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1. INTRODUCTION

A Schrédinger operator
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In this note, we explicitly construct the integrals Py, ..., P, for completely inte-
grable potential functions R(z) of the form

(1.3) R(z) = Z (u;(a:l — ;) + uj;(xl + xj)) + ka(l‘k)
k=1

1<i<j<n

appearing in other papers. The Schrodinger operators with these commuting differ-
ential operators treated in this paper include Calogero-Moser-Sutherland systems
(cf. [Ca], [Mo], [Su], [OP2], [OP3]), Heckman-Opdam’s hypergeometric systems (cf.
[Se] for type A,_1, [HO] in general) and some extensions of finite Toda lattices
corresponding to (extended) Dynkin diagram for classical root systems (cf. [To],
[Ko], [OP1], [vD], [Ru]).

Put 9; = % for simplicity. We denote by o(Q) the principal symbol of a
differential operator of Q. For example, o(P) = —3(£ + - -+ + &2).

We note that [Wa] proves that the potential function is of the form (1.3) if

(1.4) o(P) = Z §J2 {?k fork=1,...,n.

1<j1 < <jp<n

In this case R(z) will be called to be of type B, or of the classical type. Moreover
when R(z) is symmetric with respect to the coordinate (x1,...,%,) and invari-
ant under the coordinate transformation (x1,xa,...,2,) — (—x1,Z2,...,x,), then
R(z) is determined by [OS] for n > 3 and by [OO] for n = 2 and P} are given by
[O1].

Classifications of the potential functions under certain conditions are given in
[00S], [Oc], [Ta], [Wa] and [O2] etc. We will present Conjecture 9.1 in §9 which
claims that the potential functions given in this note exhaust those of the completely
integrable systems satisfying (1.4).

If vy =0 for k =1,...,n, we can expect o(Py) = Zl§j1<m<jk§n ]2-1 Jzk for
k=1,...,n—1and o(P,) = && -+ &, and the potential function is called to be
of type D,. If vy = 0 and u;; =0fork=1,...,nand 1 <i < j < n, we can
expect Pt = 01+ + On, 0(Py) = 32 < cocju<n & - &g for k=2,...,n and
the potential function is called to be of type A, _1.

The elliptic potential function of type A,,_; with

(1.5) u;(t) = Cop(t; 2w, 2wy) + ', uj;(t) =u(t)=0 (C,C" €C)
(cf. [OP3]) and that of type B,, with

ug; (1) = v (t) = Ap(t; 2w, 2ws),
3
v (t) = D Cyp(t + wj; w1, wz) —

=0

(1.6) C (A, C;,CeQ)

57

introduced by [I1] are most fundamental and their integrability and integrals of
higher order are given by [O1] and [OOS]. Here p(t; 2w, 2w2) is the Weierstrass
elliptic function whose fundamental periods are 2w; and 2ws and

(1.7) wo =0, w;+ws+ws=0.

Other potential functions are suitable limits of these elliptic potential functions.
This fact is shown in [I2], [vD] and [Ru] etc., and we will construct other integrable
systems by taking suitable analytic continuations of the integrals given in [O1].
The main purpose of this note is to give the explicit expression of the operators
Py, ..., P, in (1.2) in this unified way. Such study of the systems of types 4,1,
Bs, B, (n > 3) and D,, are given in §3, §4, §5, §6, respectively.
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Since our expression of Py is natural, we can easily define their classical limits
and get completely integrable Hamiltonians of dynamical systems together with
their sufficient integrals. This is clarified in §7.

In §8 we examine the ordinary differential operators which are analogues of the
Schrodinger operators studied in this note.

2. NOTATION AND PRELIMINARY RESULTS

Let {e1,..., ey} be the natural orthonormal base of the Euclidean space R™ with
the inner product

(21) <xvy>:2xjyj fOI‘IL’:(.’L'h...,ZL'n), y:(yla"',yn)ERn'
j=1
Here e; = (615, .. .,0n;) € R™ with Kronecker’s delta d;;.
Let o € R™\ {0}. The reflection w, with respect to « is a linear transformation

of R defined by wa(z) = = — 2(a, )
(a, )

«a for x € R™. Furthermore we define a

differential operator d, by

(2.2) (Oatp)(z) = %w(fﬂ +ta)l,_,

and then 0; = 0O,
The root system 3(B,,) of type B, is realized in R"™ by
YAt ={ei—e51<i<j<n},
YD)t ={eitej;1<i<j<n},
(2.3) S(Bn)§ = {er; 1 <k <n},
S(Bp)t =X(Dn)TUS(B,)E,
X(F)={a,—a; a € X(F)*} for F = A,_1, D, or B,.
The Weyl groups W(B,,) of type By, W(D,,) of type D,, and W(A,,_1) of type A,,_1
are the groups generated by w, for a € X(By,), X(D,,) and X(A,_1), respectively.
The Weyl group W (A,,—1) is naturally identified with the permutation group &,

of the set {1,...,n} with n elements. Let ¢ be the group homomorphism of W (B,,)
defined by

1 if D
(2.4) cwy={ ! TwEW D),
-1 ifwe W(B,) \W(D,).
The potential function (1.3) is of the form
(2.5) R@)= Y wl{ea)+ Y vs((fa))
a€X(Dy)t a€X(BL)E
with functions u, and vg of one variable. For simplicity we will denote
Ua(z) = u_o () = ua({a, x)) for a € X(Dy)",
(2.6) va(z) = v_g(x) = va((B, ) for B € X(By)E,
U () = Ue,xe; (2), v (2) = vey ().

Lemma 2.1. For a bounded open subset U of C, there exists an open neighborhood
V of 0 in C such that the followings hold.

i) The function Asinh™' \z is holomorphically extended to (z,\) € (U\{0}) x V
and the function equals % when A = 0.

ii) Suppose Re X > 0. Then the functions

e Msinh ? A(z £1) and e*(sinh > A(z £1) — cosh > A(2 £ 1))
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are holomorphically extended to (z,q) € U x V with q = e M and the functions
equal 4eT2** and 16e¥4** | respectively, when q = 0.

Proof. The claims are clear from

)\2]22]+1
)\ Slnh>\2—2+2m,
4672)\15 sinh2 /\(Z + t) _ e:|:2)\z(1 _ 672At€$2>\z)2,
sinh™? Az — cosh™ Az = 4sinh ™2 2)\z. O

The elliptic functions p and ¢ of Weierstrass type are defined by

(2.7) 0(2) = p(z: 201, 2ws) = — + Z ( %)
(2.8) C(2) = (z; 2wy, 2we) = — —|— Z ( :2)

where the sum ranges over all non-zero periods 2mywy 4+ 2maws (my, mo € Z) of
p. The followings are some elementary properties of these functions (cf. [WW]).

(2.9) p(2) = p(z + 2w1) = p(z + 2w2),
(2.10) ('(2) = —p(2),
(2.11) ()2 =4p® — gapp — g3 = 4(p — e1)(p — e2)(p — e3),
ey = @(wu) for v=1,2,3, wg = —w1 —wz and wg = 0,
2
(2.12) Zp tw W (),
(2.13) p(z; 2wy, 2wy ) = p(2,2w1,2w2),

(e1 —e2)(e1 —e3)

2.14 32wy, 2 =
(14) plz+wnidwn,2eg) = e1 ('2w1,2w2)—e1’

(2.15)  p(z;vV—1A"17,00) = A2sinh ™2 Az + /\2
(2.16) p(z; 00,00) = ,
(2.17) p(z; w1, 2we) = p(z 2w1, 2wa) + p(z + w; 2wr, 2wy) — €1,

p(z1) ¢'(z1) 1
(2.18) |p(z2) '(z2) 1|=0 if 23 +20423=0,
1

877)\2 —4Aniws

p(z; 2wy, 2we) = + AZsinh™2 Az + Z ey cosh 2nAz,
e N AW:!
4Aniws
(2.19) m = C(wr; 2w, 2ws) = (1—2 -2 Z — 6—4"/\‘”2)
w2 LT —2Aws
T=—,q=¢€¢"=e and A= — "
w1 q 2/ —1wq

Here the sums in (2.19) converge if

(2.20) 2mm 2 > 1
w1 |w1|
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Let 0 < k < 2m. Then (2.19) means

k
gme M

( N k ) ) ) m N 4)\2 qn(2—7 2nAz
z+ —wo; 2w, 2we) = —— _— E
& m 2 b 2 w1 (]_ e~ 2)\2 1— q ’

ng
Iy 2
a5 - z q%)

Lemma 2.2. Let k and m be integers satisfying 0 < k < 2m. Put

@0(2; 2(4)1, 2w2) = @(Z 2&)1, 2(4}2) + %
1
(2.21) W =
AZ* and t_qm—enlwl.

2\/ —1w1

Then for any bounded open set U in C x C, there exists a neighborhood of the origin
V' of C such that the following statements hold.

i) po(2; 2w, 2wy) — A2 sinh ™2 \z and 00 (z+wr;2w1, 2w2) + A2 cosh™2 \z are holo-
morphic functions of (z,A,q) € U x V and vanish when ¢ = 0.

ii) po(z + Ews; 2w, 2ws) is holomorphic for (z,A,t) € U x V and has zeros of
order min{k, 2m — k} along the hyperplane defined by t = 0 and satisfies

t*p0(z + wg, 201, 2wa)|1=o = 4A2e™2N* (0 <k <m),
(2.22) tFo0(z + wg, 2w, 2w2)|t=0 = 8A2cosh2)\z (k= m),
th— 2m@0(2’ + LUQ, 2“}132(4—)2)'15 0= 4\2e2M% (m <k< 2m)

m

For our later convenience we list up some limiting formula discussed above. Fix

wy with v/—1wy > 0 and let ws € R with ws > 0. Then A = ﬁ > 0 and
(2.23) sinh? A(z 4+ wy) = — cosh? Az, cosh2\(z 4 w;) = — cosh 2)z,
2.24 lim A?sinh 2 Az = &

( 5>

A—0 z
(2.25) lim B sinh™2 \(z 4+ R) = 4722,
R—Z+o0
(2.26) 1112 00(z; 2w1, 2w2) = A2 sinh ™% Az,
wo ——+00
(2.27) hIIJ} 00(z 4 wi; 2w1, 2wy) = =A% cosh™2 Az,
wo—+00
(2.28) lim €22 g (2 4 rwa; 2wy, 2wa) = R:qfo<r<,
wo—00
(2.29) lim €222 o0 (z 4 wa; 2wy, 2w ) = 8A2 cosh 2\ z,
wo—00
(2.30) lim e2C 200 (0 4 rwg; 2w, 2ws) = 4AX2e2N if 1 <1 < 2.
Wo —00

3. TYPE A,,—1 (n>3)
The completely integrable Schrédinger operator of type A,,_; is of the form

(3.1) P==3> a2+ > uylwi—w)

Denoting

(3.2) Ue;—e; (1') = Uej—e; (:L’) = u;j (xl - xj)’
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we expect that the operators

1
Pe= ) 220\(k — 2v)!(n — k)! 2

o<v<k T wes,
(33) U (e —ez)Uw(ez—eq) " uw(€2u—1*€2u)aw(€2u+1) T aw(ek)
= Z Zu;w Ui i, Oy Oy
0<v<k
satisfy
(3.4) [Pi,P;]=0 for 1<i<j<n.
Here we note that
P=P—-3iP},
Py =014+ 0y,
P2 = Z 8183 + Z UZ_J(I‘, — JL‘j),
1<i<j<n 1<i<j<n
n
P3 = Z Biajak + Z Z u;(xz - $j)ak.
1<i<j<k<n k=11<i<j<n
i#k, j#k
P, = Z 0;0;0,,0; + Z Z u;akag
1<i<j<k<t<n 1<k<f<n 1<i<j<n
i2k,0, j2k,C
+ Z (ui_jugg + ul_kuj_e + ui_éuj_k>
1<i<j<k<f<n

=" 0:0;0000 + Y uj0u0e+ > uijusy,
Ps = Z 0:0;0,0¢0n, + Z U0k 00, + Zufjuz&@m
Ps = Z 0;0;0, 040 0, + Z ;010001 0,y + Z U U OOy + Z Us U Uy s

Since W (A,,—1) is naturally isomorphic to the permutation group &,, of the set
{1,...,n}, we will identify them. The integrable potentials of type A, _; which are
invariant under the action of &,, are determined by [OS] and [OOS] together with
(3.4). They satisfy

(3.5) tey—ey (%) = ul{es — 5,))
with an even function v and they are
(Ellip-A,,_1) Elliptic potential of type A,_1:
u(t) = Cpo(t; 2wy, 2ws),
Re(An_1;71,. .., 2n; C, 2wy, 2ws) = C Z oo0(z; — x5 2wy, 2wa),

1<i<j<n
(Trig-A,,—1) Trigonometric potential of type A, _1:
u(t) = C'sinh ™2 \t,
Rr(An—_1;21,...,2n;C,N) =C Z sinh™2 \(z; — zj),

1<i<j<n
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(Rat-A,,—1) Rational potential of type A,—1:

C
RR(An_l;Il,...,J?n;C) = Z

1<i<j<n (i — ;)2

C
lim Rg (An—l; €Z;

wa — 00 )\2 ’

2w1,2ws) = Rr(Ap—1;2;C, N,

C
u(t) = ullin ﬁp()(t; 2w1,2w9) = C'sinh ™2 At,

oo

the integrability (3.4) for (Trig-A,,—1) follows from that for (Ellip-A,_1) by the
analytic continuation of P; with respect to ¢ (cf. Lemma 2.2 i)).
The integrability for (Rat-A,_1) is similarly clear from Lemma 2.1 with

lim Ry (A,_1;2;\2C,\) = Rr(A,_1;2;C),
A—0
(3.7) g2
u(t) = ;nrb)\ C'sinh™* \t.
Other integrable potentials of type A, _1 are

(Toda—ASll) Toda potential of type Afllzlz
n—1
Rp(AY 52,0, = Z CeArimrinn) o geAlon=m),
i=1

(Toda-A,,_1) Toda potential of type An_1:

n—1
Rp(An—1;2;C ) = Z Cer@imit1)
i=1

The integrability (3.4) for these potentials follows from Lemma 2.1, 2.2 and

2 2k w2
lim Rp(A,—1;21 — &, e, X — w2 ey Ty — 2wo; 670, 2w1, 2ws)
w2 —00 n n 4)\2
= RL(ASZI;:E;C,—%\),
%)\WQ 27 — g
Ue, e, (r) = lim ZTC’QO(:Q -z + w; 2w1, 2w2)
: wo —00

Ce= 2 @i—zit1) §f ] < j=i+1<n,
= CemPM@n=m1)  if j =1 and j = n,

0 ifl<i<j<mandj—i#1l,n-—1
and
e2AR
lim Rp(An—1;21 — R,...,zp — nR; ——C,\) = Ry (An—1;2; C,—2)\),
R—o0 4
2\R .
Ue,—e,; () = }gl_r)noo 1 Csinh ™ Nz; —z; + (j — i) R)
B Ce M=) if ] < j=i+1<n,
o ifl<i<j<nandj#i+1,

respectively, if Re A > 0. Thus we have the following theorem
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Theorem 3.1 (A,_1). The Schridinger operators with the potential functions
(Ellip-A;,—1), (Trig-A,—1), (Rat-4,,_1), (Toda—AEll_)l) and (Toda-A,_1) are com-

pletely integrable and their integrals are given by (3.3) with ue, ., (x) in the above.

Remark 3.2. i) In [OS, Theorem 5.2] the complete integrability for (Ellip-A,_1)
is proved as follows. The equations [Py, Py] = [P, P;] = 0 for k = 1,...,n are
obtained by direct calculations. Then the relation [P, [P;, P;]] = 0 and periodicity
and symmetry of Py imply [P;, P;] =0 (cf. [OS, Lemma 3.5]).

ii) If Re A > 0, we also have

n—1»

(38  lim Rp(AW iy + kR Cem R —2)) = Ry (Ap_1;3;C, —2)).

iii) Note that

n—1
Ri(Ap—1;zr + R;; CN) = Z CeMBi—Rit1) | eM@i—wit1)
i=1
Hence e*(#1772) — ¢A(#2=23) giyes the potential function of a completely integrable

system of type A,_; with n = 3 but the potential function

(3.9) }\in}) A1 (ek(x““) — e)‘(“"rm)) =11 — 220 + 23

is not so because it doesn’t satisfy (9.2) in Remark 9.3.

The limit of the parameters of the integrable potential function should be taken
care of the integrability.

iv) Let P, (t) denote the differential operator P, in (3.3) defined by replacing u;;

by u;; = u;; + ¢ with a constant ¢ € C. Then

2k)!
(3.10) Put)= Y %PH_M’“ with Py = 1,
0<k<z
(3.11) [P.(s), Po(t)] =0 for s,t e C.

In fact, the term ujyus, - u§j71’2j82j+182j+2 -+ Op_ok only appears in the coeffi-
cient of t* in the right hand side of (3.10) and it is originated to the term

Uy tinongs Ui Uig e Ugj g 902541+ On—ok
of P,(t), where the number of the possibilities of these @i, i, _open Ui
equals (22,5,3!! because {in—ok+1,0n—2k+2,---sin} ={n—2k+1,...,n}.
v) Since
(3.12) Po1=Mn—k+1)[Pex1+- -+ x] for k=2,....n,

[Py, Py] = 0 implies [Pg_1, P2] by the Jacobi identity. Here we note that
[ugpugy - - Ui 12502541 Ok—10y, Ty] = upptigy - Usj_1,2;02j4+1 Ok—1
forv=kk+1,...,n.

In the following diagram we show the relations among integrable potentials of
type A,,_1 by taking limits.

Hierarchy of Integrable Potentials of Type A4,,_1 (n > 3)

Toda—AfB1 —  Toda-A,_1

/ /
Ellip-A,_y — Trig-A,_7 — Rat-4, 1
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4. TYPE By

In this section we study the following commuting differential operators.
82 82

P = —*(W + ﬁ) + R(:L’,y),
(4.1) _ .

P, = 3x28y2 + S5 with ord S < 4,

[P, P,] = 0.

First we review the arguments given in [OO] and [Oc]. Since P is self-adjoint,
we may assume P, is also self-adjoint by replacing P, by its self- adJomt part if

necessary. Here for A =" a;;(z, y)az; we define t4 = S (—1)i+i 2~ a;j(z,y)

19y dxidyT ByJ
and A is called self-adjoint if ‘A = A. Then we may assume
R(z,y) =u'(z+y) +u (z —y) +v(@) + w(y),
62 2 62 62
(4.2) P, = (Bxa +u (x—vy) —u+(x+y)) —2w(y)ﬁ —21}(x)a—y2

+dv(@)w(y) + T(z,y),
and the function T'(z,y) satisfies

(4.3)
% :2(u+(x—i-y)—u(:t:—y))atgz(ly)_¢_gm,(y)(%(qu(x_i_y)_u(x_y))7
W:Q(u‘*’(x—i-y)—u_(x_y))ag( )+4 (z )8(1( +($+y)—u‘(a:—y)).

Conversely, if a function T'(x, ) satisfies (4.3) for suitable functions u™® (t), v(t) and
w(t), then (4.1) is valid for R(z,y) and P» defined by (4.2).

Remark 4.1. If w(z) = 0, then T'(z,y) does not depend on z.

Since T'(z,y) is determined by (u~,u";v,w) up to the difference of constants,
we will write T'(u™,u™; v, w) for the corresponding T'(x,y) which is an element of
the space of meromorphic functions of (z,y) modulo constant functions and define

Q(u-,u*;v,w) by
(4.4) T(u,utv,w) =2(u (z—y)+ut (z+y)) (v(z) +w(y)) —4Q(u™, ut; v, w).
The following lemma is a direct consequence of (4.3) and this definition of Q.
Lemma 4.2. For C, C;, C} € C we have

T(u™(t) + Cout(t) + Ciot),w(t)) =T (u (t), ut(t);v(t), w(t)),

Qu™ (1), u™ (1) <>+cw C)) = Q(u~ (1), ut (B (t) w(t).

Q(u _(Ct) +(Cf)' (Ct) (Ct)) Q(u” (1), u” (1);0(t), w(t)) le—c, y—Cy»

Z l’ZAul’ZCUJ’chJ ZZAZC]Q U; 7,’UJ,’IU])

=1 j=1

~~

For simplicity we will use the notation
Qu™,utv) = Qu,uv,v),  Qusv,w) = Q(u, u;v, w),
Qu;v) = Q(u, u;v,v).
The same convention will be also used for T'(u™,u";v,w). The integrable po-
tentials of type Bs in this note are classified into three kinds. The potentials in the

first kinds are the unified integrable potentials which are in the same form as those
of type B,, with n > 3, which we call normal integrable potentials of type Bs.

(4.5)
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The integrable potentials of type Bs admit a special transformation called dual
which does not exists in B,, with n > 3. Hence there are normal potentials and
their dual in the invariant integrable potentials of type By. Because of this duality,
there exist another kind of invariant integrable potentials of type Bs, which we call
special integrable potentials of type Bs.

In this section we present (R(z,y),T(z,y)) as suitable limits of elliptic functions
as in the previous section since it helps to study the potentials of type B, in §5.
But we can also easily check (4.3) by calculations (cf. Remark 4.6).

4.1. Normal Case. In this subsection we study the integrable systems (4.1) with
(4.2) which have natural extension to type B,, for n > 3 and have the form

u”(t) = Aug (1), ut(t) = Aug (t),
(4.6) 3 3
v(t) =Y Cius(t),  w(t) = Cjuwy(t)
j=0 j=0
with any A, Cy, Cq, Co, C3 € C.
Theorem 4.3 (By: Normal Case). The operators P and Py defined by the following
pairs of R(x,y) and T(x,y) satisfy (4.1) and (4.2).

(Elip-Ba):  ({p(t)); (p(t), p(t +w1), p(t +w2), p(t +ws)))

3
R(z,y) = A(p(x —y) + oz +y)) + > Cj(p( +w;) + oy +w;)),
j=0
T(z,y) =2(u" (z —y) +ut(z +y)) (v(z) +w(y))
3
—4AY  Cip(r +wy) - oy + wj).
j=0

(Trig-Bs): ((sinh72 At); (sinh ™% Xt, sinh ™2 2\¢t, sinh? A, sinh? 2Xt))

R(z,y) = A(sinh > (2 — y) + sinh > X\(z + ¢))
+ Co (sinh_2 Az + sinh ™2 )\y) + C} (cosh_2 Az + cosh™2 )\y)
+ Ca(sinh® Az + sinh® Ay) + L C3(sinh® 2\z + sinh® 2)y),
T(z,y) =2(u"(z —y) +u" (z +y)) (v(z) +w(y))
—4A (C’O sinh™2 Az - sinh ™2 Ay — C4 cosh ™% Az - cosh ™2 Ay
+ C3(sinh? Az + sinh® Ay + 2sinh? Az - sinh? AY)).

(Rat-Bs): ((E72); (t72, 82, ¢4, 15))
A n A
(z—y)?  (z+y)?
+Co(z72+y %) + C1(2* +v°) + Ca(2* + y*) + C3(2° + ¢°),
T(x,y) =2(u" (x—y)+u (z+y)) (v(z) +wy))
C
— 4A(9:21(,)12 + Cg(x2 + y2) + Cg(:l:4 +yt + 3:1:2y2))
2Cy + 2C12%y? + Coz?y? (2 + y?) + 2C32%y*
(2% — y2)2 :

=84
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(Toda—Dél)-bry): ((cosh 2Xt); (sinh™2 A, sinh ™2 2Xt), (sinh ™% At, sinh > 2)t))
R(z,y) = Acosh2A\(x — y) + Acosh 2\ (z + y)

+ Cpsinh ™2 Az + C; sinh ™2 2\x 4+ Oy sinh 2 Ay + Cs sinh ™2 2y,
T(x,y) = 8A(Cp cosh 2Ay + C5 cosh 2)x).

(Toda-B{"-bry): ((e=2M); (€2, €M), (sinh ™2 AL, sinh ™2 2)¢t))

R(I,y) — Ae~2Mz-y) +A6_2’\(x+y)
+ 0062/\3: + C’164>\:’c + Cy sinh72 Ay + C3 Sinh72 2y,
T(z,y) = 4A(Co cosh 2y + 2Coe~*7).

(Trig—Agl)-bry): ((sinh ™2 At), 0; (e 72N, e~ 1AL 2\t edAty)

R(z,y) = Asinh 2 \(z — y) + Co (72 4 e72M) 4 Oy (e7*M + e7*N)
+ CZ (62)\:1: + 62)\y) + 03 (64)\1 + 64)\y)7
T(z,y) = 2Asinh % A(z — y) (co (722 4 e72M) 4 20 e~ A HY)

+ Co (e + M) + 20362*(””).

(Toda—C’z(l)): (<e—2/\t>’ 0; <62At’ 64)\t>7 <6—2/\t,e—4>\t>)

R(z,y) = Ae™2070) 4+ Ce?A™ 4 O 4 Coe™ + 5™,
I—V(ZE7 y) = QA(COez)‘y + 02672/\;1:).

(Rat-A;-bry): ((t72),0; (¢, 82,83, %))

A

R(z,y) = @92 +Co(z +y) + Cr(@® +y?) + Co(e® +4°) + Cs(a* +¢*),
2A

T(x,y) = FRr (Co(z +y) + Ci(z® + y?) + Cozy(z + y) + 2C322y?).

Remark 4.4. For example, ((t‘2)70; (t, 12,13, t4)) in the above (Rat-A;-bry) means
um(t) = At™2, ut(t) = 0, v(t) = w(t) = Cot + C1t* + Cot>® + Cst?

with using the similar convention as in (4.5).

Remark 4.5. All the invariant integrable potentials of type By together with P

are determined by [OOS] and [OO]. They are (Ellip-Bs), (Trig-B2) and (Rat-Bs)

which have the following unified expression of the invariant potentials given by [OS,
Lemma 7.3], where the periods 2w, and 2ws may be infinite.

R(z,y) = Ap(z —y) + Ap(z +y)
n C4@(93)4 =+ C3@(93)3 + Czp($)2 + Clp(I) + 00
o' (z)?
N Cap(y)* + C30(y)® + Cop(y)? + Cro(y) + Co
o' (y)? ’
T(z,y) = 4A(p(2) - p(y)) " (Capl@)*p(y)* +

+ %@(:c)@(y)Q + Cop(x)p(y) +

Cs

7@(1‘)

1 o
?P(ff) + ?p(y) + Co),

*o(y)+
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When w; = wy = o0, p(t) =t~2 and (p(x) — p(y))_2 = 2yt (2? — y?)~2 and
A A
vty
+ 3(Caz™? + O3 + Coa® + Cra* + Coa®)
+ 2(Cay™% + C5 + Coy® + Cry* + Coy®),
T(z,y) = 2A(z* — y*) ™2 (2Cs + Cs(x? 4 9%) + 2Cyx2y? + Cray* (2 + %)
+ 2Cox4y4).

R(z,y) =

W~

We review these cases discussed in [OS] and [OO]. Owing to the identity
V' (u” —u) +20((uT) = (uh)) + 9y ((v+w)(u™ +u't) — 20w)

v v 1 v —v 1
=|w w1+ |w w1
w —(w™) 1 |jut (wt) 1

and (2.18), the right hand side of the above equals zero and we have (4.3) when
u” =Cplz—y)+C', vt =Cp(z+y)+C', v=Cp(z)+C" and w = Cp(y) + C’

with T'(z,y) = 2(u™ + u™) (v + w) — 4vw. Hence Q(p(t); p(t)) = p(z)p(y). Using
the transformations (x,y) — (¢ + wj, y + w;), we have
(Ellip-Bs)

(4.7) Qp(t); ot +w))) = p(z+w;) - ply+w;) for j=0,1,2,3.

because the functions p(z +y) do not change under this transformations (cf. (2.9)).
Here we note that p may be replaced by gg.
By the limit under ws — oo, we have the following (Trig-Bs) from (Ellip-Bs) as
was shown in the proof of [O1, Proposition 6.1].
Trig-Bs)

(
(4.8)  Q(sinh™® M;sinh ™ A¢) = sinh™? Az - sinh ™ My,
(4.9) Q(sinh_2 At; cosh ™2 )\t) = —cosh™? Az - cosh™2 Ay,
(4.10)  Q(sinh™ At;sinh® \t) = 0,

(4.11) @ (sinh_2 At; % sinh? 2)\t) = sinh? Az + sinh? Ay + 2sinh? Az - sinh? \y.

The equations (4.8), (4.9) and (4.10) correspond to (2.26), (2.27) and (2.29), re-
spectively. Moreover (2 17) should be noted and (4.11) corresponds to (2.29) with
replacing (w1, A) by (3wi,2)).

By the limit under )\ — 0, we have the following (Rat-Bs) from (Trig-Bs) as was
shown in the proof of [O1, Proposition 6.3]. Here we note (2.25) and

cosh™2 A\t - sinh® A\t = 1 — cosh™2 \t,
cosh™? Xt - sinh® \t = —1 4 cosh™2 At + sinh? \t,
cosh™2 At - sinh® At = 1 — cosh™2 M\t — 2sinh? A\t 4 1 smh2 2\t
}\li%)\ % cosh™? At -sinh® At =27 for j=1,2,3,
1 1 2(2? + y?)
92 @ty @R

(Rat-Bg)Z

Q%% =27y 2,
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T t7%) = 4@ +y ) (@ —y) 2 + (a+9)7%) — 4277y 72,

_A@+y?)? 4@ —y?)? 16
2202 (22 — 42)2 @2 — )2’
QU™ =0,

42 +y*)? 16272
(z2 —y2)2 (2?2 —y?)?
Q%Y = a® + 47,

Aa® +y?) (et +y*)

Tt 4% =

8.’L‘2y2($2 + y2)

T2, t%) = (22 — y2)2 — 4 +y7) = (22 —y2)2
Q(t™%1%) = 2t + y* + 3227,
16x%y4

—4(z* + 327y +yt) =

This expression of T'(x,y) for (Rat-Bs) is also given in Remark 4.5. Note that we
ignore the difference of constant functions for @ and 7.

Proof. (Toda—Dél)—bry) — (Ellip-Bs): Replacing (z,y) by (x 4+ wa,y), we have

Q(cosh 2)t; 0, sinh ™2 \t)
. e 1 1
= lim Q(Wpo(t +wa); ﬁpo(t + wa), ﬁm(t))

wo —00

62)\0.)2

= lim ———go(x + w2)po(y) = cosh 2z - sinh 2 \y,
wa—oo 8\4

Q(cosh 2Xt; 0, cosh™2 At)
2)\(.4)2

. 1 1
= lim Q( oz 9o(t +w2); =5 00(t + wi +w2);*j@o(f+w1))

Wo — 00 A
62)\0.12
= — lim Wpo(x + w1 + w2)po(y + w1) = —cosh 2z - cosh™2 \y,

Wwo—00
Q(cosh 2\t; sinh™2 \t, 0) = sinh™2 Az - cosh? Ay,
Q(cosh 2Xt; cosh™2 At,0) = — cosh™2 Az - sinh? \y.

Hence

T(cosh 2Xt; 0, sinh ™% \t) = 2(cosh 2A(z + y) + cosh 2A(z — ) - sinh™2 \y
— 4 cosh 2\z - sinh 2 \y = 8 cosh 2\z,

T (cosh 2Xt; 0, cosh ™ At) = 2(cosh 2X\(z + y) + cosh 2A\(z — y)) - cosh ™2 Ay
+ 4 cosh 2z - cosh™2 Ay = 8 cosh 2\,

T'(cosh 2Xt; 0, sinh ™2 2\t) = T'(cosh 2\t; sinh ™2 2)¢, 0) = 0,

T(cosh 2\t; sinh ™2 ¢, 0) = 8 cosh 2\y.
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(Toda—Bél)-bry) — (Toda—Dél)—bry): Replacing (z,y) by (x — R,y), we have

T(e*”t; 0,sinh ™2 )\t) = lim T(2e*2)‘R cosh 2\(t — R); 0, sinh ™2 )\t)

R—o0

= lim 16e~**cosh2)\(z — R) = 8=,

T(e_g/\t; 0, sinh ™2 2)\t) = lim T(2e_2’\R cosh 2A\(t — R); 0, sinh™2 2)\t) =0,
R—o0
T(e_2’\t; e O) = Rlim T(2e_2’\R cosh 2\(t — R); %e”‘R sinh™? \(t — R), 0)
= 4 cosh 2)\y,

R—o0

T(e*”‘t; et 0) = lim T(2e*2’\R cosh 2A(t — R); %e‘“‘R sinh 2 2\(t — R), 0) = 0.

(’IYig—C’Q(l)) — (Trig—Bél)—bry): Replacing (x,y) by (z + R,y + R),

T(672/\t 0_62)\t 0) _ hm T(672)\t 672)\(t+2R),672/\Re2>\(t+R) 0)

R—o

= lim e . 4cosh2\(y + R) = 22,

R—o0

T(672)\t 0 64At 0) — hm T(672>\t 672)\(t+2R),674)\R64)\(t+R) O) — 0

— 00

By the transformation (z,y, A) — (y,z, —A), we have
11(6—2)\t7 O; 0’ 6—2)\t) — 26—2)\fﬂ7 T(e_2>\t, 0; 07 e—4>\t) — 0

(Trig—A(ll)—bry) «— (Trig-B2): Replacing (z,y) by (z+ R,y + R),
Q(Sinh_2 At, 0; 62)‘t)
= lim_ Q(sinh ™ At,sinh ? A(t + 2R); L sinh > \(t + R))
= lim_ 12 sinh > A(z + R) - sinh > My + R) =0,
T(sinh_2 A, 0; e”‘t) = 2(62)“ + e”‘y) sinh ™2 \(z — y),
Q(sinh™? \t, 0; e**)
= Jlim_ Q(sinh™? \t,sinh > \(t + 2R); 4e~**F sinh” 2\(t + R))

=16 lim e PR (sinh2 A + R) + sinh® A\(y + R)

+ 2sinh?® A\(z + R) - sinh® A(y + R)) = 2e2AM@ty)
T(sinh™? ¢, 0; e*M) = 2sinh ™% Mz — y) (e + ™) — ge? A @+y)
_ 2sinh72 )\(CC o y> (e4>\x + e4>\y _ 62)\(x+y) (ek(x—y) _ e—)\(ac—y))2)

= 4@ W sinh 2 Az — ).
(Rat-A;-bry) « (Trig-A;-bry): Taking the limit A — 0,

Q(t7%,0:) = lim Q(X*sinh ™ At, 0; g3 (e — 1)) =0,

2
(2, 0;1) = 209

(z—y)
Q(t™2,0;t%) = ;ir% Q()\2 sinh™2 \t, 0; ﬁ(ez)‘t +e M 2)) =0,
%+ y2

Tt 2,0;t%) =2—5,
( ) (z —y)?
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Q(t72,0;t%) = lim Q(A\?sinh ™2 \t, 0; ghs (e — 3e?M — e 72 4 3))
—0

= )]\ii%%(ew(ﬂy) _ 1): %(m +1),

3 3
Lo +y zy(z +y)
T 2,063 =22 Y oy 4 y) =2 TY)
( ) (x —y)? ( ) (x—y)?
Q(t2,0;th) = }\in}) Q()\2 sinh™2 \t, 0; 161)\4 (e e 4M _ ge2A g 2M 6))

=1 162T (e2f\(ar+y) 4 e 2 @ty) _ 2): %(m + )2,

A—0
4 4 2,2
_ =ty 9 dxy
Tt 2,0t =2— " — 2 +y) = —7—.
(z —y)? (z —y)?
Thus we have completed the proof of Theorem 4.3. O

Remark 4.6. Theorem 4.3 can easily checked by direct calculations. For example,
Remark 4.1 and the equations

2(66—2>\(m+y) _ e—2A(m—y)>(62)\z)’ + 462)\m%(66—2>\(m+y) _ 6—2)\(1—3/))
=4\ (ee” 2N — W) — 8\ (ee PN — W) = (% (2(56_2’\y + 62’\3/)),

9(cc @) _ =A@ () 4 4€4>\x%(€e—2>\(ac+y) @) = g

with & = 1 give T'(e=2M; 22 0) and T(e~2*;e*M,0) for (Trig-Ba-bry). Moreover
T(e=2M,0;e*M 0) and T'(e~2*,0; e 0) for (Toda—Cz(l)) also follow from these
equations with £ = 0.

4.2. Special Case. In this subsection we study the integrable systems (4.1) with
(4.2) which are of the form

R(z,y) =u" (z —y) +u' (z +y) +v(z) + w(y),

uT(t) =) Ajug (),  ut(t)=) Ajug(t),
(4.12) ; 0 Jz::o 0

w(t) =Y Cju;(b), w(t) = Cyw;(t)
=0 =0

with Ag, Ay, Cy, Cp € C.

Theorem 4.7 (Bs : Special Case). The operators P and Py defined by the following
pairs of R(z,y) and T(x,y) satisfy (4.1) and (4.2).

(Ellip-B»-S): ((p(t; 2w1, 2w2), p(t; w1, 2w2)); {p(t; w1, 2w2), (t; w1, w2)))

R(z,y) = Aop(r — y; 2w1, 2w2) + Agp(x + y; 2w1, 2ws)
+ Aip(z — yswi, 2w2) + A1p(T + Y3 wi, 2w2)
+ Cop(x; w1, 2w2) + Cop(y; wi, 2w2)
+ Crp(z; w1, w2) + Crp(y; w1, wa),
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T(x,y) =2(u" (z—y) +u' (z+y))(v(x) +w(y))

1
—4A0Cy Z oz + wj; 2w, 2wa) - (Y + wj; 2w, 2ws)
j=0

3
—440Cy Z p(r 4+ wj; 2w, 2w2) - P(Y + wj; 2wr, 2ws)
=0
— 4A;Cop(a;wr, 2w2) - p(y; w1, 2w2)
1

— 44101 ) p( +wyjiwr, 2ws) - p(y + waj; wi, 2ws),
=0

(Trig-Ba-S): ((sinh™? At, sinh 2 2\¢); (sinh ™ 2\¢, sinh” 2)¢t))

R(x,y) = Agsinh™? X\(z + y) + Agsinh ™2 \(z — )
+ Ay sinh™2 2\ (z 4+ y) + Ay sinh ™2 2\ (z — )
+ Cysinh ™2 2\ + Cp sinh ™2 2\y + C sinh? 2\z + C} sinh? 2\,
T(x,y) =2(u"(z —y) +uF(z +y)) (v(z) +w(y))
— ApCy (sinh72 Az - sinh ™2 Ay + cosh ™2 Az - cosh ™2 )\y)
—4A0C4 (sinh2 Az + sinh? Ay + 2sinh? Az - sinh? )\y)
— 4A,Cysinh 2 2\z - sinh 2 2y,

(Rat-Bo-S): ({72, 2); (¢7%,#%))

A A
R(z,y) = @ _Oy)2 + @ +0y)2 + Ai(z —y)? + Ai(z +y)?
Co C
+ =5 + —5 + C12? + C1y?,
a? oy
16A0Co + 16 A9Cy a2y>
T(w,y) = — (Oxz — y2§2 Y 1 164,Cha%y?,

(Toda—Dgl)—S—bry): ((cosh 2), cosh 4At); (sinh ™2 2\t), (sinh 2 2Xt))

R(x,y) = Agcosh2A(z — y) + Ag cosh 2\ (z + y)
+ Ay cosh4A(z — y) + Ay cosh4A(z + y)
+ Cpsinh ™2 2\z + C; sinh ™2 2\,

T(z,y) = 8A;(Cp cosh4\y + Cy cosh4)z),

(Toda-B{"-S-bry): ((e72M, =Mty (8 (sinh ™ 2)¢t))
R(z,y) = Age @Y 4 Age=2M@H) 4 g o=\ @=) 4 g 1A =+y)
+ Cpe™* + ¢} sinh ™2 2y,
T(z,y) = 4A1(Cp cosh 4y + 2016—4)‘1),
(Toda—C’él)-S): ((e722 =420y 0; (M), (e=4A1))

R(z,y) = Age~2N@=Y) L g e~ a=y) 4 o e 4 Cre—*M,
T(aj? y) = 2141 (00€4>\y + 016—4)\;5).



COMPLETELY INTEGRABLE SYSTEMS 17
(Trig-A;-S-bry): ((sinh72 M, sinh ™2 2)t), 0; (e~ 4, etM))

R(z,y) = Agsinh ™2 \(x — y) + Ay sinh ™2 2\ (z — y)
+ Coe M 4 Cpe N 4 Cr e + Cre*M,
T(x,y) = 2A; sinh™ 22X\ (z — y) (00674” + Coe M 4 Cret?® + 0164)‘3’)
+ 4A¢sinh™? \(z — y) (006_2’\(7”3’) + 0162)‘(””'“’)).
Proof. (Ellip-By-S): We have the following from (4.7), Lemma 4.2 and (2.17).
Qp(t; w1, 2w2); p(t w1 2ws)) = p(tw, 2w2) - P(twi; 2w2),
Q(p(t; 2w1, 2w ); p(t; wr, 2wa))
= Q(p(t; 2w, 2w2); p(t; 2wy, 2wa) + P(t + w1; 2w1, 2ws))
= p(x; 2w1, 2ws) - p(y; 2w1, 2ws) + P(T + wi; 2w1, 2ws) - P(Y + wi; 2wr, 2ws),
Qp(t; w1, 2w2); (8w, w2))
= p(z; w1, 2ws) - p(Y; w1, 2wa) + P(T + wa; w1, 2we) - P(Y + wa; wi, 2ws),

3

Q(p(t; 201, 2wn); p(t; w1, wa)) = Y 9 + wjs 2w1, 2ws) - 9(Y + wj; 2w1, 2w3).
3=0
(Rat-Bs) is given in [OS, (7.13)] but it is easy to check (4.3) or prove the result
as a limit of (Trig-B2-S). Moreover (Trig-Ba-S), (Toda—Dél)—S-bry), (Toda—CQ(D-S)
and (Trig-A;-S-bry) are obtained from the corresponding normal cases together
with Lemma 4.2. For example, @ for (Trig-Bs-S) is given by (4.8), (4.10) and

(4.13)  Q(sinh ™ At;sinh ™2 2\t) = Q(sinh™* At; 4 sinh > At — 4 cosh ™2 At)
= 1 (sinh™? M sinh ™2 Ay + cosh ™ Az cosh ™ \y),
Q(sinh™? 2Xt;sinh ™% 2\t) = sinh™* 2\z - sinh > 2)\y,
Q(sinh ™ 2)\¢; sinh® 2\¢) = 0.
Thus we easily get Theorem 4.7 from Theorem 4.3. O
4.3. Duality.

Definition 4.8 (Duality in Bz). Under the coordinate transformation

(4.14) (2.9) > (X.Y) = (xj; Q‘iy)

the pair (P, P? — P,) also satisfies (4.1), which we call the duality of the commuting
differential operators of type Bs.

Denoting 0, = %, Oy = 8% and put
L=P>-P,— (307 - %85—!—11)—1})24—1( (0r +0y) 2 +ut - (9, — 9,)%
Then the order of L is at most 2 and the second order term of L equals
—(ut +u” v+ w) (92 + 85) —2(u” — u")9,0, + 2wd2 + 2’065
— (w —v)(9% - 82) +u” (0, + ay)2 +ut (9, — 8y)2 =0.
Since L is self-adjoint, L is of order at most 0 and the 0-th order term of L equals
—1(02 +8§)(u+ +u” +v+w)+ (u+uT v+ w)? —dow—T — 0,0, (u” —ul)
- %(32—8;)(11)—1)) =W +u +v+w)?—dow—-T

and therefore we have the following proposition.
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the duality in Definition 4.8 the pair (R(a?,y),T(az,y))
y)) with

By t
T(x,
o (5 () o (e e (V).
T+Yy r—y T+y T—yY
i(z, ) (ﬁ)l‘)(\@)*T(\/ﬁﬁ)
ii) Combining the duality with the scaling map R(z,y) — ¢ 2R(cx,cy), the fol-

lowing pair (R (x,y),T%(z,y)) defines commuting differential operators if so is
(R(z,y),T(z,y)). This R*(x,y) is also called the dual of R(x,y).

Proposition 4.9. i)
changes into ( R(z,y),

(4.15)

T()

(4.16) R(x,y) = v(z +y) + wlz —y) +ut(22) +u” (2y),
T, y) = R (x,y)* — do(z + y)w(z —y) = T(z +y,z —y).

Remark 4.10. i) We list up the systems of type Bs given in §4.1 and §4.2:
Name (u™(t), ut(t); v(t), w(t))
(Ellip-By) ((p(0); (p(t), p(t+w1), et +ws), p(t+ws))),
(Ellip-Bo-S)  ((p(t; 2w1; 2ws), p(t;wi;2w2)); (p(twr;2ws), p(t;wi;ws))),
(Trig-By) ((sinh ™ At); (sinh™® At, sinh ™ 2X¢, sinh® A, sinh®2)t)),
(Trig-Bs-S) ((sinh™® M, sinh™22)), (sinh™?2X¢, sinh®2At)),
(Rat-By) (t72); @2, 2, 4, %),
(Rat-B»-S) (72, 82 (72, 1%),
(Toda-D$V-bry) ({cosh2At); (sinh™2 At, sinh™22A¢), (sinh™2 At, sinh™2 2A¢)),
Toda-Ds ’-S-bry cosh At, cosh2)t); (sinh™ " At), (sinh™ " \t)),

da-D{"-S-b h At, cosh2A h2 A h™2 A
(Toda-B{"-bry) ((e=2y; (2, ™) (sinh ™2 A, sinh™2 2Xt)),
(Toda-B{"-S-bry) ((e™, e 2M); (M), (sinh ™2 At)),
(Toda—Cél)) (<672)\t>’ 0; <€2)\t7 64)\t>, <672)\t7 674}\t>),
(Toda—C’él)—S) (<€72)\t, 674)\t>’ 0; <€4)\t>7 <674/\t>)7
(Trig-A;-bry) ((sinh_2 At), 0; <672)\t,674)\t762/\t,€4)\t>),
(Trig-A;-S-bry) ((sinh_2 M, sinh™22At), 0; (e A e4>‘t>).

ii) The dual is indicated by superfix ¢. For example, the dual of (Ellip-By) is
denoted by (Ellip?-B,) whose potential function is

3
R(z,y) = Ap(2z) + Ap(2y) + Y _ Cj(p(x — y + wj) + p(z +y +w;))
j=0

and the dual of (Toda—C’él)) is

(Toda®-C4") (7, =), (2N, e): 0, (e=*M))

since the dual of (u™(t), u™ (t);v(t),w(t)) is (w(t),v(t); u™(2t),u™(2¢t)). Similarly
(Blip®-Bz)  ((p(t; w1, 2w2), p(t; w1, w2)) ; (p(2t; 2w1, 2wa), p(2t; w1, 2w2)))

Since 4p(2t; 2wy, 2ws) = p(t; w1, ws) ete., (Ellip?-By) coincides with (Ellip?-By) by
replacing (wy,ws) by (2wa,w1).
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Then we have the following diagrams and their duals, where the arrows with

double lines represent specializations of parameters. For example, “Trig-Bs Ry
Trig-BCo-reg” means that 2 parameters out of 5 in the potential function (Trig-
Bs) are specialized to get the potential function (Trig-BCs-reg). See Definition 5.14
for their naming.

Hierarchy of Normal Integrable Potentials of type Bo
Trig-BCy-reg —  Toda-Da-bry

53 53
Trig-Bo — Toda—Bél)—bry e Toda—Bél)
/ / 1
EllipB, — Toda-D{"-bry Toda-C{? % Toda-BC,
N
Trig-Bo —  Trig-A;-bry R Trig- A;-bry-reg
N\ N\
Rat-B, — Rat-A;-bry

Hierarchy of Special Integrable Potentials of type B>
Trig(®-By-S-reg — Todal®-Dy-S-bry

a3 1 4:3
Trig@-By-S  — Toda@-B{"-S-bry & Toda@-B{V-8
/! /! !
Ellip-B5-S — Toda@-D{V-S-bry Toda@®-c{V.g & Toda®-B,-S

N\
Trig(?-By-S —  Trig(®)-A;-S-bry L Trig(¥-A,-S-bry-reg
N\
Rat—Bg—S
Definition 4.11. We define some potential functions as specializations.

(Trig-Bs-S-reg): Trigonometric special potential of type By with regular bound-

ary is (Trig-Bs-S) with Cq = 0.
(Toda-D5-S-bry): Toda special potential of type Do with boundary is (Toda-

Bél)—S—bry) with Cp = 0.
(Toda—Bél)—S): Toda special potential of type Bél) is (Toda—Bél)—S—bry) with

Cy=0.
(Toda-By-S): Toda special potential of type By is (Toda—C’él)—S—bry) with Cy =
0.

(Trig-A;-S-bry-reg): Toda special potential of type Ay with regqular boundary
is (Trig-A;-S-bry) with Cy = 0.

Remark 4.12. We have some equivalences as follows.

(4.17) (Ellip-By-S) = (Ellip?-B,-S),

(4.18) (Rat-By-S) = (Rat?-B,-9),

(4.19) (Trig-BCy-reg) = (Trig?-By-S-reg),
(4.20) (Trig-A;-bry-reg) = (Toda’-D,-S-bry),
(4.21) (Toda-Dy-bry) = (Trig?-A;-S-bry-reg),
(4.22) (Toda-B" ) = (Toda’-BV-8),
(4.23) (Toda-BC3) = (Toda’-B,-S).
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5. TYPE B,, (n > 3)
In this section we construct integrals of the completely integrable systems of type
B,, appearing in the following diagram (cf. [vD]):
Hierarchy of Integrable Potentials with 5 parameters (n > 2)
Toda—Dfll)—bry — Toda—Br(Ll)—bry — Toda—Cﬁll)

/! /!
Ellip-B, — Trig-B,, — Rat-B,,
N N\

Trig-A,_1-bry — Rat-A,_1-bry

Definition 5.1. The potential functions R(x) of (1.1) are as follows:
Here A, Cy, C1, Cy and C3 are any complex numbers.

(Ellip-B,,) Elliptic potential of type B,:

Z A(p(z; — 3552w, 2w2) + p(x; + 355 2w1, 2w2))
1<i<j<n
n 3

+D > Cip(an +wys 2w, 2ws),

k=1j=0
(Trig-B,,) Trigonometric potential of type Bp:
Z A(sinhf2 Aa; — x;) +sinh ™2 A(z; + ;)

1<i<j<n
+3 " (Cosinh ™ Azg + Cy cosh™* Azy, + Cy sinh® Az + % sinh? 2)xy,),
k=1

(Rat-B,,) Rational potential of type By:

A A - _
Z + )2) +Z::(Col‘k2+clxi +C2$i +C3$2),

. 2r.)2 . .
1<i<j<n (i xﬂ) (i T k=1
(Trig-A,,—1-bry) Trigonometric potential of type A, _1 with boundary:

Z Asinh™2 \(z; — ;)

1<i<j<n

+ Z(Coe—QAzk + Cfle—él)\;c;€ + CzeQAIk + 0364)\;%)7
k=1

(Toda—Br(Ll)—bry) Toda potential of type B with boundary:

n—1
ZA(G_ZA(L"_L‘_H) _|_e—2)\(zn_1+rn))
=1

+ Coe® ™ 4 O™ + Oy sinh ™2 Az, + Cy sinh ™2 2\x,,,

(Toda—Cr(Ll)) Toda potential of type Cy(ll):

n—1

E A672/\(mi7xi+1) + Coe2)\x1 + 0164)\z1 + C2€72Aa:" + 613674)\93,”,
=1
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(Toda—DS)—bry) Toda potential of type D,(Zl) with boundary:
SA(efzx(zﬁxm) e A @nmrten) | 2 @ataa))
z::L Co sinh ™2 x4+ Cq sinh ™2 2Az1 + Cy sinh ™2 Az, + C3 sinh =2 2\Tp,
(Rat-A,,_1-bry) Rational potential of type A, _1 with boundary:

A n ) , \
§ : m + Z(Ooask + Crxi, + Cazy + 03%)-
1<i<j<n k=1

Remark 5.2. In these cases the Schrodinger operator P is of the form

= —% % + R(z),
3
(5.1) Raz)= Y (uei,ej (@) + Ue e, (ac)) +3 (),
1<i<j<n j=0
V() = vl ()
k=1

Here

Oqti () = (*)bvg,(x) =0 if a, beR" satisfy (a,a) = (b,3) =0.
Definition 5.3. Let u,(x) and T?(v’) are functions given for a € %(D,) and
subsets I = {i1,...,4k} C {1,...,n} such that
(5.2) Ua(z) = u_o(z) and Oyu, =0 for y € R"™ with (o, y) = 0.

Define a differential operator

1
(53) P’ﬂ(c) = Z k'(n 7 k) (q{w(l) ..... w(k)}(c) . A%w(k+1),...,w(n)})
k=0 weS,,
by
1
(5'4) A{il ..... ik} Z W Z 5(w)w (ueil —eiy (x)
0<j<[%] wEW (By)

cUeiy—ey, ('T) e uein,l—Ein (.’L‘) . ai2j+18i2j+2 e alk>7

(5.5) Uis,....i} (C) = Z Z 17, - 11,

v=1 11T, ={i1,....ix }

3
(5.6) T, = (~)# - (osp - 3 o)),
5=0
where
(57) Sf[)il,iZ,...,ik} = % Z w(u6i1—6i2 (x)ueig—eig (x) o .u@ikil—eik ($))7
weW (By)

Sp =0, Sty =1, 57 j3 = 2Ue,—e; (%) + e, 4e;(2),
Ty (v7) = 0, Ty (') = 20! (x)  for 1<k <m,
9o =1, gty = Tray, Qivisy = T T ooy + Thininys - -
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In the above, we identify W (By) with the reflection group generated by we,, and
We,, —e;,, ., (v=1,...,k—1).

Replacing 9; by §; for j =1,...,n in the definition of Ay;, ;3 and P,(C), we
define functions Ay, . ;3 and P ( ) of (z, &), respectively.

We will define u,(x) and T¢(v?) so that

(5.10) [Po(C), Pa(C)] = 0 for C,C" € C.
Then putting
(511) q? = qI|C_07
n
— 2
(512)  Po=Pu0) =) s k;(n_ Bl DO CRTREA SARTaY §
k=0 weG,

1l
R 3 S e D DINID D

i=j k=i T weS, L1 =w({1,...,i})
St 51_7 qfn({i+l,...,k})Aw({k+1,...,n}))7

we have P, (C) = >1_(C7P,_; and (1.4) and

[P, P;]=0 for 1<i<j<mn,
5.14
(5.14) _7:_72 + 0y (uei_e]( T) + Ue,te, (T ) ZC e

1<i<j<n

Remark 5.4. i) When n = 2, T'(z,y) in the last section corresponds to T12, namely

T(l‘l,l‘g) = le‘CZO'

U(z) = Z (uz_j(xl —z;)+ u;‘;(xl +;)) and V(z)= ka(xk)
k=1

1<i<j<n
in (1.3) and let T;(U; V') be the corresponding T given by (5.6). Then [O1, Remark
4.3] says
(5.15) Ti(coU;c1V + coW) = CO#I 161T1(U; V) + c#lilcQT[(U; W) for ¢; €C.

iii) The definition (5.6) may be replace by

3
(5.16) Ty = (—1)#1- 1(02 S (2 - 1)Sy, - }’V—ZCij(vj))
=0

v=11I,10---II1,

because A can be any complex number in [O1, Lemma 5.2 ii)] when v = C. Note
that we fixed A = 1 in [O1]. Combining (5.16) and (5.15) we may put

3

T = (- (Csp e Y e S S8t = Y GTE )

v>2 nLua.--1ir, j=0

for any ¢, ¢’ € C and hence

3
(5.17) Ty = (_1)#1—1((15;’ +3 e Y S8y - chT;’(uﬂ‘))
§=0

v>2 LI,

for any cs,c3,... € C.
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Theorem 5.5 (Ellip-B,,, [O1, Theorem 7.2]). Put

(5.18) {“eiiej (z) = Apo(w; + 55 2w1,2ws)  for 1<i<j<mn,

vék(a:)zpo(a:k—kwj;le,ng) for 1<k<nand0<;<3
and
"y
(5.19) T (v') = Z Z (=AY v —1)- S, (v))--- S, (v9),

v=1I11...11T, =T

(520) S{ilw-vik}(vj) = Z Uﬁi(eil)(x)uw(eh 761’2)(']:)“"”(@2761'3) ($) U
weW (By)

S U(er, —er ) (T)-
Then (5.10) holds.
Example 5.6. Put v} = v/ , 0 = Zj:o Cjvl, and wj; = uj; £ uf;. Then
Agy = 04,
Af19y = 0102 +upy — ufy = 0102 + wiy,
Af12,3,4y = 010202 + w1503 + wy301 + w30,
A1,2,3,4) = 010203 + w3,0102 + wy,0103 + Wy30104 + w4020 + w3020,
+ w0304 + Wipwyy + wigway + WiyWys,
S (v7) = 21}{,
5{1,2}(”j) = 21){“1_2 + QU{UE + 2”5“?2 + 2“%“?2 = 2(1’{ + Ug)(ul_Q +uy),
Si1,2,3(v7) = 20]uiyugs + 20]uyudy + 20 ufyug, + 20]ufudy + -

= 2(v] + vy)wiwsy + 2(v] + V) whwly + 2(v] + v whHw,

3
T{l} = 03{1} — ZC]'T{Ol}(UJ) =C - 2171,
j=0
3 .
Ty = —CSf gy + Z CiT{ 23 (v7),
j=0

a1y = Thy,
912y = Ty Tioy + T2y,
41,2, = Ty Ty Tisy + Ty Ty + Ty Tioy + Ty Tizsy + Ty
If T7°(v?) and S;, i, (v7) are given by (5.19) and (5.20), then
TP () = 201,
Tfm}(vj) = 5{1,2}(vj) — AT Ty, = 2(v] + v} wih — 44070,
T{1 2,3y (07) = S(1.2.3) (v7) = 24(v] S8y (v7) + ]S (1 ) (v7) + 0451 23 (07))
+ 16A20{v%v§.
In particular, if n = 2, then
Py (C) = A%m} + Q{l}A%2} + Q{Q}A%u +q{1,2}
= (0102 +up, — uE)z + Ty 05 + T2y 07
3

+ Ty Tiay — CSPy 0y + Y CiTH 5y (07)
=0
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— (0105 + upy — uy)” + (C = 26103 + (C — 26)0?
+ (C = 201)(C — 209) — 2C (uyy + ujy)
3
+2(81 + To) (upy + ufy) — 44 Cjofv]
§=0

=C?*-2P-C+ Py
with

P=—1(0f +03) + Uy + D2 + up, + ufy,

Py = (8182 + Uy — u12) — 21}182 — 21)261
3 . .
+ 40109 + 2(’[}1 + 172)(“1_2 + ’U,TQ) —4A Z CjU{U%.
7=0
In general

n

(5.21) P = Z(A%k} + fJ?k}) - > Sup

k=1 1<i<j<n

i(aﬁ-mv;‘)-z 3w,

k=1 1<i<j<n

(5.22) Py = Z A+ Z z:q{}A{;}+ Z gy

1<i<j<n 1<i<n  j=1 1<i<j<n
1<5<n, 175]

- Y SupAhy )

1<i<yj
1<k<n, k#i, j

+ D SunShat D St
1<i<j<n 1<i<j<k<n
i<k<t<n

J#k, £

(5.23) = Z(aiaj + w;j)2 =) 20,07 + Y 4y + Y CiTh (v
_szi*j 2 — 20 +4Zw wke+22wl] W

Here if (5.19) and (5.20) are valid, then

(5.24) Tg, o (v ) = 2(v] + v))wy, — 4Aviv).

The commuting operator Ps of the 6-th order is

(5.25) Ps=3 A%k + D 6y + D alin
=D St = D0 Stnain Aty — D Stkatlin
+D S ikemy + D Sy Sty
+ DSk + D STk S{emy STuny

+ Z Sgil,iz}sf{)jlJz}S*({)khkz}ngl,fz}‘
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In Theorem 5.5 the Schrodinger operator is

1 n 32 3 n
P:—5 8—%%+A Z (p(mi—xj)+p(xi+xj))+ZC’ij(xk + wj)
k=0 1<i<j<n 7=0 k=1
and the operator P, satisfying [P, P»] = 0 is given by (5.23) and (5.24) with
3 .
U =Y Coplar +w,), v] = pzr +wj), wii = Ap(x; — 2;) + p(@: + 7).
v=0

Theorem 5.7 (Toda—D,(ll)—bry). For

Ae 2M@i—ig1) =741
uﬁ_@j(x){ e (j=i+1)

0 (I7—1>1)
Ae?M@ites) (i+j=23)

(5.26) Ueype,; () = § Ae~2Manaten) (4 j—9pn 1)
0 (i+37¢{3,2n—1})

vp(z) = d1x sinh™2 Az, vi(z) = b1 sinh ™2 2z,

"
v,%(x) = Opp sinh ™2 Az, v,%(x) = §pp sinh ™2 2\z,,,

we have integrals P; by (5.12), (5.4), (5.5), (5.6) and

(5.27)
Sf{’k}zl for1 <k <n,
S{=0 ifI#{kk+1,...,0} forl1<k<{l<n,
S?k,kﬂ,...,é} _ 2A€—k+1(e—2)\(;ck—xg) + 51kezx(x1+xz) + 5Zne—2x(a:k+xn))7
T?k}(vj) = 21}%(:5) for 0<5<3, k=1,...,n,
T (%) = if I #£{1,...,k} fork=1,...,n,
T =0 ifI#{k,....,n} fork=1,...,n,
TP =TP(v*) =0 if #I>1,
T?L. ’k}(vo) = 8AFTL(2A% o §pem A for k> 2,
T{On—k+1, n} (v?) = 814]“1(672)‘“""“+1 + 5k"62>\x1) for k > 2.
Proof. Put
Z=(x1 — %wg,...7xk - %wg,...,mn — Z—ng),
27wy
le,xe, (T) = A64"):21 ©0 (a:Z — :l__ll(,ug F(z; — %wz); 2w, 2w2),
(-1 ko1

5%(»’5) =2 Po(Tr — T=jwa + wj; 2w1,2wy) for 0<5<3, 1<k <n.
When wy — 00, G, re, () and 3, (€ =0,1,2,3) converge to ue, ¢, () in (5.26) and
v (z) = b1, sinh™2 \zy, vi(z) = b1, cosh™2 \zy,
v,%(x) = 8, sinh ™2 Az, v,?;(x) = 8, cosh™2 Az,

respectively. Under the notation in Theorem 5.5, let S;(3¢) and T¢(4¢) be the func-
tions defined in the same way as S7(v*) and T7 (v*), respectively, where (ue, e, (z),
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vf(z)) are replaced by (le, e, (x), U5 (&)). Then by taking the limits for wy — oo
[¢ (%) converge the following T¢(v?).

) =T (') =0 fT#{1,....k}fork=1,...,n
T =T (v*) =0 ifI#{k,...,n}fork=1,...,n
If £ > 2, then

22wy

#1
_ . en—1 v—1 ~ 5 5
TP gy (0°) = wllglooz Z (—Aw) (v—1)! 5, (@°)--- S5, (@°)

v=111I..--1II,=1I

2 wo
~ . ~ N en—1 - ~
= wllinoo 5{1 }(1;0) _ wlgnoo S{l}(vo) A e 5{2,_“7“(1}0)
= 2AF1sinh ™2 Az, (672)‘(9”1*9%) + e2M@rter) 4§ 2A (@)
+ 6kne—2)\(z1+rn)> _ ZSinhfz )\xl . 2Ak—1(62)\xk + 6kne—2)\mn)
= 8Ak—1( 2z + 8 6—2)@">.
TO (@) = 245 cosh™2 Az (7 A1 7o0) 4 2AE1HeR) 4 gy A1 o)
+ 5kn672)\(w1+a:n)) + 4Ak71 COSh_ )\xl (62)\:1:k + 6kn€72/\zn)
=8AF! (62)‘“ + 5kn672”"),
Jkrl k41,..., }(v2) ::814k*1(642A$n7k+1 +’5kn€2Aw1),
T{n—k+1 n}(vg) = 8Ak_1(e_2>\mn—k+1 4 6kn62>\m1)-

Replacing v! and v3 by (v —v!) and 1 (v? — %), respectively, we have the theorem
by the analytic contmuatlon given in Lemma 2.2. ([

Suitable limits of the functions in Theorem 5.5 give the following theorem.

Theorem 5.8 (Trig-B,,, [O1, Proposition 6.1]). For complex numbers A\, C, Cy, ...,
C3 and A with X # 0, we have (5.14) by putting

Ue,+e, (T) = Asmh 2\ (x4 j:xk),
(5.28) v0 () = sinh™2 Azy,, vl (z) = cosh™> Azy,

€k

02 (x) = sinh? Az, v (x) =5 Lsinh® 2\zy,

€

and

Ty = (=1)# ! (csy — CoT7 (%) — C1T7 (v') — CoS1(v?) — C3S1(v)

£200 3 (S1(0)- S0(6) + S, (%) - S7, + S5, - S (7)),
L1 I,=1
#1
D=3 Y (A DS () S (),

v=1I11..-111,=1I

#1
=> Y AT w -1 S-S, (v,

v=11,1.--11I,=1I

Theorem 5.9 (Trig-A,,_1-bry). For

(5.29) {“ez‘ej () = Asinh™ A(a; — ), Ue,te; (x) =0,

/ng (m) = €_2>\$k7 ’U;k (x) = 6_4A$k7 'ng (.’I:) = 62)\$k7 ng (fL') = 64)\$k
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we have (5.14) by putting

3
Ty = (~)# 1 (Cs7 = >0 6581
(5.30) =0
+2 3 (8 (") (") + CoSn (%)L (1)),

I/ II,=1

Proof. Putting

Gie;ve; = Asinh > M((z; + R) £ (2; + R)),
o) = 1P ginh ™% N2y, + R),
e Msinh ™2 2\ (z, + R)
e (sinh72 2\(z + R) — cosh ™2 2\ (zp, + R)),
o2 = 4e” P Esinh? \(z, + R),
o} = 4e M sinh? 2X\(z1, + R),
Z=(xr1+R,z2+R,...,z, + R)

N

U

N

5=

under the notation in Theorem 5.8, we have

- = =0 ~1 -2 -3y ._ 7 ~ ~ ~0 ~1 ~2 ~3
(uei*5j7uei+ej7/Uk77/Uk7IUk7IUk) = Rhm (uei*5j7uei+ej70k70k70k70k)
— 00
= (Asinh 2 \(z; — x),0, e~ A%k gmATk 2z pdAan)

lim %eQART})(UO)(fc) = 5'1(170),

R—oo
T e (IP00)@) - THD @) = S@) ~2 Y S5 @9)5,),
Lo=T1
Jim 4 PRI (02)(3) = 51(0°),
lim 4e M7 (0%)(2) = S;(0%) =2 Y 81, (0%)SL,(07).
R—o0
Lo=T1
Here S;(v%) are defined by (5.20) with uc,+., and vf, replaced by @c,+c, and ¥¢ ,
respectively. Then the theorem is clear. (|

Theorem 5.10 (Toda—Bgl)—bry). For the potential function defined by

(z) = Aem2M@i—ein) f j=i+41,
0 if 1<i<i+l<j<n,

(5.31)
0 if 1<i<j<nandi#n-—1,
4A$1

x =

2 xq
)

() = g1 vi(z) = Sp1e
v2(z) = Okn sinh™2 Az, V3 () = On sinh™2 2)\z,,,
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we have (5.14) with
ka}zl for1<k<n,
SY=0 ifIT#{kk+1,...,0} for1<k<{<n,

Sf[)k,k+1,...,£} _ 2Aéfk+1(ef2)\(wkfzz) + 5ene*2)\(wk+9}n)),

Ty () = 2vi(x) for 0<j<3, k=1,...,n,
(5.32) TP =0 fI#{1,....k} fork=1,...,n,
T =0 ifI#{k,....,n} fork=1,...,n,
T =TP(0®) =0 if #1 > 1,
T{OL.. ,k}(UO) = 2AF 1 (2", + §pe” Y for k> 2,
T?nkarl,‘..,n}(UQ) = 8AF lem Pkt for k> 2.

Proof. Suppose ReA > 0. In (Toda—Dg)-bry) put
i=(x1—(n-1R,...,a—(n—k)R,...,z, — (n—n)R),
) {Ae—2,\R . e~ 2\(@i—(n—i) R—zi41+(n—i—1)R) (G=i+1)

ue,;fej =

0 (g =il >1)
Ae 2 R, €2A($17(n71)R+m27(n72)R) (’L +j= 3)
lieise, = § Ae=PE . g=2A(@n-1~Retan) (i+j=2n—1)
0 (i+j¢{3,2n—1})
o eAn-DR
U = 51;6# sinh ™ A(z1 — (n — 1)R),
AN(n—1)R

~1 (&
Vg = 51]6?

sinh ™ 2\ (z; — (n — 1)R),
17,3 = 8, sinh ™2 Az,
73 = Opp sinh ™2 2\,

and we have (5.31) by the limit R — oo. Moreover for k > 2, it follows from
Theorem 5.7 and (5.15) that

T, 0 (0Y) =T,y (8%) =0,

' ~ n— 1 — k—1 rp—(n— —ZAT

T{l k}(UO) _ i€2)\( R | (Ae 2>\R) . (862)\( k—(n—k)R) —|—8(5kn6 2\ n)
_ 2141071(62/\@c + 5kn672)\mn),

T{n—k+1,...,n}(ﬁ2) = (Ae_z)‘R)kfl(86_2/\(“3"*’”‘“_(’“_1)1%) + 851k62/\(11_(n_1)R))

k—1_—2Ax,_
=8A" e bt

yeeny

which implies the theorem. (Il
Theorem 5.11 (Toda—Cr(Ll)). For the potential function defined by

. Ae—2Mzi—zit1) if j=1i+1,
uci—ﬁj r)= A ) ) .
_ 0 if 1<i<i+l<j<n,

(5.33) Ueye; () =0  for 1<i<j<n,

v)(x) = Jp1e2r, vi(x) = dpretr,
72)@"7 74)\1:,1,

vZ(z) = Opne vi(z) = gne
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we have (5.14) with

Sf{)k}:l for1<k<n,
S7=0 ifI#{kk+1,...,0} forl<k<{<n,

S«({)k,kJrl ..... 0= 2A€_k+16_2)\(1k_u)7
T, (') = 20](x) for 0<j<3, k=1
(5.34) T =0 fI#{1,....k} fork=1,...,n
T (v?) = if I #£{k,...,n} fork=1,...,n
TP(w) =T{ (%) =0 if #I>1,
TP 3y (00) = 24571 for k> 2,
T?n_k+17 .yn}(vz) — ARl 2A Tkt fork>2.

Proof. Substituting xj, by z, + R for k = 1,...,n and multiplying v, vi, v?
and v}‘i by e 2 A T AAE ie”‘R and 1 e respectively, we have the claim from
Theorem 5.10. (]

Theorem 5.12 (Rat-A,,_1-bry). We have (5.14) if

Ue,—e, () = @ia)p Vete (z) =0,

vi(z) =2,

(5.35)

Mw

Ty = (—1)#1- 1(05,
0

(5.36) + Y O Szl ) - S2, + 57, - Sr, (v"))
ILWIII,=1

D Cs(Snlv') ST, + 81, (0°) - S (0°) + 85, - SL(0Y)) ).

LIL=]
Proof. Put
le;—e; = A2 sinh 2 Az — xj),

ﬁerkej = 0

= A (1),

[3v]

,6]1: — %( 2 T +e —2Ax) 2)
)
1’)]% _ L( LN 2)\:£k _ e—?)xﬂ:k + 3)
= 553 ,
~3 __ 1 Az —4AxTy 2 T —2A\xp
Uk = Tox3 ( +e 4e 4e —|—6).

Then taking A — 0 we have the required potential function.
Owing to (Trig-A,—1-bry) and Remark 5.4, we have

lim S[(Zf}i SI Z$]+1 )
}\li% A2 (SII Z eZA:ck ZeZAxk 451?1 S?Z)

- %(5,1 O aw)-S7,+ 57, SIQ(ZM)),
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}\lﬂ% \2. . (Sh Zez,\mk Zez,\zk + 55 Ze—z,\zk)gIQ(Z =)
- 857,51,

= %(Sll (Z LL‘%) : 5?2 + 511 (Z xk) : S’IQ (Z mk) + 5?1 : 5’[2 (Z l‘k))
and thus the theorem. O

Suitable limits of the functions in Theorem 5.8 give the following theorem.

Theorem 5.13 (Rat-B,,, [O1, Proposition 6.3]). Put

A A
(5.37) Ue,—e; (T) = m’ Ue,te; (T) = m
ve(2) = 2%, vi(e) =3, vi(e) =af, vi(z) =a}.

Then (5.14) holds with
Ty = (~)# 1 (07 = CoT?(0°) = Ca8i (o))

— S () 20 Y (5,1 (') S + 59 - S, (vl))
ILWI1II,=1

—20385(0%) + Oy (sh -85 (v )+25h(v2).s;’2+25y1-s,z(qﬂ))
IZWII,=1

—u0; Y (s,l (') S9-S0 + 8 - Sp,(v') - S + 59, - S9- S, (ul)),

LI =1

#I
= > (AT W=D S, (°) S ().
v=1 L1111, =T
Definition 5.14. We define some potential functions as specializations of potential
functions in Definition 5.1.
(Trig-A,,—1-bry-reg): Trigonometric potential of type A,—1 with reqular bound-
ary is (Trig-A,_1-bry) with Cy = C3 = 0.
(Trig-A,,—1): Trigonometric potential of type An—1 is (Trig-A,_1-bry) with
Co=C1=0C=C5=0.
(Trig-BC),-reg): Trigonometric potential of type BC, with regular boundary
is (Trig-B,,) with Cy = C5 = 0.
(Toda-D,,-bry): Toda potential of type D,, with boundary is (Toda—Bfll)—bry)
with C() = Cl =0.
(Toda—BﬁLl)): Toda potential of type BY is (Toda- BY bry) with Cy = C3 = 0.
(Toda—Dg)): Toda potential of type DS is (Toda- DY bry) with Cp = C; =

Cy=C5=0.
(Toda-A,,_1): Toda potential of type Ap_1 is (Toda—C,(zl)) with Cy = C) =
Cy=C5=0.

(Toda-BC,,): Toda potential of type B, is (Toda—CZ(ll)) with Cy = Cy = 0.
(Ellip-D,,): Elliptic potential of type D,, is (Ellip-B,,) with Co = C; = Cy =

C3=0.

(Trig-D,,): Trigonometric potential of type D, is (Trig-B,) with Cy = C; =
Cy=C3=0.

(Rat-D,,): Rational potential of type D, is (Rat-B,) with Co = C; = Cy =
C3=0.

(Toda-D,,): Toda potential of type D,, is (Toda—Br(Ll)—bry) with Cy = C; =
Cy=C5=0.

(Rat-By-2): Rational potential of type B,-2 is (Rat-By,) with Cy = C3 = 0.
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(Rat-A,,_1-bry2): Rational potential of type An—1 with 2-boundary is (Rat-
A,_1-bry) with Cy = C3 = 0. In this case, we may assume Cy = 0 or
Cy = 0 by the transformation z, — x + ¢ (k = 1,...,n) with a suitable
ceC.

Then we have the following diagrams for n > 3. Note that we don’t write all the
arrows in the diagrams (ex. (Toda-D,,-bry) — (Toda-BC,,)).

Hierarchy of Elliptic-Trigonometric-Rational Integrable Potentials

Rat-B,,-2 Ellip-D,,
5:3 !
Rat-B,, AN Trig-D,, — Rat-D,,
7 3.1
Ellip-B,, — Trig-B,, R Trig-BC,,-reg Ellip-A,,_1
! ! !
Trig-A,,_1-bry 23 Trig-A,,_1-bry-reg & Trig-A, 1
! ! !
5:3 3:1

Rat-A,,_1-bry = Rat-A,,_1-bry2 = Rat-4,,_1

Hierarchy of Toda Integrable Potentials

Trig-BC,,-reg — Toda-D,-bry & Toda-D,,
5:3 5:3 131
Trig-B,  — Toda-B{-bry Z Toda-BY
/! /" N
Ellip-B, — Toda-DV-bry & Toda-D{ Toda-C"
/ ‘U’S:S
Ellip-D,, Trig-A,, 1 Toda-BC,,
/ AN 3.1
Ellip-A,_; — Toda-A", — Toda-A,_,

6. TYPE D, (n > 3)

Theorem 6.1 (Type D,,). The Schridinger operators (Ellip-D,,), (Trig-D,,), (Rat-
D,), (Toda—DS)), (Toda-D,,) are in the commutative algebra of differential oper-
ators generated by Py, P, ..., Py 1 and Ayy .,y which are the corresponding op-
erators for (Ellip-B,,), (Trig-B,,), (Rat-By,), (Toda—Dﬁll)—bry), (Toda-D,,-bry) with
Cy=C1 =Cy =C3 =0, respectively.

Proof. This theorem is proved by [O1] in the cases (Ellip-D,,), (Trig-D,,), (Rat-D,,).

Other two cases have been defined by suitable analytic continuation and therefore
the claim is clear. O

Remark 6.2. In the above theorem we have P, = A%Lm’n} because ¢7 = 0if T # (.
Then [P}, P,] = 0 implies [P}, Aqy_ ny] = 0.

Hierarchy of Integrable Potentials of Type D,, (n > 3)

Toda—Dg) —  Toda-D,,
/ /!
_

Ellip-D,, Trig-D,, — Rat-D,
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7. CLASSICAL LIMITS

For functions f(£,x) and g(&,z) of (§,2) = (&1,.-.,&n, T1,.-.,2y), we define
their Poisson bracket by

af 0g dg Of
(7.1) {19} = 2(87&@8716_67&87%)'

Theorem 7.1. Put
_ 1
(7:2) P(g,x) =—5 ) &+ R()
k=1

Then for the integrable potential function R(z) given in this note, the functions
Pr(§,2) and Ay, 0y (€, ) of (&, ) defined by replacing Oy by & in the definitions
of P, and A{l .} 1 88, 84 and §5 satisfy

{P & x), P } {Pg, Pk(g,x)}:o for1<i<ji<nandl<k<n.

Hence P(€, ac) are Hamiltonians of completely integrable dynamical systems.
Moreover if the potential function R(z) is of type D,,, then

{A{l,.“,n}(gv ) Pk 57 } {A{l, ,n}(ga ),P(f,x)} =0 for1<k<n.

Proof. If R(z) is a potential function of (Ellip-A,,_1), (Ellip-B,) or (Ellip-D,,),
the claim is proved in [OS] and [O1]. Since the claim keeps valid under suitable
holomorphic continuations with respect to the parameters which are given in the
former sections, we have the theorem. O

8. ANALOGUE FOR ONE VARIABLE

Putting n = 1 for the Schrodinger operator P of type A, in §3 or of type B, in
§5, we examine the ordinary differential equation Pu = Cu with C' € C (cf. [WW,
§10-6]). We will write the operators Q@ = P — C.

(Ellip-B;) The Heun equation ([OS, §8], [WW, pp.576])

1d?
SR —|—2ij (t+wj)—C.

(Ellip-A1) The Lamé equation

1 d?
2% 0 Ap(t) —
pap A —C
(Trig-BCi-reg) The Gauss hypergeometric equation
1 d? Co Cq

—_— Jr —
2dt?  sinh® Mt sinh®2X¢
(Trig-A4;) The Legendre equation
N < T
2dt?  sinh? Mt
(Trig-By) with Cy = C; = C3 =0. The (Modified) Mathieu equation

L& + Cycosh2Xt — C
e ) COS :

(Rat-B1-2) Equation of the paraboloid of revolution
1d>  C

0 2
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This is the Weber equation if Cy = 0. Putting s = t2, the above equation is reduced
to the Whittaker equation:

1 d? C’O 01 ,
575 +—+—=-C"
(Rat—Ao—bry2) with CQ = Cg =0:
1 d?
S 2d?
If ¢4 ;é 0, this is transformed into the Weber equation under the coordinate s =
t+ 5 2 If ¢4 = 0, this is the Stokes equation which is reduced to the Bessel
equatlon. In particular the Airy equation corresponds to C' = C7 = 0.

+ Cot + C1t? — C.

1 & —2t
(Toda-BCh) 5 + Coe 2 4 Cre ¥ — C,
which is transformed into (Rat-B;-2) by putting s = e~*. In particular
1 d?
(TOda—A1) 2 dtz + Coe -C

is reduced to the Bessel equation.
(Rat-A;) the Bessel equation

1d* G
2 di?
In fact, the equation —%- "+ C““ =Cu is equivalent to
d2 1d 2C,+1 i
—t-=-— 2C'>t 2y =0
(dt2 TraT e T v
since t72 o % ot = (;l; + ZE — ﬁ Hence if C' # 0, the function v = t"zu

satisfies the following Bessel equation with s = +/—2C't:

v 1ldv Co+ L
A )y =0.
d32+sd5 ( C's? )v 0

Hierarchy of ordinary differential equations

o
o

Heun = Lamé —  Legendre
N\ fra:2 N
Mathien 22 Trig-B 2 Gauss Bessel (Stokes) 2L Airy
5.4 N N\ r3:2 T2:1
Rat-Ap-bry Rat-B; %  Whittaker %2 Weber

9. A CLASSIFICATION

In this section we assume that P is the Schrodinger operator (1.1) which admits
commuting differential operators (1.2) satisfying (1.3).

Conjecture 9.1. Under a suitable affine transformation of the coordinate x € C"
which keeps the algebra C[Y_}_, 87,3 7_, 0t,..., > 1_, 0?"] invariant, P is trans-
formed into an integrable Schrodinger operator studied in this note or in general a

direct sum of such operators and/or trivial operators
2

d
(A1) Pl v(x)
with arbitrary functions v(z) of one variable.
Here the direct sum of the two operators Pj(z,0:) = 3,101,y Ga(2)05 of
z € C™ for j = 1,2 means the operator P;(x,0;) + P(y,9y) of (z,y) € C1t72,
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Remark 9.2. The condition

(9.1) there exists P, such that [P, Po] = 0 and o(P;) = Z 52-25?

1<i<j<n
may be sufficient to assure the claim of the conjecture.

Remark 9.3 (Type Az). If n = 2 and there exists P satisfying
o(Ps) = &1€a + €263 + &361 and [P, P3| = [01 + 02 + 03, P] = [01 + 02 + 03, P3] = 0,

then Conjecture 9.1 is true.
In fact this case is reduced to solve the equation

u(z) o(z) 1
(9.2) v(y) V'(y) 1l=0 for x+y+2=0
w(z) w'(z) 1

for three unknown functions wu(t), v(t) and w(t), which is solved by [BP] and [BB].
Here u(t) = tey—ey (t), V() = Uey—es (t) and w(t) = ey —ey(—1).

9.1. Pairwise interactions and meromorphy.

Theorem 9.4 ([Wa]). The potential function R(x) is of the form

(9.3) Riz)= Y ual(e2))

a€X(B,)t
with functions uy(t) of one variable.

Remark 9.5. The condition (9.1) assures

R(z) = Z uq({a, x)) + Z CijrTiT; Ty,

a€X(B,)* 1<i<j<k<n
with C;;, € C and thus the above theorem is proved in the invariant case (cf. §9.2)
by [OS] or in the case of Type By by [Oc]| or in the case of Type A, 1. This theorem
is proved in [Wa] by using [P, P2] = [P, P3] = 0.
Definition 9.6. By the expression (9.3), put
(9.4) S={ae€X(B,)";u, #0}

and let W(S) be the Weyl group generated by {ws; @ € S} and moreover put
S =W(S)S.

Theorem 9.7 ([Oc] for Type Ba, [Wa] in general). If the root system S has no ir-
reducible component of rank one, then (9.1) assures that any function u,(t) extends
to a meromorphic function on C.

Remark 9.8 ([OO, (6.4)-(6.5)], [Wa, §3]). The condition (9.1) is equivalent to

(9.5) Sii=S; (1<i<j<n)
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with
9 — (afvl(xl) + Z 07 (uf (z; + ) + uf (2, — 3:1,))>
vel(i,j)
(@ + ) —ug (@ — xj))

(i

+3(c’9vz z)+ Y Oi(uh (@i + wy) + up (2 x,,)))
(
(vta

vel(i,j)

az xz + 1’] azu;] (xl - LE]))

+2(v;(x (uj;(xz +az,) +u;, (z; — xy))>
1/61(1,])

(63 (i + wy) = O (s — ;) )

+ Z ( i zu xl + $V) 81 uzy( fE,,)) (u;ru(xj + CC,,) - uj_u(mj - mV))
vel(i,j)
Here I(i,j) ={1,2,...,n}\ {3,5}.
Lemma 9.9. Suppose P satisfies (9.1). Let Sy be a subset of S such that

So C ZR&' and S\ Sy C Z Re;
i=1 i=m+1
with a suitable m. Then the Schrdédinger operator

P = _% S+ 3 ullaa)

aeSoNS
on R™ admits a differential operator Py on R™ satisfying [P, Py) = 0 and o(Py) =
ZT<i<j<n 5125]2, that is, the corresponding condition (9.1) for P'.
Proof. This lemma clearly follows from the equivalent condition (9.5) given in Re-
mark 9.8 O

9.2. Invariant case.

Theorem 9.10 ([00S], [08], [00], [O1]). Assume that P in (1.1) 4s invariant
under the Weyl group W = W(A,_1), W(By,) or W(D,,) with n > 3 or W =
W(Bzg) with n = 2. Suppose

:81+82++an Zf W:W(An—l)7

Z £j1£j2.'.§jk if W:W(An_1) and 1<k <n,
1<j1<j2<-<jr<n
U(Pk): Z §71 g2 o ]k Zf W:W(Bn) and 1<k <n,
1<j1<ja<--<jr<n
Z 321 J22 ]2k if W=W(D,) and 1<k <n,

1<j1<jo < <jr<n
o(Py) =&& & if W=W(D,).

If P is not a direct sum of trivial operators (Ay), then P is (Ellip-F) or (Trig-F)
or (Rat-F) with F = A,,_1 or By, or D,.

Remark 9.11. The condition
06) {[P, P =[P,Ps)=0 if W=W(A4, 1),

[P, P2] =0 if W=W(B,)orW=W(D,)
is sufficient for the proof of Theorem 9.2 with (9.3).
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9.3. Enough singularities. Put = = {a € X(B,,) ; ua(t) is not entire.}

Theorem 9.12. i) ([Oc]) Suppose n =2 and let S is of type By. If #= > 2, then
Conjecture 9.1 is true.

ii) ([Wal) If S is of type A,_1 or of type B,, and moreover the reflections w,, for
«a € 2 generate W (A, —1) or W(B,,), respectively, then Conjecture 9.1 is true.

This theorem follows from the following key Lemma.

Lemma 9.13 ([Oc|, [Tal, [Wa]). Suppose there exist o and 3 in S such that o # 3,
(a, B) # 0 and uy (t) has a singularity at t = tg. Then uq(t—to) is an even function
with a pole of order two at the origin and

01) i (3) (= 2o zg;gp =ult) if wa(B) € S(Ba)*,
' Uy () (—t + 20 (2 1) = ug(t) if —wa(B) € B(Bn)T,

Corollary 9.14. Assume the assumption in Lemma 9.13.
i) If ua(t) has another singularity at t; # to, then

(9.8) wy (t+2(t1 — t0)22) = (1) for y€S.

()

il) Assume that us has poles at 0, tg and t; such that to and t1 are linearly
independent over R. Then ug(t) is a doubly periodic function and therefore ug(t)
has poles and hence un(t) is also a doubly periodic function. We may moreover
assume that ug has a pole at 0 by a pararell transformation of the variable x.

Case I: Suppose a =¢; —ej, B=¢;j—ep withl <i<j<k<n.

(9.9) Ue,—e; (1) = U, —e) (1) = Ue, e, (t) = Cp(t; 2w1, 2wo) + C”.

with suitable C, C" € C, which corresponds to (Ellip-As).
Case II: Suppose @ = e; —e; and f = e, with 1 < ¢ < j < n. Then
(uei*ej (t)7uei+ej (.’L’),u& (t)7u€j (t)) is (Ellip'BQ)r (Euip‘BZ'S) or (Ellipd—Bg).

iii) If S is of type A,,_; or B, or D,, and one of u,(t) is a doubly periodic function
with poles, then P transforms into (Ellip-4,,_1) or (Ellip-B,,) or (Ellip-D,,) under
a suitable parallel transformation on C".

Proof. i) is a direct consequence of Lemma 9.13 and iii) follows from ii). We have
only to show ii).

Case I: It follows from (9.7) that u(t) = ug(t) = ue,—¢, (t) and they are even
functions. Let

Tow, 2wy = {2mawy + 2mows ; my, mg € Z}

be the set of poles of u,. Then (9.8) implies ug(t + 2w1) = ug(t + 2wa) = ug(t).
Since 2w; and 2wy are periods of p(t) and there exists only one double pole in the
fundamental domain defined by these periods, we have the claim.

Case II: Tt follows from (9.7) that e, ¢, (t) = e, te; (t) and ue, (t) = ue, (t) and
they are even functions. Let I'a,,, 2., be the poles of ue, ., (t). Then (9.8) means
Ue, (t + 2w1) = Ue, (t + 2w3) = ue, (t). Considering the poles of e, _, (t) with (9.8),
we have four possibilities of poles of u,,:

(Case I1-0): T'ay); 2055

(Case II-1): Toy; 2w, U (w1 + Towy 20,),

(Case T1-2): Ty, 20, U (w2 4 Tawy 20, ),

(Case 11-3): T'ogy 20, U (w1 + Doy 20,) U (w2 + Doy 20,)-
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Here we note that (Case II-1) changes into (Case 11-2) if we exchange w; and ws.
Then we have

(Case I1-0): e, ¢, (t + 4w1) = Ue, ¢, (t + 4w2) = u(t),
(Case I1-2): e, ¢, (t 4 4w1) = e, —¢; (t + 2wa) = u(t),
(Case I1-3): e, —c; (t + 2w1) = Ue, ¢, (t + 2wa) = u(t).
Thus (Case 11-0), (Case II-2) and (Case I1-3) are reduced to (Ellip?-Bz), (Ellip-Ba-

S) and (Ellip-Bs), respectively. O
Let H be a finite set of mutually nonparallel vectors in R™ and suppose
1 - 2 <O[7 Of> B,
(9.10) P=—§Zaj +R(z), R(z)= ZCQW—FR(@.

j=1 acH

Here C,, are nonzero complex numbers and R(x) is real analytic at the origin. We
assume that H is irreducible, namely,

R" = > Ra,

acH
0#VH' & H=3acH and 38 € H \ H with (o, 3) # 0.

Definition 9.15. The potential function R(z) of a Schrodinger operator is reducible
if R(x) and R™ is decomposed as R(z) = Ry(z) + Rz2(x) and R" = V; @& V4 such
that

0C Vi SR, Vo=V, 9y, Ri(z) =9y, Ra(z) =0 for Yoy € Vi and Yo, € V4.
If R(x) is not reducible, R(z) is called to be irreducible.
Theorem 9.16 ([Ta]). Suppose n > 2 and there exists a differential operator Q

with [P, Q] = 0 whose principal symbol does not depend on x and is not a polynomial

of ol o &2 Put W = {wa; o € H}. If
(9.11) 20, £ k(k+1) for k€Z and a € H,
then W is a finite reflection group and o(Q) is W-invariant.

9.4. Periodic potentials. The following theorem is a little generalization of the
result in [O2].

Theorem 9.17. Assume R(z) is of the form (9.3) with meromorphic functions
uq(t) on C and

2myv/ —1a

(9.12) R(z+ )

) = R(x) for o€ X(By)

and moreover assume that

the root system S does not contain an irreducible component of
(9.13) type By or even if S contains an irreducible component Sy =
{xe; £ ej, te;, te;} of type Ba, the origin s = 0 is not an isolated
essential singularity of u(logs) for a € So N X(D,)T.

Then (9.1) implies that P is transformed into an integrable Schrédinger operator
classified in §3, 4, 5 or a direct sum of such operators and/or the trivial operators.

Remark 9.18. The assumption (9.12) in Theorem 9.17 implies that u,(logs) is a
meromorphic function on C \ {0} for any o € X(B,,)™.

Lemma 9.19. Assume n = 2, S is of type By and u,(logs) are holomorphic for
a € X(B2)T and 0 < |s| < 1. If the origin is at most a pole of ug(logs) for
B € X(D2)™, the origin is also at most a pole of uy(logs) for a € ¥X(B2)™T.
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Proof. Use the notation as in (4.2). Put

u (logs) =Uy + ZVU;SV, ut(logs) = Uy + Z vUFs”,
v(logs) = Vo + Z vV, s, w(logs) = Wy + Z vW,s".

with U, U, V,,, W, € C, rm # 0 and (U,”,U,}) # 0. Then as is shown in [O2]
the condition for the existence of T'(x,y) in (4.3) is equals to

(9.14) pq(2p—q)(p—q)(‘/'gp,qU;r,p—i-Vqu,q—i-Wq,sz;—Wqu_) =0 for p,q € Z.
Hence if p < r and p < m,
p(p—k)(p+k)k(Vps U, + VU, ) =0 for k € Z.

Case U # 0: Put k& = r. Suppose ¢ is negative with a sufficiently large
+

absolute value. Then V,, = (_%)%+27‘, which implies V;, = 0 since Y 02 vV, s”
converges for 0 < |s| < 1. 7

Suppose ¢ is negative with a sufficiently large absolute value compared to p.
Then by the relation W,_9,UF — W, U, = 0 we similarly conclude W, = 0.

Case Ul # 0: Putting k = —m, we have the same conclusion as above in the
same way. O

Proof of Theorem 9.17. Lemma 9.9 assures that we may assume S is an irre-
ducible root system. We may moreover assume that the rank of S is greater than
one.

Suppose that there exists v € S such that the origin is not a removable singularity
nor an isolated singularity of u,(logs). Then u,(t) is a doubly periodic function
with poles. Owing to Corollary 9.14, >° g ua({c, x)) is reduced to the potential
function of (Ellip-A,,—1) or (Ellip-B,,) or (Ellip-D,,).

Thus we may assume that the origin is a removable singularity or an isolated
singularity of u,(logs) for any o € S.

Let a, 8 € SNX(D,) with a # 8 and {(a, 8) # 0. Put v = w0 or v = —w,
so that v € 3(D,,)". Then [02] shows that u(t) = us(t), v(t) = ug(t) and w(t) =
u,(—t) satisfy (9.2). Then Remark 9.3 says that the origin is at most a pole of
u(log s), v(log s) and w(log s).

Let « € SNX(D,) and 3 € S\ X(D,,) with {a,8) # 0. Let W be the reflection
group generated by w, and wg and put S° = W{a, 8} N X(B,,). Then [O2] shows
that

R(z) =) uy({r,2))

yES®

defines an integrable potential function of type Bs. Hence Lemma 9.19 assures that
the origin is at most a pole of u,(logs) for a € S°.

Since S is irreducible, the origin is at most a pole of u,(logs) for a € S. Then
Conjecture 9.1 follows from [O2]. O

Remark 9.20. The integrable systems classified in this note which satisfy the as-
sumption of Theorem 9.17 under a suitable coordinate system are (Ellip-x) and
(Trig-+) and (Toda-*). But (Rat-*) does not satisfy it.

9.5. Uniqueness. We give some remarks on the operator which commutes with
the Schrédinger operator P.
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Remark 9.21 ([OS, Lemma 3.1 ii)]). If a differential operators @) and Q' satisfy
Q,Q=0,0(Q) = Z?Zl ij and ord(Q) < N —2, then @ has a constant principal
symbol, that is, 0(Q) does not depend on x.

Hence if there exist differential operators @1,...,Q, with constant principal
symbols such that o(Q1),...,0(Q,) are algebraically independent and moreover
they satisfy [Q;, Q;] = 0for 1 < i < j < n, then any operator @) satisfying [Q, Q;] =
0 for 5 = 1,...,n has a constant principal symbol. In particular, if a differential
operator Q) satisfies [@Q, Py] = 0 for Py in (1.2) and (1.4) with & = 1,...,n, then
o(Q) does not depend on x.

Remark 9.22. Assume that a differential operator ) commutes with a Schrédinger
operator P and moreover assume that there exist linearly independent vectors
c; € C" for j = 1,...,n such that the operators are invariant under the paral-
lel transformations x +— x + ¢; for j =1,...,n. Then o(Q) does not depend on x
(cf. [0S, Lemma 3.1 i)]).

Furthermore assume that P is of type (Ellip-F') or (Trig-F') or (Rat-F) with F' =
Ap—1 or By, or D,,. If the condition (9.11) holds or @ is W (F)-invariant, it follows
from Theorem 9.16 or [O1, Proposition 3.6] that @ is in the ring C[Py,..., P,]
generated by the W (F')-invariant commuting differential operators. If the condition
(8.11) is not valid, o(Q) is not necessarily W (F)-invariant (cf. [CV], [VSC]).

Remark 9.23 ([OS, Theorem 3.2]). Let P be the Schrédinger operator in Theo-
rem 9.10. Under the notation in Theorem 9.10 suppose P, are W-invariant for
1 <k < n. Then the ring C[Py, ..., P,] is uniquely determined by P and @, where
Q="Pif W=W(A,_1) and Q = P, if W = W(B,,) or W(D,,).

Remark 9.24. If P. = —5 Z] 1 0% + cR(z) be a Schrédinger operator with a pa-
rameter ¢ € C such that P, admits a commuting differential operator Q). of order
four for any ¢ € C, then the operator P, may be a system stated in Conjecture 9.1.

The following example does not satisfy this condition nor the condition (9.11).
It does not admit commuting differential operators (1.2) satisfying (1.3) if m # 0.

Example 9.25. It is shown in [CFV] that the Schrédinger operator

mm+1) = m+1
(9.15) Z o2 + Z (:cf :z:j)Z - Zl (zi — Vmzn)?

J o 1<i<j<n

is completely integrable for any m and algebraically integrable if m is an integer.

The following example shows that the Shrédinger operator P does not necessarily
determine the commuting system C[Py, ..., P,].

Example 9.26. Let a, 3, v and X be complex numbers. Put (Ag, A1,Co,Cy) =
(a,% — 3,8, for (Rat-B5-S) in Theorem 4.7 (cf. [0S, Remark 3.7]). Then the
Schrodlnger operator

1, 0% 0? 9 20 Ié]
(9.16) Pag,fy——i(@‘Fain) +($ +vy )(($2—y2)2 +x2y2 +’Y)

)



40 TOSHIO OSHIMA

commutes with

0? 4azxy 2
Qa,ﬁ,'y,A - (8xay + (£C2 — y2)2 - 2(7 - )\)xy)

(L ap) 2 (L) 2

2 2 2 2
(9.17) yﬁ axﬁ r 9y
2 2
16a\z?y? + 1608 9 9
(22 — y2)? + 8>‘(’Y —Nz7y

for any X € C. Note that [Qa,5,4,1, Qa,8,v,x] # 01if A # X and these operators are
W (Bg)-invariant. The half of the coefficient of the term A of Qn 3~,n considered
as a polynomial function of A equals

0 0\2 xy xy y?  x?
b= o) e ) s )
By y@x xay + 2a @—9? @ty +20 x2+y2 + dyx“y
In particular, P = —2(92 + 92) + (2 4+ y*) commutes with 9,9, — 2yxy and
20y — YOy
Note that if R(z) is a polynomial function on C", the condition [—1 > 97 +

R(z),Q] = 0 for a differential operator () implies that the coefficients of @ are
polynomial functions (cf. [0S, Lemma 3.4]).

9.6. Regular singularities.

Definition 9.27 ([KOJ). Put 9y = ty 57 and Yy, = {t = (t1,...,t,) € C"; t), = 0}
Then a differential operator @ of the variable t is said to have reqular singularities
along the set of walls {Y7,...,Y,} if

(9.18) Q=q(¥1,....0n) + > trQ(t, V).
k=1

Here ¢ is a polynomial of n variables and @)j are differential operators with the
form

Qi(t,0) =Y aa(t)dy - 95"
and a, (t) are analytic at ¢ = 0. In this case we define
(9.19) 0.(Q) = q(&1,- -, &n)
and 0, (Q) is called the indicial polynomial of Q.
Theorem 9.28. Let R(t) be a holomorphic function defined on a neighborhood of
the origin of C™. Let Q1 and Qs be differential operators of t which have reqular

singularities along the set of walls {Y1,...,Y,}. Suppose 0.(Q1) = 0.(Q2) and
[Q1, P] = [Q2, P] = 0 with the Schrédinger operator

1 n—1 )
(9.20) P=-3 (193, v ;(ﬁjﬂ — ;) ) +R(t).
Then Q1 = QQ.
Proof. Putt; = e~ @i=zit1) for j=1,... n—1andt, = e *». Then 0j = V41—
for j=1,...,n—1and 9, = —0,. Under the coordinate system x = (z1,...,2,)
Remark 9.22 says that Q1 — @2 has a constant principal symbol, which implies
Q1 = Q2 because 0.(Q1 — Q2) = 0. O

The following corollary is a direct consequence of this theorem.
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Corollary 9.29. Putt; = e A==zt for j=1,...,n and t, = e . Suppose
P is the Schrodinger operator of type (Trig-A,), (Trig-A,,-bry-reg), (Trig-BC,,-reg),
(Trig-Dy,), (Toda-A,,), (Toda-BC,,) or (Toda-D,,).

i) P and Py for k = 1,...,n have reqular singularities along the set of walls
{Y1,...,Y,}.

i) Let Q be a differential operator which has regular singularities along the set
of walls {Y1,...,Y,} and satisfies [Q,P] = 0. If 0.(Q) = 0.(Q) for an operator
Q e ClPy,...,P,], then Q = Q.

Hierarchy starting from (Trig-BC,,-reg)

Toda-A,,_1
S
Rat—Dn TI'ig—An_ 1 — Rat—An_ 1
ﬂB:l ﬂB:l ﬂB:l
Rat-B,,-2 Trig-A,,_1-bry-reg — Rat-A,_1-bry2
7 /
Trig-BC),-reg  — Toda-D,,-bry — Toda-BC),
U3:1 ‘U’3:1 ‘U/Szl
Trig-D,, — Toda-D,, — Toda-A,,_1
! N
Trig-A,_1 Rat-D,,

9.7. Other forms. If a Schrédinger operator P is in the commutative algebra D =
C|[Py,...,P,], then the differential operator P := ¢(x)~'P o ¢(z) with a function
¢(x) is in the commutative algebra D = C[)(z) " Py o (), ..., ¢¥(x) " P, o ()]
of differential operators. If

1 n n
(9.21) -5 g 2:: aT:j + R(x),
then
(9.22) agx(jj) =aj(x) for j=1,...,n

Conversely, if a function (z) satisfies (9.22) for a differential operator P of the
form (9.21), then P = 4(z)P o ()" is of the form (1.1), which we have studied
in this note.

If ¢(x) is a function satisfying

(9.23) 1 a% (z),
then
1 =~ 0
(9.24) P = v(a (”ZaﬂR )) ot(z) = 7523571/)(3:)*12%(@@.
j=1 =1 "7
Note that
axJ B 8@ ’
(9.25)

—qs()zf%‘“ _ 82¢ i(a )
Ly

j=1 j=1
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Putting
é(xr) =m Z log sinh A(z; — xj),
1<i<j<n
we have
0p(z)
Y Aam Z coth A(zy — x;),
Oy 1<i<n, i#k
" 2h(a)  n(06@)\2 b2
D gt >( D ) =—2¥m 2 shMwim )
j=1 J k=1 1<i<j<n
-1 -2
+22%m? Z coth? N(z; — ;) + AQWQ%
1<i<j<n
2
-1
=2\?m(m — 1) Z sinh ™ A(z; — 2;) + )‘ZmZM
1<i<j<n
since

coth - coth 8 + coth 3 - cothy 4+ cothy - cotha = -1 if a+8+~v=0.

Hence
- 1 &
(9.26) P:—528J2-—m > Acoth A(w; — 2;)(0; — 95),
j=1 1<i<j<n
(9.27) Y(x) = A sinh™ A(z; — x;5),
1<i<j<n
- 1 < m(m — 1)\? m2n(n? — 1)\2
Y(@)oPoyp™Hz) =~ ) 07+ : +
2 ; / 13%91 sinh® A(z; — ;) 6

and P is transformed into the Schrédinger operator of type (Trig-A,_1).
Now we put

o(z) = mo Z (log sinh A(z; — 2;) + logsinh A(z; + wj))

1<i<j<n
+mq Z log sinh Az, + mo Z log sinh 2\xj
1<k<n 1<k<n

and we have

9¢(x)

D = \mg Z (coth Mz + x;) + coth Ay — xl))

1<i<n,i#k
+ Amq coth Az + 2Amo coth 2Axy,

coth Axy, - coth2Ax, =1 + % sinh ™2 ATk,
Z (2 coth A(zg, + ;) - coth A(xp — 2;) + 2 coth My + ;) - coth A(zg — ;)
{ivgiky=1I

+ coth A(xy + x;) - coth A(zg + ;) + coth Az, — x;) - coth A(zg — :z:]))
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= Z (coth Mk + ;) - coth Az, + ;)
{idk}=1

+ coth A(x; — ;) - coth A(x; + xx) + coth A(z; — x;) - coth A(z; + :ck))
+ Z (coth)\ x — ;) - coth Mz, — xj))

{i,5,k}=I
=38 for T C{1,...,n} with #I = 3,

sinh 2\xy,
th A i th A\(zx — z;) = — - ;
coth (g + ) + coth A(zp, — ;) sinh AM(zp + ;) - sinh A(zp, — )
cosh 2z, — cosh 2)\x; 2 cosh? \zj, — 2 cosh? \z;

= - 2
sinh A(z, + ;) - sinh A(xg, — ;)  sinh A(zg + ;) - sinh A(zp — ;) ’

) (%ng))z =2X°m§ Y (coth® A(w; — ;) + coth® A(z; + x;))

k=1 1<i<j<n

+ )\Qm% Z coth? Az + 4)\2m§ Z coth? 22z + 22%mymo Z sinh ™2 AT
k=1 k=1

+ 2X%mg(my + 2mo)n(n — 1) + 4\*mymon,

= 2)\2m0(m0 - 1) Z (Sinh_2 )\(JCZ - Ij) + sinh_2 )\(Iz + .TJ))

1<i<j<n

+ )\2m1(m1 +2mgy — 1) Z sinh™2 Az + 4)\2m2(m2 -1) Z sinh™2 2\z,
k=1 k=1
+ A ((3mo(2n — 1) 4+ 2my + 4ma)mo(n — 1) + (m1 + 2m2)*)n.

Hence
~ 1
(9.28) P = -3 Z o7 — Z )\( Z mo (coth AN(w; — xx) + coth A(w; + x))
j=1 k=1 1<i<j<n
+ mq coth Az, + 2ms coth 2Axk)8k,
(9.29) o(x) = H (Sinhm0 Ax; — xj) - sinh™® A(z; + a:])>

1<i<j<n

n n
. H sinh™ A\xp, - H sinh™? 2z},
k=1 k=1

and P is transformed into the Schrédinger operator of type (Trig-BC,,-reg):
Y(x) o Poyp~!(x)

:_*Za2+m0(m0_l) Z ( X + - - )

2
1<i<i<n sinh® \N(z; — x;)  sinh® X(z; + z;)

i 2ms — A2 = 2 —1)A2
Zm1m1+ my — 1) 'y ma(mg — 1)

+
2sinh? Az, sinh? 2z,

=1
)\2<m7
+ 3

k=1

Ot\)

2 2 2
(mi + 2ma) )n

(2n —1)(n —1) + mo(mq + 2mg)(n — 1) + 5

43
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Remark 9.30. As is shown in [He, Theorem 5.24 in Ch. II], the operator (9.26) or
(9.28) gives the radial part of the differential equation satisfied by the zonal spherical
function of a Riemannian symmetric space G/K of the non-compact type which
corresponds to the Laplace-Beltrami operator on G/K. Here G is a real connected
semisimple Lie group with a finite center, K is a maximal compact subgroup of
G and 2m, 2mg, 2m and 2ms correspond to the multiplicities of the roots of the
restricted root system for G.

Similarly the following operator P is for the K-fixed Whittaker vector v on
G =GL(n,R).

n n . n—1
P ! 2 ntl J 2(xj—x;
(9.30) P=—3 4 Y (P - 5)0 = D e,
Jj=1 j=1 j=1
(9.31) () = eXim (5=

n(n? —1)

n n—1
~ 1
P(x) o Poq/)—l(x) — -3 Za? _ Z e2(®i—wj1) 4 R Ea
j=1 j=1

Namely v is a simultaneous eigenfunction of the invariant differential operators on
G/K and satisfies v(nz) = x(n)v(z) withn € N and z € G/K. Here G = KAN is
an Iwasawa decomposition of G and x is a nonsingular character of the nilpotent
Lie group N. Then v|4 is a simultaneous eigenfunction of the commuting algebra
of differential operators determined by P.
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