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Abstract. Numerical differentiation is a typical ill-posed problem which can

be treated by the Tikhonov regularization. In this paper, we prove that the

L2-norms of the second order derivatives of the regularized solutions blow up in

any small interval I where the exact solution is not in H2(I). One application

in the image edge detection is presented.

1. Introduction

A numerical differentiation arises in many applications and engineering compu-

tations such as the determination of the underground water, the Dupire formulae

in financial mathematics([25]), image edge detection([13]), etc. One of the main

difficulties for this problem is the ill-posedness, which means that the small errors

of measurement may cause huge errors in computed derivatives ([7], [12], [22]).

Therefore one needs regularizing techniques for reasonable computations. Several

numerical algorithms have been proposed for overcoming the instabilities ([5], [7],

[8], [9], [10], [11], [12], [16],[19], [23]). It has been shown that the Tikhonov regu-

larization for treating the numerical differentiation problem is one of the effective

methods.

In [24], the authors discussed the numerical differentiation by using the Tikhonov

regularization method. It is shown that, if the exact solution is smooth, then the
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regularized solutions converge to the exact solution, and if the exact solution is

not smooth, then the L2-norms of the corresponding high order derivatives of the

regularized solutions will blow up in the whole interval. The numerical results

indicate that this kind of blow-up happens only near the irregular points. However

to the authors’ knowledge, this property has not been proved up to now.

In this paper we discuss this local property of the regularized solution based on

the work of [24]. We prove that, if the exact solution is not in H2(I) for an interval

I, then the norms of the second order derivatives of the regularized solutions in I

blow up. Although we can develop a similar method also in multidimensional cases,

we will discuss only one dimensional case, which is sufficient in many practical cases.

In particular, for the edge detection, we use line-by-line scans to apply the numerical

differentiation for functions in a single variable (section 4).

This paper is organized as follows: We give the formulation of the problem and

show the theoretic results in section 2. In section 3 we will give numerical examples

to verify this property. An application in image edge detection is presented in

section 4. Some conclusions are given in section 5.

2. Formulation of the problem and theoretical result

Hereforth we set

g
′
=

dg

dx
, g

′′
=

d2g

dx2

Suppose that ∆ = {0 = x0 < x1 < · · · < xn = 1} is a uniform grid of [0, 1]. Here

xj = j
n , j = 0, 1, · · · , n, and we denote h = 1

n . Let y = y(x) be a continuous

function defined on [0,1]. A noisy value of y(x) at point xj is given as yδ
j which

satisfies

(2.1) |y(xj)− yδ
j | < δ, j = 0, 1, · · · , n,

where δ is a given constant called the level of noise in the data. The numerical

differentiation is then to approximate y′(x) from the value of yδ
j , j = 0, 1, · · · , n.

Without loss of generality, we assume that there are no errors at the boundary for

the sample data, i. e., yδ
0 = y(0), yδ

n = y(1). Otherwise we can use a new function

Y (x) = y(x) + yδ
0 − y(0) + (yδ

n − y(1) + y(0)− yδ
0)x.
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It can be easily proved that Y (0) = yδ
0, Y (1) = yδ

n. Since

∣∣∣y′(x)− Y
′
(x)

∣∣∣ =
∣∣yδ

n − y(1) + y(0)− yδ
0

∣∣ ≤ 2δ

Therefore the approximation of Y
′
(x) is also an approximation of y

′
(x) (see further

[12], [24]).

The numerical differentiation is to find a function f from the data {yδ
j}n

j=0

such that f
′

approximates y
′
. We will solve this problem by the Tikhonov regu-

larization method as in [24]. The following spaces and norms will be used in this

paper:

L2(0, 1) =
{

g | (
∫ 1

0

g2(x)dx)1/2 < ∞
}

,

H2(0, 1) =
{

g | g ∈ L2(0, 1), g
′′ ∈ L2(0, 1)

}
,

C[0, 1] = {g | g is a continuous function on [0,1]},

‖g‖L2(0,1) =
(∫ 1

0

|g(x)|2dx

)1/2

,

‖g‖H2(0,1) =
(
‖g‖2L2(0,1) + ‖g′′‖2L2(0,1)

) 1
2

,

‖g‖C[0,1] = max
x∈[0,1]

|g(x)|.

Define a cost functional by

(2.2) Φ(f) =
1
n

n−1∑

i=1

(f(xi)− yδ
i )2 + α‖f ′′‖2L2(0,1)

for all f ∈ H2(0, 1) with f(0) = y(0), f(1) = y(1), where α is a regularization

parameter.

Then we can prove (e.g. [24]):

Theorem 2.1. Let y ∈ C[0, 1]. There exists a unique minimizer f∗ = f∗(δ, α, h)

of functional (2.2).

The minimizer f∗ is called the regularized solution, and we have the following

error estimate ([24]).
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Theorem 2.2. Suppose that y ∈ H2(0, 1). Then we have the following error esti-

mation for the regularized solution f∗(δ, α, h):

‖f ′∗(δ, α, h)− y
′‖L2(0,1) ≤

(
2h + 4α

1
4 +

h

π

)
‖y′′‖L2(0,1) + h

√
δ2

α
+

2δ

α
1
4
.

If we choose α = δ2, then

‖f ′∗(δ, δ2, h)− y
′‖L2(0,1) ≤ (2h + 4

√
δ +

h

π
)‖y′′‖L2(0,1) + h + 2

√
δ.

It is practically important to detect subintervals where a state function f is

not smooth. Thus we are more interested in an interval (a, b) ⊂ (0, 1) where y
′′

/∈
L2(a, b). Therefore, it is necessary to know the behaviour of the regularized solution

f∗ in a subinterval as short as possible. In particular, if (a, b) = (0, 1), then the

following theorem is proved in [24].

Theorem 2.3. If y ∈ C[0, 1]\H2(0, 1), and we choose the regularization parameter

α = δ2, then

(2.3) ‖f ′′∗ (δ, δ2, h)‖L2(0,1) −→∞, as δ, h → 0.

Remark 2.4. The general study corresponding to Theorem 2.3 is found in [3].

This result indicates only that, if the exact solution is not in H2(0, 1), then the

L2-norms of the second order derivatives of the regularized solutions on the whole

interval [0, 1] blow up. In this paper we will give a localized version in (a, b) ⊂ (0, 1)

of this theorem. We want to know if the exact solution is not smooth on a small

interval, namely, y ∈ C[0, 1] \H2(a, b), what will happen to ‖f ′′∗ ‖L2(a,b)?

We state our theoretical result on which our numerical method is based.

Theorem 2.5. Suppose that y ∈ C[0, 1], (a, b) ⊂ (0, 1), and we choose the regular-

ization parameter α = δ2. If y /∈ H2(a, b), then the regularized solution f∗(δ, δ2, h)

satisfies

lim
δ,h→0

‖f ′′∗ (δ, δ2, h)‖L2(a,b) = ∞.

Remark 2.6. For a piecewise continuous function, the conclusion in Theorem 2.5 is

still true. We can prove it by the same method with some small modifications.

In the proof of this theorem, we will use an interpolation inequality. (e.g., The-

orem 4.14 (p.75) in [1]):
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Lemma 2.7. Let −∞ ≤ a < b ≤ ∞, 1 ≤ p < ∞ , and 0 < ε0 < ∞, f have the

m-th order derivative f (m) in (a, b). There exists a constant K > 0 which depends

on ε0, p, m, and b− a such that for every ε, 0 < ε ≤ ε0, 0 ≤ j < m, we have

(2.4) (
∫ b

a

|f (j)|pdt)
1
p ≤ Kε(

∫ b

a

|f (m)|pdt)
1
p + Kε

−j
m−j (

∫ b

a

|f |pdt)
1
p .

Proof of Theorem 2.5: Henceforth for simplicity, we set

f∗(δ, n)(x) = f∗(δ, δ2, h)(x)

where we recall h = 1
n .

Assume contrarily that the conclusion of the theorem is not correct. This means

that there exist two sequences {δk}, {hk}, k = 1, 2, · · · , such that

lim
k→∞

δk = lim
k→∞

hk = 0

and

(2.5) ‖f ′′∗ (δk, nk)‖L2(a,b) ≤ M, k = 1, 2, · · ·

where M is a positive constant and nk = 1
hk

.

By y ∈ C[0, 1], we can take a sequence of functions ym ∈ H2(0, 1) satisfying

ym(0) = y(0), ym(1) = y(1),

and

(2.6) ‖ym − y‖C[0,1] ≤
1
m

, sup
m
‖ym‖L2(a,b) < ∞.

In fact, ym can be constructed for example by suitable interpolated polynomials.

Next we will prove

(2.7) sup
m
‖y′′m‖L2(a,b) = ∞.

Assume contrarily that supm ‖y
′′
m‖L2(a,b) < ∞. Then from the definition of the

norm, we know that supm ‖ym‖H2(a,b) < ∞. By the reflexiveness of H2(a, b), there

exists a subsequence ymk
∈ H2(a, b) and ỹ ∈ H2(a, b) so that ymk

→ ỹ weakly in

H2(a, b). On the other hand, we see from (2.6) that ym → y strongly in L2(a, b),

so ỹ = y and thus we have y ∈ H2(a, b). This is a contradiction. Thus the proof of

(2.7) is complete.
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Moreover, for each k ∈ N , we set

`(k) = min{j ∈ N ; δj‖y
′′
k ‖L2(0,1) < 1}.

Such an `(k) exists uniquely because δj → 0 as j → ∞. By (2.7), we note that

limk→∞ `(k) = ∞. For simplicity we denote δ`(k) and n`(k) again by δk and nk

respectively. Hence

(2.8) δk‖y
′′
k ‖2L2(0,1) < 1.

We set f∗k = f∗(δk, nk). Since Φ(f∗k) ≤ Φ(yk), we have

1
nk

nk−1∑

j=1

(
f∗k(xj)− yδk

j

)2

≤ Φ(f∗k)(2.9)

≤ Φ(yk) =
1
nk

nk−1∑

j=1

(yk(xj)− yδk
j )2 + δ2

k‖y
′′
k ‖2L2(0,1)

≤ 2
nk

nk−1∑

j=1

(
(yk(xj)− y(xj))2 + (y(xj)− yδk

j )2
)

+ δk(δk‖y
′′
k ‖2L2(0,1))

≤ 2
k2

+ 2δ2
k + δk.

At the last inequality, we used (2.8) and

|yk(xj)− y(xj)| ≤ 1
k

, 1 ≤ j ≤ nk − 1,

by (2.6).

Suppose that xi0−1 ≤ a < xi0 and xj0 < b ≤ xj0+1. Then by (2.9), we have

1
nk

j0∑

j=i0

(
f∗k(xj)− yδk

j

)2

≤ 1
nk

nk−1∑

j=1

(
f∗k(xj)− yδk

j

)2

≤ 2
k2

+ 2δ2
k + δk.

Moreover

|yδk
j |2 = (yδk

j − y(xj) + y(xj))2 ≤ 2((yδk
j − y(xj))2 + y(xj)2)

≤ 2(δ2
k + ‖y‖2L∞(0,1)).
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Therefore by (2.1) and (2.9)

1
nk

j0∑

j=i0

f2
∗k(xj) ≤ 2

nk

j0∑

j=i0

(
(f∗k(xj)− yδk

j )2 + |yδk
j |2

)
(2.10)

≤ 4
k2

+ 4δ2
k + 2δk + 4(δ2

k + ‖y‖2L∞(0,1)) ≤ A.

Here A > 0 is a constant which is independent of k ∈ N . Moreover, denote

ηi0 = a, ηi =
xi−1 + xi

2
, i = i0 + 1, · · · , j0, ηj0+1 = b.

By the mean value theorem, we can choose ξj ∈ (ηj , ηj+1), and

‖f∗k‖2L2(a,b) =
∫ ηj0+1

ηi0

f2
∗k(x)dx =

j0∑

j=i0

∫ ηj+1

ηj

f2
∗k(x)dx ≤ 2

nk

j0∑

j=i0

f2
∗ (ξj)

=
2
nk

j0∑

j=i0

(f2
∗k(ξj)− f2

∗k(xj)) +
2
nk

j0∑

j=i0

f2
∗k(xj)

≤ 2
nk

∫ b

a

∣∣∣2f
′
∗k(x)f∗k(x)

∣∣∣ dx +
2
nk

j0∑

j=i0

f2
∗k(xj).

Here we used ∣∣∣∣∣∣

j0∑

j=i0

(f2
∗k(ξj)− f2

∗k(xj))

∣∣∣∣∣∣
=

∣∣∣∣∣∣

j0∑

j=i0

∫ ξj

xj

d

dx
(f∗k(x))2dx

∣∣∣∣∣∣

≤
j0∑

j=i0

∫ ξj

xj

2|f ′∗k(x)f∗k(x)|dx ≤
∫ ηj0+1

ηi0

2|f ′∗k(x)f∗k(x)|dx.

Hence (2.10) and the Schwarz inequality yield

(2.11) ‖f∗k‖2L2(a,b) ≤
4
nk
‖f∗k‖L2(a,b)‖f

′
∗k‖L2(a,b) + 2A.

Choosing parameters as p = 2,m = 2, j = 1, ε = 1 in Lemma 2.7, we have

(2.12) ‖f ′∗k‖L2(a,b) ≤ K(‖f∗k‖L2(a,b) + ‖f ′′∗k‖L2(a,b)).

Therefore, (2.11) yields

(1− 4K

nk
)‖f∗k‖2L2(a,b) ≤

4K

nk
‖f∗k‖L2(a,b)‖f

′′
∗k‖L2(a,b) + 2A.

Substituting

‖f∗k‖L2(a,b)‖f
′′
∗k‖L2(a,b) ≤

1
2
‖f∗k‖2L2(a,b) +

1
2
‖f ′′∗k‖2L2(a,b)

and choosing k0 ∈ N large, we have
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‖f∗k‖L2(a,b) ≤ K1‖f
′′
∗k‖L2(a,b) + K1

√
A

for all k ≥ k0. Here the constant K1 > 0 is independent of k.

By using this inequality and (2.5), we have

sup
k≥k0

‖f∗k‖L2(a,b) < ∞.

Therefore, by (2.12) we have

sup
k
‖f∗k‖H2(a,b) < ∞, k ≥ k0.

Since H2(a, b) is reflexive, there exist a subsequence f∗k, which is denoted by

the same letter, and f̃ ∈ H2(a, b) such that

f∗k → f̃ weakly in H2(a, b).

Since the embedding from H2(a, b) to C[a, b] is compact, we see that

f∗k → f̃ strongly in C[a, b].

That is,

(2.13) lim
k→∞

‖f∗k − f̃‖C[a,b] = 0.

By the definition of the integral, for any ε > 0, there exists k = k(ε) ∈ N such

that by (2.1) and (2.9) we obtain

‖y − f̃‖2L2(a,b)

≤ 1
nk

j0∑

j=i0

(y(xj)− f̃(xj))2 + ε

≤ 3
nk

j0∑

j=i0

{(y(xj)− yδk
j )2 + (yδk

j − f∗k(xj))2 + (f∗k(xj)− f̃(xj))2}+ ε

≤ 3δ2
k +

6
k2

+ 6δ2
k + 3δk + 3‖f∗k − f̃‖C[a,b] + ε

for any k ≥ k1(ε).

Hence letting k →∞, we have

‖y − f̃‖L2(a,b) ≤ ε.
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Since ε is arbitrary, we have

‖y − f̃‖2L2(a,b) = 0,

that is,

y(x) = f̃(x) for almost all x ∈ [a, b].

Since f̃ ∈ H2(a, b), this implies that y ∈ H2(a, b), which contradicts the assump-

tion y /∈ H2(a, b). Thus the proof is complete.

3. Numerical Example

In this section we make two numerical tests on the basis of Theorem 2.5.

First we will consider a continuous function but with irregular points. Let

y(x) =





2x, 0 ≤ x < 0.4

−3x + 2, 0.4 ≤ x < 0.6

−5(x− 1)2 + 1. 0.6 ≤ x < 1

which is shown as Figure 1. This function has two irregular points: 0.4 and 0.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: y(x)

We set δ = 0.001, n = 200 that is, xi = i
200 , 0 ≤ i ≤ 200, and the regularized

solution f∗ can be obtained by the algorithm in [24].

We set

F (xi) = ‖f ′′∗ (δ, δ2,
1
n

)‖2L2(xi−1,xi)

and F (xi) is shown as Figure 2.

Choose the different parameters δ = 0.0001, n = 400, then F (xi) is shown as

Figure 3.
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By Theorem 2.5, we know that this value will grow up near the irregular points.

From Figure 2 and Figure 3 we can see that F (xi) is large near 0.4 and 0.6. The

numerical results are consistent with the theoretic results. Thus by our method,

we can reconstruct the irregular points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Figure 2: F (xi),δ = 0.001, n = 200 Figure 3: F (xi),δ = 0.0001, n = 400

Next we will show that our result still works for a discontinuous function, al-

though Theorem 2.5 does not cover discontinuous functions. Let

y(x) =





1, 0 ≤ x < 0.2

x− 1, 0.2 ≤ x < 0.5

−x + 1, 0.5 ≤ x < 0.7

−0.5. 0.7 ≤ x < 1

which is shown as Figure 4. This function has three discontinuous points: 0.2, 0.5

and 0.7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: y(x)
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The numerical results are shown in Figure 5 and Figure 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

4

Figure 5: F (xi),δ = 0.0005, n = 200 Figure 6: F (xi),δ = 0.0001, n = 400

There is a difference in the reconstruction from the first example of a continuous

function, and the numerical results show extra two peaks around the true discontin-

uous points. However our numerical method can still localize discontinuous points.

4. Application

In this section we will give one application of the numerical differentiation in the

image edge detection. In the image processing, the reconstruction of a good image

relies heavily on how to locate accurately the discontinuous points of an unknown

source function. This depends also on how to reconstruct the derivatives of the

source function from scattered measured data. This is called the edge detection

problem which can become very complicated if the source function is non-smooth.

At present, several numerical methods for solving the edge detection problem have

been proposed. These include the logarithmic image processing method ([4], [17]),

which originated from the theory of functional analysis; a gradient operator method

in which the ratio of the local gradient magnitude is used to compute the local mean

intensity value of the source function ([13], [21]); and the genetic approach ([2], [18]).

Most of the existing edge detection techniques are based on finding the maxima of

the first-order derivative or the zero-crossing of the second order derivatives of the

source function and see also [6],[14],[15],[20].

Here we will use a new method for edge detection which is based on Theorem

2.5. Numerical results show that our method is effective. Here we give the outline

of our method:
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(1) Consider a line-by-line scan of an image with size N1×N2 where N1 and N2

are positive integers. For simplicity we only consider gray level pictures.

The two examples presented here are all 8-bit gray level pictures, which

means the colour value will vary from 0 to 28 − 1 = 255.

(2) The colour values of an digital image are noisy observation data at discrete

points. Here we denote the colour value of a pixel at (i, j) as c(i, j).

(3) Let M = 28 and define yδ
i (xj) = c(i,j)

M , where xj = j−1
N2−1 , j = 1, 2, · · · , N2.

Then 0 ≤ yδ
i (xj) < 1 and the value of the grid length h in Theorem 2.5 is

1
N2−1 .

(4) The numerical differentiation algorithm developed in [24] is then applied to

find the approximation of the real colour function yi(x), 0 ≤ x ≤ 1 from

the noisy values yδ
i (xj) on each line. The approximation is denoted by f∗i.

(5) The result of Theorem 2.5 is then applied to locate the discontinuous points

of the function yi(x). In image processing, the edge of an image is usually

defined as the area where a rapid change of magnitude occurs. This rapid

change is then detected by the magnitude of the H2 norm of the minimizer

f∗i. A large value can be set as the threshold for detecting the edge of the

image.

(6) It usually takes two different directions of line-by-line scans to obtain an

acceptable approximation result. Note that the directions are not required

to be perpendicular.

(7) The pictures are taken by a camera and we will add some random noise to

test our method.

The original pictures and pictures with 1%, 5%, 10%, 20% and 30% random

noises are displayed left and the computed edges are given right respectively. Table

4.1 gives the parameters and the computational times for these two images. It can

be observed from both the figures and the table that the numerical differentiation

algorithm successfully reconstructs the edges of the images in a short period of CPU

time.
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Figure 7a: without noise

Figure 7b: with 1% random noise

Figure 7c: with 5% random noise
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Figure 7d: with 10% random noise

Figure 7e: with 20% random noise

Figure 7f: with 30% random noise



DETECTION OF IRREGULAR POINTS BY REGULARIZATION 15

Figure 8a: without noise

Figure 8b: with 1% random noise

Figure 8c: with 5% random noise
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Figure 8d: with 10% random noise

Figure 8e: with 20% random noise

Figure 8f: with 30% random noise
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Table 4.1: Parameters and CPU time for the computations

size of the image α time used for computation

Figure 7 1360× 1236 10−12 218 seconds

Figure 8 2048× 1536 10−12 548 seconds

*The computations were performed on a HP DX200 P4 2800MHz with 512M RAM.

5. Conclusion

In this paper, near irregular points we established the behaviour of the Tikhononv

regularized solutions in the numerical differentiation. We proved that, if the exact

solution has irregular points, then the norms of the second order derivatives of the

regularized solutions in any small interval which contains the irregular points, will

blow up. Unlike the result of [24], we proved that the blow-up will take place near

the irregular points. Our numerical example and the application to edge detection

show that irregular points can be located very easily by using our method.
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