nk.

Proof. (1) follows easily from the growth condition. We prove (2) first. Let

Q∗ = 2k1Q. The dyadic argument yields that δ(Q, 2k1Q) =
∫ `(2k1Q)

`(Q)

µ(Q(zQ, l))
ln

dl

l
≤

2n log 2
k1∑

k=1

µ(2kQ)
`(2kQ)n

. By the growth condition we have d − n ≥ 0. The definitions of

Q∗ and the doubling cubes imply 2d+1 µ(2k−1Q) ≤ µ(2kQ), k = 1, 2, . . . , k1. These
observations yield

δ(Q, 2k1Q) ≤ 2n log 2
µ(2k1Q)
`(2k1Q)n

k1∑

k=1

(2n−d−1)k1−k ≤ C0 2n+1 log 2.

What remains to be done is (3). It follows from the dyadic argument and the assump-
tion that

δ(Q, 2k0Q) ≤ 2n log 2
k0∑

k=1

µ(2kQ)
`(2kQ)n

≤ 2n log 2 · θ α

`(Q)n

k0∑

k=1

2−nk ≤ 2n log 2 · θ C0 cn.

The proof of the lemma is concluded.

Given two cubes Q ⊂ R, we denote

δ̃(Q,R) :=
∫ `(QR)

`(Q)

µ(Q(zQ, l))
ln

dl

l
,
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where QR denotes the largest cube concentric to Q contained in R. We will treat points
x ∈ supp (µ) as if they were cubes (with `(x) = 0). So, for x ∈ supp (µ) and some cube
R 3 x, the notations δ̃(x,R) and xR make sense.

Let C1 = C0 2n+1 log 2. Fix Q0 ∈ Q(µ) and let Q1 =
3
2
Q0.

Lemma 4 If α > 3C1, then, for each x ∈ Q0 ∩ supp (µ) with δ̃(x,Q1) > α, there exists
some doubling cube Q ⊂ Q1 centered at x satisfying

|δ̃(Q,Q1)− α| ≤ 2C1.

Proof. Let R be a unique cube of the form 2−kxQ1 , k = 1, 2, . . ., such that

δ̃(2R, Q1) ≤ α < δ̃(R, Q1).

Then α < δ̃(R,Q1) = δ̃(R, 2R) + δ̃(2R,Q1) ≤ C0 log 2 + δ̃(2R,Q1). This implies 2C1 ≤
δ̃(2R, Q1) and hence, by Lemma 3 (2), Q := (2R)∗ ⊂ Q1. It follows by Lemma 3
again that α < δ̃(R, Q1) = δ̃(R, Q) + δ̃(Q,Q1) ≤ 2C1 + δ̃(Q,Q1), and that δ̃(Q,Q1) ≤
δ̃(2R, Q1) ≤ α. Thus, we have |δ̃(Q,Q1)− α| ≤ 2C1.

Fix A > 3C1. Let m ≥ 1 be some fixed integer and x ∈ Q0∩ supp (µ). If δ̃(x,Q1) >
mA, we denote by Qx,m a doubling cube centered at x and contained in Q1 such that

|δ̃(Qx,m, Q1)−mA| ≤ 2C1.

The cubes Qx,m, x ∈ Q0 ∩ supp (µ), are called cubes of the m-th generation. The set
of all cubes with m-th generation will be denoted by Dm and the set

⋃
m Dm will be

denoted by D.

Lemma 5 Assume that A is big enough.

(1) For every Qx,m, Qx,m+1 ∈ D, we have 100Qx,m+1 ⊂ Qx,m.

(2) If x, y ∈ supp (µ) are such that Qx,m ∩Qy,m+1 6= ∅, then `(Qy,m+1) ≤ 1
8

`(Qx,m).

Proof. To prove (1) we resort to the reduction-to-the-absurdity argument. Suppose
that Qx,m ⊂ 100Qx,m+1. Then

(m + 1)A− 2C1 ≤ δ̃(Qx,m+1, Q1) = δ̃(Qx,m+1, Qx,m) + δ̃(Qx,m, Q1)
≤ δ̃(Qx,m+1, 100Qx,m+1) + mA + 2C1 ≤ C0 log 100 + mA + 2C1.

This implies A ≤ C0 log 100 + 4C1. Thus, we have Qx,m ⊃ 100Qx,m+1, if A >
C0 log 100 + 4C1.

We now turn to the proof of (2). Put P = Qy,m+1 and P ′ = Qx,m. If `(P ) >
1
8
`(P ′),

then P ′ ⊂ 24P . As a result, defining R := Q(x, 48`(P )), we have P, P ′ ⊂ 24P ⊂ R ⊂
72P ⊂ Q1 and hence

δ̃(P, R) ≤ δ(P, 72P ) ≤ C. (4)
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We now claim that

S := |δ̃(PR, Q1)− δ̃(R,Q1)| ≤ C. (5)

We decompose S as

S =

∣∣∣∣∣
∫ `(P Q1 )

`(P R)

µ(Q(y, l))
ln

dl

l
−

∫ `(RQ1 )

`(R)

µ(Q(x, l))
ln

dl

l

∣∣∣∣∣

≤
∫ `(R)

`(P R)

µ(Q(y, l))
ln

dl

l
+

∣∣∣∣∣
∫ min{`(P Q1 ),`(RQ1)}

`(R)
(µ(Q(y, l))− µ(Q(x, l)))

dl

ln+1

∣∣∣∣∣

+
∫ max{`(P Q1 ),`(RQ1 )}

min{`(P Q1 ),`(RQ1 )}

(
µ(Q(y, l))

ln
+

µ(Q(x, l))
ln

)
dl

l
=: S1 + S2 + S3.

The integrals S1 and S3 are easily estimated from above by some constant C. What
remains to be majorized is S2. We bound S2 from above by

S2 ≤
∫ ∞

`(R)
µ(Q(y, l)∆Q(x, l))

dl

ln+1
=

∫ ∞

`(R)

∫

Rd
χQ(y,l)∆Q(x,l)(z) dµ(z)

dl

ln+1
,

where χA is the indicator function of a set A ⊂ Rd. Let |z|∞ := max{|z1|, |z2|, . . . , |zd|}.
Then a simple geometric observation tells us that

χQ(y,l)∆Q(x,l)(z) = 0 if l /∈ [min{|z − x|∞, |z − y|∞}, max{|z − x|∞, |z − y|∞}] .
This observation and Fubini’s theorem yield

S2 ≤ C

∫

Rd\P

∣∣∣∣
1

|z − x|∞n
− 1
|z − y|∞n

∣∣∣∣ dµ(z)

≤ C

∫

|z−y|∞≥ `(P )
2

|y − x|∞ dµ(z)
|z − y|∞n+1

≤ C
|y − x|∞

`(P )
≤ C.

This proves (5).

From (4) and (5) we have

δ̃(P,Q1) = δ̃(P,R) + δ̃(PR, Q1)
≤ δ̃(P, R) + |δ̃(PR, Q1)− δ̃(R, Q1)|+ δ̃(R,Q1) ≤ δ̃(P ′, Q1) + C

and hence (m + 1)A ≤ mA + 4C1 + C. Thus, if A > 4C1 + C, we see that `(Qy,m+1) ≤
1
8

`(Qx,m).

The weight W Now we shall show the simple properties of the weight W defined
by (3). To begin with we notice that N is subadditive and W satisfies (so called) A1

condition :
NW (x) ≤ 2β W (x) for µ-a.e. x ∈ Rd. (6)

Indeed,

NW (x) ≤
∞∑

j=1

(2β)1−jN j+1w(x) = 2β





∞∑

j=1

(2β)1−jN jw(x)−Nw(x)



 ≤ 2β W (x).

This implies the following lemma.
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Lemma 6 Let α ∈ (0, 1) and Q ∈ Q(µ, 2). Then, for any µ-measurable subset A ⊂ Q,
we have

Wα(A)
Wα(Q)

≤ (2β)α
(

µ(A)
µ(Q)

)1−α

.

Proof. It follows by Hölder’s inequality and (6) that

Wα(A) =
∫

A
Wα(x) dµ(x) ≤

(∫

A
W dµ

)α

µ(A)1−α

≤ W (Q)αµ(A)1−α = µ(Q)
(

W (Q)
µ(Q)

)α (
µ(A)
µ(Q)

)1−α

≤
(∫

Q
NW (x)α dµ(x)

)
·
(

µ(A)
µ(Q)

)1−α

≤ (2β)α Wα(Q) ·
(

µ(A)
µ(Q)

)1−α

.

This proves the lemma.

Proof of Theorem 2 Choose A large enough so that Lemma 5 holds and fix Dm

and D. Letting F (x) := |f(x)−m(2Q0)∗(f)|, we consider a maximal function

NDF (x) := sup
x∈Q∈D

mQ(F ), x ∈ Q1.

If x ∈ Q1 \
⋃

Q∈D Q, it will be understood that NDF (x) is equal to zero.

Claim 7 For µ-a.e. x ∈ Q0 ∩ supp (µ) we have

|f(x)−m(Q0)∗(f)| ≤ C M ]f(x) + F (x), F (x) ≤ C
(
M ]f(x) + NDF (x)

)
.

Proof. Since δ((Q0)∗, (2Q0)∗) ≤ C, the first inequality is obvious. So we prove the
second one. To begin with, we notice that, for µ-a.e. x ∈ Q0 ∩ supp (µ), there exists
a sequence of doubling cubes {Qk}k centered at x with `(Qk) → 0 as k →∞ and (see
[10])

lim
k→∞

mQk
(F ) = F (x). (7)

Fix x ∈ Q0∩supp (µ). If δ̃(x,Q1) = ∞, {Qx,m} satisfies `(Qx,m) → 0 as m →∞ and
hence F (x) ≤ NDF (x). If δ̃(x,Q1) ∈ (mA, (m + 1)A], for sufficiently small doubling
cube Q centered at x and contained in Qx,m, we have δ(Q,Qx,m) ≤ C. Thus, we see
that

mQ(F ) = mQ(|f −m(2Q0)∗(f)|)
≤ mQ(|f −mQ(f)|) + |mQ(f)−mQx,m(f)|+ |mQx,m(f)−m(2Q0)∗(f)|

≤ C

(
mQ(|f −mQ(f)|) +

|mQ(f)−mQx,m(f)|
1 + δ(Q,Qx,m)

)
+ mQx,m(|f −m(2Q0)∗(f)|)

≤ C
(
M ]f(x) + NDF (x)

)
.
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If δ̃(x,Q1) ≤ A, for sufficiently small doubling cube Q centered at x and contained in
Q1, we have δ̃(Q, (2Q0)∗) ≤ C and hence

mQ(F ) ≤ mQ(|f −mQ(f)|) + |mQ(f)−m(2Q0)∗(f)| ≤ C M ]f(x).

These observations and (7) yield the claim.

From Claim 7 and the fact that w(x) ≤ W (x) for proving the theorem it suffices to
show the following claim.

Claim 8 We have
(∫

Q1

NDF (x)q W (x)α dµ(x)
) 1

q ≤ C

(∫

Q1

M ]f(x)q W (x)α dµ(x)
) 1

q

.

We shall prove Claim 8 by means of the good-λ inequality.

Lemma 9 If η > 0 is sufficiently small, there exists a constant C so that, for every
λ > 0,

Wα{x ∈ Q1 |NDF (x) > 2λ, M ]f(x) ≤ ηλ} ≤ C η1−α Wα{x ∈ Q1 |NDF (x) > λ}.

Proof. Choose η > 0 sufficiently small. We set

Eλ := {x ∈ Q1 |NDF (x) > 2λ, M ]f(x) ≤ ηλ} and Ωλ := {x ∈ Q1 |NDF (x) > λ}.
We may assume that Eλ is not empty. For all x ∈ Eλ, we can select a doubling cube

Qx = Qz(x),m(x) ∈ D, Qx 3 x, that satisfies mQx(F ) >
3
2
λ. If m(x) = 1, we have

δ(Qx, (2Q0)∗) < C and hence

mQx(F ) ≤ mQx(|f −mQx(f)|) + |mQx(f)−m(2Q0)∗(f)| ≤ C M ]f(x) ≤ C ηλ.

As a result we obtain C ηλ >
3
2
λ, which is not possible for sufficiently small η. By

replacing younger one, if necessary, we may assume that mQz,m(F ) <
3
2
λ for any cube

Qz,m 3 x with m < m(x).

Let Sx = Qz(x),m(x)−1. We claim that if η is small enough, we have mSx(F ) > λ.
Indeed, noticing δ(Qx, Sx) ≤ 2A, we see that

mQx(F )
≤ mQx(|f −mQx(f)|) + |mQx(f)−mSx(f)|+ |mSx(f)−m(2Q0)∗(f)|
≤ C M ]f(x) + mSx(F ) ≤ C η λ + mSx(F ).

This yields mSx(F ) ≥ 3
2
λ− C ηλ > λ. Thus, we have

3
2
λ > mSx(F ) > λ (8)
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for sufficient small η.

Notice that by Lemma 5 (1) Qx ⊂ 1
100

Sx. By Besicovitch’s covering lemma there

exists a countable subset {xj}j∈J ⊂ Eλ such that

Eλ ⊂
⋃

j∈J

Sxj and
∑

j∈J

χSxj
≤ C χΩλ

. (9)

To simplify the notation, we write Sj = Sxj and Qj = Qxj . Now we claim the following :

Claim 10 If η is small enough, then

Wα(Sj ∩ Eλ) ≤ C η1−α Wα(Sj) for all j ∈ J.

Let us temporarily assume Claim 10. Then (9) and the claim lead us to

Wα(Eλ) ≤
∑

j∈J

Wα(Sj ∩ Eλ) ≤ C η1−α
∑

j∈J

Wα(Sj) ≤ C η1−α Wα(Ωλ).

Consequently, we are left with the task of proving the claim.

Proof of Claim 10. By Lemma 6 it suffices to show that

µ(Sj ∩ Eλ) ≤ C η µ(Sj).

Let y ∈ Sj ∩ Eλ. There exists a doubling cube Ry = Qz(y),m(y) ∈ D, Ry 3 y, that

satisfies mRy(F ) > 2λ. We show that for sufficiently small η, `(Ry) ≤ 1
8
`(Sj). From

Lemma 5 (2) we may assume that m(y) < m(xj). By Lemma 5 (1) if `(Ry) >
1
8
`(Sj),

then Qz(y),m(y)−1 ⊃ Sj ⊃ Qj . This and m(y)−1 < m(xj) imply
3
2
λ > mQz(y),m(y)−1

(F ).

Notice that mRy(F ) can be bounded from above by

mRy(|f −mRy(f)|) + |mRy(f)−mQz(y),m(y)−1
(f)|+ mQz(y),m(y)−1

(|f −m(2Q0)∗(f)|)

and, as a consequence, it can be bounded by C M ]f(y) + mQz(y),m(y)−1
(F ). Thus, it

follows that
3
2
λ > mQz(y),m(y)−1

(F ) ≥ mRy(F ) − C M ]f(y) ≥ 2λ − C ηλ. Hence, if

η <
1

3C
, we must have `(Ry) ≤ 1

8
`(Sj). Thus,

ND

(
χ 5

4
Sj

F
)

(y) > 2λ for all y ∈ Sj ∩ Eλ.

From (8) we obtain that |mSj (f)−m(2Q0)∗(f)| ≤ 3
2
λ, and that

ND

(
χ 5

4
Sj

(f −mSj (f))
)

(y) >
λ

2
for all y ∈ Sj ∩ Eλ.
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It follows by using the weak-(1, 1) boundedness of ND that

µ(Sj ∩ Eλ) ≤ µ

{
y |ND

(
χ 5

4
Sj

(f −mSj (f))
)

(y) >
λ

2

}
≤ C

λ

∫
5
4
Sj

|f −mSj (f)| dµ.

Noticing that

1

µ
(

15
8 Sj

)
∫

5
4
Sj

|f −mSj (f)| dµ

≤ 1

µ
(

15
8 Sj

)
∫

5
4
Sj

|f −m( 5
4
Sj)∗(f)| dµ +

∣∣∣∣m( 5
4
Sj)∗(f)−mSj (f)

∣∣∣∣ ≤ C ηλ,

we see that µ(Sj ∩ Eλ) ≤ C η µ(2Sj) ≤ C η µ(Sj).

We return to the proof of Claim 8.

Proof of Claim 8. Using Lemma 9 with η > 0 sufficiently small, for L ≥ 1 we see
that

1
2

(∫ L

0
qλq−1Wα{x ∈ Q1 |NDF (x) > λ} dλ

) 1
q

=

(∫ L/2

0
qλq−1Wα{x ∈ Q1 |NDF (x) > 2λ} dλ

) 1
q

≤
(∫ L/2

0
qλq−1Wα{x ∈ Q1 |NDF (x) > 2λ, M ]f(x) ≤ ηλ} dλ

) 1
q

+

(∫ L/2

0
qλq−1Wα{x ∈ Q1 |NDF (x) > 2λ, M ]f(x) > ηλ} dλ

) 1
q

≤
(

C η1−α
∫ L

0
qλq−1Wα{x ∈ Q1 |NDf(x) > λ} dλ

) 1
q

+
(∫ ∞

0
qλq−1Wα{x ∈ Q1 |M ]f(x) > ηλ} dλ

) 1
q

=

(
C η1−α

∫ L

0
qλq−1Wα{x ∈ Q1 |NDF (x) > λ} dλ

) 1
q

+ η−1
(∫

Q1

(M ]f)q Wα dµ

) 1
q

.

When η is sufficiently small, we can bring the first term of the right side to the left.
The result is

(∫ L

0
qλq−1Wα{x ∈ Q1 |NDF (x) > λ} dλ

) 1
q

≤ C

(∫

Q1

(M ]f)q Wα dµ

) 1
q

.

Letting L →∞, we obtain the claim.

10



3 Application to vector-valued inequalities

Applying Theorem 2, we can obtain some vector-valued inequalities. To denote
the vector-valued inequality we adopt the following notation. For a sequence of µ-
measurable functions {fj}∞j=1 and q, r ≥ 1, we denote

‖fj(x) | lr‖ :=



∞∑

j=1

|fj(x)|r



1
r

, ‖fj |Lq(lr, µ)‖ :=
(∫

Rd
‖fj(x) | lr‖q dµ(x)

) 1
q

.

First, we need the following lemma (see [6]).

Lemma 11 If q, r ∈ (1,∞), then

‖Nfj |Lq(lr, µ)‖ ≤ Cq,r ‖fj |Lq(lr, µ)‖ .

Proposition 12 Let q, r ∈ (1,∞) and let {fj}∞j=1 be a sequence of L1
loc(µ) functions.

Then there exists a constant C independent of {fj} so that, for every Q0 ∈ Q(µ),

(∫

Q0

‖fj(x)−m(Q0)∗(fj) | lr‖q dµ(x)
) 1

q ≤ C

(∫
3
2
Q0

‖M ]fj(x) | lr‖q dµ(x)

) 1
q

.

Proof. Passage to the limit allows us to assume fj ≡ 0 for large j, say j ≥ N ,
as long as we obtain the constants independent of N . Take s ∈ (1, min(q, r)) and let
t = q/s, u = r/s. Take α slightly smaller than 1 so that 1 < 1/α < min(t′, u′). By
using a duality argument we shall estimate

(∫

Q0

‖fj(x)−m(Q0)∗(fj) | lr‖q dµ(x)
) s

q

=
(∫

Q0

‖|fj(x)−m(Q0)∗(fj)|s | lu‖t dµ(x)
) 1

t

.

Take a vector-valued weight (w1, w2, . . .) such that suppwj ⊂ Q0 and
∥∥∥wj

α |Lt′(lu
′
, µ)

∥∥∥ = 1. (10)

Then it follows by Theorem 2 and Hölder’s inequality that
∫

Q0

‖|fj(x)−m(Q0)∗(fj)|s wj
α(x) | l1‖ dµ(x)

≤
∫

3
2
Q0

‖M ]fj(x)s Wj
α(x) | l1‖ dµ(x)

≤
(∫

3
2
Q0

‖M ]fj(x)s | lu‖t dµ(x)

) 1
t

×
(∫

3
2
Q0

‖Wj
α(x) | lu′‖t′ dµ(x)

) 1
t′

,

11



where Wj(x) :=
∞∑

k=1

(2 β)1−kNkwj(x). Choose β as the constant Cαt′,αu′ in Lemma 11.

Then Lemma 11, the definition of Wj and (10) yield
(∫

3
2
Q0

‖Wα
j (x) | lu′‖t′ dµ(x)

) 1
αt′

=

(∫
3
2
Q0

‖Wj(x) | lαu′‖αt′ dµ(x)

) 1
αt′
≤ C.

These prove the proposition.

The following corollary is a vector-valued extension of Theorem 1 (2).

Corollary 13 Let fj ∈RBMO. For any cube Q0 ∈ Q(µ) and q, r ∈ (1,∞), there
exists a constant C independent of fj such that


 1

µ
(

3
2Q0

)
∫

Q0

‖fj(x)−m(Q0)∗(fj) | lr‖q dµ(x)




1
q

≤ C sup
x∈Rd

‖M ]fj(x) | lr‖.

We apply Proposition 12 to obtain a sharp maximal inequality on the Morrey spaces.

Let k > 1 and 1 ≤ q ≤ p < ∞. We define the Morrey space Mp
q(k, µ) as

Mp
q(k, µ) :=

{
f ∈ Lq

loc(µ) | ‖f |Mp
q(k, µ)‖ < ∞

}
,

where

‖f |Mp
q(k, µ)‖ := sup

Q∈Q(µ)
µ(k Q)

1
p
− 1

q

(∫

Q
|f |q dµ

) 1
q

. (11)

By applying Hölder’s inequality to (11) it is easy to see that

Lp(µ) = Mp
p(k, µ) ⊂Mp

q1
(k, µ) ⊂Mp

q2
(k, µ) (12)

for 1 ≤ q2 ≤ q1 ≤ p < ∞. Let k1 > k2 > 1. Then Mp
q(k1, µ) and Mp

q(k2, µ) coincide as
a set and their norms are mutually equivalent. More precisely, we have (see [8])

‖f |Mp
q(k1, µ)‖ ≤ ‖f |Mp

q(k2, µ)‖ ≤ Cd

(
k1 − 1
k2 − 1

)d

‖f |Mp
q(k1, µ)‖. (13)

Nevertheless, for definiteness, we will assume k = 2 in the definition and denote
Mp

q(2, µ) by Mp
q(µ). For a sequence of µ-measurable functions {fj}∞j=1, we also denote

∥∥∥fj |Mp
q(l

r, µ)
∥∥∥ :=

∥∥∥ ‖fj | lr‖ |Mp
q(µ)

∥∥∥ .

The following proposition is a vector-valued extension of [9, Corollary 1.5].

Proposition 14 Let {fj}∞j=1 be a sequence of L1
loc(µ) functions. Suppose that 1 < q ≤

p < ∞, r ∈ (1,∞) and there exists an increasing sequence of concentric doubling cubes
I1 ⊂ I2 ⊂ . . . such that

lim
k→∞

mIk
(fj) = 0 for all j ∈ N and

∞⋃

k=1

Ik = Rd. (14)

12



Then there exists a constant C independent of {fj} such that
∥∥∥fj |Mp

q(l
r, µ)

∥∥∥ ≤ C
∥∥∥M ]fj |Mp

q(l
r, µ)

∥∥∥ .

Proof. We may assume that fj ≡ 0 for sufficiently large j. Letting R ∈ Q(µ), we

shall estimate µ(2R)
1
p
− 1

q

(∫

R
‖fj(x) | lr‖q dµ(x)

) 1
q

. It follows by Proposition 12 that

µ(2R)
1
p
− 1

q

(∫

R
‖fj | lr‖q dµ

) 1
q

≤ µ(2R)
1
p
− 1

q

(∫

R
‖fj −mR∗(fj) | lr‖q dµ

) 1
q

+ µ(R)
1
p ‖mR∗(fj) | lr‖

≤ C µ(2R)
1
p
− 1

q

(∫
3
2
R
‖M ]fj | lr‖q dµ

) 1
q

+ µ(R)
1
p ‖mR∗(fj) | lr‖

≤ C
∥∥∥M ]fj |Mp

q(l
r, µ)

∥∥∥ + µ(R)
1
p ‖mR∗(fj) | lr‖.

So we concentrate on estimating :

µ(R)
1
p ‖mR∗(fj) | lr‖. (15)

We choose doubling cubes inductively. Let R1 = R∗ and Rm+1 = (2Rm)∗, m ∈ N.
Let d be the distance between the center of R1 and that of I1. We select m1 ∈ N so
big that `(Rm1) ≥ 2d and there exists some Iκ such that Rm1 ⊂ Iκ, Rm1+1 6⊂ Iκ and

µ(R)
1
p ‖mIκ(fj) | lr‖ ≤

∥∥∥ ‖M ]fj | lr‖ |Mp
q(µ)

∥∥∥ .

Then simple geometric observation shows that Rm1 ⊂ Iκ ⊂ Rm1+3 and hence

δ(Rm1 , Iκ) ≤ δ(Rm1 , Rm1+3) ≤ C. (16)

We put for i = 1, 2, . . .

Mi :=
{
m ∈ N ∩ [1,m1] | 2i−1µ(R) ≤ µ(Rm) < 2iµ(R)

}
.

Deleting all emptysets from {Mi}i=1,2,..., we obtain {Mi}i=i1,i2,...,iκ′ . Set a(ik) :=
minMik and b(ik) := maxMik . Then we notice that Rb(iκ′ ) = Rm1 .

For k = 1, 2, . . . , κ′ − 1, from Lemma 3 we see that

δ(Ra(ik), Rb(ik)), δ(Rb(ik), Ra(ik+1)) ≤ C

and hence δ(Ra(ik), Ra(ik+1)) ≤ C. This implies that

µ(R)
1
p

∥∥∥mRa(ik)
(fj)−mRa(ik+1)

(fj) | lr
∥∥∥

≤ C 2−
ik
p µ(Ra(ik))

1
p
− 1

q

(∫
Ra(ik)

‖M ]fj | lr‖q dµ(x)
) 1

q ≤ C 2−
ik
p

∥∥∥M ]fj |Mp
q(l

r, µ)
∥∥∥ .
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Similarly, from (16) we also have

µ(R)
1
p

∥∥∥mRa(iκ′ )
(fj)−mIκ(fj) | lr

∥∥∥ ≤ C 2−
iκ′
p

∥∥∥M ]fj |Mp
q(l

r, µ)
∥∥∥ .

Using triangle inequality to (15), we finally have

µ(R)
1
p ‖mR∗(fj) | lr‖

≤ µ(R)
1
p

κ′−1∑

k=1

∥∥∥mRa(ik)
(fj)−mRa(ik+1)

(fj) | lr
∥∥∥

+ µ(R)
1
p

{∥∥∥mRa(iκ′ )
(fj)−mIκ(fj) | lr

∥∥∥ + ‖mIκ(fj) | lr‖
}

≤ C




κ′∑

k=1

2−
ik
p




∥∥∥M ]fj |Mp
q(l

r, µ)
∥∥∥ + µ(R)

1
p ‖mIκ(fj) | lr‖

≤ C
∥∥∥M ]fj |Mp

q(l
r, µ)

∥∥∥ .

The proof is completed.
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