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Homogeneous Coherent Value Measuresand their Limitsunder Multiperiod Colle
tive Risk Pro
essesYuji Morimoto �Integrated Finan
e Limited y
Abstra
tWe formulate homogeneous �ltered value measures with Fatou, 
omonotone, andlaw invariant properties under multiperiod "Poisson-type" 
olle
tive risk pro
esses asa system of di�erential equations. We also derive a limit theorem for homogeneous�ltered value measures under the same pro
esses and 
al
ulate some numeri
al ex-amples.Keywords: 
oherent value measure, 
olle
tive risk pro
ess, multiperiod, homoge-neous �ltered value measures.1 Introdu
tionArtzner et al. [1997℄ introdu
ed the 
on
ept of 
oherent risk-adjusted value measure (a.k.a.
oherent risk measure), an axiomati
 approa
h to determine an a

eptan
e set of maps fromL1 to R supposed to satisfy some 
oheren
e requirement for expressing the risk-adjustedvalue of the future (random) net worth. The de�nition is as follows.De�nition 1.1 We say a map � : L1 ! R is a 
oherent value measure, if the following
onditions are satis�ed.(1) If X � 0, then �(X) � 0.(2) �(X1 +X2) � �(X1) + �(X2).(3) for � > 0, we have �(�X) = ��(X).(4) for any 
onstant 
, we have �(X + 
) = �(X) + 
.Delbaen [2000℄ proved that, on general probability spa
es, � is a 
oherent risk measure withthe Fatou property if and only if there is a set of probability measures Q su
h that anyQ 2 Q satis�es Q � P and for any X 2 L1, �(X) = inffEQ[X℄;Q 2 Qg. Furthermore,Kusuoka [2001℄ spe
i�ed the 
on
ept as follows. Let L be the set of probability measures onR, Lp, p 2 [1;1), be f� 2 L; RR jxjp�(dx) <1g, and L1 = f� 2 L; �(R n [�M;M ℄) = 0for some M > 0g. Also, let M[0;1℄ be the set of probability measures on [0; 1℄. Then he�The author would like to thank Prof. Kusuoka for the 
ontinuous support, e�e
tive suggestions anduseful dis
ussions.yShiroyama JT Trust Tower 31F, 4-3-1, Toranomon, Minato-ku, Tokyo 105-6017, Japan. E-mail:yuji.morimoto�alum.mit.edu 1



de�ned a value measure as a map from Lp to R, 1 � p � 1, and proved that � = �m isa 
oherent value measure with law invariant, 
omonotone and the Fatou property if andonly if there exists m 2 M[0;1℄ su
h that(1.1) �(�) = Z 10 ��(�)m(d�); � 2 Lp; p 2 [1;1℄;where ��, usually 
alled Conditional Value at Risk (CVaR), Tail-VaR (TVaR), or Condi-tional Tail Expe
tation (CTE), is de�ned as,��(�) = 1� Z �0 Z(x; �)dx � 2 L1with Z(x; �) = inffz;F�(z) > xg. Z(�; �) : [0; 1℄! R is non-de
reasing and right 
ontinu-ous, and the probability law of Z(�; �) under Lebesgue measure on [0; 1℄ is �. We use � asa fun
tion from Lp to R as well; �(X) = �(�X) where �X denotes the probability measureof the random variable X 2 Lp.Coherent value measure was originally designed for determining the risk-adjusted value(or risk) of �nan
ial instruments. On the other hand, a
tuarial mathemati
s have beenusing a similar approa
h for determining the insuran
e premium 
al
ulation. It is 
alled thepremium 
al
ulation prin
iple; a fun
tional H from the set of insuran
e risks (non-negativerandom variables in L1) to [0;1℄. Gerber [1979℄ introdu
ed �ve desireble properties and
he
ked whether traditional risk measures were satis�ed with the properties. Wang, et al.[1997℄ took an axiomati
 approa
h and proved thatH has a Choquet integral representationif and only ifH satis�es some axioms they de�ned. Kusuoka [2001℄ showed that the equation(1.1) 
an be expressed as the same representation as H. Thus, in this paper, we use therepresentation as in the equation (1.1).Re
ently, the 
on
ept of value measure is being applied in a dynami
 framework. For ex-ample, Artzner et al. [2002℄ expanded the 
on
ept of 
oherent value measure to an analysisof multiperiod �nan
ial risk. The idea of expansion to dynami
 setting is pra
ti
ally useful.In insuran
e business, for example, insurers have to keep reserves, the value ne
essary to
over the future 
laims less the future insuran
e premiums of the existing poli
ies. As inusual a
tuarial method, reserves 
an be represented by re
ursive formula of the reserves atnext term and 
ash
ows during now and then. This representation is just same as the ideafor multiperiod value measure. We will formulate the idea as follows.Let (
;F ; P ) be a standard probability spa
e and T 2 (0;1). For any integrablerandom variable X and a sub-� algebra G, we de�ne a G-measurable random variable�(XjG), whi
h we 
all 
onditional value measure, by�(XjG) = � (P (X 2 dxjG)) :We partition T into N and let h = TN and tn = nh, n = 0; 1; 2; : : : ; N . Let fFtngNn=0 be a�ltration and X be an FT -measurable integrable random variable. Then we 
an de�ne anadapted pro
ess fZn = Z(n;N;m)gNn=0 indu
tively using � de�ned above byZN = X;Zn�1 = � �ZnjFtn�1� ; n = N � 1; N � 2; : : : ; 1:(1.2) 2



We denote an F0-measurable random variable Z0 by �(XjfFtngNn=0) and 
all the map a�ltered value measure.Next we spe
ify an N -period 
olle
tive risk pro
ess for expressing insuran
e portfoliobehavior. Let ` 2 N be the number of poli
ies at time zero and L = f1; 2; : : : ; `g. Weassume that all 
ontra
ts start at time zero and will end at time T . When a 
laim o

urs,insurer pays the 
laim amount immediately (no time lag)1. Let �i, a stopping time, be thetiming of the 
laim o

urren
e su
h thatP (�i > t) = exp(��it); t > 0for �i > 0, i 2 L and Di : 
! R, a random variable with distribution fun
tion �i, be thenet 
laim amount at time �i. Note that Di is negative if net payment from the insurer toi-th poli
yholder is positive. We assume that Di and �i, i 2 L, are independent and that a
ontra
t would terminate just after the 
laim o

urren
e2; i.e., 
ontra
t term for 
ontra
tj is [0; �j ^ T ℄.We also de�ne insuran
e premiums. Insuran
e premium 
an be 
olle
ted in variousways, but in this paper we assume that premium is 
olle
ted 
ontinuously until the 
ontra
tterminates. Let qi 2 R be the premium per unit time; i.e., i-th poli
yholder will pay qi(t^�i)to the insurer until time t. Then X it , total 
ash
ow for i-th poli
y in [0; t℄ isX it = qi(t ^ �i) +Di1f�i�tg;and total 
ash
ow for the portfolio in [0; t℄ isXIt =Xi2I X it ; I � L:We set Ft as �fX is : s � t; i 2 Lg. Then, the value measure for the insuran
e portfolio 
anbe expressed as in the equation (1.2) by repla
ing X into XLT . Finally we de�ne the reserveat time tn as a di�eren
e between Zn and XLtn .Let I = fI : I � Lg, qI =Pi2I qi and �I =Pi2I �i. For any � 2 L and a 2 R, � + adenotes a probability measure on R, given by(� + a)(A) = � (fx 2 R; x� a 2 Ag) for any Borel set A;and we introdu
e a fun
tion F from L to R su
h that(1.3) F (�; a; b) = inf
 �Z 
0 Z(x; �)dx; a � 
 � b� ; 0 � a � b � 1:Also, let ~x = fxI : I 2 Ig,(1.4) �I = �I(~x) = Pj2I �j ��j + xInfjg��I ;and(1.5) �Ih(~x;m) = qI + �I Z 10 1�F ��I � xI ; 0 _ �1� 1� ��Ih � ; ��Ih ^ 1�m(d�):Regarding �Ih and mN , N = 1; 2; : : :, we assume the following.1In real situation, there is a time lag between the 
laim o

urren
e and a
tual payment. Also, insurermay not be able to pay the amount be
ause of the �nan
ial diÆ
ulty. But we do not take su
h situationsinto 
onsideration in this paper.2Usually, life insuran
e 
ontra
t would terminate when insuran
e event o

urs, while non-life insuran
e
ontra
t usually does not terminate in the middle of the 
ontra
t term even though the insuran
e evento

urs. 3



(A-1) �IT=N �~x;mN� 
onverges to a fun
tion �I(~x) for any ~x as N !1.(A-2) supN Z 10 ��ITN�1 _ ���1mN(d�) = C� <1.(A-3) There exists p 2 [1; 2) su
h that �i 2 Lp for any i 2 L and thatsupN Z 10 ���1=p ^ (1� �)1�1=p� �mN (d�) <1:We show later (Corollary 2.8) that under Assumptions (A-1) and (A-2), �I satis�es Lip-s
hitz 
ondition. Thus a following system of equations for a value measure de�ned inequation (1.1) has a C1 solution.(1.6) dx(t; I)dt = �I(~x(t)); I 2 I;with initial 
onditions x(0; I) = 0; I 2 I;x(t; ;) = 0; t 2 (0; T );(1.7)where(1.8) ~x(t) = fx(t; I) : I 2 Ig:Then our main result is as follows.Theorem 1.2 Assume that (A-1), (A-2) and (A-3) hold. Let x(t; I) be the solution of thesystem of equations (1.6) with initial 
onditions (1.7). Then�mN (XIT jfFtngNn=0)! x(T; I) N " 1; I 2 I:2 PreparationsIn order to prove Theorem 1.2, we will prepare some estimates. Most of them are 
ited fromKusuoka and Morimoto [2004℄. We will show proofs sin
e they are simple. For m 2 M[0;1℄let �p(m) = Z 10 ���1=p ^ (1� �)1�1=p� �m(d�):Then we have the following.Proposition 2.1 (1) For any 0 < � � 1 and � 2 Lp, p 2 (1;1℄,j��(�)j � ��1=p�Z �0 jZ(x; �)jpdx�1=p :(2) For any 0 < � � 1 and � 2 Lp, p 2 (1;1℄, with RR x�(dx) = 0,j��(�)j � (1� �)1�1=p� �Z 10 jZ(x; �)jpdx�1=p :4



Proof. For 0 < � � 1, we havej��(�)j = 1� ����Z �0 Z(x; �)dx���� � 1��1�1=p�Z �0 jZ(x; �)jpdx�1=p :Also, if RR x�(dx) = 0,j��(�)j = 1� ����Z 1� Z(x; �)dx���� � (1� �)1�1=p� �Z 10 jZ(x; �)jpdx�1=p :Hen
e we get the result.Corollary 2.2 For any � 2 Lp, p 2 (1;1℄, with RR x�(dx) = 0,j�m(�)j � �p(m)�ZR jxjp�(dx)�1=p :Corollary 2.3 If � 2 Lp, p 2 (1;1℄, then �1=p��(�) is 
ontinuous on � 2 [0; 1℄, and�1=p��(�)! 0; �! 0:Proposition 2.4 For any X1; X2 2 Lp, p � 1,j�m(X1)� �m(X2)j � (1 + 2�p(m))E [jX1 �X2jp℄1=p :Proof. From (3) of De�nition 1.1 and Corollary 2.2,�m(X1)� �m(X2) � j � �m(X2 �X1) + E[X2 �X1℄j+ jE[jX2 �X1j℄j� �p(m)E[jX2 �X1 � E[X2 �X1℄jp℄1=p + E[jX2 �X1jp℄1=p� (1 + 2�p(m))E[jX1 �X2jp℄1=p:From the symmetry, we have our assertion.Proposition 2.5 Let �; � 2 L. Then for any �, � 2 [0; 1℄, we haveZ �0 Z(x;�� + (1� �)�)dx= inf �� Z �0 Z(x; �)dx+ (1� �) Z 
0 Z(x;�)dx; �; 
 2 [0; 1℄; �� + (1� �)
 = �� :
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Proof. Let X be a random variable de�ned on [0; 1) su
h that for � 2 (0; 1),X = Z ���1x; �� 1[0;�)(x) + Z �(1� �)�1(x� �);�� 1[�;1)(x); x 2 [0; 1):Then the distribution law of X under Lebesgue measure is �� + (1� �)�. Note thatZ �0 Z(x;�� + (1� �)�)dx = inf�ZAX(x)dx;A 2 B([0; 1)); ZA dx = ��= inf �Z a0 Z �x� ; �� dx + Z �+b� Z �x� �1� � ;�� dx; a 2 [0; �); b 2 [0; 1� �); a+ b = �� :This implies our assertion.Corollary 2.6 �; � 2 L. Then for any � 2 [0; 1℄ and 0 � a � b � 1, we haveF (�� + (1� �)�; a; b)= inf �� Z �0 Z(x; �)dx + (1� �) Z 
0 Z(x;�)dx; �; 
 2 [0; 1℄; �� + (1� �)
 2 [a; b℄� :We also show the Lips
hitz property of �Ih de�ned on (1.5).Proposition 2.7 Let I 2 I. For any ~x = fxJ ; J 2 Ig and ~y = fyJ ; J 2 Ig,j�Ih(~x;m)� �Ih(~y;m)j � 2�I �Z 10 (�Ih _ �)�1m(d�)�maxJ�I jxJ � yJ j:Proof. Sin
e Z(x; � + k) = Z(x; �) + k; k 2 R;we have F (� + k1; a; b) = inf
 �Z 
0 (Z(x; � + k2) + k1 � k2) dx; a � 
 � b�� F (� + k2; a; b) + bjk1 � k2j; k1; k2 2 R:Then, we get jF (� + k1; a; b)� F (� + k2; a; b)j � bjk1 � k2j; k1; k2 2 R:Thus j�Ih(~x;m)� �Ih(~y;m)j� �I Z 10 1� � ��Ih ^ 1� ����� Xj2I �jxInfjg�I � xI!� Xj2I �jyInfjg�I � yI!�����m(d�)� �I Z 10 ��Ih _ ���1�maxi2I ��xInfig � yInfig��+ jxI � yI j� :This 
ompletes the proof.Corollary 2.8 If Assumptions (A-1) and (A-2) hold, then(1) j�I(~x;m)� �I(~y;m)j � 2�IC�maxJ�I jxJ � yJ j(2) �IT=N (~x;mN) 
onverges to �I(~x) uniformly on 
ompa
t sets as N !1.6



3 Proof of Theorem 1.2Next, we spe
ify the transition of reserves in N -period model. We de�ne �n = �(n;N;m),the reserve at time tn = tNn = tn=N in N -period model, as�n = �(n;N;m) = Z(n;N;m)�XLtn ; n = 0; 1; : : : ; N � 1where Z(n;N;m) is de�ned asZ(N ;N;m) = XLT ;Z(n� 1;N;m) = �m �Z(n;N;m)jFtn�1� ; n = N � 1; N � 2; : : : ; 1:(3.1)Let Jn = fi; �i > tng. Re
all that h = TN .Proposition 3.1 (1) Let�k(A) = P (qk(�k � tn) 2 Ajtn < �k � tn+1) :Then �k(A) = ZA 1(0;qkh℄ �ke��kxqk1� e��khdx; for any Borel set A:(2) Let P (I; J) = P (Jn+1 = J jJn = I); J � I:Then P (I; J) = Yk2InJ �1� e��kh�Yj2J e��jh:(3) Furthermore, the following equation holds.P (fDi 2 Aig \ fqi(�i � tn) 2 Big; i 2 I n J; Jn+1 = J; Jn = IjFtn)= 1fJn=Ig Yi2InJ �i(Ai)�i(Bi)P (I; J):Proof. (1) Sin
e �k is exponentially distributed with a parameter �k, we 
an rewrite �kusing Wk = qk(�k � tn),�k(A) = P (Wk 2 A \ (0; hqk℄)P (Wk 2 (0; hqk℄) = ZA 1(0;qkh℄ �ke��kxqk1� e��khdx:This implies our assertion.(2) Sin
e P (I; J) = P (�k � tn; tn < �i � tn+1; �j > tn+1; k 2 I
; i 2 I n J; j 2 J)P (�k � tn; tn < �i; k 2 I
; i 2 I)where I
 = L n I. Sin
e �i, i 2 L, are independently exponentially distributed, we have ourassertion.
7



(3) Sin
e Di and �i, i 2 L, are mutually independent and �i are exponentially distributed,we haveP (fDi 2 Aig \ fqi(�i � tn) 2 Big; i 2 I n J; Jn+1 = J; Jn = IjFtn)= P \i2InJ (fDi 2 Aig \ fWi 2 Big \ ftn < �i � tn+1g)\  \k2I
 �k � tn! \ \j2J �j > tn+1!�����Ftn!= 1fJn=Ig Yi2InJ (P (Di 2 AijFtn)P (Wi 2 Bi; 0 < Wi � hqijFtn))Yj2J P (�j > tn+1jFtn)= 1fJn=Ig Yi2InJ �i(Ai) ZBi 1(0;qkh℄�ie��ixqk dxYj2J e��jh= 1fJn=Ig Yi2InJ �i(Ai)�i(Bi)P (I; J):This 
ompletes the proof.Then the following lemma holds.Lemma 3.2 Let �n(I) = �n(I;N;m) : I ! R be determined by the following system of there
ursive formula.�0(I) = 0; I 2 I�n(;) = 0; n = 1; 2; : : : ; N � 1�n+1(I) = �m0�XJ�I P (I; J)0� Yk2InJ�(�k � �k) +Xj2J qjh + �n(J)1A1A(3.2)where Q� and � stand for the 
onvolution. Then we have(3.3) �n =XI2I 1fJn=Ig�N�n(I):Proof. Note that �n1fJn=Ig = �m �(XItn+1 �XItn + �n+1)1fJn=IgjFtn� :Sin
e �N = 0, the equation (3.3) holds when n = N . Assume that the equation holds whenn = k. Then, in the 
ase of n = k � 1,�k�11fJk�1=Ig =�m((XItk �XItk�1 + �k)1fJk�1=IgjFtk�1)=�m  XItk �XItk�1 +XJ�I �N�k(J)1fJk=Jg! 1fJk�1=Ig�����Ftk�1!=�m XJ�I(XItk �XItk�1 + �N�k(J))1fJk�1=I;Jk=Jg�����Ftk�1! :8



However, from Proposition 3.1, for any Borel set A with A � R n f0g,P  XJ�I(XItk �XItk�1 + �N�k(J))1fJk=J;Jk�1=Ig 2 A�����Ftk�1!=XJ�I P �(XItk �XItk�1 + �N�k(J)1fJk=J;Jk�1=Ig) 2 AjFtk�1�=XJ�I0� Yk2InJ�(�k � �k) + hXj2J qj + �N�k(J)1A (A)P (I; J):Thus, it is also true for any Borel set A. Then we have�k�11fJk�1=Ig = �m0�XJ�I P (I; J)0� Yk2InJ�(�k � �k) + hXj2J pj + �N�k(J)1A1A= �N�k+1(I):Hen
e we have our assertion.Now �x an I 2 I until the end of this se
tion. Using �n(I) de�ned above, we will provethe following lemma.Lemma 3.3 Assume �i 2 Li, i 2 I and let ~�n = f�n(J); J 2 Ig. Then,����n+1(I)� �n(I)� h�Ih(~�n;m)��� � �C1 + C2maxJ�I j�n(J)j�h2=p;whereC1 = (1 + 2�p(m)) (�L)2=p`(1 + 2`+2) Xk2L�Z jxjp�k(dx)�1=p + qLh!+ (qL)2!and C2 = 2 (1 + 2�p(m)) �(�L)2=p`(1 + 2`+2)� :In order to prove the lemma, we prepare for the following. Let (
0;F0; P0) and (
1;F1; P1)be non-atomi
, standard probability spa
es and let 
 = 
0 � 
1, F = F0 
 F1, andP = P0 
 P1. Note that P (I; I) = e��Ih � 1� �Ih;and P (I; I n fig) = �1� e��ih� Yj2InfIg e��jh � �1� e��ih� � �ih:On 
0, we take disjoint subsets AJ , J � I, where P0(AJ) = P (I; J). Also, be
ause ofthe note above, we 
an de�ne disjoint subsets Bi, i 2 f0g [ I, su
h thatP0(B0) = 1� �Ih; B0 � AIP0(Bi) = �ih; Bi � AInfig; i 2 I:9



On 
1, we take independent random variables ~Ui and ~Vi, i 2 I, su
h that the probabilitydistribution of ~Ui and ~Vi are �i+ �n(I n fig)� �n(I) and �i� qih, respe
tively. Let UInfig =~Ui + ~Vi. Also we take random variables UJ for J � I with ℄(I n J) � 2 su
h that thedistribution law is Yk2InJ�(�k � �k � qkh) + �n(J)� �n(I):Also let UI = 0. Then we see thatmaxJ�I E [jUJ jp℄1=p _maxi2I E hj ~Uijpi1=p �Xk2L �Z jxjp�k(dx)�1=p + qLh + 2maxJ�I j�n(J)j:Using these notations, we de�ne two random variables W and ~W on 
0 � 
1 asW (!0; !1) =XJ�I 1AJ (!0)UJ(!1);~W (!0; !1) =Xi2I 1Bi(!0) ~Ui(!1) + 1B0(!0) � 0:Then the next proposition holds.Proposition 3.4 Assume that there exists p > 1 su
h that �k 2 Lp for k 2 I. Let W and~W as above. Then(3.4) ����m(W )� �m( ~W )��� � �C1 + C2maxJ�I j�n(J)j�h2=pProof. Sin
e���W � ~W ��� �Xi2I �1BinAInfig � 2maxJ�I jUJ j+ 1AInfigqih�+ 1AInB0 �maxi2I j ~Uij;we get


W � ~W


Lp �Xi2I  2P (Bi n AInfig)1=pXJ�I E [jUJ jp℄1=p + P (AInfig)1=pqih!+ P (AI nB0)1=pXi2I E hj ~Uijpi1=p :Also we have P (AI nB0) = e��Ih � 1 + �Ih � (�Ih)2and P (Bi n AInfig) = �ih� (1� e��ih) Yj2Infig e��jh � �ih + e��Ih 1Xm=1 (��ih)mm!� �ih(1� e��Ih) + (�ih)2e��ihe��Ih � 2(�Ih)2:Thus, 


W � ~W


Lp � �4`(�L)2=p2`E [jUJ jp℄1=p + (qL)2 + (�L)2=p`E hj ~Uijpi1=p� h2=pand using Proposition 2.4, we get the result.10



Proposition 3.5 For W and ~W above, the following hold.(1) �m(W ) = �n+1(I)� �n(I)� hqI(2) �m( ~W ) = h�Ih(~�n;m)� hqIProof. (1) We get by de�nition�m(W ) = �m0�XJ�I P (I; J)0� Yk2InJ�(�k � �k � qkh) + �n(J)� �n(I)1A1A= �m0�XJ�I P (I; J)0� Yk2InJ�(�k � �k � qkh) + hqI + �n(J)1A1A� �n(I)� hqI= �n+1(I)� �n(I)� hqI :(2) Using the equation (1.4), � ~W , the distribution law of ~W , 
an be written as �Ih(�I(~�n)��n(I)) + (1� �Ih)Æ0 where Æ0 is a probability measure su
h that Æ0(f0g) = 1. Then, usingthe proposition 2.5, we getZ �0 Z(x;� ~W )dx= inf��Ih Z �0 Z(x; �I(~�n)� �n(I))dx; �; 
 2 [0; 1℄; �Ih� + (1� �Ih)
 = ��= inf��Ih Z �0 Z(x; �I(~�n)� �n(I))dx; � 2 [0; 1℄; 1� 1� ��Ih � � � ��Ih� := �IhF ��I(~�n)� �n(I); 0 _ �1� 1� ��Ih � ; ��Ih ^ 1� :Thus, �m( ~W ) = �Ih Z 10 1�F ��I(~�n)� �n(I); 0 _ �1� 1� ��Ih � ; ��Ih ^ 1�m(d�):Using the de�nition of �Ih on the equation (1.5), we 
omplete the proof.Then simply by substituting the equations in Proposition 3.5 for the equation (3.4), we
omplete the proof of Lemma 3.3.Finally we need the following proposition in order to 
omplete the proof of Lemma 3.3.Proposition 3.6 Assume that Assumptions (A-1), (A-2) and (A-3) hold. Let x(t; I) bethe solution of the system of equations (1.6) with initial 
onditions (1.7) and�In = maxJ�I ���n(J ;N;mN)� x �tNn ; J��� ;for I � L, where tNn = nT=N . Then,max1�n�N �In ! 0; N !1:11



Proof. By examining the di�eren
e between �(I) and x(�; I), we get,����n+1 �I;N;mN�� x �tNn+1; I� ���� �����n+1(I)� �n(I)� TN�IT=N (~�n)����+ ����x �tNn+1; I�� x �tNn ; I�� TN �I �~x �tNn ������+ ���n(I)� x �tNn ; I���+ TN �����IT=N (~�n)� �IT=N (~x �tNn �)���+ ���IT=N (~x �tNn �)� �I(~x �tNn �)���� �C1 + C2�maxJ�I ���n(J)� x �tNn ; J���+maxJ�I ��x �tNn ; J������ TN�2=p+ TN max0�s�T=N ���I �~x �tNn + s��� �I �~x �tNn ����+ ���n(I)� x �tNn ; I���+ TN ���IT=N(~x �tNn �)� �I(~x �tNn �)��+ 2T�LN �Z 10 (�IT=N _ �)�1mN (d�)�maxJ�I ���n(J)� x �tNn ; J��� :LetrN =0�C1 + C2 maxJ�I0�n�N ��x �tNn ; J���1A� TN�2=p
+0� max0�s�T=N0�n�N ���I �~x �tNn + s��� �I �~x �tNn ����+ ���IT=N (~x(tNn ))� �I(~x(tNn ))��1A TNand C = C2� TN�2=p + 2�L Z 10 (�Ih _ �)�1mN (d�):Then we get �In+1 � �1 + CTN � �In + rN�1 + CTN ��(n+1) �In+1 � �1 + CTN ��n �In + rNSin
e �0 = 0 and limN!1NrN = 0;we get by (2) of Corollary 2.8 e�CT max1�n�N �In � N�1Xn=0 rN ! 0:This 
ompletes the proof.Then we are ready to prove Theorem 1.2. We will prove more generalized one.12



Theorem 3.7 Assume that (A-1), (A-2) and (A-3) hold. Let x(t; I) be the solution of thesystem of equations (1.6) with initial 
onditions (1.7) andn(t; N) = �tNT � ; 0 � t � T:Then �n(t;N) !XI2I 1fJt=Igx(T � t; I); N " 1:In parti
ular, �0 = �mN (XT jfFtngNn=0)! x(T; L) N " 1:Proof. From Proposition 3.6, the di�eren
e between �(I) and x(�; I) goes to zero as N !1and �n(t;N) =XI2I 1fJn(t;N)=Ig�N�n(t;N)(I)!XI2I 1fJt=Igx(T � t; I):This proves our assertion.
4 Some properties of x(t; I)In this se
tion, we introdu
e some properties of x(t; I).Proposition 4.1 For any I, I1, and I2 � L su
h that I = I1 [ I2 and that I1 \ I2 = ; andfor any t, x(t; I) � x(t; I1) + x(t; I2).Proof. First we will prove �n(I) � �n(I1)+�n(I2). It is true when n = 0 from the de�nition.Assume that the inequation holds when n = k for any I � L. Then,XJ�I �XItN�k �XItN�k�1 + �k(J)� 1fJN�k�1=I;JN�k=Jg�XJ�I �XI1tN�k �XI1tN�k�1 +XI2tN�k �XI2tN�k�1 + �k(J \ I1) + �k(J \ I2)� 1fJN�k�1=I;JN�k=Jg=XJ�I �XI1tN�k �XI1tN�k�1 + �k(J \ I1)� 1fJN�k�1=I;JN�k=Jg+XJ�I �XI2tN�k �XI2tN�k�1 + �k(J \ I2)� 1fJN�k�1=I;JN�k=Jg:Note that for any J1 � I1,E " XJ2I;J\I1=J1 1fJN�k�1=I;JN�k=Jg�����FtN�k�1# = E �1fJN�k�1=I1;1N�k=J1g��FtN�k�1� :Thus,�m XJ�I �XI1tN�k �XI1tN�k�1 + �k(J \ I1)� 1fJN�k�1=I;JN�k=Jg�����FtN�k�1!= �m XJ1�I1 �XI1tN�k �XI1tN�k�1 + �k(J1)� 1fJN�k�1=I1;JN�k=J1g�����FtN�k�1! = �k+1(I1):13



Using the equations shown on Lemma 3.2, we get�k+1(I) � �k+1(I1) + �k+1(I2):Thus from Proposition 3.6, we have our assertion.Proposition 4.2 If �i((�1; 0℄) = 1 and qi � 0 for any i 2 L, then following propertieshold.(1) x(t; I) � qIt for any I � L and t.(2) x(t; I1) � x(t; I2) + qI1nI2t for any I2 � I1 � L and t.Proof. (1) We will prove that �n(I) � qInh. When n = 0, it is obvious. Assume that whenn = k, the inequation holds; i.e., �k(I) � qIkh. Then sin
e �i((�1; 0℄) = 1, we haveXItN�k �XItN�k�1 + �k(J) � qIh+ qIkh = qI(k + 1)hfor any J � I. Thus, �k+1(I) � �m(qI(k + 1)h) = qI(k + 1)h:It 
ompletes the proof.(2) Again, we will prove that �n(I1) � �n(I2) + qI1nI2nh. When n = 0, it is obvious,Assume that when n = k, the inequation holds. Then,XI1tN�k �XI1tN�k�1 + �k(J) � XI2tN�k �XI2tN�k�1 + qI1nI2h+ �k(J \ I2) + qJn(J\I2)kh� XI2tN�k �XI2tN�k�1 + qI1nI2(k + 1)hfor any J � I1. It implies our assertion as in (1).
5 ExampleIn this se
tion we spe
ify mN in order to examine the model in detail.5.1 Example of the measure mNWe only fo
us on the N -period model with N > 2�LT in this se
tion. We express measuremN by fun
tions gN : [0;1) ! R+, hN : [0; 1℄ ! R+, and fN : [0;1) ! R+ dependingon the partition size N as follows for s
rutinizing the e�e
t of the tail;(5.1) mN(d�) = �gN (N�) + hN(�) + fN (N(1� �))� d�:We impose the following assumptions on the fun
tions gN , hN and fN .(B-1) gN(u) = fN(u) = 0 for u 2 [N=2;1).(B-2) 1N Z 10 gN(u)du+ Z 10 hN (u)du+ 1N Z 10 fN(u)du = 1.14



(B-3) lim�!0 supN Z �0 hN(�)� d� = 0; lim�!0 supN Z 11�� hN(�)� d� = 0:(B-4) supN Z 10 hN (�)� d� <1 and Z 10 hN (�)� d�! Ch 2 R+ as N !1.(B-5) (N � u)�1fN(u)du 
onverges weakly to mf (du) as N ! 1, i.e., for any boundedfun
tion k(u) : [0;1)! R, k(u)(N � u)�1fN(u)du! k(u)mf(du).(B-6) supN Z 10 gN(u)du <1.(B-7) There exists p 2 (1; 2) satisfying that �i 2 Lp, i 2 L, and that u�1=pgN(u)du
onverges weakly to mg(du) as N !1.Note that Assumption (B-2) guarantees for mN to be probability distribution.Then, under the assumptions above, we will prove the following propositions.Proposition 5.1 If mN above satis�es Assumptions (B-1) - (B-7), then,supN Z 10 (�ITN�1 _ �)�1mN (d�) <1:Proof. Note that �IT=N < 1=2. We getZ 10 � N�IT ^ 1��mN (d�) � Z 10 NgN(N�)�IT d�+ Z 10 hN(�)� d�+ Z 11=2 fN (N(1� �))� d�� Z 10 gN(u)�IT du+ Z 10 hN(�)� d�+ 2N Z 10 fN(u)du:Then, by (B-6), (B-4) and (B-2), we 
omplete the proof.Proposition 5.2 If mN above satis�es Assumptions (B-1) - (B-7). Then, for p 2 (1; 2)on Assumption (B-7), we have supN �p(mN ) <1:Proof. Sin
e�p(mN ) � Z 1=20 gN(N�)�1=p d� + Z 10 hN(�)�1=p d� + Z 11=2 (1� �)1�1=p� fN (N(1� �)) d�� N1=p�1 Z 10 gN(u)u1=p du+ Z 10 hN (�)�1=p d� +N1=p�1 Z N=20 u1�1=pN � ufN(u)du� N1=p�1 Z 10 gN(u)u1=p du+ Z 10 hN (�)� d� + Z 10 fN(u)N � udu;by (B-7), (B-4) and (B-5), we 
omplete the proof.15



Proposition 5.3 Under Assumption (B-4), we get����Z 10 �F (�I � xI ; 0; 1)� F ��I(~x)� xI ; 0 _ �1� N(1� �)�IT � ; 1 ^ N��IT �� hN(�)� d�����! 0;as N !1.Proof. We get����Z 10 �F (�I � xI ; 0; 1)� F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1 ^ N��IT �� hN (�)� d������ Z �IT=N0 ����F (�I � xI ; 0; 1)� F ��I � xI ; 0; 1 ^ N��IT ����� hN (�)� d�+ Z 11��IT=N ����F (�I � xI ; 0; 1)� F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1����� hN(�)� d�� ���F (�I � xI ; 0; 1)��+ ��F (xI � �I ; 0; 1)��� Z �IT=N0 hN(�)� d�+ Z 11��IT=N hN (�)� d�! :This proves our assertion.Then using the proposition, we get the following.Proposition 5.4 Assume that (B-1) - (B-7) hold. Also let�I(~x) = �I Z 10 F ��I(~x)� xI ; 0; 1 ^ u�IT � ~mg(du) + F (�I(~x� xI ; 0; 1)Ch+ Z 10 F ��I(~x)� xI ; 0 _ �1� u�IT � ; 1�mf (du)!+ qI ;(5.2)where ~mg(du) = u1=p�1mg(du). Then �IT=N (~x;mN ) 
onverges to �I(~x) uniformly on 
om-pa
t as N !1.Proof. From the de�nition of �IT=N , we get�IT=N (~x)� qI�I = Z 10 1�F ��I � xI ; 0; 1 ^ N��IT � gN(N�)d�+ Z 10 1�F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1 ^ N��IT � hN (�)d�+ Z 10 1�F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1� fN(N(1� �))d�= Z 10 F ��I � xI ; 0; u�IT ^ 1� gN(u)u du+ Z 10 F ��I � xI ; 0 _ �1� N(1� �)�IT � ; 1 ^ N��IT � hN(�)� d�+ Z 10 F ��I � xI ; 0 _ �1� u�IT � ; 1� fN(u)N � udu:16



For u � �IT ,u1=pu F ��I � xI ; 0; 1 ^ u�IT � = 1(�IT )1�1=p � u�IT �1=p �u=�IT (�I � xI);and for u > �IT , the left hand side of the equation above is equal to u1=p�1E[(DI�xI)^0℄,whi
h is bounded. Thus, from Assumption (B-7) and Corollary 2.3, we getF ��I � xI ; 0; 1 ^ u�IT � gN(u)u du! u1=p�1F ��I � xI ; 0; 1 ^ u�IT �mg(du); N !1Also, using the boundedness of F (�I � xI ; 0 _ (1� u=�IT ); 1) and the proposition above,we 
omplete the proof.From Propositions 5.1, 5.2, and 5.4, we see that Assumptions (A-2), (A-3) and (A-1)hold under Assumptions (B-1) - (B-7).5.2 Homogeneous Colle
tive RiskIn this subse
tion, we fo
us on the homogeneous 
olle
tive risk pro
ess, i.e., �i = �, �i = �and qi = q. In this 
ase it is obvious that xJ1 = xJ2 and �J1(~x) = �J2(~x) if ℄(J1) = ℄(J2).Thus we use the following notations in this subse
tion.x(n)(t) = x(t; I); ℄(I) = n; n = 0; 1; 2; : : :~x(n)(t) = x(n)(t)n�x(n)(t) = x(n)(t)� x(n�1)(t)�(n)(y) = n� Z 10 F �� + y; 0; 1 ^ u�nT � ~mg(du) + F (� + y; 0; 1)Ch+ Z 10 F �� + y; 0 _ �1� u�nT � ; 1�mf(du)!+ nq~�(n)(y) = �(n)(y)n :Then, the equation (1.6) 
an be rewritten asd~x(n)(t)dt = ~�(n) ���x(n)(t)� :Also, we assume �((�1; 0℄) = 1.What we want to show in this subse
tion is where ~x(n)(t) 
onverges as n ! 1. First,we show some properties of x(n)(t).Proposition 5.5(1) x(1)(t) � x(n+1)(t)� x(n)(t) � qt.(2) ��~x(n)(t)�� � Ct for a C > 0.(3) ~x(n)(t) 
onverges as n!1. 17



Proof. (1) This is a simple out
ome from Propositions 4.1 and 4.2.(2) From (1), we get nx(1)(t) � x(n)(t) � nqtand from the shape of the di�erential equation of x(1)(t), we 
an get��(1)(0)� q� t � x(1)(t):Thus, by setting C = maxf���(1)(0)� q�� ; qg, we get the result.(3) We will prove that supn ~x(n)(t) � lim infn ~x(n)(t). We 
an �nd a subsequen
e fNkg � N,k = 1; 2; ::: su
h that ~x(Nk)(t)! lim infn ~x(n)(t), k !1. For any n 2 N, let an(k) = [Nk=n℄and bn(k) = Nk � n[Nk=n℄. Then, we getx(Nk)(t) = x(an(k)n+bn(k))(t) � an(k)x(n)(t) + x(bn(k))(t);~x(Nk)(t) � an(k)Nk x(n)(t) + x(bn(k))(t)Nk :Sin
e an(k)Nk ! 1n;����x(bn(k))(t)Nk ���� � max0�m�n ��x(m)(t)��Nk ! 0when k!1, we get lim infk!1 ~x(Nk)(t) � ~x(n)(t):It 
ompletes the proof.Proposition 5.6 For any m, n 2 N su
h that m � n,~�(m)(y) � ~�(n)(y):Proof. Sin
e for any u 2 [0;1),F �� + y; 0; 1 ^ u�mT � � F �� + y; 0; 1 ^ u�nT �and F �� + y; 0 _ �1� u�mT � ; 1� � F �� + y; 0 _ �1� u�nT � ; 1� ;we have our assertion.Proposition 5.7 There exists a C > 0 su
h that for any m, n 2 N,���~�(m)(y)� ~�(n)(y)��� � C ���� 1n � 1m ���� :
18



Proof. Assume m > n. Sin
e����Z 10 �F �� + y; 0; 1 ^ u�Tn�� F �� + y; 0; 1 ^ u�Tm�� ~mg(du)����= ����Z �Tm0 �F �� + y; 0; 1 ^ u�Tn�� F �� + y; 0; 1 ^ u�Tm�� ~mg(du)����� Z �Tm0 ���F �� + y; 0; 1 ^ u�Tn�� F �� + y; 0; 1 ^ u�Tm���� ~mg(du)� Z �Tm0  Z u�Tn^1u�Tm (jyj � Z(x; �))dx! ~mg(du)� � 1n � 1m� 1�T Z �Tm0 u�jyj � Z � u�Tm ; ��� ~mg(du)� � 1n � 1m� 1�T Z 10 u�jyj � F ��; 0; 1 ^ u�Tm�� ~mg(du)� � 1n � 1m� 1�T (jyj � �1(�)) Z 10 u1=pmg(du)and sin
e����Z 10 �F �� + y; 0 _ �1� u�Tn� ; 1�� F �� + y; 0 _ �1� u�Tm� ; 1��mf (du)����� Z �Tn0  Z 1� u�Tm(1� u�Tn)_0 (jyj � jZ(x; �)j) dx!mf(du)� � 1n � 1m� jyj�T Z �Tn0 umf (du) � � 1n � 1m� jyj�T Z 10 umf(du);by setting C asC = 1�T �(jyj � �1(�)) Z 10 u1=pmg(du) + jyj Z 10 umf(du)� ;we 
omplete the proof.Sin
e, Z 10 F �� + y; 0; 1 ^ u�nT � ~mg(du)! 0and F �� + y; 0; 1 _ �1� u�nT ��! �1(�) + ywhen n goes to in�nity, we getlimn!1 ~�(n)(y) = ��F (� + y; 0; 1)Ch + (�1(�) + y)Z 10 mf (du)�+ q � ~�(1)(y):Proposition 5.8 Z ts ~�(1) ��~x(1)(u)�du � ~x(1)(t)� ~x(1)(s)19



Proof. Sin
e for m < n, we have~�(m) ��x(n)(t)n � = ~�(m) � 1n nXk=1 �x(k)(t)� x(k�1)(t)�!� 1n nXk=1 ~�(m) �� �x(k)(t)� x(k�1)(t)��� 1n nXk=1 ~�(k) �� �x(k)(t)� x(k�1)(t)�� :By integrating both sides, we haveZ ts ~�(m) ��x(n)(u)n � du � 1n nXk=1 �� �~x(k)(t)� ~x(k)(s)�� :Thus, by in
reasing m and n to in�nity, we get the result.Proposition 5.9 Let y(t) be the solution of the following di�erential equations.dy(t)dt = ~�(1) (�y(t))y(0) = 0:(5.3)Then, for any n 2 N and t � 0, y(t) � ~x(n)(t):Proof. Let y(�)(t) be the solution of the following di�erential equations.dy(�)(t)dt = ~�(1) ��y(�)(t)�+ �y(�)(0) = �:Suppose there exists t > 0 su
h that y(�)(t) < ~x(1)(t). Then, from Proposition 5.5, we
an 
hoose � = infft > 0; y(�)(t) < ~x(1)(t)g, then for any s 2 [0; �), y(�)(s) > ~x(1)(s) andy(�)(�) � ~x(1)(�). Then, sin
eZ �s �~�(1) ��y(�)(t)�+ �� dt = y(�)(�)�y(�)(s) < ~x(1)(�)�~x(1)(s) � Z �s ~�(1) ��~x(1)(u)� du;we get 1� � s Z �s �~�(1) ��y(�)(t)�+ �� dt < 1� � s Z �s ~�(1) ��~x(1)(t)� dt:But this is 
ontradi
tion to the assumption when s " � . Thus for any t > 0, y(�)(t) > ~x(n)(t).Then taking � to zero 
ompletes the proof.
20



Proposition 5.10 For a Æ 2 (0; 1℄, let z(t) = z(t; Æ) be the solution of the followingdi�erential equations. dz(t)dt = ~�(1) (�z(t)) � Æz(0) = 0Then, for any n 2 N and t � 0, z(t; 0) � ~x(1)(t):Proof. Let's take a k 2 N large enough to satisfy C � k, where C satis�es~�(1)(x)� Cn �~�(n)(x) � ~�(1)(x)��~x(k)(t)�� � Ctjz(t)j � Ctand let Æ = C=k. We 
an 
hoose su
h C be
ause of Propositions 5.5 and 5.7. Also, letwn(t) = nz(t)� 2Ckt:Then we have dwn+1(t)dt = (n + 1)dz(t)dt � 2Ck= (n + t)�~�(1)(�z(t))� Æ�� 2Ck= (n + t)�~�(1)(wn(t)� wn+1(t))� Æ�� 2Ckand wk(t) � �Ckt � x(k)(t):What we want to prove here is for n � k, wn(t) � x(n)(t), 0 � t � T . When n = k, it istrue from the inequation above. Assume it is true for n. Then, let v(t) be asdv(t)dt = (n+ 1)�~�(1)(wn(t)� v(t))� Æ�� 2Ckv(0) = ��for a � > 0, and we want to show a 
laim v(t) � x(n+1)(t). If this 
laim is not true, theirexists a posivive value � = infft : v(t) > x(n+1)(t)g < T . Then,ddtv(t)����t=� = (n+ 1)�~�(1) (wn(�)� v(�))� Æ�� 2Ck� (n+ 1)�~�(1) �x(n)(�)� x(n+1)(�)�� Ck �� 2Ck� (n+ 1)�~�(1) �x(n)(�)� x(n+1)(�)�� Cn+ 1�� 2Ck� (n+ 1)�~�(n+1) �x(n)(�)� x(n+1)(�)��� 2Ck< ddtx(n+1)(t)����t=� : 21



Thus, there exists a Æ0 > 0 su
h that for any t 2 [�; � + Æ0℄,dv(t)dt < dx(n+1)(t)dt ;so, v(t) = v(�) + Z t� dv(s)ds ds � x(n+1)(�) Z t� dx(n+1)(s)ds ds = x(n+1)(t)but it is 
ontradi
tion. Thus, v(t) � x(n+1)(t) for any t 2 [0; T ℄ and by � ! 0, we havev(t) ! wn+1(t). Hen
e we get wn+1(t) � x(n+1)(t) and by indu
tion, it is true for any n.Thus, nz(t) � 2Ckt � x(n)(t)z(t)� 2Cktn � ~x(n)(t)and by n!1, we have z(t; Æ) � ~x(1)(t). Finally, by k !1, we get z(t; 0) � ~x(1)(t). It
ompletes the proof.From Propositions above, ~x(n)(t)! y(t) de�ned on Equation (5.3) as n!1.5.3 Numeri
al ExamplesIn this subse
tion, we will show some numeri
al results with 
on
rete assumptions in the
ase of homogeneous 
olle
tive risk pro
ess. Assume that D has a following distributionwith a parameter � 2 (0; 1℄;(5.4) P (D < u) � ��((�1; u)) = �1� �u1� ���1=� ; u 2 [�1; 0℄:This is a version of generalized Pareto distribution with E[D℄ = �1 for any �.Proposition 5.11 Some properties of �� are as follows.(1) �� 2 L1=�(2) Z(u; ��) = 1� �� �1� u���(3) ��(��) = 1� � � ����We also spe
ify the gN , hN and fN in equation (5.1) as follows.gN(y) = wge�yy�ag1[0;N=2℄; wg � 0; ag 2 (0; 1)hN(y) = wNh �� (2y � 1)2ah + 1� ; wh > 0; ah 2 NfN(y) = wfe�af y(N � y)1[0;N=2℄; wf � 0; af � 0:In order to satisfy the assumption (B-2), wNh should satisty the following equation (weassume that wg and wf are 
onstant for any N).wgN �(1� ag; 0; N=2) + 2ahwNh2ah + 1 + wfaf �1� 1� e�ahN=2Naf � e�ahN=22 � = 1;22



where �(z; a; b) = Z ba tz�1e�tdt:Thus, we get wh = limN!1wNh = 2ah + 12ah �1� wfaf � ;Note that wf < af should be held. In this spe
i�
ation, wf determines the "severeness"of the risk measure. When wf is larger, then mN has more weight on the neighborhood of1, meaning that the expe
ted value (�1) is more weighted. On the other hand, when wf issmaller, then CTEs with low � are more highly taken into 
al
ulation.Using the spe
i�
ation, we 
an 
al
ulate the value measure. First, we 
an get Ch asfollows.Ch = limN!1Z 10 hN (�)� d� = Z 10 wh (�(2y � 1)2ah + 1)y dy = �wh 2ahXi=1 2ahCi(�2)ii :Then,�(n)(y) =n�( wg�nT �1� �� + y�� (1� ag; 0; kg)� wg(�nT )1���� (1� � � ag; 0; kg)� �1 + �y1� ��1�1=� �wgag �k�agg e�kg � �(1� ag : kg;1)�+ Ch + wfe�afkfaf �+ wfaf �1� �� + y��1� e�afkf + kfe�afkf�nT � 1� e�afkf�nTaf �� wf� Z kf0 �1� u�nT �1�� e�afudu)+ nqwhere, kg =n�T �1 + �y1� ���1=� ;kf =n�T  1� �1 + �y1� ���1=�! ;and in the 
ase of y � 0,�(n)(y) =n�( wg�nT �1� �� + y�� (1� ag; 0; �nT )� wg(�nT )1���� (1� � � ag; 0; �nT )� (1� y) wg �(�nT )�age��nT � �(1� ag : �nT;1)�ag + Ch + wfaf !)+ nq:We also get~�(1)(y) = 8><>:����1 + �y1���1�1=� Ch + (�1 + y)wfaf � + q y > 0;�(�1 + y)�Ch + wfaf �+ q y � 0:23



Now we 
an 
al
ulate the transition of the value measure by substituting real numbersfor ea
h parameter. For example, let � = 0:6, � = 0:02 (i.e., the expe
ted loss from aninsuran
e 
ontra
t is 0.02), af = 1, ag = 0:1, ah = 20, wf = 0:4 and wg = 0:05. We show~x(n)(t) with di�erent level of n in Figure 1 in the Appendix. In this 
ase, even in the 
aseof q = 0:05, i.e., insuran
e premium is 2.5 times higher than the expe
ted loss, the valuemeasure is negative. This is be
ause of the shape of mN showing in Figure 2. Figure 3 and4 is the same graphs with wf = 0:8. Sin
e m has more weight on the neighborhood of 1,the value measure be
omes positive.
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Appendix: Figures
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Figure 1: ~x(n)(t) with � = 0:6, � = 0:02, af = 1, ag = 0:1, ah = 20, wf = 0:4 and wg = 0:05
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Figure 2: mN with the same parameters as in Figure 1 and N = 100.25
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Figure 3: ~x(n)(t) with the same parameters as in Figure 1 ex
ept wf = 0:8.
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Figure 4: mN with the same parameters as in Figure 3 and N = 100
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