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Homogeneous Coherent Value Measuresand their Limitsunder Multiperiod Colletive Risk ProessesYuji Morimoto �Integrated Finane Limited y
AbstratWe formulate homogeneous �ltered value measures with Fatou, omonotone, andlaw invariant properties under multiperiod "Poisson-type" olletive risk proesses asa system of di�erential equations. We also derive a limit theorem for homogeneous�ltered value measures under the same proesses and alulate some numerial ex-amples.Keywords: oherent value measure, olletive risk proess, multiperiod, homoge-neous �ltered value measures.1 IntrodutionArtzner et al. [1997℄ introdued the onept of oherent risk-adjusted value measure (a.k.a.oherent risk measure), an axiomati approah to determine an aeptane set of maps fromL1 to R supposed to satisfy some oherene requirement for expressing the risk-adjustedvalue of the future (random) net worth. The de�nition is as follows.De�nition 1.1 We say a map � : L1 ! R is a oherent value measure, if the followingonditions are satis�ed.(1) If X � 0, then �(X) � 0.(2) �(X1 +X2) � �(X1) + �(X2).(3) for � > 0, we have �(�X) = ��(X).(4) for any onstant , we have �(X + ) = �(X) + .Delbaen [2000℄ proved that, on general probability spaes, � is a oherent risk measure withthe Fatou property if and only if there is a set of probability measures Q suh that anyQ 2 Q satis�es Q � P and for any X 2 L1, �(X) = inffEQ[X℄;Q 2 Qg. Furthermore,Kusuoka [2001℄ spei�ed the onept as follows. Let L be the set of probability measures onR, Lp, p 2 [1;1), be f� 2 L; RR jxjp�(dx) <1g, and L1 = f� 2 L; �(R n [�M;M ℄) = 0for some M > 0g. Also, let M[0;1℄ be the set of probability measures on [0; 1℄. Then he�The author would like to thank Prof. Kusuoka for the ontinuous support, e�etive suggestions anduseful disussions.yShiroyama JT Trust Tower 31F, 4-3-1, Toranomon, Minato-ku, Tokyo 105-6017, Japan. E-mail:yuji.morimoto�alum.mit.edu 1



de�ned a value measure as a map from Lp to R, 1 � p � 1, and proved that � = �m isa oherent value measure with law invariant, omonotone and the Fatou property if andonly if there exists m 2 M[0;1℄ suh that(1.1) �(�) = Z 10 ��(�)m(d�); � 2 Lp; p 2 [1;1℄;where ��, usually alled Conditional Value at Risk (CVaR), Tail-VaR (TVaR), or Condi-tional Tail Expetation (CTE), is de�ned as,��(�) = 1� Z �0 Z(x; �)dx � 2 L1with Z(x; �) = inffz;F�(z) > xg. Z(�; �) : [0; 1℄! R is non-dereasing and right ontinu-ous, and the probability law of Z(�; �) under Lebesgue measure on [0; 1℄ is �. We use � asa funtion from Lp to R as well; �(X) = �(�X) where �X denotes the probability measureof the random variable X 2 Lp.Coherent value measure was originally designed for determining the risk-adjusted value(or risk) of �nanial instruments. On the other hand, atuarial mathematis have beenusing a similar approah for determining the insurane premium alulation. It is alled thepremium alulation priniple; a funtional H from the set of insurane risks (non-negativerandom variables in L1) to [0;1℄. Gerber [1979℄ introdued �ve desireble properties andheked whether traditional risk measures were satis�ed with the properties. Wang, et al.[1997℄ took an axiomati approah and proved thatH has a Choquet integral representationif and only ifH satis�es some axioms they de�ned. Kusuoka [2001℄ showed that the equation(1.1) an be expressed as the same representation as H. Thus, in this paper, we use therepresentation as in the equation (1.1).Reently, the onept of value measure is being applied in a dynami framework. For ex-ample, Artzner et al. [2002℄ expanded the onept of oherent value measure to an analysisof multiperiod �nanial risk. The idea of expansion to dynami setting is pratially useful.In insurane business, for example, insurers have to keep reserves, the value neessary toover the future laims less the future insurane premiums of the existing poliies. As inusual atuarial method, reserves an be represented by reursive formula of the reserves atnext term and ashows during now and then. This representation is just same as the ideafor multiperiod value measure. We will formulate the idea as follows.Let (
;F ; P ) be a standard probability spae and T 2 (0;1). For any integrablerandom variable X and a sub-� algebra G, we de�ne a G-measurable random variable�(XjG), whih we all onditional value measure, by�(XjG) = � (P (X 2 dxjG)) :We partition T into N and let h = TN and tn = nh, n = 0; 1; 2; : : : ; N . Let fFtngNn=0 be a�ltration and X be an FT -measurable integrable random variable. Then we an de�ne anadapted proess fZn = Z(n;N;m)gNn=0 indutively using � de�ned above byZN = X;Zn�1 = � �ZnjFtn�1� ; n = N � 1; N � 2; : : : ; 1:(1.2) 2



We denote an F0-measurable random variable Z0 by �(XjfFtngNn=0) and all the map a�ltered value measure.Next we speify an N -period olletive risk proess for expressing insurane portfoliobehavior. Let ` 2 N be the number of poliies at time zero and L = f1; 2; : : : ; `g. Weassume that all ontrats start at time zero and will end at time T . When a laim ours,insurer pays the laim amount immediately (no time lag)1. Let �i, a stopping time, be thetiming of the laim ourrene suh thatP (�i > t) = exp(��it); t > 0for �i > 0, i 2 L and Di : 
! R, a random variable with distribution funtion �i, be thenet laim amount at time �i. Note that Di is negative if net payment from the insurer toi-th poliyholder is positive. We assume that Di and �i, i 2 L, are independent and that aontrat would terminate just after the laim ourrene2; i.e., ontrat term for ontratj is [0; �j ^ T ℄.We also de�ne insurane premiums. Insurane premium an be olleted in variousways, but in this paper we assume that premium is olleted ontinuously until the ontratterminates. Let qi 2 R be the premium per unit time; i.e., i-th poliyholder will pay qi(t^�i)to the insurer until time t. Then X it , total ashow for i-th poliy in [0; t℄ isX it = qi(t ^ �i) +Di1f�i�tg;and total ashow for the portfolio in [0; t℄ isXIt =Xi2I X it ; I � L:We set Ft as �fX is : s � t; i 2 Lg. Then, the value measure for the insurane portfolio anbe expressed as in the equation (1.2) by replaing X into XLT . Finally we de�ne the reserveat time tn as a di�erene between Zn and XLtn .Let I = fI : I � Lg, qI =Pi2I qi and �I =Pi2I �i. For any � 2 L and a 2 R, � + adenotes a probability measure on R, given by(� + a)(A) = � (fx 2 R; x� a 2 Ag) for any Borel set A;and we introdue a funtion F from L to R suh that(1.3) F (�; a; b) = inf �Z 0 Z(x; �)dx; a �  � b� ; 0 � a � b � 1:Also, let ~x = fxI : I 2 Ig,(1.4) �I = �I(~x) = Pj2I �j ��j + xInfjg��I ;and(1.5) �Ih(~x;m) = qI + �I Z 10 1�F ��I � xI ; 0 _ �1� 1� ��Ih � ; ��Ih ^ 1�m(d�):Regarding �Ih and mN , N = 1; 2; : : :, we assume the following.1In real situation, there is a time lag between the laim ourrene and atual payment. Also, insurermay not be able to pay the amount beause of the �nanial diÆulty. But we do not take suh situationsinto onsideration in this paper.2Usually, life insurane ontrat would terminate when insurane event ours, while non-life insuraneontrat usually does not terminate in the middle of the ontrat term even though the insurane eventours. 3



(A-1) �IT=N �~x;mN� onverges to a funtion �I(~x) for any ~x as N !1.(A-2) supN Z 10 ��ITN�1 _ ���1mN(d�) = C� <1.(A-3) There exists p 2 [1; 2) suh that �i 2 Lp for any i 2 L and thatsupN Z 10 ���1=p ^ (1� �)1�1=p� �mN (d�) <1:We show later (Corollary 2.8) that under Assumptions (A-1) and (A-2), �I satis�es Lip-shitz ondition. Thus a following system of equations for a value measure de�ned inequation (1.1) has a C1 solution.(1.6) dx(t; I)dt = �I(~x(t)); I 2 I;with initial onditions x(0; I) = 0; I 2 I;x(t; ;) = 0; t 2 (0; T );(1.7)where(1.8) ~x(t) = fx(t; I) : I 2 Ig:Then our main result is as follows.Theorem 1.2 Assume that (A-1), (A-2) and (A-3) hold. Let x(t; I) be the solution of thesystem of equations (1.6) with initial onditions (1.7). Then�mN (XIT jfFtngNn=0)! x(T; I) N " 1; I 2 I:2 PreparationsIn order to prove Theorem 1.2, we will prepare some estimates. Most of them are ited fromKusuoka and Morimoto [2004℄. We will show proofs sine they are simple. For m 2 M[0;1℄let �p(m) = Z 10 ���1=p ^ (1� �)1�1=p� �m(d�):Then we have the following.Proposition 2.1 (1) For any 0 < � � 1 and � 2 Lp, p 2 (1;1℄,j��(�)j � ��1=p�Z �0 jZ(x; �)jpdx�1=p :(2) For any 0 < � � 1 and � 2 Lp, p 2 (1;1℄, with RR x�(dx) = 0,j��(�)j � (1� �)1�1=p� �Z 10 jZ(x; �)jpdx�1=p :4



Proof. For 0 < � � 1, we havej��(�)j = 1� ����Z �0 Z(x; �)dx���� � 1��1�1=p�Z �0 jZ(x; �)jpdx�1=p :Also, if RR x�(dx) = 0,j��(�)j = 1� ����Z 1� Z(x; �)dx���� � (1� �)1�1=p� �Z 10 jZ(x; �)jpdx�1=p :Hene we get the result.Corollary 2.2 For any � 2 Lp, p 2 (1;1℄, with RR x�(dx) = 0,j�m(�)j � �p(m)�ZR jxjp�(dx)�1=p :Corollary 2.3 If � 2 Lp, p 2 (1;1℄, then �1=p��(�) is ontinuous on � 2 [0; 1℄, and�1=p��(�)! 0; �! 0:Proposition 2.4 For any X1; X2 2 Lp, p � 1,j�m(X1)� �m(X2)j � (1 + 2�p(m))E [jX1 �X2jp℄1=p :Proof. From (3) of De�nition 1.1 and Corollary 2.2,�m(X1)� �m(X2) � j � �m(X2 �X1) + E[X2 �X1℄j+ jE[jX2 �X1j℄j� �p(m)E[jX2 �X1 � E[X2 �X1℄jp℄1=p + E[jX2 �X1jp℄1=p� (1 + 2�p(m))E[jX1 �X2jp℄1=p:From the symmetry, we have our assertion.Proposition 2.5 Let �; � 2 L. Then for any �, � 2 [0; 1℄, we haveZ �0 Z(x;�� + (1� �)�)dx= inf �� Z �0 Z(x; �)dx+ (1� �) Z 0 Z(x;�)dx; �;  2 [0; 1℄; �� + (1� �) = �� :
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Proof. Let X be a random variable de�ned on [0; 1) suh that for � 2 (0; 1),X = Z ���1x; �� 1[0;�)(x) + Z �(1� �)�1(x� �);�� 1[�;1)(x); x 2 [0; 1):Then the distribution law of X under Lebesgue measure is �� + (1� �)�. Note thatZ �0 Z(x;�� + (1� �)�)dx = inf�ZAX(x)dx;A 2 B([0; 1)); ZA dx = ��= inf �Z a0 Z �x� ; �� dx + Z �+b� Z �x� �1� � ;�� dx; a 2 [0; �); b 2 [0; 1� �); a+ b = �� :This implies our assertion.Corollary 2.6 �; � 2 L. Then for any � 2 [0; 1℄ and 0 � a � b � 1, we haveF (�� + (1� �)�; a; b)= inf �� Z �0 Z(x; �)dx + (1� �) Z 0 Z(x;�)dx; �;  2 [0; 1℄; �� + (1� �) 2 [a; b℄� :We also show the Lipshitz property of �Ih de�ned on (1.5).Proposition 2.7 Let I 2 I. For any ~x = fxJ ; J 2 Ig and ~y = fyJ ; J 2 Ig,j�Ih(~x;m)� �Ih(~y;m)j � 2�I �Z 10 (�Ih _ �)�1m(d�)�maxJ�I jxJ � yJ j:Proof. Sine Z(x; � + k) = Z(x; �) + k; k 2 R;we have F (� + k1; a; b) = inf �Z 0 (Z(x; � + k2) + k1 � k2) dx; a �  � b�� F (� + k2; a; b) + bjk1 � k2j; k1; k2 2 R:Then, we get jF (� + k1; a; b)� F (� + k2; a; b)j � bjk1 � k2j; k1; k2 2 R:Thus j�Ih(~x;m)� �Ih(~y;m)j� �I Z 10 1� � ��Ih ^ 1� ����� Xj2I �jxInfjg�I � xI!� Xj2I �jyInfjg�I � yI!�����m(d�)� �I Z 10 ��Ih _ ���1�maxi2I ��xInfig � yInfig��+ jxI � yI j� :This ompletes the proof.Corollary 2.8 If Assumptions (A-1) and (A-2) hold, then(1) j�I(~x;m)� �I(~y;m)j � 2�IC�maxJ�I jxJ � yJ j(2) �IT=N (~x;mN) onverges to �I(~x) uniformly on ompat sets as N !1.6



3 Proof of Theorem 1.2Next, we speify the transition of reserves in N -period model. We de�ne �n = �(n;N;m),the reserve at time tn = tNn = tn=N in N -period model, as�n = �(n;N;m) = Z(n;N;m)�XLtn ; n = 0; 1; : : : ; N � 1where Z(n;N;m) is de�ned asZ(N ;N;m) = XLT ;Z(n� 1;N;m) = �m �Z(n;N;m)jFtn�1� ; n = N � 1; N � 2; : : : ; 1:(3.1)Let Jn = fi; �i > tng. Reall that h = TN .Proposition 3.1 (1) Let�k(A) = P (qk(�k � tn) 2 Ajtn < �k � tn+1) :Then �k(A) = ZA 1(0;qkh℄ �ke��kxqk1� e��khdx; for any Borel set A:(2) Let P (I; J) = P (Jn+1 = J jJn = I); J � I:Then P (I; J) = Yk2InJ �1� e��kh�Yj2J e��jh:(3) Furthermore, the following equation holds.P (fDi 2 Aig \ fqi(�i � tn) 2 Big; i 2 I n J; Jn+1 = J; Jn = IjFtn)= 1fJn=Ig Yi2InJ �i(Ai)�i(Bi)P (I; J):Proof. (1) Sine �k is exponentially distributed with a parameter �k, we an rewrite �kusing Wk = qk(�k � tn),�k(A) = P (Wk 2 A \ (0; hqk℄)P (Wk 2 (0; hqk℄) = ZA 1(0;qkh℄ �ke��kxqk1� e��khdx:This implies our assertion.(2) Sine P (I; J) = P (�k � tn; tn < �i � tn+1; �j > tn+1; k 2 I; i 2 I n J; j 2 J)P (�k � tn; tn < �i; k 2 I; i 2 I)where I = L n I. Sine �i, i 2 L, are independently exponentially distributed, we have ourassertion.
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(3) Sine Di and �i, i 2 L, are mutually independent and �i are exponentially distributed,we haveP (fDi 2 Aig \ fqi(�i � tn) 2 Big; i 2 I n J; Jn+1 = J; Jn = IjFtn)= P \i2InJ (fDi 2 Aig \ fWi 2 Big \ ftn < �i � tn+1g)\  \k2I �k � tn! \ \j2J �j > tn+1!�����Ftn!= 1fJn=Ig Yi2InJ (P (Di 2 AijFtn)P (Wi 2 Bi; 0 < Wi � hqijFtn))Yj2J P (�j > tn+1jFtn)= 1fJn=Ig Yi2InJ �i(Ai) ZBi 1(0;qkh℄�ie��ixqk dxYj2J e��jh= 1fJn=Ig Yi2InJ �i(Ai)�i(Bi)P (I; J):This ompletes the proof.Then the following lemma holds.Lemma 3.2 Let �n(I) = �n(I;N;m) : I ! R be determined by the following system of thereursive formula.�0(I) = 0; I 2 I�n(;) = 0; n = 1; 2; : : : ; N � 1�n+1(I) = �m0�XJ�I P (I; J)0� Yk2InJ�(�k � �k) +Xj2J qjh + �n(J)1A1A(3.2)where Q� and � stand for the onvolution. Then we have(3.3) �n =XI2I 1fJn=Ig�N�n(I):Proof. Note that �n1fJn=Ig = �m �(XItn+1 �XItn + �n+1)1fJn=IgjFtn� :Sine �N = 0, the equation (3.3) holds when n = N . Assume that the equation holds whenn = k. Then, in the ase of n = k � 1,�k�11fJk�1=Ig =�m((XItk �XItk�1 + �k)1fJk�1=IgjFtk�1)=�m  XItk �XItk�1 +XJ�I �N�k(J)1fJk=Jg! 1fJk�1=Ig�����Ftk�1!=�m XJ�I(XItk �XItk�1 + �N�k(J))1fJk�1=I;Jk=Jg�����Ftk�1! :8



However, from Proposition 3.1, for any Borel set A with A � R n f0g,P  XJ�I(XItk �XItk�1 + �N�k(J))1fJk=J;Jk�1=Ig 2 A�����Ftk�1!=XJ�I P �(XItk �XItk�1 + �N�k(J)1fJk=J;Jk�1=Ig) 2 AjFtk�1�=XJ�I0� Yk2InJ�(�k � �k) + hXj2J qj + �N�k(J)1A (A)P (I; J):Thus, it is also true for any Borel set A. Then we have�k�11fJk�1=Ig = �m0�XJ�I P (I; J)0� Yk2InJ�(�k � �k) + hXj2J pj + �N�k(J)1A1A= �N�k+1(I):Hene we have our assertion.Now �x an I 2 I until the end of this setion. Using �n(I) de�ned above, we will provethe following lemma.Lemma 3.3 Assume �i 2 Li, i 2 I and let ~�n = f�n(J); J 2 Ig. Then,����n+1(I)� �n(I)� h�Ih(~�n;m)��� � �C1 + C2maxJ�I j�n(J)j�h2=p;whereC1 = (1 + 2�p(m)) (�L)2=p`(1 + 2`+2) Xk2L�Z jxjp�k(dx)�1=p + qLh!+ (qL)2!and C2 = 2 (1 + 2�p(m)) �(�L)2=p`(1 + 2`+2)� :In order to prove the lemma, we prepare for the following. Let (
0;F0; P0) and (
1;F1; P1)be non-atomi, standard probability spaes and let 
 = 
0 � 
1, F = F0 
 F1, andP = P0 
 P1. Note that P (I; I) = e��Ih � 1� �Ih;and P (I; I n fig) = �1� e��ih� Yj2InfIg e��jh � �1� e��ih� � �ih:On 
0, we take disjoint subsets AJ , J � I, where P0(AJ) = P (I; J). Also, beause ofthe note above, we an de�ne disjoint subsets Bi, i 2 f0g [ I, suh thatP0(B0) = 1� �Ih; B0 � AIP0(Bi) = �ih; Bi � AInfig; i 2 I:9



On 
1, we take independent random variables ~Ui and ~Vi, i 2 I, suh that the probabilitydistribution of ~Ui and ~Vi are �i+ �n(I n fig)� �n(I) and �i� qih, respetively. Let UInfig =~Ui + ~Vi. Also we take random variables UJ for J � I with ℄(I n J) � 2 suh that thedistribution law is Yk2InJ�(�k � �k � qkh) + �n(J)� �n(I):Also let UI = 0. Then we see thatmaxJ�I E [jUJ jp℄1=p _maxi2I E hj ~Uijpi1=p �Xk2L �Z jxjp�k(dx)�1=p + qLh + 2maxJ�I j�n(J)j:Using these notations, we de�ne two random variables W and ~W on 
0 � 
1 asW (!0; !1) =XJ�I 1AJ (!0)UJ(!1);~W (!0; !1) =Xi2I 1Bi(!0) ~Ui(!1) + 1B0(!0) � 0:Then the next proposition holds.Proposition 3.4 Assume that there exists p > 1 suh that �k 2 Lp for k 2 I. Let W and~W as above. Then(3.4) ����m(W )� �m( ~W )��� � �C1 + C2maxJ�I j�n(J)j�h2=pProof. Sine���W � ~W ��� �Xi2I �1BinAInfig � 2maxJ�I jUJ j+ 1AInfigqih�+ 1AInB0 �maxi2I j ~Uij;we getW � ~WLp �Xi2I  2P (Bi n AInfig)1=pXJ�I E [jUJ jp℄1=p + P (AInfig)1=pqih!+ P (AI nB0)1=pXi2I E hj ~Uijpi1=p :Also we have P (AI nB0) = e��Ih � 1 + �Ih � (�Ih)2and P (Bi n AInfig) = �ih� (1� e��ih) Yj2Infig e��jh � �ih + e��Ih 1Xm=1 (��ih)mm!� �ih(1� e��Ih) + (�ih)2e��ihe��Ih � 2(�Ih)2:Thus, W � ~WLp � �4`(�L)2=p2`E [jUJ jp℄1=p + (qL)2 + (�L)2=p`E hj ~Uijpi1=p� h2=pand using Proposition 2.4, we get the result.10



Proposition 3.5 For W and ~W above, the following hold.(1) �m(W ) = �n+1(I)� �n(I)� hqI(2) �m( ~W ) = h�Ih(~�n;m)� hqIProof. (1) We get by de�nition�m(W ) = �m0�XJ�I P (I; J)0� Yk2InJ�(�k � �k � qkh) + �n(J)� �n(I)1A1A= �m0�XJ�I P (I; J)0� Yk2InJ�(�k � �k � qkh) + hqI + �n(J)1A1A� �n(I)� hqI= �n+1(I)� �n(I)� hqI :(2) Using the equation (1.4), � ~W , the distribution law of ~W , an be written as �Ih(�I(~�n)��n(I)) + (1� �Ih)Æ0 where Æ0 is a probability measure suh that Æ0(f0g) = 1. Then, usingthe proposition 2.5, we getZ �0 Z(x;� ~W )dx= inf��Ih Z �0 Z(x; �I(~�n)� �n(I))dx; �;  2 [0; 1℄; �Ih� + (1� �Ih) = ��= inf��Ih Z �0 Z(x; �I(~�n)� �n(I))dx; � 2 [0; 1℄; 1� 1� ��Ih � � � ��Ih� := �IhF ��I(~�n)� �n(I); 0 _ �1� 1� ��Ih � ; ��Ih ^ 1� :Thus, �m( ~W ) = �Ih Z 10 1�F ��I(~�n)� �n(I); 0 _ �1� 1� ��Ih � ; ��Ih ^ 1�m(d�):Using the de�nition of �Ih on the equation (1.5), we omplete the proof.Then simply by substituting the equations in Proposition 3.5 for the equation (3.4), weomplete the proof of Lemma 3.3.Finally we need the following proposition in order to omplete the proof of Lemma 3.3.Proposition 3.6 Assume that Assumptions (A-1), (A-2) and (A-3) hold. Let x(t; I) bethe solution of the system of equations (1.6) with initial onditions (1.7) and�In = maxJ�I ���n(J ;N;mN)� x �tNn ; J��� ;for I � L, where tNn = nT=N . Then,max1�n�N �In ! 0; N !1:11



Proof. By examining the di�erene between �(I) and x(�; I), we get,����n+1 �I;N;mN�� x �tNn+1; I� ���� �����n+1(I)� �n(I)� TN�IT=N (~�n)����+ ����x �tNn+1; I�� x �tNn ; I�� TN �I �~x �tNn ������+ ���n(I)� x �tNn ; I���+ TN �����IT=N (~�n)� �IT=N (~x �tNn �)���+ ���IT=N (~x �tNn �)� �I(~x �tNn �)���� �C1 + C2�maxJ�I ���n(J)� x �tNn ; J���+maxJ�I ��x �tNn ; J������ TN�2=p+ TN max0�s�T=N ���I �~x �tNn + s��� �I �~x �tNn ����+ ���n(I)� x �tNn ; I���+ TN ���IT=N(~x �tNn �)� �I(~x �tNn �)��+ 2T�LN �Z 10 (�IT=N _ �)�1mN (d�)�maxJ�I ���n(J)� x �tNn ; J��� :LetrN =0�C1 + C2 maxJ�I0�n�N ��x �tNn ; J���1A� TN�2=p
+0� max0�s�T=N0�n�N ���I �~x �tNn + s��� �I �~x �tNn ����+ ���IT=N (~x(tNn ))� �I(~x(tNn ))��1A TNand C = C2� TN�2=p + 2�L Z 10 (�Ih _ �)�1mN (d�):Then we get �In+1 � �1 + CTN � �In + rN�1 + CTN ��(n+1) �In+1 � �1 + CTN ��n �In + rNSine �0 = 0 and limN!1NrN = 0;we get by (2) of Corollary 2.8 e�CT max1�n�N �In � N�1Xn=0 rN ! 0:This ompletes the proof.Then we are ready to prove Theorem 1.2. We will prove more generalized one.12



Theorem 3.7 Assume that (A-1), (A-2) and (A-3) hold. Let x(t; I) be the solution of thesystem of equations (1.6) with initial onditions (1.7) andn(t; N) = �tNT � ; 0 � t � T:Then �n(t;N) !XI2I 1fJt=Igx(T � t; I); N " 1:In partiular, �0 = �mN (XT jfFtngNn=0)! x(T; L) N " 1:Proof. From Proposition 3.6, the di�erene between �(I) and x(�; I) goes to zero as N !1and �n(t;N) =XI2I 1fJn(t;N)=Ig�N�n(t;N)(I)!XI2I 1fJt=Igx(T � t; I):This proves our assertion.
4 Some properties of x(t; I)In this setion, we introdue some properties of x(t; I).Proposition 4.1 For any I, I1, and I2 � L suh that I = I1 [ I2 and that I1 \ I2 = ; andfor any t, x(t; I) � x(t; I1) + x(t; I2).Proof. First we will prove �n(I) � �n(I1)+�n(I2). It is true when n = 0 from the de�nition.Assume that the inequation holds when n = k for any I � L. Then,XJ�I �XItN�k �XItN�k�1 + �k(J)� 1fJN�k�1=I;JN�k=Jg�XJ�I �XI1tN�k �XI1tN�k�1 +XI2tN�k �XI2tN�k�1 + �k(J \ I1) + �k(J \ I2)� 1fJN�k�1=I;JN�k=Jg=XJ�I �XI1tN�k �XI1tN�k�1 + �k(J \ I1)� 1fJN�k�1=I;JN�k=Jg+XJ�I �XI2tN�k �XI2tN�k�1 + �k(J \ I2)� 1fJN�k�1=I;JN�k=Jg:Note that for any J1 � I1,E " XJ2I;J\I1=J1 1fJN�k�1=I;JN�k=Jg�����FtN�k�1# = E �1fJN�k�1=I1;1N�k=J1g��FtN�k�1� :Thus,�m XJ�I �XI1tN�k �XI1tN�k�1 + �k(J \ I1)� 1fJN�k�1=I;JN�k=Jg�����FtN�k�1!= �m XJ1�I1 �XI1tN�k �XI1tN�k�1 + �k(J1)� 1fJN�k�1=I1;JN�k=J1g�����FtN�k�1! = �k+1(I1):13



Using the equations shown on Lemma 3.2, we get�k+1(I) � �k+1(I1) + �k+1(I2):Thus from Proposition 3.6, we have our assertion.Proposition 4.2 If �i((�1; 0℄) = 1 and qi � 0 for any i 2 L, then following propertieshold.(1) x(t; I) � qIt for any I � L and t.(2) x(t; I1) � x(t; I2) + qI1nI2t for any I2 � I1 � L and t.Proof. (1) We will prove that �n(I) � qInh. When n = 0, it is obvious. Assume that whenn = k, the inequation holds; i.e., �k(I) � qIkh. Then sine �i((�1; 0℄) = 1, we haveXItN�k �XItN�k�1 + �k(J) � qIh+ qIkh = qI(k + 1)hfor any J � I. Thus, �k+1(I) � �m(qI(k + 1)h) = qI(k + 1)h:It ompletes the proof.(2) Again, we will prove that �n(I1) � �n(I2) + qI1nI2nh. When n = 0, it is obvious,Assume that when n = k, the inequation holds. Then,XI1tN�k �XI1tN�k�1 + �k(J) � XI2tN�k �XI2tN�k�1 + qI1nI2h+ �k(J \ I2) + qJn(J\I2)kh� XI2tN�k �XI2tN�k�1 + qI1nI2(k + 1)hfor any J � I1. It implies our assertion as in (1).
5 ExampleIn this setion we speify mN in order to examine the model in detail.5.1 Example of the measure mNWe only fous on the N -period model with N > 2�LT in this setion. We express measuremN by funtions gN : [0;1) ! R+, hN : [0; 1℄ ! R+, and fN : [0;1) ! R+ dependingon the partition size N as follows for srutinizing the e�et of the tail;(5.1) mN(d�) = �gN (N�) + hN(�) + fN (N(1� �))� d�:We impose the following assumptions on the funtions gN , hN and fN .(B-1) gN(u) = fN(u) = 0 for u 2 [N=2;1).(B-2) 1N Z 10 gN(u)du+ Z 10 hN (u)du+ 1N Z 10 fN(u)du = 1.14



(B-3) lim�!0 supN Z �0 hN(�)� d� = 0; lim�!0 supN Z 11�� hN(�)� d� = 0:(B-4) supN Z 10 hN (�)� d� <1 and Z 10 hN (�)� d�! Ch 2 R+ as N !1.(B-5) (N � u)�1fN(u)du onverges weakly to mf (du) as N ! 1, i.e., for any boundedfuntion k(u) : [0;1)! R, k(u)(N � u)�1fN(u)du! k(u)mf(du).(B-6) supN Z 10 gN(u)du <1.(B-7) There exists p 2 (1; 2) satisfying that �i 2 Lp, i 2 L, and that u�1=pgN(u)duonverges weakly to mg(du) as N !1.Note that Assumption (B-2) guarantees for mN to be probability distribution.Then, under the assumptions above, we will prove the following propositions.Proposition 5.1 If mN above satis�es Assumptions (B-1) - (B-7), then,supN Z 10 (�ITN�1 _ �)�1mN (d�) <1:Proof. Note that �IT=N < 1=2. We getZ 10 � N�IT ^ 1��mN (d�) � Z 10 NgN(N�)�IT d�+ Z 10 hN(�)� d�+ Z 11=2 fN (N(1� �))� d�� Z 10 gN(u)�IT du+ Z 10 hN(�)� d�+ 2N Z 10 fN(u)du:Then, by (B-6), (B-4) and (B-2), we omplete the proof.Proposition 5.2 If mN above satis�es Assumptions (B-1) - (B-7). Then, for p 2 (1; 2)on Assumption (B-7), we have supN �p(mN ) <1:Proof. Sine�p(mN ) � Z 1=20 gN(N�)�1=p d� + Z 10 hN(�)�1=p d� + Z 11=2 (1� �)1�1=p� fN (N(1� �)) d�� N1=p�1 Z 10 gN(u)u1=p du+ Z 10 hN (�)�1=p d� +N1=p�1 Z N=20 u1�1=pN � ufN(u)du� N1=p�1 Z 10 gN(u)u1=p du+ Z 10 hN (�)� d� + Z 10 fN(u)N � udu;by (B-7), (B-4) and (B-5), we omplete the proof.15



Proposition 5.3 Under Assumption (B-4), we get����Z 10 �F (�I � xI ; 0; 1)� F ��I(~x)� xI ; 0 _ �1� N(1� �)�IT � ; 1 ^ N��IT �� hN(�)� d�����! 0;as N !1.Proof. We get����Z 10 �F (�I � xI ; 0; 1)� F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1 ^ N��IT �� hN (�)� d������ Z �IT=N0 ����F (�I � xI ; 0; 1)� F ��I � xI ; 0; 1 ^ N��IT ����� hN (�)� d�+ Z 11��IT=N ����F (�I � xI ; 0; 1)� F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1����� hN(�)� d�� ���F (�I � xI ; 0; 1)��+ ��F (xI � �I ; 0; 1)��� Z �IT=N0 hN(�)� d�+ Z 11��IT=N hN (�)� d�! :This proves our assertion.Then using the proposition, we get the following.Proposition 5.4 Assume that (B-1) - (B-7) hold. Also let�I(~x) = �I Z 10 F ��I(~x)� xI ; 0; 1 ^ u�IT � ~mg(du) + F (�I(~x� xI ; 0; 1)Ch+ Z 10 F ��I(~x)� xI ; 0 _ �1� u�IT � ; 1�mf (du)!+ qI ;(5.2)where ~mg(du) = u1=p�1mg(du). Then �IT=N (~x;mN ) onverges to �I(~x) uniformly on om-pat as N !1.Proof. From the de�nition of �IT=N , we get�IT=N (~x)� qI�I = Z 10 1�F ��I � xI ; 0; 1 ^ N��IT � gN(N�)d�+ Z 10 1�F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1 ^ N��IT � hN (�)d�+ Z 10 1�F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1� fN(N(1� �))d�= Z 10 F ��I � xI ; 0; u�IT ^ 1� gN(u)u du+ Z 10 F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1 ^ N��IT � hN(�)� d�+ Z 10 F ��I � xI ; 0 _ �1� u�IT � ; 1� fN(u)N � udu:16



For u � �IT ,u1=pu F ��I � xI ; 0; 1 ^ u�IT � = 1(�IT )1�1=p � u�IT �1=p �u=�IT (�I � xI);and for u > �IT , the left hand side of the equation above is equal to u1=p�1E[(DI�xI)^0℄,whih is bounded. Thus, from Assumption (B-7) and Corollary 2.3, we getF ��I � xI ; 0; 1 ^ u�IT � gN(u)u du! u1=p�1F ��I � xI ; 0; 1 ^ u�IT �mg(du); N !1Also, using the boundedness of F (�I � xI ; 0 _ (1� u=�IT ); 1) and the proposition above,we omplete the proof.From Propositions 5.1, 5.2, and 5.4, we see that Assumptions (A-2), (A-3) and (A-1)hold under Assumptions (B-1) - (B-7).5.2 Homogeneous Colletive RiskIn this subsetion, we fous on the homogeneous olletive risk proess, i.e., �i = �, �i = �and qi = q. In this ase it is obvious that xJ1 = xJ2 and �J1(~x) = �J2(~x) if ℄(J1) = ℄(J2).Thus we use the following notations in this subsetion.x(n)(t) = x(t; I); ℄(I) = n; n = 0; 1; 2; : : :~x(n)(t) = x(n)(t)n�x(n)(t) = x(n)(t)� x(n�1)(t)�(n)(y) = n� Z 10 F �� + y; 0; 1 ^ u�nT � ~mg(du) + F (� + y; 0; 1)Ch+ Z 10 F �� + y; 0 _ �1� u�nT � ; 1�mf(du)!+ nq~�(n)(y) = �(n)(y)n :Then, the equation (1.6) an be rewritten asd~x(n)(t)dt = ~�(n) ���x(n)(t)� :Also, we assume �((�1; 0℄) = 1.What we want to show in this subsetion is where ~x(n)(t) onverges as n ! 1. First,we show some properties of x(n)(t).Proposition 5.5(1) x(1)(t) � x(n+1)(t)� x(n)(t) � qt.(2) ��~x(n)(t)�� � Ct for a C > 0.(3) ~x(n)(t) onverges as n!1. 17



Proof. (1) This is a simple outome from Propositions 4.1 and 4.2.(2) From (1), we get nx(1)(t) � x(n)(t) � nqtand from the shape of the di�erential equation of x(1)(t), we an get��(1)(0)� q� t � x(1)(t):Thus, by setting C = maxf���(1)(0)� q�� ; qg, we get the result.(3) We will prove that supn ~x(n)(t) � lim infn ~x(n)(t). We an �nd a subsequene fNkg � N,k = 1; 2; ::: suh that ~x(Nk)(t)! lim infn ~x(n)(t), k !1. For any n 2 N, let an(k) = [Nk=n℄and bn(k) = Nk � n[Nk=n℄. Then, we getx(Nk)(t) = x(an(k)n+bn(k))(t) � an(k)x(n)(t) + x(bn(k))(t);~x(Nk)(t) � an(k)Nk x(n)(t) + x(bn(k))(t)Nk :Sine an(k)Nk ! 1n;����x(bn(k))(t)Nk ���� � max0�m�n ��x(m)(t)��Nk ! 0when k!1, we get lim infk!1 ~x(Nk)(t) � ~x(n)(t):It ompletes the proof.Proposition 5.6 For any m, n 2 N suh that m � n,~�(m)(y) � ~�(n)(y):Proof. Sine for any u 2 [0;1),F �� + y; 0; 1 ^ u�mT � � F �� + y; 0; 1 ^ u�nT �and F �� + y; 0 _ �1� u�mT � ; 1� � F �� + y; 0 _ �1� u�nT � ; 1� ;we have our assertion.Proposition 5.7 There exists a C > 0 suh that for any m, n 2 N,���~�(m)(y)� ~�(n)(y)��� � C ���� 1n � 1m ���� :
18



Proof. Assume m > n. Sine����Z 10 �F �� + y; 0; 1 ^ u�Tn�� F �� + y; 0; 1 ^ u�Tm�� ~mg(du)����= ����Z �Tm0 �F �� + y; 0; 1 ^ u�Tn�� F �� + y; 0; 1 ^ u�Tm�� ~mg(du)����� Z �Tm0 ���F �� + y; 0; 1 ^ u�Tn�� F �� + y; 0; 1 ^ u�Tm���� ~mg(du)� Z �Tm0  Z u�Tn^1u�Tm (jyj � Z(x; �))dx! ~mg(du)� � 1n � 1m� 1�T Z �Tm0 u�jyj � Z � u�Tm ; ��� ~mg(du)� � 1n � 1m� 1�T Z 10 u�jyj � F ��; 0; 1 ^ u�Tm�� ~mg(du)� � 1n � 1m� 1�T (jyj � �1(�)) Z 10 u1=pmg(du)and sine����Z 10 �F �� + y; 0 _ �1� u�Tn� ; 1�� F �� + y; 0 _ �1� u�Tm� ; 1��mf (du)����� Z �Tn0  Z 1� u�Tm(1� u�Tn)_0 (jyj � jZ(x; �)j) dx!mf(du)� � 1n � 1m� jyj�T Z �Tn0 umf (du) � � 1n � 1m� jyj�T Z 10 umf(du);by setting C asC = 1�T �(jyj � �1(�)) Z 10 u1=pmg(du) + jyj Z 10 umf(du)� ;we omplete the proof.Sine, Z 10 F �� + y; 0; 1 ^ u�nT � ~mg(du)! 0and F �� + y; 0; 1 _ �1� u�nT ��! �1(�) + ywhen n goes to in�nity, we getlimn!1 ~�(n)(y) = ��F (� + y; 0; 1)Ch + (�1(�) + y)Z 10 mf (du)�+ q � ~�(1)(y):Proposition 5.8 Z ts ~�(1) ��~x(1)(u)�du � ~x(1)(t)� ~x(1)(s)19



Proof. Sine for m < n, we have~�(m) ��x(n)(t)n � = ~�(m) � 1n nXk=1 �x(k)(t)� x(k�1)(t)�!� 1n nXk=1 ~�(m) �� �x(k)(t)� x(k�1)(t)��� 1n nXk=1 ~�(k) �� �x(k)(t)� x(k�1)(t)�� :By integrating both sides, we haveZ ts ~�(m) ��x(n)(u)n � du � 1n nXk=1 �� �~x(k)(t)� ~x(k)(s)�� :Thus, by inreasing m and n to in�nity, we get the result.Proposition 5.9 Let y(t) be the solution of the following di�erential equations.dy(t)dt = ~�(1) (�y(t))y(0) = 0:(5.3)Then, for any n 2 N and t � 0, y(t) � ~x(n)(t):Proof. Let y(�)(t) be the solution of the following di�erential equations.dy(�)(t)dt = ~�(1) ��y(�)(t)�+ �y(�)(0) = �:Suppose there exists t > 0 suh that y(�)(t) < ~x(1)(t). Then, from Proposition 5.5, wean hoose � = infft > 0; y(�)(t) < ~x(1)(t)g, then for any s 2 [0; �), y(�)(s) > ~x(1)(s) andy(�)(�) � ~x(1)(�). Then, sineZ �s �~�(1) ��y(�)(t)�+ �� dt = y(�)(�)�y(�)(s) < ~x(1)(�)�~x(1)(s) � Z �s ~�(1) ��~x(1)(u)� du;we get 1� � s Z �s �~�(1) ��y(�)(t)�+ �� dt < 1� � s Z �s ~�(1) ��~x(1)(t)� dt:But this is ontradition to the assumption when s " � . Thus for any t > 0, y(�)(t) > ~x(n)(t).Then taking � to zero ompletes the proof.
20



Proposition 5.10 For a Æ 2 (0; 1℄, let z(t) = z(t; Æ) be the solution of the followingdi�erential equations. dz(t)dt = ~�(1) (�z(t)) � Æz(0) = 0Then, for any n 2 N and t � 0, z(t; 0) � ~x(1)(t):Proof. Let's take a k 2 N large enough to satisfy C � k, where C satis�es~�(1)(x)� Cn �~�(n)(x) � ~�(1)(x)��~x(k)(t)�� � Ctjz(t)j � Ctand let Æ = C=k. We an hoose suh C beause of Propositions 5.5 and 5.7. Also, letwn(t) = nz(t)� 2Ckt:Then we have dwn+1(t)dt = (n + 1)dz(t)dt � 2Ck= (n + t)�~�(1)(�z(t))� Æ�� 2Ck= (n + t)�~�(1)(wn(t)� wn+1(t))� Æ�� 2Ckand wk(t) � �Ckt � x(k)(t):What we want to prove here is for n � k, wn(t) � x(n)(t), 0 � t � T . When n = k, it istrue from the inequation above. Assume it is true for n. Then, let v(t) be asdv(t)dt = (n+ 1)�~�(1)(wn(t)� v(t))� Æ�� 2Ckv(0) = ��for a � > 0, and we want to show a laim v(t) � x(n+1)(t). If this laim is not true, theirexists a posivive value � = infft : v(t) > x(n+1)(t)g < T . Then,ddtv(t)����t=� = (n+ 1)�~�(1) (wn(�)� v(�))� Æ�� 2Ck� (n+ 1)�~�(1) �x(n)(�)� x(n+1)(�)�� Ck �� 2Ck� (n+ 1)�~�(1) �x(n)(�)� x(n+1)(�)�� Cn+ 1�� 2Ck� (n+ 1)�~�(n+1) �x(n)(�)� x(n+1)(�)��� 2Ck< ddtx(n+1)(t)����t=� : 21



Thus, there exists a Æ0 > 0 suh that for any t 2 [�; � + Æ0℄,dv(t)dt < dx(n+1)(t)dt ;so, v(t) = v(�) + Z t� dv(s)ds ds � x(n+1)(�) Z t� dx(n+1)(s)ds ds = x(n+1)(t)but it is ontradition. Thus, v(t) � x(n+1)(t) for any t 2 [0; T ℄ and by � ! 0, we havev(t) ! wn+1(t). Hene we get wn+1(t) � x(n+1)(t) and by indution, it is true for any n.Thus, nz(t) � 2Ckt � x(n)(t)z(t)� 2Cktn � ~x(n)(t)and by n!1, we have z(t; Æ) � ~x(1)(t). Finally, by k !1, we get z(t; 0) � ~x(1)(t). Itompletes the proof.From Propositions above, ~x(n)(t)! y(t) de�ned on Equation (5.3) as n!1.5.3 Numerial ExamplesIn this subsetion, we will show some numerial results with onrete assumptions in thease of homogeneous olletive risk proess. Assume that D has a following distributionwith a parameter � 2 (0; 1℄;(5.4) P (D < u) � ��((�1; u)) = �1� �u1� ���1=� ; u 2 [�1; 0℄:This is a version of generalized Pareto distribution with E[D℄ = �1 for any �.Proposition 5.11 Some properties of �� are as follows.(1) �� 2 L1=�(2) Z(u; ��) = 1� �� �1� u���(3) ��(��) = 1� � � ����We also speify the gN , hN and fN in equation (5.1) as follows.gN(y) = wge�yy�ag1[0;N=2℄; wg � 0; ag 2 (0; 1)hN(y) = wNh �� (2y � 1)2ah + 1� ; wh > 0; ah 2 NfN(y) = wfe�af y(N � y)1[0;N=2℄; wf � 0; af � 0:In order to satisfy the assumption (B-2), wNh should satisty the following equation (weassume that wg and wf are onstant for any N).wgN �(1� ag; 0; N=2) + 2ahwNh2ah + 1 + wfaf �1� 1� e�ahN=2Naf � e�ahN=22 � = 1;22



where �(z; a; b) = Z ba tz�1e�tdt:Thus, we get wh = limN!1wNh = 2ah + 12ah �1� wfaf � ;Note that wf < af should be held. In this spei�ation, wf determines the "severeness"of the risk measure. When wf is larger, then mN has more weight on the neighborhood of1, meaning that the expeted value (�1) is more weighted. On the other hand, when wf issmaller, then CTEs with low � are more highly taken into alulation.Using the spei�ation, we an alulate the value measure. First, we an get Ch asfollows.Ch = limN!1Z 10 hN (�)� d� = Z 10 wh (�(2y � 1)2ah + 1)y dy = �wh 2ahXi=1 2ahCi(�2)ii :Then,�(n)(y) =n�( wg�nT �1� �� + y�� (1� ag; 0; kg)� wg(�nT )1���� (1� � � ag; 0; kg)� �1 + �y1� ��1�1=� �wgag �k�agg e�kg � �(1� ag : kg;1)�+ Ch + wfe�afkfaf �+ wfaf �1� �� + y��1� e�afkf + kfe�afkf�nT � 1� e�afkf�nTaf �� wf� Z kf0 �1� u�nT �1�� e�afudu)+ nqwhere, kg =n�T �1 + �y1� ���1=� ;kf =n�T  1� �1 + �y1� ���1=�! ;and in the ase of y � 0,�(n)(y) =n�( wg�nT �1� �� + y�� (1� ag; 0; �nT )� wg(�nT )1���� (1� � � ag; 0; �nT )� (1� y) wg �(�nT )�age��nT � �(1� ag : �nT;1)�ag + Ch + wfaf !)+ nq:We also get~�(1)(y) = 8><>:����1 + �y1���1�1=� Ch + (�1 + y)wfaf � + q y > 0;�(�1 + y)�Ch + wfaf �+ q y � 0:23



Now we an alulate the transition of the value measure by substituting real numbersfor eah parameter. For example, let � = 0:6, � = 0:02 (i.e., the expeted loss from aninsurane ontrat is 0.02), af = 1, ag = 0:1, ah = 20, wf = 0:4 and wg = 0:05. We show~x(n)(t) with di�erent level of n in Figure 1 in the Appendix. In this ase, even in the aseof q = 0:05, i.e., insurane premium is 2.5 times higher than the expeted loss, the valuemeasure is negative. This is beause of the shape of mN showing in Figure 2. Figure 3 and4 is the same graphs with wf = 0:8. Sine m has more weight on the neighborhood of 1,the value measure beomes positive.
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Appendix: Figures
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Figure 1: ~x(n)(t) with � = 0:6, � = 0:02, af = 1, ag = 0:1, ah = 20, wf = 0:4 and wg = 0:05
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Figure 2: mN with the same parameters as in Figure 1 and N = 100.25
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Figure 3: ~x(n)(t) with the same parameters as in Figure 1 exept wf = 0:8.
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Figure 4: mN with the same parameters as in Figure 3 and N = 100
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