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Abstract

We formulate homogeneous filtered value measures with Fatou, comonotone, and
law invariant properties under multiperiod ” Poisson-type” collective risk processes as
a system of differential equations. We also derive a limit theorem for homogeneous
filtered value measures under the same processes and calculate some numerical ex-
amples.
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1 Introduction

Artzner et al. [1997] introduced the concept of coherent risk-adjusted value measure (a.k.a.
coherent risk measure), an axiomatic approach to determine an acceptance set of maps from
L> to R supposed to satisfy some coherence requirement for expressing the risk-adjusted
value of the future (random) net worth. The definition is as follows.

Definition 1.1 We say a map ¢ : L™ — R is a coherent value measure, if the following
conditions are satisfied.

(1) If X >0, then ¢(X) > 0.

(2) o(X1+X2) > ¢(X1) + ¢(X2).

(3) for A > 0, we have p(AX) = Ap(X).

(4) for any constant ¢, we have (X + ¢) = ¢(X) + c.

Delbaen [2000] proved that, on general probability spaces, ¢ is a coherent risk measure with
the Fatou property if and only if there is a set of probability measures Q such that any
Q € Q satisfies Q < P and for any X € L*®, ¢(X) = inf{ E?[X];Q € Q}. Furthermore,
Kusuoka [2001] specified the concept as follows. Let £ be the set of probability measures on
R, L,. p € [1,00), be {v € L; [ |z[Pv(dz) < oo}, and Lo = {v € L;v(R\ [-M, M]) =0
for some M > 0}. Also, let M be the set of probability measures on [0,1]. Then he

*The author would like to thank Prof. Kusuoka for the continuous support, effective suggestions and

useful discussions.
tShiroyama JT Trust Tower 31F, 4-3-1, Toranomon, Minato-ku, Tokyo 105-6017, Japan. E-mail:

yuji.morimoto@alum.mit.edu



defined a value measure as a map from £, to R, 1 < p < oo, and proved that n = n™ is
a coherent value measure with law invariant, comonotone and the Fatou property if and
only if there exists m € M| 1) such that

(L1) n() = / na(p)m(da), € Lpp e (1,00,

where 74, usually called Conditional Value at Risk (CVaR), Tail-VaR (TVaR), or Condi-
tional Tail Expectation (CTE), is defined as,

77a(l/)=l/ Z(x;v)de v e Ly
0

«
with Z(x;v) = inf{z; F,(2) > x}. Z(-,v) : [0,1] — R is non-decreasing and right continu-
ous, and the probability law of Z(-, v) under Lebesgue measure on [0, 1] is ». We use 7 as
a function from L” to R as well; n(X) = n(ux) where px denotes the probability measure
of the random variable X € L,.

Coherent value measure was originally designed for determining the risk-adjusted value
(or risk) of financial instruments. On the other hand, actuarial mathematics have been
using a similar approach for determining the insurance premium calculation. It is called the
premium calculation principle; a functional H from the set of insurance risks (non-negative
random variables in L) to [0, oc]. Gerber [1979] introduced five desireble properties and
checked whether traditional risk measures were satisfied with the properties. Wang, et al.
[1997] took an axiomatic approach and proved that H has a Choquet integral representation
if and only if H satisfies some axioms they defined. Kusuoka [2001] showed that the equation
(1.1) can be expressed as the same representation as H. Thus, in this paper, we use the
representation as in the equation (1.1).

Recently, the concept of value measure is being applied in a dynamic framework. For ex-
ample, Artzner et al. [2002] expanded the concept of coherent value measure to an analysis
of multiperiod financial risk. The idea of expansion to dynamic setting is practically useful.
In insurance business, for example, insurers have to keep reserves, the value necessary to
cover the future claims less the future insurance premiums of the existing policies. As in
usual actuarial method, reserves can be represented by recursive formula of the reserves at
next term and cashflows during now and then. This representation is just same as the idea
for multiperiod value measure. We will formulate the idea as follows.

Let (Q,F,P) be a standard probability space and T" € (0,00). For any integrable
random variable X and a sub-o algebra G, we define a G-measurable random variable
n(X|G), which we call conditional value measure, by

n(X|9) =n (P (X € dz|g)).

We partition 7" into N and let h = & and t, = nh, n =0,1,2,..., N. Let {F, })_; be a
filtration and X be an Fr-measurable integrable random variable. Then we can define an
adapted process {Z, = Z(n; N,m)}"_, inductively using 1 defined above by

ZN:X,

1.2
(1.2) Zy-1=n(Za|Ft,.), n=N-1,N-2,...,1



We denote an Fy-measurable random variable Z, by n(X[{F;, }Y_,) and call the map a
filtered value measure.

Next we specify an N-period collective risk process for expressing insurance portfolio
behavior. Let ¢ € N be the number of policies at time zero and L = {1,2,...,/}. We
assume that all contracts start at time zero and will end at time 7. When a claim occurs,
insurer pays the claim amount immediately (no time lag)'. Let 7;, a stopping time, be the

timing of the claim occurrence such that
P(Ti > t) = exp(—)\it), t>0

for \; >0,7€ L and D; : 2 — R, a random variable with distribution function v;, be the
net claim amount at time 7;. Note that D, is negative if net payment from the insurer to
i-th policyholder is positive. We assume that D; and 7;, ¢ € L, are independent and that a
contract would terminate just after the claim occurrence?; i.e., contract term for contract
g is [0, 7; ATY.

We also define insurance premiums. Insurance premium can be collected in various
ways, but in this paper we assume that premium is collected continuously until the contract
terminates. Let ¢; € R be the premium per unit time; i.e., i-th policyholder will pay ¢;(tAT;)
to the insurer until time #. Then X, total cashflow for i-th policy in [0, #] is

th = qi(t A Ti) + Dil{ngt},
and total cashflow for the portfolio in [0, ¢] is
X/ =) X], IcL
icl
We set F; as 0{X!: s < t,i € L}. Then, the value measure for the insurance portfolio can
be expressed as in the equation (1.2) by replacing X into X%. Finally we define the reserve
at time t,, as a difference between Z,, and Xt’;.

Let Z={I:ICL},¢'=>,,qsand XN =%, ;N\ Foranyve Landa e R, v+a
denotes a probability measure on R, given by

(v+a)(A)=v({z € Rjz—a€ A}) for any Borel set A,

and we introduce a function F' from £ to R such that

o
(1.3) F(l/;a,b):inf{/ Z(x;l/)dx;agfygb}, 0<a<b<l.
0

Y

Also, let Z = {x; : I € T},
Sier i (Vi +angy)

(1.4) v =01(%) = 37 ,

and

(1.5) @{L(f'm):ql+)\l/llF vl — 0V 1_1——04 2 A1 m(da).
’ o i Nh )N

Regarding ®7 and m™, N =1,2,..., we assume the following.

'In real situation, there is a time lag between the claim occurrence and actual payment. Also, insurer
may not be able to pay the amount because of the financial difficulty. But we do not take such situations
into consideration in this paper.

2Usually, life insurance contract would terminate when insurance event occurs, while non-life insurance
contract usually does not terminate in the middle of the contract term even though the insurance event
occurs.



(A-1) CIL{F/N (Z;m") converges to a function ®(Z) for any 7 as N — oo.

1
(A-2) sup/ (MTN~v oz)f1 m™ (da) = C* < oc.
0

N

(A-3) There exists p € [1,2) such that v; € £, for any i € L and that

1 _ N\=1/p
sup/ (al/” A %> m™ (da) < o0
N Jo (87

We show later (Corollary 2.8) that under Assumptions (A-1) and (A-2), ® satisfies Lip-
schitz condition. Thus a following system of equations for a value measure defined in
equation (1.1) has a C" solution.

(1.6) L = dN(F(t), 1€1T,

with initial conditions

z(0,1)=0, €T,
(1.7) z(t,0) =0, te(0,T),
where
(1.8) )=o) - T e}

Then our main result is as follows.

Theorem 1.2 Assume that (A-1), (A-2) and (A-3) hold. Let x(t,I) be the solution of the
system of equations (1.6) with initial conditions (1.7). Then

™ (XE{FL ) = (T, I) Ntoo, I€T

2 Preparations

In order to prove Theorem 1.2, we will prepare some estimates. Most of them are cited from
Kusuoka and Morimoto [2004]. We will show proofs since they are simple. For m € Mg

let Ay(m) = /01 (O‘_l/p " w) m(da).

«

Then we have the following.

Proposition 2.1 (1) Forany 0 < a <1 andv € L,, p € (1,00],

/p
Na(V)| < a”1/P </ |Z:1:u7’dx> :

(2) Forany 0 <a <1andv e L,, p € (1,00], with [, zv(dz) =0,

70 (V)] < (=) </01 | Z (x; y)”dm) Up.

«



Proof. For 0 < o < 1, we have

Ma (V)| = é /Ua Z(x;v)dx

Also, if [ av(dz) =0,

)| =3 | [ Zlzvds

IN

W (/01 Z(x; z/)|”dx> 1/,,.

Hence we get the result.

Corollary 2.2 For any v € Ly, p € (1,00, with [ zv(dz) =0,
™ (V)| < Ay(m </|xp1/dx>

Corollary 2.3 Ifv € L,, p € (1,0c], then a*/Pn,(v) is continuous on a € [0,1], and

aPp,(v) =0, a— 0.

Proposition 2.4 For any X,,Xs € LP, p>1,
7" (X1) = (X)) < (1420, (m) B[ Xy = X,[7)/7.
Proof. From (3) of Definition 1.1 and Corollary 2.2,

n"m(X1) —n™(Xa) < | —n"(Xe — X)) + E[Xo — Xi]| + |E[| X2 — Xi]]
< Ay (m)E[| Xy — X1 — E[X; — X4]]P]'? + E[| X5 — Xy [P]'/?
< (1424, (m))E[| X, — X,/7]'/7.

From the symmetry, we have our assertion.

Proposition 2.5 Let v, € L. Then for any A, o € [0, 1], we have
/ Z(x; v+ (1 — N)p)de
0

— inf {)\/f Z(w: v)da+ (1= A) /OVZ(x;u)dx;B,v €10, 1, A8+ (1 - )y = a} |



Proof. Let X be a random variable defined on [0, 1) such that for A € (0, 1),
X=Z(M'z;v)lon@) +Z (1 =Nz = N;p) lpylz), ze0,1).
Then the distribution law of X under Lebesgue measure is Av + (1 — A)u. Note that

/Ua Z(z; A + (1 — \p)dz = inf {/AX(x)dx; s 1)),/Ad~’v ) a}

a A+b —
:inf{/U Z(%;y) dx—i—//\ Z<T_—)\;u> dr;a € [0,)),b € [0,1—)\),a+b:a}.

This implies our assertion.

Corollary 2.6 v, € L. Then for any A € [0,1] and 0 < a < b < 1, we have
F(Av+ (1 =N a,b)

B gl
:inf{)\/o Z(x;l/)dx—i-(l—)\)/o Z(m;u)dw;ﬁ,7€[0,1],)\ﬁ+(1—)\)7€[a,b]}.

We also show the Lipschitz property of ®! defined on (1.5).
Proposition 2.7 Let I € Z. For any © = {x;;J € I} and §={y;; J € T},

1
o) — afgm)] <23 ([ hva) tmida) ) ma oy — .
0

Proof. Since
Z(vsv+k)=Z(x;v)+k, keR,

we have
F(v+ky;a,b) :igf{/v(Z(a:;y+k2)+k1—kg)d:c;agygb}
< F(v +Ok2; a,b) + blky — ko|, ki,ks € R.
Then, we get
F(v+ki;a,b) — F(v+ ko;a,b)| < blky — k|, ki, ke € R.
Thus

@7 (Z;m) — @4 (7, m)]

"1/« AT by ;
T 3N} FY1\{5}
<A /0 <)\1h A 1) ‘ <E N Xy E T yr || m(de)

jel jerI
1
1
< )\1/ ()\Ih v a) (mealx ‘xl\{i} — yl\{i}‘ + |z — y1> .
0 2

This completes the proof.

Corollary 2.8 If Assumptions (A-1) and (A-2) hold, then
(1) [7(F5m) — @ (g m)| < 2M'C" max|z; — y,|

(2) @75 (75;m") converges to ®(Z) uniformly on compact sets as N — oo.



3 Proof of Theorem 1.2

Next, we specify the transition of reserves in N-period model. We define &, = £(n; N, m),
the reserve at time ¢, = t) = tn/N in N-period model, as

& =&myN,m) = Z(n; Nym) — X/, n=0,1,...,.N—1
where Z(n; N, m) is defined as

' Zn—1;N,m)=n"(Z(n;N,m)|F,_,), n=N-1,N-2,...,1.
Let J, = {i;7; > t,}. Recall that h = %
Proposition 3.1 (1) Let

pi(A) = Par(i — tn) € Altn < 71 < tpya) -

Then
_)\km
)\ke Ik
pi(A) = : 1(U,qkh}mdfc: for any Borel set A.
(2) Let
P(I,J)=P(Jy=JJ,=1), JCI.
Then

P, )= ] =) e ™"

kel\J jed
(3) Furthermore, the following equation holds.
P({DZ € Az} N {qz(Tz - tn) € Bl},l el \ J, Jn_|_1 = J, Jn = ]|ftn)
= lyr,=n H vi(Ai)pi(By) P(I,J).

ieI\J

Proof. (1) Since 7 is exponentially distributed with a parameter \,, we can rewrite ji
using Wy, = qx (1% — tn),

A
P (Wk cEAN (0, hqk]) )\ke_?
WD = TP e O had) / s

This implies our assertion.

(2) Since

P(ri <tp,tn <7 <tpp1,7 >tk eIfie I\ JjeJ)
P(rpy <tp,t, <misk€lciel)

P(I,J) =

where I¢ = L\ I. Since 7;, i € L, are independently exponentially distributed, we have our
assertion.



ince D; and 7;, 1 € L, are mutually independent and 7; are exponentially distributed,
3) Si D d € L tually ind dent and tially distributed
we have

P({Dl € Az} N {qz(TZ — tn) € Bz},l el \ J, Jn+1 = J, J, = [‘ftn)

ieI\J
N (ﬂ T < tn> N (ﬂTj > tn-l—l)‘ftn)
kele jed

= l{Jn:]} H (P(DZ € Az|ftn)P(Wl € BZ,O < Wz < hqz\ftn)) HP(Tj > tn-l—l‘]:tn)

e jed
Az )
=10 TT ) [t s [
ieT\J B i€J

=1s=ny | wi(A)p(B))P(1. ).

ieT\J

This completes the proof. 1

Then the following lemma holds.

Lemma 3.2 Let (,(I) = ,(I; N,m) : T — R be determined by the following system of the
recursive formula.

GI) = 0, TeT
(@ =0, n=12...,N—1

32 G = " [P | T ) + > a5k + ()

Jcr kel\J jed

where [|* and * stand for the convolution. Then we have

(3.3) &= L=nin-n().

IeT

Proof. Note that

&nlyg,=np =" ((thn+1 - thn + §n+1)1{Jn:I}|-7:tn) .

Since {x = 0, the equation (3.3) holds when n = N. Assume that the equation holds when
n = k. Then, in the case of n = k — 1,
ftkl)

fk_ll{‘lkflzl} :nm((XtIk - XtIk—1 + é.k)]'{‘]k—lzl}‘ftk—l)

= ( (Xi X Zm(J)l{Jk:n) Lr=n

JcI

=n" <Z(Xt[k = Xy A vk =10=0)

JcI



However, from Proposition 3.1, for any Borel set A with A C R\ {0},

ftk—l)

= ZP <(thk - tk , T g k( )1{Jk:J,Jk—1:I}) € A|‘7:tk—1>

JCI

P <Z(XI thk vk g=gg=1y € A

JCI

:Z H*(Vk*,uk)-FhZ(]j‘FCka(J) (A)P(I,J).

JcI \kel\J jeJ

Thus, it is also true for any Borel set A. Then we have

G-l =n =" > P | [] (v * ) + R pi+ Cvok(J)

Jcr kel\J JjeJ
= (noppr (1),

Hence we have our assertion. 1

Now fix an I € Z until the end of this section. Using (,(I) defined above, we will prove
the following lemma.

Lemma 3.3 Assume v; € L;, i € I and let ¢, = {¢G(J); J € T}. Then,

Gual1) = Gl1) = 0 G| < (€1 + Campa 6, ()] ) 2

where

1/p
Ci = (1+24,(m) ((AL)W@ +249 (Z ([1ermtan)) "+ th) I W)

kel

and
Co =2 (1424, (m)) (\")?/Pe(1 + 2¢2)) .

In order to prove the lemma, we prepare for the following. Let (Q, Fy, Py) and (2, Fi, P)
be non-atomic, standard probability spaces and let Q = Q¢ x Q;, F = Fy ® Fi, and
P =P, ® P,. Note that

P(I,I)=e M >1-\h,

and

P(LI\{i})=(1—e ") ] e™ < (1-e™") < Nh.

Je\{I}

On g, we take disjoint subsets A;, J C I, where Py(A;) = P(I,J). Also, because of
the note above, we can define disjoint subsets B;, i € {0} U I, such that

Py(By) =1—Mh, Byc A;
PU(BZ) = )\lh, B; D A[\{i},i el.

9



On €y, we take independent random varlables U; and ‘N/Z, 1 € I, such that the probability
distribution of U; and V; are v; + ¢, (I \ {i}) — G,(I) and p; — gih, respectively. Let Up ;) =
U; + V;. Also we take random variables U; for J c I with #(7\ .J) > 2 such that the
distribution law is

11 (k% e — aeh) + () = Ga(D).

kel\J
Also let Uy = 0. Then we see that

1/p
max B [|U ]V max E [|U|P} <y (/xm dx)) +q"h + 2max G,(J)].

kel
Using these notations, we define two random variables W and W on Qg x € as

W (wo,wn) = 1a, (wo)Us(wn),

JCI

wg,w1 ZlB wg w1 +1B0(WU) 0.
i€l

Then the next proposition holds.

Proposition 3.4 Assume that there exists p > 1 such that vy € L, for k € 1. Let W and
W as above. Then

(3.4) 09 =500 < (€1 + Coma ()
Proof. Since

‘W a W‘ = Z (131'\1“1\{1'} $2max Uil + 1A1\{i}Qih> +Lang, - max Uil
iel

we get

. < Z <2p(Bi \ Apgiy) /P Z E[|U, """ + p(AI\{i})l/pqih)
iel

JcI
- 11/p
P(A\By)'? Y E [\Uiv’] .
iel
Also we have
P(A;\ By) = e M — 14 \h < (M h)?
and
—\ih —\jh —~Xh —Ai h)
jeI\{i} m=1
< Mh(1 = e M) 4 (\h)Ze e < 2(A h)2,

Thus,

.11/

| < (0002 (0 4+ e ] ) 0
Lp

and using Proposition 2.4, we get the result. 1

10



Proposition 3.5 For W and 144 above, the following hold.

(1) (W) = G (D) — Guld) —
(2) 4™ (W) = h] (G m) — ha'

Proof. (1) We get by definition

STPUI) | TT s = aeh) + Gu(d) = GalD)

JcI kel\J
P T wrx = ah) +ha' + () | | = GalD) = he'
JcI kel\J

= G (1) = Gu(I) — hq'.
(2) Using the equation (1.4), j,, the distribution law of W, can be written as A h(v1(,) —

Ca(I)) + (1 = M h)6y where d; is a probability measure such that 6,({0}) = 1. Then, using
the proposition 2.5, we get

/a Vv)dfv
23! () = ColD))das By € 0,1, ThB + (1 = ATh)y = a}

- 1—
{ 2@ (C) — Go(1))das B € [0,1],1—Tha§6§%}.

F( ) o (- 5) )

Thus,

" (W) = AIh/ol éF (Vl(gn) — G(1): 0V (1 — %) % A 1) m(da).

Using the definition of ®; on the equation (1.5), we complete the proof. 1

Then simply by substituting the equations in Proposition 3.5 for the equation (3.4), we
complete the proof of Lemma 3.3.
Finally we need the following proposition in order to complete the proof of Lemma 3.3.

Proposition 3.6 Assume that Assumptions (A-1), (A-2) and (A-3) hold. Let x(t,I) be
the solution of the system of equations (1.6) with initial conditions (1.7) and

Y

el = I;lg;{‘(n((], N,m") -z (tT]:],J)

for I C L, where tY =nT/N. Then,

max e —0, N — oc.
1<n<N

11



Proof. By examining the difference between ((I) and z(-,I), we get,

Guwr (1N m™) = 2 (0,0, 1) |
T
N

+ [ Gll) = (1), 1) +%(

< Cn—l—l(]) - Cn(]) - q)%“/N(En) +

(D) = (00) - 3o (70)
Oy () — Bl (7 () + | @ (7 (1)) — (7 (1))
< (e (maslon e @0 ol @)) ()

T e —
o o ma [ (7 () + 5)) = @1 (7 ()

G = (1 )|+ o [ (3 (1)) — @7 (1)

e (Lo vy ) maxia ) -« (.9))

Let
T\ 2/P
ry=|C1+Cy max |z (tn, J)] <N>
0<n<N
. . . . T
+ (m/ 97 (7 (1 +9)) = 07 (7 (6)) | + @ (TN - <I>’(ar(t£¥))) z
0<n<N
and
T\ 2/P 1
C =0y <—> +2)\L/ (Mhva)"'m" (da).
N 0
Then we get

Since ¢y = 0 and

lim Nry =0,
N—oo
we get by (2) of Corollary 2.8
N-1
e ¢T max e{l < ry — 0.
1<n<N
n=0
This completes the proof. 1

Then we are ready to prove Theorem 1.2. We will prove more generalized one.

12



Theorem 3.7 Assume that (A-1), (A-2) and (A-3) hold. Let z(t,I) be the solution of the
system of equations (1.6) with initial conditions (1.7) and

tN}

n(t,N):[T 0<t<T.

Then
En(t,N) — Z Lj=nz(T = t,I), N7 oo.

IeT
In particular,

& =™ (Xr|{F, 3 0) = a(T,L) Nt cc.

Proof. From Proposition 3.6, the difference between (7) and z(-, I') goes to zero as N — oo
and

En(t,N) = Z Lirt,n)=1ySN—n(e,N) (1) — Z Lg—nz(T —t,1).

Iez TeT
This proves our assertion. 1

4 Some properties of z(t, )

In this section, we introduce some properties of x(¢, I).

Proposition 4.1 For any I, I, and I, C L such that I = I, U I, and that Iy NI, = () and
for any t, x(t,I) > x(t, I) + z(t, ).

Proof. First we will prove (,,(I) > (1) +(y(12). It is true when n = 0 from the definition.
Assume that the inequation holds when n = k for any I C L. Then,

Z <XtIN_k - XtIN_k_l + Ck(J)) 1{JN7k71:IaJN7k:J}

JCI

>y (XS X A XE =X A GUNL) G N ) L =1y =)
JcI

= Z (Xlt];r—k - thlif—k—l + Ck('] N Il)) ]'{Jka—lzl,Jka:J}
JCI

+ Z (XtI]fl—k - XtI]?I—k—l + Ck(J N IQ)) 1{JN7k—1:LJN—k:J}'
JCI

Note that for any J; C I,

Y v =hava=)

Jel,Jnl=J1

E FtN—k—l =F [1{JN—k—1:II;1N—k:J1}‘ fthka .

ftN—k—l)

=n" ( Z (XtI]il—k - thjil—k—l + Ck(Jl)) 1{JN—k—1:II,JN—k:J1} ftNkl) = Ck+1([1)'

n" (Z (X, =X+ GUND) Ly iy =)

13



Using the equations shown on Lemma 3.2, we get

Chr1(1) > Cey1(1) + Gy (o).

Thus from Proposition 3.6, we have our assertion. I

Proposition 4.2 If v;((—00,0]) = 1 and ¢; > 0 for any i € L, then following properties
hold.

(1) z(t, I) < ¢'t for any I C L and t.

(2) z(t, 1) < x(t, ) + ¢\t for any I, C I, C L and t.

Proof. (1) We will prove that ¢,(I) < ¢'nh. When n = 0, it is obvious. Assume that when
n = k, the inequation holds; i.e., x(I) < ¢'kh. Then since v;((—oc,0]) = 1, we have
—xI

tN—k—1

XI

tN—k

+G(J) < d'h+q"kh=q¢'(k+1)h
for any J C I. Thus,
Gt (1) < 0™ (g"(k +1)h) = ¢ (k + 1)h.

It completes the proof.
(2) Again, we will prove that (,(I1) < C.(I3) + ¢""\>nh. When n = 0, it is obvious,
Assume that when n = k, the inequation holds. Then,

X=X HG) <X X2 " Ph+ G(I N L) + ¢ kR
<Xy - XD+ d" (ke 1)R
for any J C I;. It implies our assertion as in (1). 1
5 Example

In this section we specify m” in order to examine the model in detail.

5.1 Example of the measure m”

We only focus on the N-period model with N > 2A“T in this section. We express measure
m” by functions ¢V : [0,00) — R, AY : [0,1] = R*, and fV :[0,00) — R* depending
on the partition size N as follows for scrutinizing the effect of the tail;

(5.1) m™ (de) = (¢" (Na) + bV (@) + fN (N(1 — a))) do.
We impose the following assumptions on the functions ¢, A" and fV.
(B-1) ¢V (u) = f¥(u) =0 for u € [N/2,0).

(B-2) %/OOO g™ (u)du + /Oth(u)du—l— % /000 ¥ (u)du = 1.
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€ hN 1 hN
(B-3) lim sup/ CEQ) do =0, lim sup/ () da = 0.
1—¢

e—0 N e—=0 N 6%

«

1 hN 1 hN
(B-4) sup/ ﬂda < oo and / (a) do — Cp € RT as N — <.
N Jo @ 0

(B-5) (N —u)" ' f¥(u)du converges weakly to m;(du) as N — oo, i.e., for any bounded
function k(u) : [0,00) = R, k(u)(N — u) ™' fV(u)du — k(u)mg(du).

(B-6) sup/ g™ (u)du < oc.
N Jo

(B-7) There exists p € (1,2) satisfying that v; € £,, i € L, and that u="/?¢" (u)du
converges weakly to m,(du) as N — oc.

Note that Assumption (B-2) guarantees for m” to be probability distribution.
Then, under the assumptions above, we will prove the following propositions.

Proposition 5.1 If m" above satisfies Assumptions (B-1) - (B-7), then,

1
sup/ MTNva)'mY(da) < oo

N Jo

Proof. Note that ANI'T/N < 1/2. We get
(N T ' NgV(Na) h"(e) PV (N - a))
—= N\ — da) < ———d ——d« d
/[] (AIT a>m (a)_/o AT OH-/O Q - 1/2 Q “
o N 1 N o
9" (u) h™ (o) 2/ N
< d d — d
A e AL

Then, by (B-6), (B-4) and (B-2), we complete the proof. 1

Proposition 5.2 If m" above satisfies Assumptions (B-1) - (B-7). Then, for p € (1,2)
on Assumption (B-7), we have

sup A, (m?) < oc.

N

Proof. Since

N 1/2 1 1/p N
A,(m™) S/o al/l’ / i da—l— s —— Y (N(1 — a)) da
N/2 ul™ 1/p
1/p—1 ) (O‘) 1/p—1 N
<N / 1/p / —p da+ N : N—uf (u)du
o N N N
o ul/r 0o« 0 —u
by (B-7), (B-4) and (B-5), we complete the proof. 1



Proposition 5.3 Under Assumption (B-4), we get

1 N -a) Na\\ "V (a)
I . I/ - .
/0 (F(V —m,O,l)—F(u (55)—$I=0\/<1—W>,1/\)\1T>> o da| — 0,
as N — oo.
Proof. We get
1 N -a) Na\\ 1V (a)
I _ 7 _
[ (rer a0 - (o —anov (1- 55z 0 7)) e
NT/N Na ¥ (
S/O F(VI_"T“O’I)_F<”I_“"“°’“ﬁ>%d@
1 N(1 - h
o A T ] (et R L= Y LTI
1-MT/N T o

MT/N N(q 1 N(q
< (0 =0+ e = o) ([ [ )

« 7)\IT/N «

This proves our assertion. 1

Then using the proposition, we get the following.

Proposition 5.4 Assume that (B-1) - (B-7) hold. Also let

S > . uoy .
d'(z) =\ (/o F (Z/I(x) —z7;0, 1A ﬁ) mg(du) + F (V' (% — 21;0,1)Cy,

—bAmF<M@ﬂ—xu0v(L—ﬁ%)ﬂ)mﬂmﬁ)+q5

where y(du) = ut/?"'my(du). Then <I>IT/N(:17; m») converges to ®(F) uniformly on com-
pact as N — oc.

Proof. From the definition of CI>§/N, we get

L () — ¢ "1 Na
/N _ T . N
— i —/0 EF< —xI,O,lA—)\IT> g (Na)do

"1 , N(1 - «) Na .,y
"1 N(1-a
+/0 EF (VI—xI;O\/ (1—%),1) NN = a))da
00 N
_ I . U 9" (u)
_A F (v = 0,57 A1) = Zdu

! N(1 - a) Na\ hV(a)
I .
+/UF<1/ —:EI,O\/<1— T >’1/\)\1T> 5 da

-+AWF<M—xUOV<L—;}>J>ﬁ%ﬂ@L
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For u < MT,

ullr 1 u \/p ;
TF( — o0, 1A AIT) T (NT) ()JT) My (V= 21),

and for u > AT, the left hand side of the equation above is equal to u!/?~'E[(D! —x;) A0],
which is bounded. Thus, from Assumption (B-7) and Corollary 2.3, we get

N
u \ g (u) 1/p—1
F (1/ — x50, 1/\—)\1T> ” du — u'/P~ F(l/ — 10,1/ )JT) mg(du), N — o0

Also, using the boundedness of F'(v! —2;;0V (1 —u/MT),1) and the proposition above,
we complete the proof. 1

From Propositions 5.1, 5.2, and 5.4, we see that Assumptions (A-2), (A-3) and (A-1)
hold under Assumptions (B-1) - (B-7).

5.2 Homogeneous Collective Risk

In this subsection, we focus on the homogeneous collective risk process, i.e., \;, =\, v; = v
and ¢; = ¢. In this case it is obvious that z;, = x;, and ®/*(%) = ®72(7) if 8(J1) = 8(J2).
Thus we use the following notations in this subsection.

s (t) = z(t, 1), t(I)=n,n=0,1,2,...

o (y) :M(/o F(y—|—y,0 1/\M—T> my(du) + F(v +y;0,1)Cy,

+/OOOF(1/+y;O\/(1—%) 1>mf(du)) + ng

Then, the equation (1.6) can be rewritten as

d:z<“>(t)_~
= (<Aa D).

Also, we assume v((—oc, 0]) = 1.
What we want to show in this subsection is where (™ (¢) converges as n — oo. First,
we show some properties of 2(" ().

Proposition 5.5
(1) 2W () < 2z (1) — 2 (t) < qt.
(2) | (t)| < Ct for a C > 0.

(3) #™(t) converges as n — oo.
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Proof. (1) This is a simple outcome from Propositions 4.1 and 4.2.
(2) From (1), we get
nazW () < 2™ (t) < nqt

and from the shape of the differential equation of 2" (¢), we can get
(@(1)(0) —q)t< W (t).

Thus, by setting C' = max{‘CI)(l)(O) - q‘ ,q}, we get the result.

(3) We will prove that sup,, 2™ (¢) < lim inf, (™ (¢). We can find a subsequence {N,} C N,
k =1,2,... such that (%) () — liminf, 2™ (¢), k — co. For any n € N, let a, (k) = [N, /n]
and b, (k) = N — n[Ny/n]. Then, we get

x(Nk)(t) — x(an(k>n+bn(k>)(t) > an(k)x(”>(t) + x(bn(k»(t)’
(b

k) 2t (k) (1)
# (V&) (1) > an (n) (¢ )
(1) 2 e ) + T
Since
a,(k) 1
% —
Nk n’
x(b”(k))(t) < maxXop<m<n ‘l‘(m) (t)‘ 50
N, N Ni
when k£ — oo, we get
lim inf 2V () > M (¢)
—00
It completes the proof. 1

Proposition 5.6 For any m, n € N such that m > n,
07 (y) = B ().
Proof. Since for any u € [0, oc),

U U
F( ;0,1 —>>F< 0,1 —)
v+1;0 /\)\mT > v+y;0 /\)\nT

- F<u+y;0v<1—)\mLT>,l>2F<u+y;0\/<1—)\nLT>,1>,

we have our assertion. 1

Proposition 5.7 There exists a C' > 0 such that for any m, n € N,

1 1

™ (y) — ‘I’(")(y)‘ <Ol -

18



Proof. Assume m > n. Since

/Ooo (F<u+y,o 1Am) —F(u+y,0 1/\)\Tm>>mg(du)

/Omn <F<u+y,o 1/\m> —F<u+y,0 1/\)\}Lm>>mg(du)

ATm
< F( 1 —)—F( 0,1
_/ ‘ v+y;0, /\)\Tn v+y;0,1A

/OATm </j/\1(|y| — Z(z; y))dx> iy (du)

ATm
1

)\LT/ mu<|y|—2<ﬁ;u>>m9(du)
)\LT/OOU<|y|— (u 0, 1/\)\T ))ﬁ@g(du)

1

7 =) [t m,

mg(du)

)\Tm>

IN

IN

IN

IN

Si= 3= 3=
| |
Sl= S|~ 3|

N——— e N

>~

and since
/OOO <F<y+y;0v (1—%) ,1) —F(u—l—y;O\/ (1—%) 1>>mf(du)
<[ ( [ =) da:) i ()

1 vl /AT" 11y Jyl /°°
< | == — < | - - — ] =
= <n ))\T umglde) <\ = ) ar f, vt

by setting C' as

= s (= mo [t o) [ mggan)

0

we complete the proof.

Since,

/0 F(u+y,0 1/\)\—T>mg(du)—>0

F<y+y;0,1\/<1—)\nLT>> —m(v)+y

and
when n goes to infinity, we get

n—oo

lim ™ (y) = A <F(u 0, 1)y + (m(v) + ) /OOO mf(dU)> +q=0™)(y).

Proposition 5.8



Proof. Since for m < n, we have

Him) Q%) _ (—% y (:v(k)(t)—x(k_l)(t))>

> %Z 3 (= (2® (1) — 24D (1))
> %Zn: M (— (29(t) — 25 (1))

By integrating both sides, we have

9 (£ x5 -y

Thus, by increasing m and n to infinity, we get the result. 1

Proposition 5.9 Let y(t) be the solution of the following differential equations.

(5.3) df«z—iﬂ = (-u()
0

Then, for anyn € N and t > 0,
y(t) > ().

Proof. Let y'9(t) be the solution of the following differential equations.

du© (¢ -
yd () — $ (_y(e)(t)) T
y9(0) =e.

Suppose there exists ¢ > 0 such that y©(t) < #(>)(¢). Then, from Proposition 5.5, we
can choose 7 = inf{t > 0; 4 (t) < £(>)(¢)}, then for any s € [0,7), y9(s) > #(>)(s) and
y (1) < #(°)(1). Then, since

/T (é("o) (—y9(t) + e) dt =y (1) =y (s) < 3 (1) =3 (s) < /T ) (—7) (1)) du,

we get

! /T (&)(“) (—y9(t) + e) dt <

T —S

/T ) (3> (1)) at.

But this is contradiction to the assumption when s 1 7. Thus for any ¢ > 0, () (t) > (™) (¢).
Then taking € to zero completes the proof. 1

T —S
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Proposition 5.10 For a § € (0,1], let z(t) = z(t;0) be the solution of the following
differential equations.

Then, for anyn € N and t > 0,
2(t,0) < ) (1).
Proof. Let’s take a k € N large enough to satisfy C' < k, where C' satisfies

c

¢ (z) — ) < 0 (a)

()
()]

and let 0 = C'/k. We can choose such C because of Propositions 5.5 and 5.7. Also, let

<™ (a
< Ct
< Ct

wy(t) = nz(t) — 2Ckt.
Then we have

dwn+1 (t)
dt

dz(t)
dt
= (n+1) (™) (=2(t) - 8) — 2k

= (n+1) (8 (wn(t) = wa1(1)) — ) — 20k

=(n+1) - 2Ck

and
wi(t) < —Ckt < 2 (1).

What we want to prove here is for n > k, w,(t) < 2™ (¢), 0 <t < T. When n = k, it is
true from the inequation above. Assume it is true for n. Then, let v(¢) be as

W — (1) (9 (1) — (1) — ) — 2k

v(0) = —e

for a € > 0, and we want to show a claim v(t) < 2"t (¢). If this claim is not true, their

exists a posivive value 7 = inf{t : v(t) > (**V(#)} < T. Then,

%v(t) =y (86 (wa () — () — §) — 20
< (n+1) (@) (2 (r) — 2" (7)) - %) —2Ck

n+1

<(n+1) <<§(°°) (2" (7) — 2" (7)) - ¢ ) — 20k
( (n+1) (x(”)(T) — x("+1)(7'))) - 2Ck
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Thus, there exists a 6’ > 0 such that for any t € [r, 7 + ¢'],

dv(t) _ dz(" (1)
dt dt ’

t d t d (n+1)
v(t) = v(7) +/T %ds < x("“)(T)/ xT(s)ds = 2" (¢)
but it is contradiction. Thus, v(t) < ™+ (¢) for any ¢t € [0, 7] and by € — 0, we have
v(t) — wyp1(t). Hence we get wy,y1(t) < 2(™D(¢) and by induction, it is true for any n.
Thus,

S0,

T

nz(t) — 20kt < z™ (1)
2Ckt

() - == <a(0

and by n — oo, we have z(t;0) < #(*)(t). Finally, by k& — oo, we get z(t;0) < #(>)(). Tt
completes the proof. 1

From Propositions above, 3™ () — y(t) defined on Equation (5.3) as n — oo.

5.3 Numerical Examples

In this subsection, we will show some numerical results with concrete assumptions in the
case of homogeneous collective risk process. Assume that D has a following distribution
with a parameter 3 € (0, 1];

NSV
(5.4) P(D < u) = vs((—o0,u)) = (1 — 1ﬁ_ 5) . u € [—00,0].

This is a version of generalized Pareto distribution with E[D] = —1 for any 5.
Proposition 5.11 Some properties of vg are as follows.
(1) vg € ,Cl/,g
]_ _
(2) Z(usv) =+ (1 - u?)
B
1—-B—a’
B
We also specify the ¢V, hY and f" in equation (5.1) as follows.

(3) 1a(vp) =

QN(?J) = wge_yy_agl[o,N/Q}, wy > 0,0, € (07 1)

RN (y) = wy) (— (2y — 1)2% +1), wp > 0,a, € N
fN(y) = wfe_afy(N - y)]'[O,N/Q}a wf 2 Oa af 2 0

In order to satisfy the assumption (B-2), w}’ should satisty the following equation (we
assume that w, and w; are constant for any ).

2apwpy L s (1 1 — e—anN/2 e—ahN/2> »

2ah+1 ar B

wg
( aQ? ) / ) N / )

N
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where ,
['(z;a,b) :/ t*~te~tdt.

Thus, we get

wy, = lim w) = 20n + 1 (1—ﬂ>,
N—oo 2(Lh ar
Note that w; < ay should be held. In this specification, w; determines the ”severeness”
of the risk measure. When wy is larger, then m”" has more weight on the neighborhood of
1, meaning that the expected value () is more weighted. On the other hand, when wy is
smaller, then CTEs with low « are more highly taken into calculation.
Using the specification, we can calculate the value measure. First, we can get C}, as
follows.

2a
om0 [ e, Sy
h N—00 0 [0 0 Y
Then
B (y) =nAd 8 T(1—ay0,k)— 8 —ay; 0,k
(y) n {)\T‘LT agi ) ( ) 6 ( 6 ag’ ) g)
B 1-1/8 . w €_afkf
—<1+W Y k e 9—F(1—a9:k9,oo))+0h+fT
wy (1-7 ks kpemuki 1 —emrky
2= 1— ks _
* af ( B +y> ( * T AnTag

wy ( u )1‘5 —agu
_ 1— —— fud
5/, T e U +ng

where,

By \ M°
kg =n\T <1 + m )

~1/8

and in the case of y <0,

1-p w
) —n)\ Wy (L—P Tl a 0T — — Y T (1—B8— a0 \nT
e {MT gty = 0.anT) = gl (1= 6 = a0, AnT)
wy (AnT) %e 2T —T(1 —a,: I\nT, oo
—(1—y)<9(( ) Sl >)+Ch+w)}+nq.
g af
We also get
1-1/8
— LY _ wy
(i)(oo)(y): )\< <1+1—,8> Ch+( 1+y)af>+q y > 0,
AM—=1+y) Ch-i-f—;)-l-q y <0.



Now we can calculate the transition of the value measure by substituting real numbers
for each parameter. For example, let § = 0.6, A = 0.02 (i.e., the expected loss from an
insurance contract is 0.02), ay = 1, a, = 0.1, a;, = 20, wy = 0.4 and w, = 0.05. We show
(™ (t) with different level of n in Figure 1 in the Appendix. In this case, even in the case
of ¢ = 0.05, i.e., insurance premium is 2.5 times higher than the expected loss, the value
measure is negative. This is because of the shape of m" showing in Figure 2. Figure 3 and
4 is the same graphs with w; = 0.8. Since m has more weight on the neighborhood of 1,
the value measure becomes positive.
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Appendix: Figures

0 0.2 0.4 0.6 0.8 1
O | | | | |
1
-0.005 ~
-0.01 +
-0.015 -
— Limit
—n=100
-0.02 + n=80
n=60
-0.025 - —n=40
—n=20
-0.03 -
-0.035 -

Figure 1: 3™ (¢) with 8 = 0.6, A = 0.02, ay = 1, a, = 0.1, a;, = 20, w; = 0.4 and w, = 0.05

5 .
18 |
16 | —h
14 | :?
12 | —m

1L
08 |
06 |
0.4
02 |

0 b

0 0.2 0.4 0.6 0.8 1

Figure 2: m” with the same parameters as in Figure 1 and N = 100.
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0.012 -

— Limit
0.01 - —n=100

0.008 ~

0.006 -

0.004 -

0.002 -

O J

0 0.2 0.4 0.6 0.8 1

Figure 3: (" (¢) with the same parameters as in Figure 1 except w; = 0.8.

5 .
18 |
16 | —h
14 | :?
12 —m
1L
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06 |
04 |
02 |
N JA
0 0.2 0.4 0.6 0.8 1

Figure 4: m" with the same parameters as in Figure 3 and N = 100
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