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THE LOCAL PROPERTY OF THE REGULARIZED SOLUTIONS
IN NUMERICAL DIFFERENTIATION

X. Q. WAN, Y. B. WANG, AND M. YAMAMOTO

Abstract. Numerical differentiation is a typical ill-posed problem which can

be treated by the Tikhonov regularization. In this paper, we prove that the

L2-norms of the second order derivatives of the regularized solutions blow up

in any small interval I where the exact solution is not in H2(I).

1. Introduction

A numerical differentiation arises in many applications and engineering compu-

tations such as the determination of the underground water, the Dupire formulae

in financial mathematics([15]), etc. One of the main difficulties for this problem

is the ill-posedness, which means that the small errors of measurement may cause

huge errors in computed derivatives ([4], [9], [12]). Therefore one needs regular-

izing techniques for reasonable computations. Several numerical algorithms have

been proposed for overcoming the instabilities ([3], [4], [5], [6], [7], [8], [9], [10],[11],

[13]). It has been shown that the Tikhonov regularization for treating the numerical

differentiation problem is one of the effective methods.

In [14], the authors discussed the numerical differentiation by using the Tikhonov

regularization method. It is shown that, if the exact solution is smooth, then the

regularized solutions converge to the exact solution, and if the exact solution is not

smooth, then the L2-norms in the whole interval of the corresponding high order

derivatives of the regularized solutions will blow up. From the numerical results,

it can be seen that this kind of blow-up happens only near the irregular points.

However to the authors’ knowledge, this property has not been proved up to now.
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In this paper we discuss this local property of the regularized solution based on

the work of [14]. We prove that, if the exact solution is not in H2(I) for an interval

I, then the norms of the second order derivative of the regularized solutions in I

blow up.

2. Formulation of the problem and theoretical result

Hereforth we set

g
′
=

dg

dx
, g

′′
=

d2g

dx2

Suppose that ∆ = {0 = x0 < x1 < · · · < xn = 1} is a uniform grid of [0, 1]. Here

xj = j
n , j = 0, 1, · · · , n, and we denote h = 1

n . Let y = y(x) be a continuous

function defined on [0,1]. A noisy value of y(x) at point xj is given as yδ
j which

satisfies

(2.1) |y(xj)− yδ
j | < δ, j = 0, 1, · · · , n,

where δ is a given constant called the level of noise in the data. The numerical

differentiation is then to approximate y′(x) from the value of yδ
j , j = 0, 1, · · · , n.

Without loss of generality, we assume that there are no errors at the boundary for

the sample data, i. e., yδ
0 = y(0), yδ

n = y(1). Otherwise we can use a new function

Y (x) = y(x) + yδ
0 − y(0) + (yδ

n − y(1) + y(0)− yδ
0)x.

It can be easily proved that Y (0) = yδ
0, Y (1) = yδ

n. Since

∣∣∣y′(x)− Y
′
(x)

∣∣∣ =
∣∣yδ

n − y(1) + y(0)− yδ
0

∣∣ ≤ 2δ

Therefore the approximation of Y
′
(x) is also an approximation of y

′
(x). ([9], [14]).

The numerical differentiation is to find a function f from the data {yδ
j}n

j=0

such that f
′

approximates y
′
. We will solve this problem by the Tikhonov regu-

larization method as in [14]. The following spaces and norms will be used in this

paper:

L2(0, 1) =
{

g | (
∫ 1

0

g2(x)dx)1/2 < ∞
}

,

H2(0, 1) =
{

g | g ∈ L2(0, 1), g
′′ ∈ L2(0, 1)

}
,

C[0, 1] = {g | g is a continuous function on [0,1]},
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‖g‖L2(0,1) =
(∫ 1

0

|g(x)|2dx

)1/2

,

‖g‖H2(0,1) =
(
‖g‖2L2(0,1) + ‖g′′‖2L2(0,1)

) 1
2

,

‖g‖C[0,1] = max
x∈[0,1]

|g(x)|.

Define a cost functional by

(2.2) Φ(f) =
1
n

n−1∑

i=1

(f(xi)− yδ
i )2 + α‖f ′′‖2L2(0,1)

for all f ∈ H2(0, 1) with f(0) = y(0), f(1) = y(1), where α is a regularization

parameter.

Then we can prove (e.g. [14]):

Theorem 2.1. Let y ∈ C[0, 1]. There exists a unique minimizer f∗ = f∗(δ, α, h)

of functional (2.2).

The minimizer f∗ is called the regularized solution, and we have the following

error estimate ([14]).

Theorem 2.2. Suppose that y ∈ H2(0, 1). Then we have the following error esti-

mation for the regularized solution f∗(δ, α, h):

‖f ′∗(δ, α, h)− y
′‖L2(0,1) ≤

(
2h + 4α

1
4 +

h

π

)
‖y′′‖L2(0,1) + h

√
δ2

α
+

2δ

α
1
4
.

If we choose α = δ2, then

‖f ′∗(δ, δ2, h)− y
′‖L2(0,1) ≤ (2h + 4

√
δ +

h

π
)‖y′′‖L2(0,1) + h + 2

√
δ.

It is practically important to detect subintervals where a state function f is

not smooth. Thus we are more interested in an interval (a, b) ⊂ (0, 1) where y
′′

/∈
L2(a, b). Therefore, it is important to know the behaviour of the regularized solution

f∗ in a subinterval as short as possible. In particular, if (a, b) = (0, 1), then the

following theorem is proved in [14].

Theorem 2.3. If y ∈ C[0, 1]\H2(0, 1), and we choose the regularization parameter

α = δ2, then

(2.3) ‖f ′′∗ (δ, δ2, h)‖L2(0,1) −→∞, as δ, h → 0.
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Remark 2.4. The general study corresponding to Theorem 2.3 is found in [2].

This result indicates only that, if the exact solution is not in H2(0, 1), then the

L2-norms of the second order derivatives of the regularized solutions on the whole

interval [0, 1] blow up. In this paper we will give a localized version of this theorem.

We want to know if the exact solution is not smooth on a small interval, namely,

y ∈ C[0, 1] \H2(a, b), what will happen to ‖f ′′∗ ‖L2(a,b)? Here (a, b) ⊂ [0, 1].

We state our theoretical result on which our numerical method is based.

Theorem 2.5. Suppose that y ∈ C[0, 1], (a, b) ⊂ (0, 1), and we choose the regular-

ization parameter α = δ2. If y /∈ H2(a, b), then the regularized solution f∗(δ, δ2, h)

satisfies

lim
δ,h→0

‖f ′′∗ (δ, δ2, h)‖L2(a,b) = ∞.

In the proof of this theorem, we will use an interpolation inequality. (e.g., The-

orem 4.14(p.75) in [1]):

Lemma 2.6. Let −∞ ≤ a < b ≤ ∞, 1 ≤ p < ∞ , and 0 < ε0 < ∞, f have the

m-th order derivative f (m) in (a, b). There exists a constant K > 0 which depends

on ε0, p, m, and b− a such that for every ε, 0 < ε ≤ ε0, 0 ≤ j < m, we have

(2.4) (
∫ b

a

|f (j)|pdt)
1
p ≤ Kε(

∫ b

a

|f (m)|pdt)
1
p + Kε

−j
m−j (

∫ b

a

|f |pdt)
1
p .

Proof of Theorem 2.5: Henceforth for simplicity, we set

f∗(δ, n)(x) = f∗(δ, δ2, h)(x)

where we recall h = 1
n .

Assume contrarily that the conclusion of the theorem is not correct. This means

that there exist two sequences {δk}, {hk}, k = 1, 2, · · · , such that

lim
k→∞

δk = lim
k→∞

hk = 0

and

(2.5) ‖f ′′∗ (δk, nk)‖L2(a,b) ≤ M, k = 1, 2, · · ·

where M is a positive constant, nk = 1
hk

.

By y ∈ C[0, 1], we can take a sequence of functions ym ∈ H2(0, 1) satisfying

ym(0) = y(0), ym(1) = y(1),
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and

(2.6) ‖ym − y‖C[0,1] ≤
1
m

, sup
m
‖ym‖L2(a,b) < ∞.

In fact, ym can be constructed for example by suitable interpolated polynomials.

Next we will prove

(2.7) sup
m
‖y′′m‖L2(a,b) = ∞.

Assume contrarily that supm ‖y
′′
m‖L2(a,b) < ∞. Then from the definition of the

norm, we know that supm ‖ym‖H2(a,b) < ∞. By the reflexiveness of H2(a, b), there

exists a subsequence ymk
∈ H2(a, b) and ỹ ∈ H2(a, b) so that ymk

→ ỹ weakly in

H2(a, b). On the other hand, we see from (2.6) that ym → y strongly in L2(a, b),

so ỹ = y and thus we have y ∈ H2(a, b). This is a contradiction. Thus the proof of

(2.7) is complete.

Moreover, for each k ∈ N , we set

`(k) = min{j ∈ N ; δj‖y
′′
k ‖L2(0,1) < 1}.

Such an `(k) exists uniquely because δj → 0 as j → ∞. For simplicity we denote

δ`(k) and n`(k) again by δk and nk respectively. Hence

(2.8) δk‖y
′′
k ‖2L2(0,1) < 1.

We set f∗k = f∗(δk, nk). Since Φ(f∗k) ≤ Φ(yk), we have

1
nk

nk−1∑

j=1

(
f∗k(xj)− yδk

j

)2

≤ Φ(f∗k)(2.9)

≤ Φ(yk) ≤ 1
nk

nk−1∑

j=1

(yk(xj)− yδk
j )2 + δ2

k‖y
′′
k ‖2L2(0,1)

≤ 2
nk

nk−1∑

j=1

(
(yk(xj)− y(xj))2 + (y(xj)− yδk

j )2
)

+ δk(δk‖y
′′
k ‖2L2(0,1))

≤ 2
k2

+ 2δ2
k + δk.

At the last inequality, we need (2.8) and

|yk(xj)− y(xj)| ≤ 1
k

, 1 ≤ j ≤ nk − 1,

by (2.6).
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Suppose that xi0−1 ≤ a < xi0 and xj0 < b ≤ xj0+1. Then by (2.9), we have

1
nk

j0∑

j=i0

(
f∗k(xj)− yδk

j

)2

≤ 1
nk

nk−1∑

j=1

(
f∗k(xj)− yδk

j

)2

≤ 2
k2

+ 2δ2
k + δk.

Moreover

|yδk
j |2 = (yδk

j − y(xj) + y(xj))2 ≤ 2((yδk
j − y(xj))2 + y(xj)2)

≤ 2(δ2
k + ‖y‖2L∞(0,1)).

Therefore by (2.1) and (2.9)

1
nk

j0∑

j=i0

f2
∗k(xj) ≤ 2

nk

j0∑

j=i0

(
(f∗k(xj)− yδk

j )2 + |yδk
j |2

)
(2.10)

≤ 4
k2

+ 4δ2
k + 2δk + 4(δ2

k + ‖y‖2L∞(0,1)) ≤ A.

Here A > 0 is a constant which is independent of k ∈ N . Moreover, denote

ηi0 = a, ηi =
xi−1 + xi

2
, i = i0 + 1, · · · , j0, ηj0+1 = b.

By the mean value theorem, we can choose ξj ∈ (ηj , ηj+1), and

‖f∗k‖2L2(a,b) =
∫ ηj0+1

ηi0

f2
∗k(x)dx =

j0∑

j=i0

∫ ηj+1

ηj

f2
∗k(x)dx ≤ 2

nk

j0∑

j=i0

f2
∗ (ξj)

=
2
nk

j0∑

j=i0

(f2
∗k(ξj)− f2

∗k(xj)) +
2
nk

j0∑

j=i0

f2
∗k(xj)

≤ 2
nk

∫ b

a

∣∣∣2f
′
∗k(x)f∗k(x)

∣∣∣ dx +
2
nk

j0∑

j=i0

f2
∗k(xj).

Here we used
∣∣∣∣∣∣

j0∑

j=i0

(f2
∗k(ξj)− f2

∗k(xj))

∣∣∣∣∣∣
=

∣∣∣∣∣∣

j0∑

j=i0

∫ ξj

xj

d

dx
(f∗k(x))2dx

∣∣∣∣∣∣

≤
j0∑

j=i0

∫ ξj

xj

2|f ′∗k(x)f∗k(x)|dx ≤
∫ ηj0+1

ηi0

2|f ′∗k(x)f∗k(x)|dx.

Hence (2.10) and the Schwarz inequality yield

(2.11) ‖f∗k‖2L2(a,b) ≤
4
nk
‖f∗k‖L2(a,b)‖f

′
∗k‖L2(a,b) + 2A.
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Choosing parameters as p = 2,m = 2, j = 1, ε = 1 in Lemma 2.6, we have

(2.12) ‖f ′∗k‖L2(a,b) ≤ K(‖f∗k‖L2(a,b) + ‖f ′′∗k‖L2(a,b)).

Therefore, (2.11) yields

(1− 4K

nk
)‖f∗k‖2L2(a,b) ≤

4
nk
‖f∗k‖L2(a,b)‖f

′′
∗k‖L2(a,b) + 2A.

Substituting

‖f∗k‖L2(a,b)‖f
′′
∗k‖L2(a,b) ≤

1
2
‖f∗k‖2L2(a,b) +

1
2
‖f ′′∗k‖2L2(a,b)

and choosing k0 ∈ N large, we have

‖f∗k‖L2(a,b) ≤ K1‖f
′′
∗k‖L2(a,b) + K1

√
A

for all k ≥ k0. Here the constant K1 > 0 is independent of k.

By using this inequality and (2.5), we have

sup
k≥k0

‖f∗k‖L2(a,b) < ∞.

Therefore, by (2.12) we have

sup
k
‖f∗k‖H2(a,b) < ∞, k ≥ k0.

Since H2(a, b) is reflexive, there exist a subsequence f∗k, which is denoted by

the same letter, and f̃ ∈ H2(a, b) such that

f∗k → f̃ weakly in H2(a, b).

Since the embedding from H2(a, b) to C[a, b] is compact, we see that

f∗k → f̃ strongly in C[a, b].

That is,

(2.13) lim
k→∞

‖f∗k − f̃‖C[a,b] = 0.
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By the definition of the integral, for any ε > 0, there exists k = k(ε) ∈ N such

that by (2.1) and (2.9) we obtain

‖y − f̃‖2L2(a,b)

≤ 1
nk

j0∑

j=i0

(y(xj)− f̃(xj))2 + ε

≤ 3
nk

j0∑

j=i0

{(y(xj)− yδk
j )2 + (yδk

j − f∗k(xj))2 + (f∗k(xj)− f̃(xj))2}+ ε

≤ 3δ2
k +

6
k2

+ 6δ2
k + 3δk + 3‖f∗k − f̃‖C[a,b] + ε

for any k ≥ k1(ε).

Hence letting k →∞, we have

‖y − f̃‖L2(a,b) ≤ ε.

Since ε is arbitrary, we have

‖y − f̃‖2L2(a,b) = 0,

that is,

y(x) = f̃(x) for almost all x ∈ [a, b].

Since f̃ ∈ H2(a, b), this implies that y ∈ H2(a, b), which contradicts the assump-

tion y /∈ H2(a, b). Thus the proof is complete.

3. Conclusion

In this paper, we established the behaviour near non-smooth points for the

Tikhononv regularized solutions in the numerical differentiation. We proved that,

if the exact solution has irregular points, then the norms of the second order deriv-

atives of the regularized solutions at any small interval which contains the irregular

points, will blow up. Unlike the result of [14], we proved that the blow-up will take

place near the irregular points.
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