
UTMS 2005–44 November 29, 2005

Uniqueness and stability of determining

the residual stress by one measurement

by

Victor Isakov, Jenn-Nan Wang

and Masahiro Yamamoto

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



Uniqueness and stability of determining the residual
stress by one measurement

Victor Isakov∗ Jenn-Nan Wang† Masahiro Yamamoto‡

Abstract

In this paper we prove a Hölder and Lipschitz stability estimates of de-
termining the residual stress by a single pair of observations from a part of
the lateral boundary or from the whole boundary. These estimates imply first
uniqueness results for determination of residual stress from few boundary mea-
surements.

1 Introduction

We consider an elasticity system with residual stress. Let Ω be an open bounded do-
main in R3 with smooth boundary ∂Ω. The residual stress is modelled by a symmetric
second-rank tensor R(x) = (rjk(x))3

j,k=1 ∈ C7(Ω) which is divergence free

∇ ·R = 0 in Ω (1.1)

and satisfies the boundary condition

Rν = 0 on ∂Ω, (1.2)

where ∇ ·R is a vector-valued function with components given by

(∇ ·R)j =
3∑

k=1

∂krjk 1 ≤ j ≤ 3.

In this paper x ∈ R3 and ν = (ν1, ν2, ν3)
> is the unit outer normal vector to ∂Ω.

Here and below, differential operators ∇ and ∆ without subscript are with respect
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to x variables. Let u(x, t) = (u1, u2, u3)
> : Q → R3 be the displacement vector in

Q := Ω× (−T, T ). We assume that u(x, t) solves the initial boundary value problem:

ARu := ρ∂2
t u− (λ + µ)∇(∇ · u)− µ∆u−∇ · ((∇u)R) = 0 in Q, (1.3)

u = u0(x), ∂tu = u1(x) on Ω× {0}, (1.4)

u = g0 on ∂Ω× (−T, T ), (1.5)

where ρ is density and λ and µ are Lamé constants satisfying

0 < µ, 0 < ρ, 0 < λ + µ. (1.6)

The system (1.3) can be written as

ρ∂2
t u−∇ · σ(u) = 0,

where σ(u) = λ(trε)I + 2µε + R + (∇u)R is the stress tensor and ε = (∇u+∇u>)/2
is the strain tensor. Note that the term ∇ · R does not appear in (1.3) due to (1.1).
Also, by the same condition, we can see that

(∇ · ((∇u)R))i =
3∑

j,k=1

rjk∂j∂kui, 1 ≤ i ≤ 3.

Since we are only concerned with the residual stress and we are motivated by
applications to the material science we suppose that density ρ and Lamé coefficients
λ and µ are constants. To make sure that the problem (1.3) with (1.4), (1.5) is
well-posed, we assume that

‖R‖C1(Ω) < ε0 (1.7)

for some small constant ε0 > 0. The assumption (1.7) is also physically motivated
([15]). It is not hard to see that if ε0 is sufficiently small, then the boundary value
problem (1.3), (1.4), (1.5) is hyperbolic, and hence for any initial data (u0,u1) ∈
H1(Ω) × L2(Ω) and lateral Dirichlet data g0 ∈ C1([−T, T ]; H1(Ω)), u0 = g0 on
∂Ω × {0}, there exists a unique solution u(·; R; (u0,u1,g0)) ∈ C([−T, T ]; H1(Ω)) to
(1.3)-(1.5).

In this paper we are interested in the following inverse problem:

Determine the residual stress R by a single pair of Cauchy data (u, σ(u)ν) on
Γ× (−T, T ), where u = u(·; R; (u0,u1,g0)) and Γ ⊂ ∂Ω.

We will address uniqueness and stability issues. The focus is on the stability
since the uniqueness follows immediately from it. Our method is based on Carleman
estimates techniques initiated by Bukhgeim and Klibanov [2]. For works on Carleman
estimates and related inverse problems for scalar equations, we refer to books [1] and
[13] for further details and references. Here we only want to mention some related
results for the dynamical Lamé system and the residual stress system (1.3). For
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the Lamé system, the first step has been made by Isakov [10] where he proved the
Carleman estimate and established the uniqueness for the inverse source problem. It
should be noted that in [10] Isakov transformed the principal part of the system into
a composition of two scalar wave operators. It is well-known that the Lamé system
is principally diagonalized as a system of equations for u and divu. Based on this
fact, L2-Carleman estimates were derived in [4] and [7] for the Lamé system and
applications to the Cauchy problem and the inverse problem were given. Recently,
Imanuvilov, Isakov, and Yamamoto [8] obtained a Carleman estimate for the Lamé
system by considering a new principally diagonalized system for (u, divu, curlu). In
[8], they used this estimate to study the problem of identifying the density and Lamé
coefficients by two sets of data measured in a boundary layer and a Hölder-type
stability estimate. The continuation of this work is in [9].

For the dynamical residual stress model (1.3), an L2-Carleman estimate has been
proved when the residual stress is small [12]. The system with the residual stress is no
longer isotropic. In other words, this system is strongly coupled, and it is not possible
to decouple the leading part without increasing the order of the system. In [12], we
used the standard substitution (u, divu, curlu) and reduced (1.3) to a new system
where the leading part is a special lower triangular matrix differential operator with
the wave operators in the diagonal. The key point is that the coupled terms in the
leading part contain only the second derivatives of u with respect to x variables and
they can be absorbed by divu, curlu when the residual stress is small. Using similar
Carleman estimates, Lin and Wang [14] studied the problem of uniquely determining
the density function by a single set of boundary data. The unique continuation
property for the stationary case of (1.3) was proved in [16].

In this work we study the problem of recovering the (small) residual stress in(1.3)-
(1.5) a single set of Cauchy data. We will derive a Hölder stability estimate in convex
hull of the observation surface Γ and a Lipschitz stability estimate for R in Ω when
Γ = ∂Ω and observation time T is large. There are other results concerning the
determination of the residual stress by infinitely many boundary measurements, i.e.
by the Dirichlet-to-Neumann map, we refer to [6], [17], [18], [19].

We are now ready to state the main results of the paper. Denote d = inf |x| and
D = sup |x| over x ∈ Ω. We assume that

0 < d. (1.8)

Let R(ε0, E) be the class of residual stresses defined by

R(ε0, E) = {‖R‖C6(Ω) < E : R is symmetric and satisfies (1.1), (1.2), and(1.7)}.

To study the inverse problem, we need not only the well-posedness of (1.3)-(1.5) but
also some extra regularity of the solution u. To achieve the latter property, the ini-
tial data (u0,u1) and the Dirichlet data g0 are required to satisfy some smoothness
and compatibility conditions. More precisely we will assume that u0 ∈ H9(Ω),u1 ∈
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H8(Ω) and g0 ∈ C8([−T, T ]; H1(∂Ω)) ∩ C5([−T, T ]; H4(∂Ω)) and they satisfy stan-
dard compatibility assumptions of order 8 at ∂Ω × {0}. By using energy estimates
[3] and Sobolev embedding theorems as in [8] one can show that

|∂α
x ∂β

t u|C0(Ω) ≤ C (1.9)

for |α| ≤ 2 and 0 ≤ β ≤ 5.
By examining the equation (1.3), we can see that the residual stress tensor appears

in the equation without first derivatives because of (1.1). It turns out that a single
set of Cauchy data is sufficient to recover the residual stress. To guarantee the
uniqueness, we impose some non-degeneracy condition on the initial data (u0,u1).
More precisely, we assume that

detM = det

(
∂2

1u0 2∂1∂2u0 2∂1∂3u0 ∂2
2u0 2∂2∂3u0 ∂2

3u0

∂2
1u1 2∂1∂2u1 2∂1∂3u1 ∂2

2u1 2∂2∂3u1 ∂2
3u1

)
> E−1 on Ω.

(1.10)
Note that M(x) is a 6× 6 matrix-valued function. For example, one can check that
u0(x) = (x2

1, x
2
2, x

2
3)
> and u1(x) = (x2x3, x1x3, x1x2)

> satisfy (1.10).
We will use the following notation: C, γ are generic constants depending only on

Ω, T, ρ, λ, µ, ε0, E,u0,u1,g0, any other dependence is indicated, ‖·‖(k)(Q) is the norm
in the Sobolev space Hk(Q). Q(ε) = Q∩ {ε < |x|2− θ2t2− d2

1} and Ω(ε) = Ω∩ {ε <
|x|2 − d2

1}. Here d1 is some positive constant. u(; 1) and u(; 2) denote solutions of
the initial boundary value problems (1.3) - (1.5) associated with R(; 1) and R(; 2).
Finally, we introduce the norm of the differences of the data

F =
4∑

β=2

(‖∂β
t (u(; 2)−u(; 1))‖( 5

2
)(Γ×(−T, T ))+‖∂β

t σν(u(; 2)−u(; 1))‖( 3
2
)(Γ×(−T, T )))

Due to (1.6) we can choose positive θ so that

θ2 <
µ

ρ
, θ4 <

µ

ρ

d2

T 2
. (1.11)

Theorem 1.1. Assume that the domain Ω satisfies (1.8), θ satisfies (1.11), and for
some d1

|x|2 − d2
1 < 0 when x ∈ (∂Ω \ Γ), and D2 − θ2T 2 − d2

1 < 0. (1.12)

Let the initial data (u0,u1) satisfy (1.10).
Then there exist an ε0 and constants C, γ < 1, depending on ε, such that for

R(; 1), R(; 2) ∈ R(ε0, E) one has

‖R(; 2)−R(; 1)‖(0)(Ω(ε)) ≤ CF γ. (1.13)

The domain Ω(ε) is discussed in [11], section 3.4.
If Γ is the whole lateral boundary and T is sufficiently large, then a much stronger

(and in a certain sense best possible) Lipschitz stability estimate holds.
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Theorem 1.2. Let d1 = d. Assume that the domain Ω satisfies (1.8),

D2 < 2d2, (1.14)

and
D2 − d2

θ2
< T 2. (1.15)

Let the initial data (u0,u1) satisfy (1.10). Let Γ = ∂Ω.
Then there exist an ε0 and C such that for R(; 1), R(; 2) ∈ R(ε0, E) satisfying the

condition
R(; 1) = R(; 2) on Γ× (−T, T ), (1.16)

one has
‖R(; 2)−R(; 1)‖(0)(Ω) ≤ CF (1.17)

Let us show compatibility of conditions (1.15) and (1.11). ¿From conditions (1.11)
and (1.14) we have

D2 − d2

θ2
<

µ

ρ

d2

θ4

and hence we can find T 2 between these two numbers.
As mentioned previously, the proofs of these theorems rely on Carleman estimates.

Using the results of [12] we will derive needed Carleman estimates in Section 2.
Using this estimate we will prove in Section 3 the Hölder stability estimate (1.13).
In Section 4, we demonstrate the Lipschitz stability of the Cauchy problem for the
residual stress model. This estimate is one of key ingredients to derive the Lipschitz
stability estimate for our inverse problem in Section 5.

2 Carleman estimate

In this section we will describe Carleman estimates needed to solve our inverse
problem. Their proofs can be found in [12]. Let ψ(x, t) = |x|2 − θ2t2 − d2

1 and
ϕ(x, t) = exp(η

2
ψ(x, t)), where θ is choosen in (1.11) and η < C is a large constant to

be fixed later.

Theorem 2.1. There are constants ε0 and C such that for R satisfying (1.7)

∫
Q
(τ |∇x,tu|2 + τ |∇x,tv|2 + τ |∇x,tw|2 + τ 3|u|2 + τ 3|v|2 + τ 3|w|2)e2τϕ

≤ C
∫

Q
(|ARu|2 + |∇(ARu)|2)e2τϕ (2.1)

for all u ∈ H3
0 (Q) and

∫

Q

(τ 2|u|2 + |divu|2 + |curlu|2 + τ−1|∇u)e2τϕ ≤ C

∫

Q

|ARu|2e2τϕ (2.2)

for all u ∈ H2
0 (Q).
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Carleman estimates of Theorem 2.1 is our basic tool for treating the inverse prob-
lem.

Lemma 2.2. For u ∈ H2
0 (Ω) satisfying ∆u = f0 +

∑3
j=1 ∂jfj with f0, fj (1 ≤ j ≤ 3)

belonging to L2, we have

1

τ

∫

Ω

|∇u|2e2τϕdx ≤ C

∫

Ω

(
f 2

0

τ 2
+

∑
f 2

j

)
e2τϕdx.

Proof. For the weight function ϕ with large η, we can use Theorem 3.1 of [5] to get
∫

Ω

τ |u|2e2τϕdx ≤ C

∫

Ω

(
f 2

0

τ 2
+

∑
f 2

j

)
e2τϕdx. (2.3)

Now we will bound ∇u. Observe that ∇(ueτϕ) = (∇u)eτϕ + τu∇ϕeτϕ and hence

1

τ

∫

Ω

|∇u|2e2τϕdx ≤ 2

τ

∫

Ω

|∇(ue2τϕ)|2dx + Cτ

∫

Ω

|u|2e2τϕdx (2.4)

We have

∆(ueτϕ) = (∆u)eτϕ + 2τ∇u · (∇ϕ)eτϕ + (τ 2|∇ϕ|2 + τ∆ϕ)ueτϕ

= (f0 +
∑

∂jfj)e
τϕ + 2τ∇u · (∇ϕ)eτϕ + (τ 2|∇ϕ|2 + τ∆ϕ)ueτϕ.

Multiplying this equality by − 1
τ
ueτϕ, integrating by parts, and using the Cauchy-

Schwarz inequality, we obtain

1
τ

∫
Ω
|∇(ue2τϕ)|2dx

= − ∫
Ω

1
τ

(f0 +
∑

∂jfj) ue2τϕdx− 2
∫
Ω
(∇u · ∇ϕ)ue2τϕdx− ∫

Ω
(τ |∇ϕ|2 + ∆ϕ)u2e2τϕdx

≤ 1
2

∫
Ω

f2
0

τ2 e
2τϕdx + 1

2

∫
Ω
|u|2e2τϕdx + 1

τ
| ∫

Ω

∑
fj(∂ju + 2τu∂jϕ)e2τϕdx|+

2
∫
Ω
∇u · ∇ϕue2τϕdx + Cτ

∫
Ω

u2e2τϕdx

≤ 1
2

∫
Ω

f2
0

τ2 e
2τϕdx + 1

2

∫
Ω
|u|2e2τϕdx + 1

τδ

∫
Ω

∑
f 2

j e2τϕdx + δ
τ

∫
Ω
|∇u|2e2τϕdx

Cτ
δ

∫
Ω
|u|2e2τϕdx,

where δ > 0 is arbitrary and we used that |ab| ≤ δ|a|2 + 1
4δ
|b|2. Choosing sufficiently

small δ > 1
C

to absorb the term with ∇u in the right side by the left side and using
(2.3), (2.4) we yield the bound of Lemma 2.2. 2

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We consider (1.3) with a source term,

ARu = f in Q. (2.5)

Using that ρ, λ, µ are constants we have from [12], section 2, the new system of
equations 




P1u = λ+µ
ρ
∇v + f

ρ
,

P2v =
∑3

j,k=1∇ rjk

ρ
· ∂j∂ku + div f

ρ
,

P1w =
∑3

j,k=1∇ rjk

ρ
× ∂j∂ku + curl f

ρ
,

(2.6)
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where P1 = ∂2
t−

∑3
j,k=1 ρ−1(µδjk+rjk)∂j∂k, P2 = ∂2

t−
∑3

j,k=1 ρ−1((λ+2µ)δjk+rjk)∂j∂k,
where δjk is the Kronecker delta. Due to (1.6) and (1.7) with small ε0, P1 and P2

are hyperbolic operators. Using (1.6), (1.11) by standard calculations one can show
that ϕ is strongly pseudo-convex in Q provided η < C is sufficiently large and ε0

is sufficiently small (see [12] or [11]). Observe that according to the first condition
(1.11) the function ψ(x, t) = |x|2− θ2t2− d2 is pseudo-convex on Q and according to
the second condition (1.11) the gradient of ψ is non-characteristic on Q with respect
to operators ρ∂2

t − µ∆, ρ∂2
t − (λ + 2µ)∆, and hence with respect to P1, P2 provided

ε0 is sufficiently small. We fix such η observing that it depends only on Q, ρ, λ, µ and
θ. It follows from Theorem 3.1 in [12] that there exists a constant C > 0 such that
for all τ > C we have

∫
Q
(τ |∇x,tu|2 + τ |∇x,tv|2 + τ |∇x,tw|2 + τ 3|u|2 + τ 3|v|2 + τ 3|w|2)e2τϕ

≤ C
∫

Q
(|f |2 + |∇f |2)e2τϕ + Cε0

∫
Q

∑3
j,k=1 |∂j∂ku|2e2τϕ (2.7)

for all u ∈ H3
0 (Q). As well known, ∆u = ∇v− curlw. Therefore, by Theorem 3.2 in

[12] and by (2.7),

∫
Q

∑3
j,k=1 |∂j∂ku|2e2τϕ

≤ C
∫

Q
τ |∆u|2e2τϕ = C

∫
Q

τ |∇v − curlw|2e2τϕ

≤ C
∫

Q
(|f |2 + |∇f |2)e2τϕ + Cε0

∫
Q

∑3
j,k=1 |∂j∂ku|2e2τϕ.

Thus for small ε0, we yield

∫

Q

3∑

j,k=1

|∂j∂ku|2e2τϕ ≤ C

∫

Q

(|f |2 + |∇f |2)e2τϕ.

and the estimate (2.7) leads to the first Carleman estimate (2.1).
To prove the second estimate we will use Carleman estimates for elliptic and

hyperbolic operators in Sobolev norms of negative order. Applying Theorem 3.2 in
[8] to each of scalar hyperbolic operators in (2.6) we obtain

τ

∫

Q

|u|2e2τϕ ≤ C

∫

Q

(v2 + τ−2|f |2)e2τϕ,

τ

∫

Q

v2e2τϕ ≤ C

∫

Q

(ε0|∇u|2 + |f |2)e2τϕ,

τ

∫

Q

|w|2e2τϕ ≤ C

∫

Q

(ε0|∇u|2 + |f |2)e2τϕ.

Adding these inequalities we arrive at

τ

∫

Q

(|u|2 + |v|2 + |w|2)e2τϕ ≤ C

∫

Q

(ε0|∇u|2 + |f |2)e2τϕ. (2.8)
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To eliminate the first term in the right side we use again the known identity ∆u =
∇v − curlw, apply Lemma 2.2, and integrate with respect to t over (−T, T ) to get

∫

Q

|∇u|2e2τϕ ≤ Cτ

∫

Q

(v2 + |w|2)e2τϕ.

Using this estimate and choosing ε0 small and τ > C we complete the proof of
(2.2). 2

In order to use (2.1), it is required that the Cauchy data of the solution and the
source term vanish on the lateral boundary. To handle non-vanishing Cauchy data,
the following lemma is useful.

Lemma 2.3. For any pair of (g0,g1) ∈ H
5
2 (Γ× (−T, T ))×H

3
2 (Γ× (−T, T )), we can

find a vector-valued function u∗ ∈ H3(Q) such that

u∗ = g0, σν(u
∗) = g1,ARu∗ = 0 on Γ× (−T, T ),

and

‖u∗‖(3)(Γ× (−T, T )) ≤ C(‖g0‖( 5
2
)(Γ× (−T, T )) + ‖g1‖( 3

2
)(Γ× (−T, T ))) (2.9)

for some C > 0 provided ε0 in (1.7) is sufficiently small.

Proof. By standard extensions theorems for any g2 ∈ H( 1
2
)(∂Ω × (−T, T ) we can

find u∗∗ ∈ H3(Q) so that

u∗∗ = g0, σν(u
∗∗) = g1, ∂

2
νu

∗∗ = g2 on Γ× (−T, T )

and

‖u∗∗‖(3)(Q) ≤ C(‖g2‖( 1
2
)(∂Ω×(−T, T ))+‖g1‖( 3

2
)(∂Ω×(−T, T ))+‖g0‖( 5

2
)(∂Ω×(−T, T ))).

Since ∂Ω× (−T, T ) is non-characteristic with respect to AR provided ε0 is small, the
condition ARu∗∗ = 0 on ∂Ω× (−T, T ) is equivalent to the fact that g2 can be written
as a linear combination (with C1 coefficients) of ∂2

t g0 and tangential derivatives of
g0 (of second order) and of g1 (of first order) along ∂Ω. In particular,

‖g2‖( 1
2
)(∂Ω× (−T, T )) ≤ C(‖g1‖( 3

2
)(∂Ω× (−T, T )) + ‖g0‖( 5

2
)(∂Ω× (−T, T ))).

Choosing g2 as this linear combination we obtain (2.9). 2
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3 Hölder stability for the residual stress

In this section we prove the first main result of the paper, Theorem 1.1. Let u(; 1) and
u(; 2) satisfy (1.3), (1.4),(1.5) corresponding to R(; 1) and R(; 2), respectively. Denote
u = u(; 2) − u(; 1) and F = R(; 2) − R(; 1) = (fjk), j, k = 1, ..., 3. By subtracting
equations (1.3) for u(; 1) from the equations for u(; 2) we yield

AR(;2)u = A(;u(; 1))F in Q where A(;u(; 1))F =
3∑

j,k=1

fjk∂j∂ku(; 1) (3.1)

and
u = ∂tu = 0 on Ω× {0}. (3.2)

Differentiating (3.1) in t and using time-independence of the coefficients of the system,
we get

AR(;2)U = A(;U(; 1))F on Q, (3.3)

where

U =




∂2
t u

∂3
t u

∂4
t u


 and U(; 1) =




∂2
t u(; 1)

∂3
t u(; 1)

∂4
t u(; 1)


 .

By extension theorems for Sobolev spaces there exists U∗ ∈ H2(Q) such that

U∗ = U, ∂νU
∗ = ∂νU on Γ× (−T, T ), (3.4)

and

‖U∗‖(2)(Q) ≤ C(‖U‖( 3
2
)(Γ× (−T, T )) + ‖∂νU‖( 1

2
)(Γ× (−T, T ))) ≤ CF. (3.5)

due to the definitions of u,U, and F . We now introduce V = U−U∗. Then

AR(;2)V = AF−AR(;2)U
∗ in Q (3.6)

and
V = ∂ν(V) = 0 on Γ× (−T, T ). (3.7)

To use the Carleman estimate (2.1), we introduce a cut-off function χ ∈ C2(R4)
such that 0 ≤ χ ≤ 1, χ = 1 on Q( ε

2
) and χ = 0 on Q \Q(0). By the Leibniz’ formula

AR(;2)(χV) = χAR(;2)(V) + A1V = χAF− χAR(;2)U
∗ + A1V

due to (3.6). Here ( and below) A1 denotes a first order matrix differential operator
with coefficients uniformly bounded by C(ε). By the choice of χ, A1V = 0 on Q( ε

2
).

Because of (3.7) the function χV ∈ H2
0 (Q), so we can apply to it the Carleman

estimate (2.2) to get ∫

Q

τ |χV|2e2τϕ ≤
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C

∫

Q

(|F|2 + |AR(;2)(U
∗)|2)e2τϕ + C

∫

Q\Q( ε
2
)

|A1V|2e2τϕ ≤

C(

∫

Q

|F|2e2τϕ + F 2e2τΦ + C(ε)e2τε1) (3.8)

where Φ = supϕ over Q and ε1 = e
ηε
4 . To get the last inequality we used the bounds

(3.5) and (1.9).
On the other hand, from (1.3), (3.1), (3.2) we have

ρ∂2
t u =

∑
fjk∂j∂ku(; 1),

ρ∂3
t u =

∑
fjk∂t∂j∂ku(; 1)

on Ω×{0}. So using the definitions of M,F we obtain ρ(∂2
t u, ∂3

t u) = MF on Ω×{0},
and from the condition (1.10) we have

|F|2 ≤ C
∑

β=2,3

|∂β
t u(, 0)|2. (3.9)

Since χ(, T ) = 0,

∫

Ω

|χ∂β
t u(x, 0)|2e2τϕ(x,0)dx = −

∫ T

0

∂t(

∫

Ω

|χ∂β
t u(x, t)|2e2τϕ(x,t))dx)dt ≤

∫

Q

2χ2(|∂β+1
t u||∂β

t u|+ τ |∂tϕ||∂β
t u|2)e2τϕ + 2

∫

Q\Q( ε
2
)

|∂β
t u|2χ|∂tχ|e2τϕ

where β = 2, 3. The right side does not exceed

C(

∫

Q

τ |χU|2e2τϕ + C(ε)

∫

Q\Q( ε
2
)

|U|2e2τϕ) ≤

C(

∫

Q

τ |χV|2e2τϕ + C(ε)

∫

Q\Q( ε
2
)

|U|2e2τϕ + τ

∫

Q

|U∗|2e2τϕ)

because U = V + U∗. Using that χ = 1 on Ω( ε
2
), ϕ < ε1 on Q \Q( ε

2
) and ϕ < Φ on

Q from these inequalities, from (3.8), (3.5) and from (1.9), we yield

∫

Ω( ε
2
)

|∂β
t u|2(, 0)e2τϕ(,0) ≤ C(

∫

Q

|F|2e2τϕ + C(ε)e2τε1 + τe2τΦF 2). (3.10)

Using that χ = 1 on Ω( ε
2
), from (3.9) and (3.10) we obtain

∫

Ω( ε
2
)

|F|2e2τϕ(,0) ≤ C(

∫

Q( ε
2
)

|F|2e2τϕ + τe2τΦF 2 + C(ε)e2τε1) (3.11)
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where we also split Q in the right side of (2.7) into Q( ε
2
) and its complement, and

used that |F| ≤ C and ϕ < ε1 on the complement. To eliminate the integral in the
right side of (3.11) we observe that

∫

Q( ε
2
)

|F|2(x)e2τϕ(x,t)dxdt ≤
∫

Ω( ε
2
)

|F|2(x)e2τϕ(x,0)(

∫ T

−T

e2τ(ϕ(x,t)−ϕ(x,0))dt)dx.

Due to our choice of function ϕ we have ϕ(x, t)− ϕ(x, 0) < 0 when t 6= 0. Hence by
the Lebesgue Theorem the inner integral (with respect to t) converges to 0 as τ goes
to infinity. By reasons of continuity of ϕ, this convergence is uniform with respect to
x ∈ Ω. Choosing τ > C we therefore can absorb the integral over Q( ε

2
) in the right

side of (3.11) by the left side arriving at the inequality
∫

Ω(ε)

|F|2e2τϕ(,0) ≤ C(τe2τΦF 2 + C(ε)e2τε1).

Letting ε2 = e
ηε
2 ≤ ϕ on Ω(ε) and dividing the both parts by e2τε2 we yield

∫

Ω(ε)

|F|2 ≤ C(τe2τ(Φ−ε2)F 2 + e−2τ(ε2−ε1)) ≤ C(ε)(e2τΦF 2 + e−2τ(ε2−ε1)) (3.12)

since τe−2τε2 < C(ε). To prove (1.13) it suffices to assume that F < 1
C
. Then

τ = −logF
Φ+ε2−ε1

> C and we can use this τ in (3.12). Due to the choice of τ ,

e−2τ(ε2−ε1) = e2τΦF 2 = F
2

ε2−ε1
Φ+ε2−ε1

and from (3.12) we obtain (1.13) with γ = ε2−ε1

Φ+ε2−ε1
. The proof of Theorem 1.1 is now

complete. 2

4 Lipschitz stability in the Cauchy problem

Now we will prove a Lipschitz stability estimate for the Cauchy problem for the
system (2.5). This estimate is a key to prove the estimate (1.17) in the inverse
problem. Before going to the main result of this section, we state a lemma concerning
the boundary condition for auxiliary functions v and w. We refer to [14] for the proof.

Lemma 4.1. Let a solution u ∈ H3(Q) to system ARu = f in Q satisfy

f = u = σν(u) = 0 on Γ× (−T, T )

and let R satisfy (1.7) with ε0 sufficiently small.
Then

∂ku = ∂j∂ku = 0 on Γ× (−T, T ), for 1 ≤ i, j, k ≤ 3.

Now we can prove the following result.
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Theorem 4.2. Suppose that Ω and T satisfy the assumptions of Theorem 1.2. Let
u ∈ (H3(Q))3 solve the Cauchy problem

{
ARu = f in Q

u = σν(u) = 0 on ∂Ω× (−T, T )
(4.1)

with f ∈ L2((−T, T ); H1(Ω)) and f = 0 on ∂Ω× (−T, T ). Furthermore, assume that
(1.7) holds for sufficiently small ε0.

Then there exists a constant C > 0 such that

‖u‖2
H1(Q) + ‖v‖2

H1(Q) + ‖w‖2
H1(Q) ≤ C‖f‖2

L2((−T,T );H1(Ω)). (4.2)

By virtue of (4.2) and en equivalence of the norms ‖u‖(1)(Ω) and of

‖divu‖(0)(Ω) + ‖curlu‖(0)(Ω)

in H1
0 (Ω) (e.g., [3]), pp.358-369), it is not hard to derive the following

Corollary 4.1. Under the conditions of Theorem 4.2

‖u‖(0)(Q) + ‖∇x,tu‖(0)(Q) + ‖∂t∇u‖(0)(Q) ≤ C‖f‖2
L2((−T,T );H1(Ω)). (4.3)

Proof of Theorem 4.2.
By standard energy estimates for the system (2.6) we get

C−1(E(0)−C

∫

Ω×(0,t)

(|f |2 + |∇f |2)) ≤ E(t) ≤ C(E(0) +

∫

Ω×(0,t)

(|f |2 + |∇f |2)) (4.4)

for some C where

E(t) =

∫

Ω

(|∂tu|2 + |∂tv|2 + |∂tw|2 + |∇u|2 + |∇v|2 + |∇w|2 + |u|2 + |v|2 + |w|2)(, t).

To use the Carleman estimate (2.1) we need to cut off u near t = T and t = −T .
We first observe that from the definition

1 ≤ ϕ(x, 0), x ∈ Ω,

and from the condition (1.15)

ϕ(x, T ) = ϕ(x,−T ) < 1 when x ∈ Ω.

So there exists δ > 1
C

such that

1− δ < ϕ on Ω× (0, δ), ϕ < 1− 2δ on Ω× (T − 2δ, T ). (4.5)

We now choose a smooth cut-off function 0 ≤ χ0(t) ≤ 1 such that χ0(t) = 1 for
−T + 2δ < t < T − 2δ and χ(t) = 0 for |t| > T − δ. It is clear that

AR(χ0u) = χ0f + 2ρ∂tχ0∂tu + ρ(∂2
t χ0)u.
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By Lemma 4.1 and basic fact about Sobolev spaces, we have χu ∈ H3
0 (Q), and can

use the Carleman estimate (2.1) to get

∫

Q

(τ 3(|χu|2 + (χv)2 + |χw|2) + τ(|∇x,t(χu)|2 + |∇x,t(χv)|2 + |∇x,t(χw)|2))e2τϕ ≤

C(

∫

Q

(|f |2 + |∇f |2)e2τϕ +

∫

Ω×{T−2δ<|t|<T}
(|∂tu|2 + |∂t∇u|2 + |u|2 + |∂tu|2)e2τϕ)

Shrinking the integration domain on the left side to Ω × (0, δ) where χ = 1 and
1− δ < ϕ and using that ϕ < 1− 2δ on Ω× (T − δ, T ) we derive that

e2τ(1−δ)

∫ δ

0

E(t)dt ≤

C(

∫

Q

(|f |2 + |∇f |2)e2τϕ + Ce2τ(1−2δ)

∫ T

T−δ

∫

Ω

(|∂tu|2 + |∂t∇u|2 + |u|2 + |∇u|2). (4.6)

To eliminate the last integral in (4.6) we remind that

curl∂tu = ∂tw, div∂tu = ∂tv, ∆∂tu = ∇(∂tv)− curl(∂tw)

and use the standard elliptic L2-estimate

∫

Ω

|∇∂tu|2(, t) ≤ C(

∫

Ω

(|∂tv|2 + |∂tw|2)(, t).

Now using the energy bound (4.4) we derive from (4.6)

e2τ(1−δ) δ

C
E(0)− Ce2τΦ

∫

Q

(|f |2 + |∇f |2) ≤ Ce2τΦ

∫

Q

(|f |2 + |∇f |2) + Ce2τ(1−2δ)E(0).

Choosing τ so large that e−2τδ < δ
C2 and fixing this τ we eliminate the term with

E(0) on the right side. Using again (4.4) we complete the proof. 2

5 Lipschitz stability for the residual stress

In this section we prove the second main result of the paper, Theorem 1.2. We will
use notation of section 4.

In view of Lemma 2.3, there exists U∗ ∈ H3(Q) such that

U∗ = U, ∂νU
∗ = ∂νU, AR(;2)U

∗ = 0 on ∂Ω× (−T, T ), (5.1)

and

‖U∗‖(3)(Q) ≤ C(‖U‖( 5
2
)(Γ× (−T, T )) + ‖∂νU‖( 3

2
)(∂Ω× (−T, T ))) ≤ CF (5.2)
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due to the definition of F . We introduce V = U−U∗. Due to (5.1),

V = ∂νV = 0, AR(;2)V = 0 on ∂Ω× (−T, T ). (5.3)

Applying Corollary 4.1 to (3.6), (3.7) and using (5.2) gives

‖V‖2
(0)(Q) + ‖∇x,tV‖2

(0)(Q) + ‖∂t∇V‖2
(0)(Q) ≤ C(‖F‖(1)(Ω)2 + F 2). (5.4)

On the other hand, as in the proof of Theorem 1.1 we will bound the right side
by V.

We will use the cut off function χ0 of section 4. According to Lemma 4.1 and
(5.3), χ0V ∈ H3

0 (Q). By the Leibniz formula

AR(;2)(χ0V) = χ0A(;U(; 1))F− χ0AR(;2)U
∗ + 2ρ(∂tχ0)∂tV + ρ(∂2

t χ0)V

and by the Carleman estimate (2.1) and by (3.6)

∫

Q

χ2
0(τ

3|V|2 + τ |∇V|2)e2τϕ ≤

C(

∫

Q

(|F|2 + |∇F|2 + |AR(;2)U
∗|2 + |∇(AR(;2)U

∗)|2)e2τϕ+

∫

Ω×{T−2δ<|t|<T}
(|V|2 + |∇x,tV|2 + |∂t∇V|2)e2τϕ) ≤

C(

∫

Q

(|F|2 + |∇F|2)e2τϕ + e2τΦF 2 + e2τ(1−2δ)

∫

Ω

(|F|2 + |∇F|2)),

where we let Φ = supQ ϕ and used (4.5) and (5.4). Since U = V + U∗ from (5.2) we
obtain ∫

Q

χ2
0(|U|2 + |∇U|2)e2τϕ ≤

Ce2τΦF 2 + C

∫

Ω

(

∫ T

−T

e2τϕ(x,t)dt + e2τ(1−2δ))(|F|2 + |∇F|2)(x)dx. (5.5)

Utilizing (3.2) and (1.10), similarly to deriving (3.9), we get from (3.1) that
ρ(∂2

t u, ∂3
t u) = MF on Ω× {0}. Therefore, using (1.10) we will have

∫

Ω

(|F|2 + |∇F|2)e2sϕ(,0) ≤ C

∫

Ω

∑

β=2,3;k=0,1

|∂β
t ∇ku(, 0)|2e2τϕ(,0) =

= −C

∫ T

0

∂t(

∫

Ω

∑
χ2

0|∂β
t ∇ku|2e2τϕdx)dt ≤

C

∫

Q

χ2
0

∑
(|∂β

t ∇ku||∂β+1
t ∇ku|+ τ |∂tϕ||∂β

t ∇ku|2)e2τϕ+
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C

∫

Ω×(T−2δ,T )

χ0|∂tχ0|
∑

|∂β
t ∇ku|2)e2τϕ.

Now as in the proofs of section 3 the right side is less than

C(

∫

Q

τχ2
0(|U|2 + |∇U|2)e2τϕ +

∫

Ω×(T−2δ,T )

(|U|2 + |∇U|2)e2τϕ) ≤

C(

∫

Q

τχ2
0(|U|2 + |∇U|2)e2τϕ + e2τ(1−2δ)(‖F‖2

(1)(Ω) + F 2)).

where we used equality U = U∗ +V and (5.2), (5.4). From the two previous bounds
we conclude that
∫

Ω

(|F|2 + |∇F|2)e2τϕ(,0) ≤ C(τe2τΦF 2 +

∫

Ω

(

∫ T

−T

e2τϕ(,t)dt + e2τ(1−2δ))(|F|2 + |∇F|2)).
(5.6)

Due to our choice of ϕ, 1 ≤ ϕ(, 0), ϕ(, t) − ϕ(, 0) < 0 when t 6= 0. Thus by the
Lebesgue theorem as in the proofs of section 3, we have

2C(

∫ T

−T

e2τϕ(,t)dt + e2τ(1−δ)) ≤ e2τϕ(,0)

unformly on Ω when τ > C. Hence choosing and fixing such large τ we eliminate the
second term on the right side of (5.6). The proof of Theorem 1.2 is now complete. 2

By using Carleman estimates on functions satisfying homogeneous zero bound-
ary conditions (g0 = 0 or zero stress boundary condition) one can replace ∂Ω in
Theorem 1.2 by its ”large” part Γ ([11], section 4.5, for scalar equations).

6 Conclusion

Using similar methods one can expect to demonstrate uniqueness and stability for
both variable ρ, λ, µ and residual stress most likely from two sets of suitable boundary
data. Motivation is coming from geophysical problems. Our assumptions exclude
zero initial data. So far it looks like a very difficult question to show uniqueness from
few sets of boundary data when the initial data are zero. Stability guaranteed by
Theorems 1.1 and especially by Theorem 1.2 indicate a possibility of very efficient
algorithms with high resolution for numerical idenitification of residual stress from
a single lateral measurement. It would be a very good idea to run some numerical
experiments to understand possibilities of practical applications of these stability
properties.
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