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THE POINTED HARMONIC VOLUMES OF HYPERELLIPTIC
CURVES WITH WEIERSTRASS BASE POINTS

YUUKI TADOKORO

Abstract. We give a explicit computation of the pointed harmonic volumes of hy-
perelliptic curves with Weierstrass base points, which are paraphrased into a combi-
natorial formula.

1. Introduction

Let X be a compact Riemann surface of genus g ≥ 2 and p a point on X. By
Pulte [5], the pointed harmonic volume of (X, p) was defined to be the homomorphism
K ⊗ H → R/Z, using Harris’ method for the harmonic volume of X [4]. Here, we
denote by H = H1(X;Z) the first cohomology group of X and K the kernel of the in-
tersection pairing H⊗H → Z. In this paper, we compute the pointed harmonic volume
of any hyperelliptic curve C with any Weierstrass point p. In theorem 5.6, we com-
pute that of some special hyperelliptic curve C0 with Weierstrass points in an analytic
way, by the explicit computation of Chen’s iterated integrals [2]. Using Proposition
4.1, we can compute the the pointed harmonic volumes of all the hyperelliptic curves
with Weierstrass base points from those of C0. These results are paraphrased from a
combinatorial viewpoint as follows. Let {Pj}j=0,1,...,2g+1 denote the set of Weierstrass
points on C, and fix a Weierstrass point Pν , 0 ≤ ν ≤ 2g + 1. A certain homomorphism

κν : K ⊗H → 1
2
Z/Z = {0, 1/2} is defined in §6, which depends on the choice of Pν .

Theorem 6.2. For any hyperelliptic curve C and A ∈ K ⊗H, we have

IPν (A) ≡ κν(A) mod Z.

The author [6] computed the harmonic volumes of hyperelliptic curves. But the
computation of the pointed ones of (X, p) is more complicated than that of X. For any
hyperelliptic curve C, it is tedious to compute Ip in the case p ∈ C \ {Pj}j=0,1,...,2g+1.
But we have Ip ≡ 0 or 1/2 mod Z in the case p ∈ {Pj}j=0,1,...,2g+1. It has been still
unknown which elements of K ⊗H and Weierstrass points p have nontrivial Ip or not.
In this paper, we compute them completely.

As an application of the pointed harmonic volume of (X, p), Pulte proved the pointed
Torelli theorem [5]. We denote by π1(X, p) the fundamental group of X at the base
point p ∈ X and Jp the augmentation ideal of the group ring Zπ1(X, p).

Theorem 1.1. (the pointed Torelli theorem [5])
Suppose that X and Y are compact Riemann surfaces and that p ∈ X and q ∈ Y . With
the exception of two points p in X, if there is a ring isomorphism

Zπ1(X, p)/J3
p → Zπ1(Y, q)/J3

q
1
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which preserves the mixed Hodge structure, then there is a biholomorphism ϕ : X → Y
such that ϕ(p) = q.

If X is generic (e.g. X is hyperelliptic), then there are no exceptional points. The
pointed harmonic volumes determine the choice of the base points. In the proof of
this theorem, the classical Torelli theorem follows from the preservation of the mixed
Hodge structure and we obtain the biholomorphism X ∼= Y . When we choose the base
points, the pointed harmonic volume plays an important role. Theorem 6.2 also tells
the choice of Weierstrass base points on C.

Now we describe the contents of this paper briefly. In §2, we define the pointed
harmonic volume of (X, p), using Chen’s iterated integrals [2]. In §3, we give a basis
of the first homology group H1(C;Z/2Z) of the hyperelliptic curve C. In §4, we prove
IPν ∈ H0(∆1

g; Hom(K⊗H,Z/2Z)). In §5, the pointed harmonic volume of some special
hyperelliptic curve C0 with Weierstrass base points is computed in an analytic way. This
result can be extended to all the hyperelliptic curves with Weierstrass base points and
interpreted from a combinatorial viewpoint. In §6, we obtain a simple combinatorial
formula of the pointed harmonic volume of (C,Pν).

Acknowledgments. The author is grateful to Nariya Kawazumi for valuable advice
and reading the manuscript. He also thanks Masahiko Yoshinaga for reading the man-
uscript. This work is partially supported by 21st Century COE program (University
of Tokyo) by the Ministry of Education, Culture, Sports, Science and Technology.

2. The pointed harmonic volume

We recall the definition of the pointed harmonic volume of a pointed Riemann surface
(X, p). Here X is a compact Riemann surface of genus g ≥ 2 and p a point on X.
We identify the first integral homology group H1(X;Z) of X with the first integral
cohomology group by Poincaré duality, and denote it by H. For closed 1-forms ω1,i

and ω2,i, i = 1, 2, . . . , m, on X such that
∫

X

m∑

i=1

ω1,i ∧ ω2,i = 0, we obtain the 1-form η

such that dη =
∑m

i=1 ω1,i ∧ω2,i and
∫

X
η ∧∗α = 0 for any closed 1-form α on X. Here,

∗ is the Hodge star operator which depends only on the complex structure and not
the choice of Hermitian metric. We identify H with the space of all the real harmonic
1-forms on X with integral periods by the Hodge theorem. We denote by K the kernel
of the intersection pairing ( , ) : H ⊗H → Z.

Definition 2.1. (The pointed harmonic volume [5])
For

∑m
i=1 ai ⊗ bi ∈ K and c ∈ H, the pointed harmonic volume is defined to be

Ip

(( m∑

i=1

ai ⊗ bi

)
⊗ c

)
:=

m∑

i=1

∫

γ
aibi −

∫

γ
η mod Z.

Here η is the 1-form on X which is associated to
∑m

i=1 ai ⊗ bi in the way stated
above and γ : [0, 1] → X is a loop in X at the base point p whose homology class

is equal to c. The integral
∫

γ
aibi is Chen’s iterated integral [2], that is,

∫

γ
aibi =
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∫

0≤t1≤t2≤1
fi(t1)gi(t2)dt1dt2 for γ∗ai = fi(t)dt and γ∗bi = gi(t)dt. Here t is the coordi-

nate in the unit interval [0, 1]. See Chen [2] for iterated integrals and Harris [4], Pulte
[5] for the (pointed) harmonic volume.

Remark 2.2. By the definition of Ip, we have Ip((
∑m

i=1 ai⊗ bi)⊗ c) ≡ −Ip((
∑m

i=1 bi⊗
ai)⊗ c) mod Z.

3. Hyperelliptic curves

Let C be a hyperelliptic curve and Z2 the field Z/2Z. In this section, we explain the
first homology group of C with Z2-coefficient.

We define the hyperelliptic curve C as follows. It is the compactification of the plane
curve in the (z, w) plane C2

w2 =
2g+1∏

i=0

(z − pi),

where p0, p1, . . . , p2g+1 are some distinct points on C. It admits the hyperelliptic involu-
tion given by ι : (z, w) 7→ (z,−w). Let π be the 2-sheeted covering C → CP 1, (z, w) 7→
z, branched over 2g + 2 branch points {pi}i=0,1,··· ,2g+1 and Pi ∈ C a ramification point
such that π(Pi) = pi. It is known that {Pi}i=0,1,...,2g+1 is just the set of all the Weier-
strass points on any hyperelliptic curve C.

For points pi and pj , we denote by pipj a simple path joining pi and pj . We draw
simple paths p0p1, p1p2, . . . , p2gp2g+1 and p2g+1p0 such that all the 2g + 2 arcs do not
intersect except for endpoints of them. We take a disk D ⊂ CP 1 whose boundary is( ⋃2g

j=0 pjpj+1

)⋃
p2g+1p0 (Figure 1, g = 2). We picture two copies of CP 1 as above and

call them Ω0 and Ω1. We make crosscuts along p2kp2k+1, k = 0, 1, . . . , g and construct
the hyperelliptic curve C by joining every p2kp2k+1 on Ω0 to the corresponding one on
Ω1 for k = 0, 1, . . . , g. See 102-103 in [3] for example. We may consider Ωi ⊂ C for
i = 0, 1.

p0p1

p2 p3

p4

p5

Figure 1. D ⊂ CP 1

P0P1

P2 P3

P4

P5

Q0

γ̃0γ̃1

γ̃5

γ̃2

γ̃4

γ̃3

Figure 2. Ω0 ⊂ C

The hyperelliptic involution ι interchanges a point on Ω0 and the corresponding one
on Ω1, and fixes Pi, i = 0, 1, . . . , 2g + 1. We choose a base point Q0 ∈ Ω0 and denote
Q1 = ι(Q0) ∈ Ω1. Let γj , j = 0, 1, . . . , 2g + 1, be a simple path in D joining π(Q0)
and pj . We denote by γ̃j the lift of γj in Ω0 from Q0 to Pj (Figure 2, g = 2). Set
ej = γ̃j · ι(γ̃j)−1, where the product γ̃j · ι(γ̃j)−1 indicates that we traverse γ̃j first, then
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ι(γ̃j)−1. It is a path in C which is to be followed from Q0 to Pj and go to Q1 in Figure
3. It is clear that ej1 · ι(ej2) is a loop in C at the base point Q0. Moreover we have the

Q1

Q0

P0P2g+1 P2g Pj+1 P2 P1PjP2g−1

180◦

ι
C

γ̃j

ι(γ̃j)−1

Figure 3. ej = γ̃j · ι(γ̃j)−1

homotopy equivalences relative to the base point Q0

ej · ι(ej) ∼ 1 and e0 · ι(e1) · · · · · e2g · ι(e2g+1) ∼ 1.

We set ai = e2i−1 · ι(e2i) and bi = e2i−1 · ι(e2i−2) · · · · · e1 · ι(e0), and denote by xi and
yi the homology classes of ai and bi respectively. Then we have {xi, yi}i=1,2,...,g is a
symplectic basis of H1(C;Z) in Figure 1 in [6].

Let HZ2 denote H1(C;Z2) and B branch locus {pi}i=0,1,...,2g+1. We deform the path
ei in C and denote it by e′i in C \ π−1(B) as follows. The path e′i avoids Pi in a
sufficiently small neighborhood at Pi so that π(e′i) goes around pi which does not any
pk with k 6= i (Figure 4) and the set of homology classes {π(e′i)}i=0,1,...,2g is a basis of
H1(CP 1\B;Z2). Moreover we have π(e′0)+π(e′1)+· · ·+π(e′2g+1) = 0 ∈ H1(CP 1\B;Z2).
Since the coefficients are in Z2, the homology class of e′i is independent of the choice of
it. From the 2-sheeted covering π, we have the well-defined homomorphism v0 : H →

π(Q0) = π(Q1) pi

π(e′i)

CP 1

π(Q0) = π(Q1) pi

π(ei)

CP 1

Figure 4. A deformation of ei

H1(CP 1 \B;Z2) which factors through H1(C \π−1(B);Z) (Arnol’d [1]). We obtain the
linear map v : HZ2 → H1(CP 1 \B;Z2) induced naturally by v0. It immediately follows
that v(xi mod 2) = π(e′2i−1) + π(e′2i), v(yi mod 2) = π(e′0) + π(e′1) + · · · + π(e′2i−1),
and v is injective. The map v gives the short exact sequence

0 // HZ2

v // H1(CP 1 \B;Z2) // Z2
// 0.

Here the map H1(CP 1 \ B;Z2) → Z2 is the augmentation map π(e′i) 7→ 1. Fix a
Weierstrass point Pν . Let fi denote π(e′ν) + π(e′i) for i = 0, 1, . . . , 2g + 1. We remark
that fi may be considered as an element of HZ2 and fν = 0. For i = 1, 2, . . . , g, we
have the identification

(3.1)
{

xi = f2i−1 + f2i,
yi = f0 + f1 + · · ·+ f2i−1,

in HZ2 . It is clear that f0 + f1 + · · ·+ f2g+1 = 0.
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For any hyperelliptic curve C and Weierstrass point Pj ∈ C, the hyperelliptic in-
volution ι fixes IPj and acts on HZ2 as (−1)-times. Then we have the value of IPj

is 0 or 1/2 mod Z from the equation IPj ≡ (−1)3IPj mod Z. We may consider
IPj ∈ Hom((K ⊗H)Z2 ,Z2), where (K ⊗H)Z2 denotes (K ⊗H)⊗ Z2.

4. Pointed harmonic volumes of hyperelliptic curves and the moduli
space of compact Riemann surfaces

We recall some results about the moduli space of compact Riemann surfaces. Let Σg

be a closed oriented surface of genus g. Its mapping class group, denoted here by Γs
g, is

the group of isotopy classes of orientation preserving diffeomorphisms of Σg which fix
s points on Σg for s = 0, 1. We denote Γg = Γ0

g. The group Γ1
g acts on the Teichmüller

space T 1
g of Σg with a marked point and the quotient space M1

g is the moduli space of
Riemann surfaces of genus g with a marked point. The group Γ1

g acts naturally on the
first homology group H1(Σg;Z) of Σg.

Let H1
g ⊂M1

g be the moduli space of hyperelliptic curves of genus g with a marked
Weierstrass point Pν . For the rest of this paper, we suppose that a marked point is
a Weierstrass point. The hyperelliptic mapping class group ∆1

g is the subgroup of Γg

defined by
{ϕ ∈ Γg;ϕι = ιϕ, ϕ(Pν) = Pν},

where ι is the hyperelliptic involution of Σg. We have ∆1
g ⊂ Γ1

g. The moduli space H1
g is

known to be connected and has a natural structure of a quasi-projective orbifold. The
group ∆1

g can be considered as its orbifold fundamental group. For any Z∆1
g-module

M , we may consider the dual M∗ = Hom(M,Z2) as a Z2∆1
g-module in a natural way.

We denote Iν = IPν .

Proposition 4.1. We have

Iν ∈ H0(∆1
g; (K ⊗H)∗),

i.e. Iν is a ∆1
g-invariant in the dual (K ⊗H)∗.

Proof. Let L be a locally constant sheaf with a stalk HomZ(K ⊗H,Z2). In a similar
way to Harris’ method [4], Iν varies in H1

g continuously. For any hyperelliptic curves,
Iν ≡ 0 or 1/2 modulo Z. We remark that the pointed harmonic volume is uniquely
determined for any point on H1

g. The locally constant sheaf L has a global section
Ĩν associated to Iν . Moreover H1

g is arcwise connected. Therefore Ĩν is a constant
section of L and Iν is invariant under the action of the orbifold fundamental group ∆1

g

of H1
g. ¤

5. Pointed harmonic volumes of a hyperelliptic curve C0

We compute the pointed harmonic volume of a pointed hyperelliptic curve (C0, Pν).
See §3 and 4 in [6] for details. We define the hyperelliptic curve C0 by the equation w2 =
z2g+2 − 1. We take Qi = (0, (−1)i

√−1), i = 0, 1, and Pj = (ζj , 0), j = 0, 1, . . . , 2g + 1,
where ζ = exp

(
2π
√−1/(2g+2)

)
. We define a path ej : [0, 1] → C0, j = 0, 1, . . . , 2g+1,
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by { (
2tζj ,

√−1
√

1− (2t)2g+2
)

for 0 ≤ t ≤ 1/2,(
(2− 2t)ζj ,−√−1

√
1− (2− 2t)2g+2

)
for 1/2 ≤ t ≤ 1.

For i = 1, 2, . . . , g, we denote by ωi a holomorphic 1-form zi−1dz/w on C0. It is known
that {ωi}i=1,2,...,g is a basis of the space of holomorphic 1-forms on C0. Let B(u, v)

denote the beta function
∫ 1

0
xu−1(1− x)v−1dx for u, v > 0. For the normalization, we

set ω′i =
(2g + 2)

√−1
2B(i/(2g + 2), 1/2)

ωi. Then we have

∫

aj

ω′i = ζi(2j−1)(1− ζi) and
∫

bj

ω′i =
ζ2ij − 1
ζi + 1

,

where i, j ∈ {1, 2, . . . , g}. The integral
∫

γ
ω′i depends only on the homology class of γ,

since ω′i is a closed 1-form.

We compute the iterated integrals of real harmonic 1-forms of C0 with integral
periods. Let Ωa and Ωb be the non-singular matrices whose (i, j)-entries are∫

aj

ω′i and
∫

bj

ω′i

respectively. We define real harmonic 1-forms αi and βi, i = 1, 2, . . . , g, by


α1
...

αg


 = <


 (Ωb)−1




ω′1
...

ω′g





 and




β1
...

βg


 = −<


 (Ωa)−1




ω′1
...

ω′g







respectively. It is clear that
∫

aj

αi =
∫

bj

βi = 0 and
∫

bj

αi = δij = −
∫

aj

βi. Let

Θ: H1(C0;Z) → H1(C0;Z) denote the Poincaré dual. We have Θ(xi) = αi and Θ(yi) =
βi for i = 1, 2, . . . , g. Hence, {αi, βi}i=1,2,...,g is a symplectic basis of H1(C0;Z).

Let tu be a complex number
g∑

p=1

ζup for any integer u. It is obvious that

tu =





g for u ∈ (2g + 2)Z,
−1 for u ∈ 2Z \ (2g + 2)Z,
1 + ζu

1− ζu
for u ∈ 2Z+ 1.

Furthermore, tu is pure imaginary and t−u = −tu when u is odd. In addition to the
formulas (1),(2),(3) and (4) of Lemma 3.8 in [6], it is to show

Lemma 5.1. On the curve C0, we have

(5)
∫

ak

αiβj =
−1

2(g + 1)2
t2k−2i(t2k−2j − t2k),

(6)
∫

bk

αiβj =
−1

2(g + 1)2

k∑

u=1

{
(t2u−2i−2 − t2u−2i)

j∑

v=1

t2v+2u−2j−2

}
.

Here i, j, k ∈ {1, 2, . . . , g}.
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Proof. We compute the case (5) in the following way. Let Aj,m and Bi,l be (j,m) and
(i, l)-entries of (Ωa)−1 and (Ωb)−1 respectively.

∫

ak

αiβj =
∫

ak

−<
( g∑

l=1

Bi,lω
′
l

)
<

( g∑

m=1

Aj,mω′m

)

=− 1
4

∫

ak

g∑

l,m=1

(
Bi,lAj,mω′lω

′
m + Bi,lAj,mω′lω

′
m + Bi,lAj,mω′lω

′
m + Bi,lAj,mω′lω

′
m

)

=− 1
2
<

{
g∑

l,m=1

(
Bi,lAj,m

∫

ak

ω′lω
′
m + Bi,lAj,m

∫

ak

ω′lω
′
m

)}
.

We use Lemma 3.5 in [6] and calculate

(g + 1)2
g∑

l,m=1

Bi,lAj,m

∫

ak

ω′lω
′
m

=
g∑

l,m=1

ζ−2il(1 + ζ l)
ζm(−1 + ζ−2jm)

1− ζm

1
2
ζ(l+m)(2k−1)(1− 2ζm + ζ l+m)

=
1
2

g∑

m=1

1− ζ2jm

1− ζm
ζm(2k−2j)

g∑

l=1

ζ l(2k−2i−1)(1 + ζ l)(1− ζm − ζm(1− ζ l))

=
1
2

g∑

m=1

2k−1∑

v=2k−2j

ζmv
{

(1− ζm)(t2k−2i−1 + t2k−2i)− ζm(t2k−2i−1 − t2k−2i+1)
}

=
1
2

g∑

m=1

{
1− ζ2jm

1− ζm
ζm(2k−2j)(1− ζm)(t2k−2i−1 + t2k−2i)−

2k−1∑

v=2k−2j

ζm(v+1)(t2k−2i−1 − t2k−2i+1)
}

=
1
2

{
(t2k−2i−1 + t2k−2i)(t2k−2j − t2k)− (t2k−2i−1 − t2k−2i+1)

2k−1∑

v=2k−2j

tv+1

}

=
1
2

{
(t2k−2i−1 + t2k−2i)(t2k−2j − t2k)− (t2k−2i−1 − t2k−2i+1)

2k∑

v=2k−2j+1

tv

}
.

Similarly, we have

(g + 1)2
g∑

l,m=1

Bi,lAj,m

∫

ak

ω′lω
′
m

=
1
2

{
(t2k−2i−1 + t2k−2i)(t2k−2j − t2k)− (t2k−2i−1 − t2k−2i+1)

2k∑

v=2k−2j+1

t−v

}
.

Therefore, we obtain the result
∫

ak

αiβj

=
−1

2(g + 1)2
1
2
<

{
2(t2k−2i−1 + t2k−2i)(t2k−2j − t2k)− 2(t2k−2i−1 − t2k−2i+1)

2k∑

v=2k−2j+1
even

tv

}
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=
−1

2(g + 1)2
t2k−2i(t2k−2j − t2k).

Similarly we compute the case (6). ¤

Using the symplectic basis {xi, yi}i=1,2,··· ,g ⊂ H1(C;Z) stated in §3, we choose a
basis of K as follows:




(1) zi ⊗ z′j (i 6= j)
(2) xi ⊗ yi − x1 ⊗ y1 (i 6= 1)
(3) xi ⊗ yi + yi ⊗ xi (i = 1, 2, . . . , g)
(4) zi ⊗ zi (i = 1, 2, . . . , g)





,

where zi denotes xi or yi and so on. By the definition of the pointed harmonic volume
Iν , we obtain

Iν((xi ⊗ yi + yi ⊗ xi)⊗ z′′k) ≡ 0 mod Z for any i, k,

and

Iν(zi ⊗ zi ⊗ z′′k) ≡
{

1/2 mod Z if zi ⊗ zi ⊗ z′′k = xi ⊗ xi ⊗ yi or yi ⊗ yi ⊗ xi,
0 mod Z otherwise,

for any hyperelliptic curve C. It is enough to consider the case (1) and (2). For the
rest of this paper, we omit mod Z, unless otherwise stated.

We compute the pointed harmonic volume of (C0, Q0). From Lemma 5.1, Lemma

3.8 in [6] and the equation
∫

ej

η = 0 (Lemma 4.2 in [6]), it is to show

Proposition 5.2. Case (1). If i 6= k and j 6= k, then we have

IQ0(zi ⊗ z′j ⊗ z′′k) ≡ 0.

If i = k or j = k, then we have

IQ0(xi ⊗ xj ⊗ yi) ≡ µ,

IQ0(xi ⊗ yj ⊗ yi) ≡
{

(g − j + 1)µ
(2g − j + 2)µ

if i < j,
if i > j,

IQ0(yi ⊗ xj ⊗ xi) ≡ (2g + 1)µ,

IQ0(yi ⊗ yj ⊗ xi) ≡
{

(g + j + 1)µ
jµ

if i < j,
if i > j,

Case (2). If i 6= k and k 6= 1, then we have

IQ0((xi ⊗ yi − x1 ⊗ y1)⊗ z′′k) ≡ 0.

If i = k or k = 1, then we have

IQ0((xi ⊗ yi − x1 ⊗ y1)⊗ xi) ≡ (g + 2)µ,
IQ0((xi ⊗ yi − x1 ⊗ y1)⊗ yi) ≡ (2g − i + 2)µ,
IQ0((xi ⊗ yi − x1 ⊗ y1)⊗ x1) ≡ gµ,
IQ0((xi ⊗ yi − x1 ⊗ y1)⊗ yi) ≡ (g + 2)µ.

Here we denote µ = 1/(2g + 2).

Remark 5.3. From Remark 2.2, we do not need to compute IQ0(xj⊗xi⊗yi), IQ0((yi⊗
xi − y1 ⊗ x1)⊗ xi) and so on.
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We calculate the difference between Iν and IQ0 . For h1 ⊗ h2 ⊗ h3 ∈ K ⊗H, we set
Λν(h1 ⊗ h2 ⊗ h3) := Iν(h1 ⊗ h2 ⊗ h3) − IQ0(h1 ⊗ h2 ⊗ h3) mod Z. Let `ν : [0, 1] → C0

be a path t 7→ (tζν ,
√−1

√
1− t2g+2) ∈ C0. It is clear that `−1

ν · ej · `ν ’s are loops in C0

at the base point Pν . From the equation (2.2) in [4], we have

Lemma 5.4.

Λν(h1 ⊗ h2 ⊗ h3) ≡ (h1, h3)
∫

`ν

h2 − (h2, h3)
∫

`ν

h1 mod Z.

It is clear that
∫

`ν

αi =
1

2(g + 1)
<(tν−2i + tν−2i+1) and

∫

`ν

βi =
−1

2(g + 1)
<

(
ν∑

u=ν−2i+1

tu

)
.

These equations and Lemma 5.4 give the following Lemma.

Lemma 5.5. Case (1). If i 6= k and j 6= k, then we have

Λν(zi ⊗ z′j ⊗ z′′k) ≡ 0.

If i = k or j = k, then we have

Λν(xi ⊗ xj ⊗ yi) ≡
{

gµ
(2g + 1)µ

if ν = 1 or 2,
if ν 6= 1 and 2,

Λν(xi ⊗ yj ⊗ yi) ≡
{

jµ
(g + j + 1)µ

if ν > 2i− 1,
if ν ≤ 2i− 1,

Λν(yi ⊗ xj ⊗ xi) ≡
{

(g + 2)µ
µ

if ν = 1 or 2,
if ν 6= 1 and 2,

Λν(yi ⊗ yj ⊗ xi) ≡
{

(2g − j + 2)µ
(g − j + 1)µ

if ν > 2i− 1,
if ν ≤ 2i− 1.

Case (2). If i 6= k and k 6= 1, then we have

Λν((xi ⊗ yi − x1 ⊗ y1)⊗ z′′k) ≡ 0.

If i = k or k = 1, then we have

Λν((xi ⊗ yi − x1 ⊗ y1)⊗ xi) ≡
{

gµ
(2g + 1)µ

if ν = 2j − 1 or 2j,
if ν 6= 2j − 1 and 2j,

Λν((xi ⊗ yi − x1 ⊗ y1)⊗ yi) ≡
{

iµ
(g + i + 1)µ

if ν > 2i− 1,
if ν ≤ 2i− 1,

Λν((xi ⊗ yi − x1 ⊗ y1)⊗ x1) ≡
{

(g + 2)µ
µ

if ν = 1 or 2,
if ν 6= 1 and 2,

Λν((xi ⊗ yi − x1 ⊗ y1)⊗ y1) ≡
{

(2g + 1)µ
gµ

if ν > 1,
if ν ≤ 1.

By combining Proposition 5.2 and Lemma 5.5, we have the pointed harmonic volume
Iν of (C0, Pν).

Theorem 5.6. Case (1). Elements of K⊗H at which the value of the pointed harmonic
volumes Iν are 1/2 mod Z are given by

xi ⊗ xj ⊗ yi, xj ⊗ xi ⊗ yi if ν = 2j − 1 or 2j,
xi ⊗ yj ⊗ yi, yj ⊗ xi ⊗ yi if (i < j, ν > 2j − 1) or (i > j, ν ≤ 2j − 1),
yi ⊗ xj ⊗ xi, xj ⊗ yi ⊗ xi if ν = 2j − 1 or 2j,
yi ⊗ yj ⊗ xi, yj ⊗ yi ⊗ xi if (i < j, ν > 2j − 1) or (i > j, ν ≤ 2j − 1).

The values at the other elements are 0 mod Z.
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Case (2). Elements of K ⊗H at which the value of the pointed harmonic volumes
Iν are 1/2 mod Z are given by

(xi ⊗ yi − x1 ⊗ y1)⊗ xi, (yi ⊗ xi − y1 ⊗ x1)⊗ xi if ν 6= 2i− 1 and 2i,
(xi ⊗ yi − x1 ⊗ y1)⊗ yi, (yi ⊗ xi − y1 ⊗ x1)⊗ yi if ν ≤ 2i− 1,
(xi ⊗ yi − x1 ⊗ y1)⊗ x1, (yi ⊗ xi − y1 ⊗ x1)⊗ x1 if ν 6= 1 and 2,
(xi ⊗ yi − x1 ⊗ y1)⊗ y1, (yi ⊗ xi − y1 ⊗ x1)⊗ y1 if ν > 1.

The values at the other elements are 0 mod Z.

From Proposition 4.1, this theorem can be extended to any hyperelliptic curve C with
Weierstrass base points. But this extension is complicated. We reconsider Theorem 5.6
from a combinatorial viewpoint. We apply an element A ∈ K ⊗H to the identification
(3.1) in the group (K ⊗H)Z2 . Then we have (A mod 2) =

∑
p,q,r 6=ν Ap,q,rfp ⊗ fq ⊗ fr,

where Ap,q,r ∈ Z2 = {0, 1}. The notation ] means the cardinality of a set. A counting

function κν : K ⊗H → 1
2
Z/Z = {0, 1/2} is well-defined by

κν(A) :=
1
2

(
]{(p, q, r);Ap,q,r = 1, ]{p, q, r} = 2}

)
mod Z.

Here ]{p, q, r} = 2 means p = q 6= r or q = r 6= p or r = p 6= q. By the long but easy
computation, we obtain the correspondence.

Corollary 5.7. On the curve C0, we have

Iν(A) ≡ κν(A) mod Z.

Example 5.8. (1) If A = xi ⊗ xj ⊗ yi (i < j and ν = 2j − 1), we have

κ(A) = κ((f2i−1 + f2i)⊗ f2j ⊗ (f0 + f1 + · · ·+ f2i−1))

≡ κ(f2i−1 ⊗ f2j ⊗ f2i−1) = 1/2.

(2) If A = xi ⊗ xj ⊗ yi (i > j and 2i < ν), we have

κ(A) = κ((f2i−1 + f2i)⊗ (f2j−1 + f2j)⊗ (f0 + f1 + · · ·+ f2i−1))

≡ κ(f2i−1 ⊗ f2j−1 ⊗ f2j−1 + f2i−1 ⊗ f2j−1 ⊗ f2i−1 + f2i−1 ⊗ f2j ⊗ f2j

+ f2i−1 ⊗ f2j ⊗ f2i−1 + f2i ⊗ f2j−1 ⊗ f2j−1 + f2i ⊗ f2j ⊗ f2j)

= 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 ≡ 0.

6. A combinatorial formula of Iν

In this section, we compute the pointed harmonic volume Iν = IPν of (C,Pν) by
another combinatorial way. Let S2g+1 be the (2g + 1)-th symmetric group. Using the
natural projection ∆1

g → S2g+1, the group HZ2 is naturally considered as a Z2S2g+1-
module (Arnol’d, V. I. [1]). From the slight modification of Lemma 5.5 and Proposition
5.7 in [6], we have

Lemma 6.1.
H0(∆1

g; (K ⊗H)∗) = H0(S2g+1; (H⊗3)∗) = Z2.

Moreover the unique nontrivial element ψν ∈ H0(S2g+1; (H⊗3)∗) is an S2g+1-homomorphism
H⊗3 → Z2 defined by

ψν(fi ⊗ fj ⊗ fk) =
{

1 if ]{i, j, k} = 2,
0 otherwise,

for any i, j, k except for ν.
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From Lemma 6.1, we have

Theorem 6.2. For A ∈ K ⊗H, we have

Iν(A) ≡ κν(A) mod Z.

Using the equation fi = π(e′ν)+π(e′i), we obtain A =
∑

p,q,r A′p,q,rπ(e′p)⊗π(e′q)⊗π(e′r).

Another counting function κ′ν : K ⊗H → 1
2
Z/Z = {0, 1/2} is defined by

κ′ν(A) :=
1
2

(
]{(p, q, r);A′p,q,r = 1, ]{p, q, r} = 2, p, q, r 6= ν}

)
mod Z.

Corollary 6.3.
Iν(A) ≡ κ′ν(A) mod Z.

Proof. We use the notation e(p, q, r) = π(e′p)⊗ π(e′q)⊗ π(e′r) only here. The equation

fp ⊗ fq ⊗ fr =e(p, q, r) + e(p, q, ν) + e(p, ν, r) + e(p, ν, ν)

+ e(ν, q, r) + e(p, q, ν) + e(ν, ν, r) + e(ν, ν, ν)

gives κν(A) ≡ κ′ν(A). ¤
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