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1 Introduction

In this paper we will extend the boundedness of the modified maximal operators on the
non-homogeneous space. Let µ be a Radon measure on Rd. Throughout this paper by “ball”
we mean a ball with positive radius, and if µ is finite, we regard Rd as a special ball with
radius ∞. Denote B(x, r) as an open ball in Rd with center x and radius r > 0 and for a ball
B = B(x, r), we set r(B) := r and κB := B(x, κr). Set the centered maximal operator by

M̃f(x) := sup
B=B(x,r)∈B(µ)

1
µ(B)

∫

B

|f(y)| dµ(y).

Here and in what follows we denote B(µ) as the totality of the balls with positive µ-measure.
M̃ is weak-(1, 1) bounded with the aid of Besicovitch’s covering lemma. The proof can be found
in [10]. If we set the centered fractional maximal operator by

M̃αf(x) := sup
B=B(x,r)∈B(µ)

1
µ(B)1−α

∫

B

|f(y)| dµ(y), 0 ≤ α < 1, (1)

then the similar proof shows that M̃α is weak-(1, (1− α)−1) bounded.

∗This work is supported by Research Fellowships of the Japan Society for the Promotion of Science for Young
Scientists. Current address Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku Tokyo 153-8914, JAPAN, E-mail: yosihiro@ms.u-tokyo.ac.jp
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What happens for the uncentered maximal operator? We set the uncentered Hardy-Littlewood
maximal operator M as

Mf(x) := sup
x∈B∈B(µ)

1
µ(B)

∫

B

|f(y)| dµ(y).

If the measure is doubling, that is, µ(2B) ≤ C µ(B) for any ball B with center in supp (µ),
then M is weak-(1, 1) bounded. But if the measure is not doubling, then it can happen that M
is not weak-(1, 1) bounded (see [2]). It is the same that Mα is not weak-(1, (1−α)−1) bounded
in general if we replace the uncentered fractional modified maximal operator, where

Mαf(x) := sup
x∈B∈B(µ)

1
µ(B)1−α

∫

B

|f(y)| dµ(y), 0 ≤ α < 1.

Again if the measure is doubling, we have weak-(1, (1− α)−1) boundedness of Mα.

To overcome this difficulty, in [3], [7], [12], [13] and [17] the modified maximal operator was
considered. If we define modified maximal operators by

M0,κf(x) := sup
x∈B∈B(µ)

1
µ(κB)

∫

B

|f(y)| dµ(y), κ > 1

or more generally

Mα,κf(x) := sup
x∈B∈B(µ)

1
µ(κB)1−α

∫

B

|f(y)| dµ(y), κ > 1, 0 ≤ α < 1, (2)

then Mα,κ is weak-(1, (1− α)−1) bounded. These operators enjoy the boundedness properties
with the aid of Besicovitch’s covering lemma. For our later purpose we use somehow stronger
version, whose proof is similar to [13, Theorem 1.5]. For convenience we prove Lemma 1.1 in
Appendix.

Lemma 1.1. Let κ > 1 be a fixed number. Suppose that B = {Bλ}λ∈Λ is a family of the balls
with bounded radii : We assume sup

λ∈Λ
r(Bλ) < ∞. Then we can take {Bλ}λ∈Λ1 , . . . ,{Bλ}λ∈ΛN

,

subfamilies such that the following condition holds. Here, N = Nκ depends only on κ > 1.

1. If λ, λ′ ∈ Λj , j = 1, . . . , Nκ are different, then

κBλ ∩ κBλ′ = ∅. (3)

2. For all λ ∈ Λ there exists i(λ) ∈
N⋃

j=1

Λj such that

Bλ ⊂ κBi(λ). (4)

The aim of this paper is to obtain the Fefferman-Stein type extension of Mα,κ and M̃α with
0 < α < 1 and κ > 1 for a general non-zero Radon measure µ via Riesz-Potential-like operators
for µ. In [1] D. Adams defined the fractional integral operator for Lebesgue measure by

(−∆)−α/2f(x) :=
Γ

(
α
2

)

πα− d
2 Γ

(
d−α

2

)
∫

Rd

f(y)
|x− y|d−α

dy, 0 < α < d.
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(−∆)−α/2 is known to be Lp(Rd)-Lq(Rd) bounded, if p, q > 1 and
1
q

=
1
p
− α

d
. It is easily

seen that M̃αf(x),Mα,κf(x) ≤ C(−∆)−dα/2|f |(x) for some big constant C > 0. We define a
fractional integral operator of this type for general measure µ.

Suppose that µ satisfies the growth condition µ(B(x, r)) ≤ c0r
n. Then in [5] Garćıa-Cuerva

and Gatto defined a fractional integral operator Jα by

Jαf(x) :=
∫

Rd

f(y)
|x− y|n−α

dµ(y). (5)

Carderón-Zygmund theory for Jα with growth measure has been developed. Garćıa-Cuerva

and Gatto showed the Lp(µ)-Lq(µ) boundedness of Jα if p, q > 1 and
1
q

=
1
p
− α

n
. The Lp(µ)-

Lq(µ) boundedness of Iα in more general form was firstly proved by V. Kokilashvili in Rd

(1 < p < q < ∞) in [8]. In general non-homogeneous spaces in general setting (1 < p < q < ∞)
it is proved in [9]. See also the monograph by D. Edmunds, V.Kokilashvili and A. Meskhi [4].
Chen and Sawyer showed the boundedness of the commutator [a, Jα], where a is an RBMO
function defined by X. Tolsa [17]. For the multilinear version we refer [6]. The example of
Calderón-Zygmund theory without growth condition can be found in [7] and [11].

However, the operator Jα is not sufficient for our purpose: Even if µ satisfies the growth
condition, Jα can not dominate M̃α nor Mα,κ. Thus we shall define linear operators which
dominate M̃α and Mα,κ respectively. Our linear operators will be of the form

Ĩαf(x) =
∫

Rd

k̃α(x, y)f(y) dµ(y) and Iα,κf(x) =
∫

Rd

kα,κ(x, y)f(y) dµ(y).

Ĩα and Iα,κ are different from those appearing in the fore-mentioned papers. Here kα,κ and kα

are positive µ-measurable functions. They will satisfy pointwise estimates

M̃αf(x) ≤ C Ĩα|f |(x) and Mα,κf(x) ≤ C Iα,κ|f |(x).

In what follows we will distinguish the centered-type operators from the uncentered-type op-
erators by ˜ and subindices : The operators with κ such as Mα,κ, Iα,κ, . . . are related with
the uncentered maximal operators. Meanwhile the operators related to the centered maximal
operators are denoted with .̃ For example M̃ is a centered non-modified maximal operator.

We will work on the modified Morrey space defined in [14]. For details we refer [14]. For
distinction of weak-type spaces defined in [15] we name them strong-type Morrey spaces.

For Lq
loc(µ) function f the (strong-type) Mp

q(µ) norm is given by

‖f : Mp
q(k, µ)‖ := sup

B∈B(µ)

µ(kB)
1
p− 1

q

(∫

B

|f(y)|q dµ(y)
) 1

q

.

Set Mp
q(k, µ) as a set of µ-measurable functions with the norm above finite. It is known that

if k1, k2 > 1, then Mp
q(k1, µ) ∼ Mp

q(k2, µ). We also have the weak-type Morrey space whose
semi-norm is given by

‖f : Mp
q(k, µ)‖w := sup

λ>0
sup

B∈B(µ)

µ(kB)
1
p− 1

q (λqµ{x ∈ B : |f(x)| > λ}) 1
q .

The definition can be found in [15]. Set Mp
q(k, µ)w as a set of µ-measurable functions with

the semi-norm above finite. In what follows for definiteness we write Mp
q(µ) := Mp

q(2, µ) and
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Mp
q(µ)w := Mp

q(2, µ)w. Like the strong-type Morrey spaces the number 2 does not affect the
definition of the spaces: It suffices to be strictly greater than 1. We note that Mp

p(µ)w is
weak-Lp(µ) space.

We shall prove the following theorems.

Theorem 1.2. Let 0 < α < 1 and M̃α be the centered maximal operator given by (1).

1. Suppose that 1 < p < α−1, 1 ≤ r ≤ ∞ and that
1
q

=
1
p
− α. Let {fj}∞j=1 be a system of

µ-measurable functions. Then
∥∥∥∥∥∥∥




∞∑

j=1

M̃αfj
r




1
r

: Lq(µ)

∥∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥∥




∞∑

j=1

|fj |r



1
r

: Lp(µ)

∥∥∥∥∥∥∥
.

Here, C is independent of {fj}∞j=1.

2. Suppose that 1 ≤ r ≤ ∞. Let {fj}∞j=1 be a system of µ-measurable functions. Then

µ





x ∈ Rd :




∞∑

j=1

M̃αfj(x)r




1
r

> λ




≤


C

λ

∫

Rd




∞∑

j=1

|fj(x)|r



1
r

dµ(x)




1
1−α

.

Here, C is independent of {fj}∞j=1.

Theorem 1.3. Let 0 < α < 1 and Mα,κ be the uncentered maximal operator given by (2). Let
{fj}∞j=1 be a system of µ-measurable functions.

1. Suppose that 1 < q ≤ p < α−1, 1 ≤ r ≤ ∞,
1
s

=
1
p
− α and that

t

s
=

q

p
. Then

∥∥∥∥∥∥∥




∞∑

j=1

Mα,κfj
r




1
r

: Ms
t (µ)

∥∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥∥




∞∑

j=1

|fj |r



1
r

: Mp
q(µ)

∥∥∥∥∥∥∥
.

Here, C is independent of {fj}∞j=1.

2. Suppose that 1 ≤ p < α−1, 1 ≤ r ≤ ∞, and that
1
s

=
1
p
− α. Then

∥∥∥∥∥∥∥




∞∑

j=1

Mα,κfj
r




1
r

: Ms
s/p(µ)

∥∥∥∥∥∥∥
w

≤ C

∥∥∥∥∥∥∥




∞∑

j=1

|fj |r



1
r

: Mp
1(µ)

∥∥∥∥∥∥∥
.

Here, C is independent of {fj}∞j=1.

The centered maximal operator M̃ is not bounded fromMp
q(µ) toMp

q(µ)w. Let us note that
Theorem 1.3 2 is obtained in [14] for r > 1. We have obtained the theorem using the vector-
valued maximal inequality of Fefferman-Stein type for M0,κ with κ > 1 for Morrey spaces. In
[13] and [14] we have proved the vector-valued maximal inequality of Fefferman-Stein type for
M0,κ with κ > 1. However, the one for M̃ is still missing so that we cannot obtain Theorem
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1.2. The method by the vector-valued maximal function inequality of Fefferman and Stein has
another disadvantage. We cannot recover the case r = 1. If r = 1, then the vector-valued
maximal function inequality of Fefferman and Stein fails. For details of this fact we refer [16].
Our present method does not suffer from this shortcoming.

Suppose that, for example, the inequality ‖Ĩαf : Lq(µ)‖ ≤ C ‖f : Lp(µ)‖ is obtained for

1 < p < α−1,
1
q

=
1
p
− α. Then we obtain Theorem 1.2 1 as follows:

By lr-lr
′
duality and the pointwise estimate M̃αfj(x) ≤ C Ĩα|fj |(x), we have




∞∑

j=1

M̃αfj(x)r




1
r

≤ C




∞∑

j=1

Ĩα|fj |(x)r




1
r

= C sup
a=a(x) : ‖a : lr

′‖≤1

a(x)={aj(x)}∞j=1∈lr
′

∞∑

j=1

aj(x)Ĩα|fj |(x).

In what follows let us write sup instead of sup
a=a(x) : ‖a : lr

′‖≤1

a(x)={aj(x)}∞j=1∈lr
′

. Since Ĩα is a linear operator, we

can proceed further.




∞∑

j=1

M̃αfj(x)r




1
r

= C sup
∞∑

j=1

aj(x)
∫

Rd

k̃α(x, y)|fj(y)| dµ(y)

= C sup
∫

Rd

k̃α(x, y)




∞∑

j=1

aj(x)|fj(y)|

 dµ(y)

≤ C

∫

Rd

k̃α(x, y)




∞∑

j=1

|fj(y)|r



1
r

dµ(y) = C


Ĩα




∞∑

j=1

|fj |r



1
r


 (x).

As a consequence we obtain
∥∥∥∥∥∥∥




∞∑

j=1

M̃αfj
r




1
r

: Lq(µ)

∥∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥∥
Iα




∞∑

j=1

|fj |r



1
r

: Lq(µ)

∥∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥∥




∞∑

j=1

|fj |r



1
r

: Lp(µ)

∥∥∥∥∥∥∥
.

The rest of Theorems 1.2 and 1.3 can be obtained similarly.

Thus the rest of this paper is devoted to constructing Ĩα and Iα,κ and to studying their
properties. To establish the boundedness of these operators we use Lemmas 1.4 and 1.5. The
proof can be obtained in the standard way by Besicovitch’s covering lemma and interpolation.
For details we refer [10].

Lemma 1.4. Let M̃ be a centered maximal operator. Then M̃ is Lp(µ)-bounded for p > 1 and
weak-(1, 1) bounded.

Unfortunately the centered maximal operator M̃ is not bounded on Mp
q(µ) in general. In

Section 4 we give an example for which M̃ is not weak-M2
1(µ) bounded.

As for the uncentered maximal operator we use the following result.

Lemma 1.5. Suppose that κ > 1. M0,κ is the κ-times uncentered modified maximal operator.
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1. [15, Theorem 3.3] Let 1 ≤ p < ∞. Then ‖M0,κf : Mp
1(µ)‖w ≤ C ‖f : Mp

1(µ)‖, where C
is independent of f .

2. [14, Theorem 2.3] Let 1 < q ≤ p < ∞. Then ‖M0,κf : Mp
q(µ)‖ ≤ C ‖f : Mp

q(µ)‖, where
C is independent of f .

2 Centered fractional maximal operators

In this section we consider centered fractional maximal operators. For this purpose we will
define auxiliary numbers rk(x).

Definition 2.1. Given a Radon measure µ and a point x ∈ Rd, we define

rk(x) := sup{r ≥ 0 : µ(B(x, r)) < 2k}
for k ∈ Z with k > log2 µ({x}).

We note that rk(x) > 0 for all k > k(x) and that rk(x) ↑ ∞ as k →∞ by definition.

Now we will define a potential operator for centered maximal operators.

Definition 2.2. Let 0 < α < 1. Then for µ-measurable positive function f we set

Ĩαf(x) :=
∞∑

k=[log2 µ({x})]+1

1
2k(1−α)

∫

B(x,rk(x))

f(y) dµ(y).

Here [·] denotes the Gauss sign. If we define the integral kernel by

k̃α(x, y) :=
∞∑

k=[log2 µ({x})]+1

χB(x,rk(x))(y)
2k(1−α)

,

then we can write
Ĩαf(x) =

∫

Rd

k̃α(x, y)f(y) dµ(y).

Before going into details let us see how our kernel looks like for Lebesgue measure.

Example 2.3. If the measure µ is Lebesgue measure, then Ĩα is pointwise-comparable to
(−∆)−

dα
2 in the following sense. For all x ∈ Rd the estimate

C0 (−∆)−dα/2f(x) ≤ Ĩαf(x) ≤ C1 (−∆)−dα/2f(x)

holds for all positive Lebesgue measurable function f .

Returning to general Radon measures, we note that the measurability of the function Ĩαf(x)
follows from lower-semicontinuity of x ∈ Rd 7→ rk(x) ∈ R.

The following estimate is the key of the boundedness of Ĩα.

Proposition 2.4. Let 1 ≤ p < α−1, q > 1, 0 < α < 1 and
1
q

=
1
p
− α. Then

Ĩαf(x) ≤ C M̃f(x)
p
q · ‖f : Lp(µ)‖1− p

q

for all positive µ-measurable function f .
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Proof of Proposition 2.4. Fix x ∈ Rd. Set K := {k ∈ Z : rk(x) > rk−1(x)}. We shall estimate

Ik :=
∑

l∈Z
rl(x)=rk(x)

1
2l(1−α)

∫

B(x,rl(x))

|f(y)| dµ(y)

for k ∈ K. First we note that µ(B(x, rk(x))) ≤ 2kj by definition. Consequently Hölder’s
inequality yields

Ik =
∑

l∈Z
rl(x)=rk(x)

1
2l(1−α)

∫

B(x,rk(x))

|f(y)| dµ(y)

≤ C

2k(1−α)

∫

B(x,rk(x))

|f(y)| dµ(y) ≤ C 2−
k
s ‖f : Lp(µ)‖. (6)

In the same way, using maximal operator M̃ , we have

Ik =
∑

l∈Z
rl(x)=rk(x)

1
2l(1−α)

∫

B(x,rk(x))

|f(y)| dµ(y) ≤ C 2αkM̃f(x). (7)

Combine (6) and (7) to obtain

Ik ≤ C min{2− k
s ‖f : Lp(µ)‖, 2αkM̃f(x)}.

Since Ĩαf(x) =
∑

k∈K

Ik, we have the desired result.

Since M̃ is Lp(µ)-bounded for p > 1, we have

Corollary 2.5. Let
1
q

=
1
p
− α and 1 < p < α−1. Then

‖Ĩαf : Lq(µ)‖ ≤ C ‖f : Lp(µ)‖
for all positive µ-measurable function f . In particular Iα can be extended linearly to a bounded
operator from Lp(µ) to Lq(µ).

From this corollary, as is noted in Introduction, we can obtain Theorem 1.2.

Finally before investigating the uncentered maximal operator, if the measure µ satisfies the
growth condition µ(B(x, r)) ≤ c0 rn with 0 < n ≤ d, let us see that Ĩα dominates Jnα defined
by (5).

Proposition 2.6. Assume that the measure µ satisfies the growth condition µ(B(x, r)) ≤ c0r
n

with 0 < n ≤ d and that 0 < α < 1. Then for µ-a.e. x ∈ Rd

Jnαf(x) ≤ C Ĩαf(x),

where f is a positive µ-measurable function and C is independent of f .

Proof of Proposition 2.6. It suffices to compare the corresponding kernels. That is, we have
only to show that

1
|x− y|n(1−α)

≤ Ckα(x, y), µ-a.e. (x, y) ∈ Rd ×Rd (8)
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for some C > 0.

We may assume that x 6= y, since µ does not charge any point in Rd under the growth
condition. Let k be an integer such that rk−1(x) < |x− y| ≤ rk(x). Then

|x− y|n(1−α) ≥ c0
α−1µ(B(x, |x− y|))1−α ≥ C 2k(1−α),

which proves (8).

As a corollary of Proposition 2.6, we note that this proposition allows us to transplant
Corollary 2.5 and Theorem 1.2 to Jβ , 0 < β < n.

3 Uncentered fractional maximal operators

3.1 A family of balls

In this subsection we will consider a family of balls that will be needed to define another
fractional maximal operator. The following lemma shows that we can drop the assumption of
bounded radii in Lemma 1.1 for some special family of balls.

Lemma 3.1. Let b > a > 0 be fixed positive numbers. Suppose that µ is a Radon measure and

B(µ)a,b := {B ∈ B(µ) : a ≤ µ(κ2B) ≤ b} 6= ∅.

Then there exists N(= Nκ) subfamilies B(µ)a,b,1, . . . ,B(µ)a,b,N such that

{κB : B ∈ B(µ)a,b,j} is disjoint for all j = 1, . . . , N. (9)

and for all B ∈ B(µ)a,b we can find B′ ∈
N⋃

j=1

B(µ)a,b,j such that B ⊂ κB′. Here Nκ does not

depend on a nor b.

Proof of Lemma 3.1. We may assume that µ(Rd) > b. If µ(Rd) ≤ b, we have only to take
B(µ)a,b,j = {Rd}, j = 1, . . . , N . Furthermore we may assume that

⋃

B∈B(µ)a,b

κB is connected

and non-empty. Otherwise we have only to apply this lemma to each connected component
and collect the subfamilies from each component.

Let us call a family of balls {Bj}I
j=0 ⊂ B(µ)a,b an I-chain if κBj ∩ κBj−1 6= ∅ for all

j = 1, . . . , I. Fix B∗ ∈ B(µ)a,b. Since we assume that
⋃

B∈B(µ)a,b

κB is connected, for all B there

exists an I-chain {Bj}I
j=0 ⊂ B(µ)a,b such that B0 = B∗ and BI = B.

Define i(B) as the smallest integer of such I. Let BI := {B ∈ B(µ)a,b : i(B) = I}. Then by
induction and the assumption µ(Rd) > b, it is easy to see that BI is a family of bounded radii.

Now we apply Lemma 1.1 to BI . We obtain B(1)
I , . . . ,B(N)

I with (3) and (4) for BI . The
definition of i(B) prohibits κB ∩ κB′ 6= ∅ with B ∈ B(j)

I and B′ ∈ B(j′)
I+2 for any j, j′ = 1, . . . , N

8



and I ∈ N. Thus our desired family can be obtained by putting

B(µ)a,b,j :=
⋃

I≡1 mod 2

B(j)
I , B(µ)a,b,j+N :=

⋃

I≡0 mod 2

B(j+N)
I

for j ≤ N .

Definition 3.2. Let k ∈ Z. We apply Lemma 3.1 to the family with a = 2k−1, b = 2k and
κ > 1 to obtain a (at most) countable balls {B(k)

j }j∈Jk
such that

1.
∑

j∈Jk

χ
κB

(k)
j

(x) ≤ Nκ.

2. For any ball B with 2k−1 ≤ µ(κ2B) ≤ 2k we can find B
(k)
j , j ∈ Jk such that B ⊂ κB

(k)
j .

Throughout Section 3 we fix {B(k)
j }j∈Jk

for each k ∈ Z.

3.2 Fractional integral operators for uncentered maximal operators

Using {B(k)
j }j∈Jk,k∈Z we will construct our potential operators.

Definition 3.3. Let 0 < α < 1. Let f be a positive µ-measurable function. Then we define

Iα,κf(x) :=
∑

j,k∈Z

(
1

2k(1−α)

∫

κB
(k)
j

f(y) dµ(y)

)
χ

κB
(k)
j

(x).

We can write Iα,κf(x) =
∫

Rd

kα,κ(x, y)f(y) dµ(y) in terms of integral kernel. Here, kα,κ is

defined as

kα,κ(x, y) :=
∑

j,k∈Z

χ
κB

(k)
j

(x)χ
κB

(k)
j

(y)

2k(1−α)
.

Iα,κ is also pointwise comparable to the operator (−∆)−αd/2, if µ is Lebesgue measure on
Rd. The similar two-sided estimate like Example 2.3 holds.

Next we shall prove the boundedness of this fractional integral operator. Unlike the centered
maximal operator, we use the uncentered maximal operator M0,κ.

Proposition 3.4. Let 1 ≤ p < ∞, s > 1, 0 < α < 1 and
1
s

=
1
p
− α. Then

Iα,κf(x) ≤ C M0,κf(x)
p
s ‖f : Mp

1(µ)‖1− p
s

for all positive µ-measurable function f .

Proof of Proposition 3.4. We will estimate
1

2k(1−α)

∫

κB
(k)
j

f(y) dµ(y) in two ways again. One is

obtained by the definition of Morrey norms. Note that 2k−1 ≤ µ(κ2B
(k)
j ) ≤ 2k. Hence,

1
2k(1−α)

∫

κB
(k)
j

f(y) dµ(y)

≤ µ(κ2B
(k)
j )1−

1
p

2k(1−α)
· µ(κ2B

(k)
j )

1
p−1

(∫

κB
(k)
j

f(y) dµ(y)

)
≤ 2−

k
s +1‖f : Mp

1(µ)‖. (10)
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The estimate using the uncentered modified maximal operator is the same as that via the
centered modified maximal operator.

1
2k(1−α)

∫

κB
(k)
j

f(y) dµ(y) ≤ µ(κ2B
(k)
j )αM0,κf(x) ≤ 2kαM0,κf(x). (11)

We summarize (10) and (11):

1

µ(κ2B
(k)
j )1−α

∫

κB
(k)
j

f(y) dµ(y) ≤ 2 min{2− k
s ‖f : Mp

1(µ)‖, 2kαM0,κf(x)}.

Let us recall that by our construction,
∑

j∈Jk

χ
κB

(k)
j

(x) ≤ Nκ for all x ∈ Rd, where Nκ is

independent of j, k and x.

Consequently we have

Iα,κf(x) ≤ C Nκ

∑

k∈Z

min{2− k
s ‖f : Mp

1(µ)‖, 2kαM0,κf(x)} ≤ C M0,κf(x)
p
s ‖f : Mp

1(µ)‖1− p
s .

This is the desired conclusion.

As a corollary of Proposition 3.4 we obtain the boundedness of Iα.

Theorem 3.5. Let κ > 1, 0 < α < 1, 1 ≤ q ≤ p < α−1, s > 1,
q

p
=

t

s
and

1
s

=
1
p
− α. Then

‖Iα,κf : Ms
t (µ)‖ ≤ C ‖f : Mp

q(µ)‖.
In particular Iα,κ can be extended to a bounded linear operator from Mp

q(µ) to Ms
t (µ).

Theorem 3.6. Let κ > 1, 0 < α < 1, 1 ≤ p < α−1, s > 1 and
1
s

=
1
p
− α. Then

‖Iα,κf : Ms
s/p(µ)‖w ≤ C ‖f : Mp

1(µ)‖.

Finally for the proof of Theorem 1.3 it suffices to prove the following estimate: We can
dominate Mα,κ by I

α,κ
1
2
|f | pointwise.

Proposition 3.7. Suppose that κ > 1, 0 < α < 1. Then

Mα,κ2f(x) ≤ 2Iα,κ|f |(x)

for all x ∈ Rd and for all positive µ-measurable function f .

Proof of Proposition 3.7. Fix x ∈ Rd. Let B ∈ B(µ) contain x. It is enough to show

1
µ(κ2B)1−α

∫

B

|f(y)| dµ(y) ≤ 2Iα,κ|f |(x).

Suppose that 2k−1 ≤ µ(κ2B) ≤ 2k. Then by definition of B2k−1,2k we can take B
(k)
j such that

B ⊂ κB
(k)
j , 2k−1 ≤ µ(κ2B

(k)
j ) ≤ 2k.

These conditions imply

1
µ(κ2B)1−α

∫

B

|f(y)| dµ(y) ≤ 2

µ(κ2B
(k)
j )1−α

∫

κB
(k)
j

|f(y)| dµ(y) ≤ 2Iα,κ|f |(x).

As a result Proposition 3.7 is proved.
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Finally we note that Jnα is dominated by Iα,κ. The proof is similar to Proposition 2.4. We
omit the detail.

Proposition 3.8. Let 0 < α < 1 and κ > 1. There exists C > 0 such that

Jnαf(x) ≤ C Iα,κf(x)

for µ-almost all x ∈ Rd and for all positive µ-measurable function f .

4 Appendices

4.1 Proof of Lemma 1.1

The proof is similar to that in [13, Theorem 1.5]. For convenience for the readers we supply
the outline.

Proof of Lemma 1.1. The following claim follows easily.

Claim 4.1. Assume additionally that sup
λ∈Λ

r(Bλ) ≤ κ
1
2 inf

λ∈Λ
r(Bλ). Then Lemma 1.1 holds.

The proof is completely the same as [13, Theorem 1.5]. Accepting Claim 4.1, we will treat
general case. Set

X1 :=
{

B ∈ B : r(B) ≥ κ−
1
2 sup

λ∈Λ
r(Bλ)

}
.

Then we can take subfamilies {Bλ}λ∈Λ
(1)
1

, . . . , {Bλ}λ∈Λ
(1)
N

satisfying the conditions (3) and (4)
for X1. Suppose we have defined {Bλ}λ∈Λ

(j)
1

, . . . , {Bλ}λ∈Λ
(j)
N

. First we set

Xj+1 :=
{

B ∈ B : κ−
j+1
2 sup

λ∈Λ
r(Bλ) ≤ r(B) ≤ κ−

j
2 sup

λ∈Λ
r(Bλ)

None of κBλ, λ ∈
j⋃

m=1

N⋃

k=1

Λ(m)
k contains κBλ

}
.

Then we can take subfamilies {Bλ}λ∈Λ
(j+1)
1

, . . . , {Bλ}λ∈Λ
(j+1)
N

satisfying (3) and (4) for Xj+1.

Let B = Bλ, λ ∈ Λ(m)
j and B′ = Bλ′ , λ

′ ∈ Λ(m′)
j′ with j, j′ ≤ N and m,m′ ∈ N. Then in

the same way as [13, Theorem 1.5], we see that if m and m′ are apart, say |m−m′| ≥ M , then
κB ∩ κB′ = ∅. Thus we have only to put

Λm,j =
⋃

m′≡m mod M

Λ(m)
j

for j = 1, . . . , N, m = 1, . . . , M and then rearrange them.

4.2 A note on centered maximal operators and Morrey spaces

As is announced in Introduction, M̃ is not bounded on Morrey space Mp
q(µ), unless p = q.

Let us see an example of this phenomenon. We are going to construct an example of the
measure µ on R for which M̃ is not weak-M2

1(µ) bounded.
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Let j ∈ N. We set four types of open intervals in R by

Aj := (j, j + 1), Bj :=
(

j, j +
1
j

)
, Cj :=

(
j, j +

2
3

)
, Dj :=

(
j +

2
3
, j + 1

)
, j ∈ N.

First we define a weight function w by

w(x) := χ(−∞,0](x) +
∞∑

j=1

χCj
(x) +

∞∑

j=1

−(j + 1)
(j + 1− x) log3(j + 1− x)

χDj
(x).

Here logr x := (log x)r, x > 0. We define a measure on R by setting µ(x) = w(x)H1(x), where
H1(x) is an 1-dimensional Hausdorff measure.

We shall prove that M̃ is not weak-M2
1(µ) bounded by showing that the function defined

by

fj(x) =
1

(x− j) log2(x− j)
χBj (x), j ≥ 2

is an element in M2
1(µ) such that

‖fj : M2
1(µ)‖ = O(log−2 j) (j →∞) (12)

‖M̃fj : M2
1(µ)‖w ≥ c j

1
2 log−1 j (j ≥ 2). (13)

As for (12), more precisely we shall prove

Claim 4.2. As j →∞, we have

‖fj : M2
1(10, µ)‖ = O

(
j

1
2 log−2 j

)
. (14)

Hence as j →∞, it holds that ‖fj : M2
1(2, µ)‖ = O

(
j

1
2 log−2 j

)
.

Proof of Claim 4.2. If I and J are intervals such that I contains J , then 10I ⊂ 10J . Thus we
see

‖fj : M2
1(10, µ)‖ = sup

I∈B(µ),I⊂Bj

µ(10I)−
1
2

∫

I

|f(y)| dµ(y).

Let I be an interval in R contained in Bj . We shall show

µ(10I)−
1
2

∫

I

|f(y)| dµ(y) ≤ c log−2 j

for such I. Here c is independent of j and I. In the sequel in this proof we assume that j ≥ 100.
Case 1: j ∈ 2I. In this case we note that

µ(10I)−
1
2

∫

I

|f(y)| dµ(y) ≤ µ(10I ∩Dj−1)−
1
2

∫

I∩Bj

|f(y)| dµ(y).

Simple calculation yields
∫

I∩Bj

|f(y)| dµ(y) = − log−1H1(I ∩Bj), µ(10I ∩Dj−1)
1
2 = −1

2
j

1
2 log−1H1(10I ∩Dj−1).

Since H1(I ∩Bj) ≤ H1(10I ∩Dj−1) ≤ cH1(I ∩Bj) in this case, we have

µ(10I)−
1
2

∫

I

|f(y)| dµ(y) ≤ c j−
1
2 .
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Thus we have (14).
Case 2: j ∈ 2I. In this case we use

µ(10I)−
1
2

∫

I

|f(y)| dµ(y) ≤ µ(I)−
1
2

∫

I

|f(y)| dµ(y)

and we estimate the right-hand-side. Let I = (j + a, j + b) with 0 <
1
2
b ≤ a < b ≤ 1

j
≤ 1

100
.

Then we have
µ(I)−

1
2

∫

I

|f(y)| dµ(y) =
log b− log a

log a · log b · (b− a)
1
2
.

If we take this quantity as a function of b, then simple calculation shows that the maximum
can be attained at b = min(2a, j−1). Next fixing b = min(2a, j−1), we regard

µ(I)−
1
2

∫

I

|f(y)| dµ(y) =
log b− log a

log a · log b · (b− a)
1
2
.

as a function of a, where 0 ≤ a ≤ 1
j
, that is, 2I ⊂ Bj . Then again elementary arithmetic shows

that this function attains its maximum at a =
1
2j

. Thus we have

µ(I)−
1
2

∫

I

|f(y)| dµ(y) ≤ (log 2)(2j)
1
2

(log j)(log j + log 2)
≤ j

1
2 log−2 j.

Consequently (14) holds for I with 2I ⊂ Bj , whether 2I contains j or not.

To disprove the weak-M2
1(µ) boundedness of M̃ , it suffices to estimate ‖M̃fj : M2

1(2, µ)‖w

from below.

Claim 4.3. There exists c > 0 such that ‖M̃fj : M2
1(2, µ)‖w ≥ c j

1
2 log−1 j for all j ≥ 2.

Proof of Claim 4.3. Let Ej =
(

j +
2
3j

, j +
5
6j

)
. Then M̃fj(x) ≥ c0 j log−1 j on Ej , where c0

is a constant independent of j. Let λj = c0 j log−1 j. Then

‖M̃fj : M2
1(2, µ)‖w

≥ µ(2Ej)−
1
2 λjµ{x ∈ Ej : M̃fj(x) > λj} ≥ (3j)

1
2 × c0 j log−1 j × (2j)−1 = c j

1
2 log−1 j.

The proof of Claim 4.3 is now complete.
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