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Summary. In this article, we study the discriminant of those K3 surfaces with invo-
lution which were introduced and investigated by Matsumoto, Sasaki, and Yoshida.
We extend several classical results on the discriminant of elliptic curves to the dis-
criminant of Matsumoto-Sasaki-Yoshida’s K3 surfaces.
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1 Introduction – Discriminant of elliptic curves

Let M(n, 2n;C) be the vector space of all complex n× 2n-matrices and con-
sider the following subset

Mo(n, 2n) = {(a1, . . . ,a2n) ∈ M(n, 2n;C); ai1 ∧ · · · ∧ ain 6= 0, 8 i1 < · · · < in} .

On M(n, 2n;C), acts the group GLn(C)× (C§)2n by

(g,∏1, . . . ,∏2n) ·A = g ·A · diag(∏1, . . . ,∏2n), A ∈ M(n, 2n;C)

where diag(∏1, . . . ,∏2n) denotes the diagonal matrix (∏i δij). The configura-
tion space of 2n points (or 2n hyperplanes) in gerenal position of Pn−1 is
defined as
? The author is partially supported by the Grants-in-Aid for Scientific Research for

young scientists (B) 16740030, JSPS.
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Xo(n, 2n) = GLn(C)\Mo(n, 2n)/(C§)2n.

Let us consider the case n = 2. On Mo(2, 4), we have a family of curves
π : E → Mo(2, 4) with fiber

(1.1) π−1(A) = EA = {((x1 : x2), y) ∈ OP1(2); y2 =
4Y

i=1

(ai1 x1 + ai2 x2)},

where (x1 : x2) denotes the homogeneous coordinates of P1. The natural
projection pr1 : EA → P1 is a double covering with 4 branch points, so that
EA is an elliptic curve. It is classical that Xo(2, 4) is a moduli space of elliptic
curves with level 2 structure.

We define the discriminant of A ∈ Mo(2, 4) by

(1.2) ∆(2,4)(A) =
Y

{i,j}∪{k,l}={1,2,3,4}, i<j, k<l

det(ai,aj) det(ak,al).

Set dx = x2 dx1 − x1 dx2 = x2
2d(x1/x2), and define the norm of ∆(2,4)(A) by

(1.3) k∆(2,4)(A)k2 =

√
i

2π

Z
EA

dx

y
∧

µ
dx

y

∂!6

|∆(2,4)(A)|2.

Since k∆(2,4)k2 is invariant under the action of GL2(C)× (C§)4, it descends
to a function on Xo(2, 4). There is an analytic expression of k∆(2,4)k.

Let det§ §A be the regularized determinant of the Laplacian of EA with
respect to the normalized flat Kähler metric of volume 1. Since the isomor-
phism class of EA is constant along the GL2(C) × (C§)4-orbit, det§§A is
constant on each GL2(C)× (C§)4-orbit. For all A ∈ Mo(2, 4), we get by [11]

(1.4) det§ §A = k∆(2,4)(A)k−1/3.

In fact, Eq. (1.4) follows from the classical Kronecker limit formula, which can
be seen as follows. For z ∈ C and τ ∈ H := {τ ∈ C; Im τ > 0}, let

}(z, τ) =
1
z2

+
X

(m,n)∈Z2\{(0,0)}

Ω
1

(z + mτ + n)2
− 1

(mτ + n)2

æ
be the Weierstrass }-function and set

A(τ) =
µ

0 1 1 1
1 −}( 1

2 , τ) −}( τ
2 , τ) −}( 1+τ

2 , τ)

∂
∈ Mo(2, 4).

By setting x1 = u x2 and y = v x2
2/2 in (1.1), EA(τ) is isomorphic to the cubic

curve in P2 defined by the inhomogeneous equation in the variables u, v:

v2 = 4
Ω

u− }

µ
1
2
, τ

∂æ n
u− }

≥τ

2
, τ

¥oΩ
u− }

µ
1 + τ

2
, τ

∂æ
= 4u3 − g2(τ) u− g3(τ)
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with g2(τ) = 60 E4(τ) and g3(τ) = 140 E6(τ), where Ek(τ) denotes the Eisen-
stein series of weight k (cf. [28, p.11]). Hence the complex torus C/Z + τ Z,
τ ∈ H, is isomorphic to EA(τ) via the map

(1.5) f : C/Z + τ Z 3 z → ((}(z) : 1), }0(z) x2
2/2) ∈ OP2(2).

Since dx/y = 4 f§(dz) by (1.5) and since ∆(2,4)(A(τ))2 = g2(τ)3 − 27 g3(τ)2,
Eq. (1.4) is deduced from the Kronecker limit formula:

(1.6) det§ §A(τ) = C1 k∆(τ)k−1/6,

where C1 6= 0 is an absolute constant, ∆(τ) = (2π)−12(g2(τ)3 − 27 g3(τ)2) is
the Jacobi ∆-function and k∆(τ)k2 = (Imτ)12|∆(τ)|2 is its Petersson norm.
Recall that one has the following expressions of the Jacobi ∆-function:

(1.7) ∆(τ) =

√Y
even

θab(τ)

!8

= q
1Y

n=1

(1− qn)24, q = e2πiτ ,

where θab(τ) denotes the theta constants.
In [39], we extended Eq. (1.6) to K3 surfaces with involution. Let us explain

our results briefly. Let X be a K3 surface and let ∂ : X → X be a holomorphic
involution acting non-trivially on holomorphic 2-forms on X. Let H2

+(X,Z) be
the invariant part of the ∂-action on H2(X,Z). The free Z-module H2(X,Z) of
rank 22 endowed with the cup-product, is an even unimodular lattice of signa-
ture (3, 19) isometric to the K3 lattice LK3. By Nikulin, the topological type
of ∂ is determined by H2

+(X,Z), which is a primitive 2-elementary hyperbolic
sublattice of H2(X,Z). Let M Ω LK3 be a primitive 2-elementary hyperbolic
sublattice with rank r(M). The pair (X, ∂) is called a 2-elementary K3 surface
of type M if H2

+(X,Z) ª= M . The period of a 2-elementary K3 surface of type
M lies in ≠o

M = ≠M \ DM , where ≠M is isomorphic to a symmetric bounded
domain of type IV of dimension 20− r(M) and DM is a divisor of ≠M , called
the discriminant locus. The moduli space of 2-elementary K3 surfaces of type
M is isomorphic to the quotient ≠o

M/ΓM , where ΓM is an arithmetic subgroup
of Aut(≠M ). We assume that r(M) ∑ 17.

For a 2-elementary K3 surface (X, ∂) of type M , we constructed an invari-
ant τM (X, ∂) by using the equivariant analytic torsion of (X, ∂) (cf. [5]). We
regard τM as a function on the moduli space ≠o

M/ΓM . The main result of [39]
is that τM is expressed as the norm of the “automorphic form” ΦM on ≠M

characterizing the discriminant locus DM . Here ΦM is an automorphic form
with values in some ΓM -equivariant coherent sheaf ∏M on ≠M . If the fixed
point set of ∂ consists of only rational curves, then ∏M

ª= O≠M and hence ΦM

is an automorphic form in the classical sense. By Nikulin [33], there exist only
seven isometry classes of lattices M with r(M) ∑ 17 such that the fixed point
set of a 2-elementary K3 surface of type M consists of only rational curves.
Let Sk, 1 ∑ k ∑ 7 be those seven lattices, where r(Sk) = 10 + k. In Sect. 6,



4 Ken-Ichi Yoshikawa

we shall express ΦSk as a Borcherds product [8]. Thus the infinite product
expansion (1.7) shall be extended to 2-elementary K3 surfaces of type Sk.

The case k = 6 is of particular interest. In [30], [31], [36], 2-elementary K3
surfaces of type S6 with level 2 structure were studied by Matsumoto, Sasaki,
Yoshida; they proved that the moduli space of 2-elementary K3 surfaces of
type S6 with level 2 structure is isomorphic to Xo(3, 6). In Sect. 7.3, we shall
extend the definitions (1.2), (1.3) to 3×6-matrices and get a function k∆(3,6)k
on the configuration space Xo(3, 6). By Freitag, there exist theta functions
{Θ°a

b

¢} on the period domain ≠S6 , ten of which are called even. We define the
Matsumoto-Sasaki-Yoshida form ∆MSY(W ) as the product of all even Freitag
theta functions: ∆MSY(W ) :=

Q
even Θ

°a
b

¢
. Let k∆MSYk denote the Petersson

norm of ∆MSY, which descends to a function on Xo(3, 6). The main result of
this article is the following identity, which can be regarded as an analogue of
Eqs. (1.4), (1.6), (1.7) in dimension 2:

Theorem 1.1. The following identity of functions on Xo(3, 6) holds

(1.8) τS6 = C2 k∆(3,6)k−1/4 = C3 k∆MSYk−1/2,

where C2, C3 are non-zero absolute constants.

This article is organized as follows. In Sect. 2, we recall K3 surfaces with
involution and their moduli spaces. In Sect. 3, we recall automorphic forms on
the moduli space. In Sect. 4, we recall the invariant τM . In Sect. 5, we recall
Borcherds products. In Sect. 6, we give an expression of τSk as the Petersson
norm of an interesting Borcherds product, whose proof shall be given in the
forthcoming paper [41]. In Sect. 7, we prove Eq. (1.8). In Sect. 8, we prove
that the discriminant of smooth quartic hypersurfaces of P3 is expressed as
the norm of an interesting Borcherds product.

2 K3 surfaces with involution and their moduli spaces

In this section, we recall the definition of K3 surfaces with involution. We
refer to [39] for more details about K3 surfaces with involution.

Let X be a compact, connected, smooth complex surface with canonical
line bundle KX . Then X is called a K3 surface if

H1(X,OX) = 0, KX
ª= OX .

Every K3 surface is Kähler [2, Chap. 8 Th. 14.5]. By the second condition,
there exists a nowhere vanishing holomorphic 2-form ηX on X. Notice that
ηX is uniquely determined up to a nonzero constant. The cohomology group
H2(X,Z) is a free Z-module endowed with the cup-product pairing. There
exists an isometry of lattices:

α : H2(X,Z) ª= LK3 := U© U© U© E8 © E8.
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Here U =
°
0 1
1 0

¢
and E8 is the negative-definite Cartan matrix of type E8 under

the identification of a lattice with its Gram matrix. The isometry α as above
is called a marking, and the pair (X,α) is called a marked K3 surface. For a
marked K3 surface (X,α), the point

π(X,α) := [α(ηX)] ∈ P(LK3C), ηX ∈ H0(X,KX) \ {0}
is called the period of X, where LK := L≠K for a lattice L and a field K.

For a lattice L with bilinear form h·, ·i, we denote by L(k) the lattice with
bilinear form kh·, ·i. The set of roots of L is defined by ∆L := {d ∈ L; hd, di =
−2}. The isometry group of L is denoted by O(L). Let L∨ = HomZ(L,Z) be
the dual lattice of L, which is naturally embedded into LQ. The finite abelian
group AL := L∨/L is called the discriminant group of L. For a primitive
sublattice L Ω LK3, L? denotes the orthogonal complement of L in LK3.

Definition 2.1. For a primitive hyperbolic sublattice S Ω LK3, define

≠S = ≠S? := {[x] ∈ P(S?C); hx, xi = 0, hx, x̄i > 0}.
We set r(S) := rankZS. Then dim≠S = 20−r(S). There are two connected

components of ≠S , each of which is biholomorphic to a symmetric bounded
domain of type IV of dimension 20− r(S) (cf. [2, Chap. 8, Lemma 20.1]).

Definition 2.2. An even lattice S is said to be 2-elementary if there is an
integer l ≥ 0 with AS

ª= (Z/2Z)l. For a 2-elementary lattice S, set l(S) :=
dimF2 AS.

Let M Ω LK3 be a primitive 2-elementary hyperbolic sublattice. Let IM

be the involution on M ©M? defined by

IM (x, y) = (x,−y).

Then IM extends uniquely to an involution on LK3. For l ∈ M?
R , we set

Hl := {[x] ∈ ≠M ; hx, li = 0}.
Then Hl 6= ; if and only if hl, li < 0. We define

DM :=
[

d∈∆M?

Hd, ≠o
M := ≠M \ DM .

We regard DM as a reduced divisor of ≠M .

Definition 2.3. A K3 surface X equipped with a holomorphic involution
∂ : X → X is called a 2-elementary K3 surface if

∂§|H0(X,KX) = −1.

The pair (X, ∂) is called a 2-elementary K3 surface of type M if there exists
a marking α of X with ∂§ = α−1 ◦ IM ◦ α.
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Let (X, ∂) be a 2-elementary K3 surface of type M and let α be a marking
with ∂§ = α−1 ◦ IM ◦ α. Let ηX ∈ H0(X,KX) \ {0}. Then π(X,α) ∈ ≠o

M .
The O(M?)-orbit of π(X,α) is independent of the choice of a marking α with
∂§ = α−1◦IM ◦α. The Griffiths period of (X, ∂), which is denoted by $M (X, ∂),
is defined as the O(M?)-orbit

$M (X, ∂) := O(M?) · π(X,α) ∈ ≠o
M/O(M?).

Theorem 2.4. The coarse moduli space of 2-elementary K3 surfaces of type
M is isomorphic to the analytic space ≠o

M/O(M?).

Proof. See [39, Th. 1.8]. ut
We set

MM := ≠M/O(M?), Mo
M := ≠o

M/O(M?).

Let ≠±
M be the connected components of ≠M and set

O+(M?) := {g ∈ O(M?); g(≠±
M ) = ≠±

M}.
Then O+(M?) Ω O(M?) is a subgroup of index 2 with MM = ≠+

M/O(M?)+
and Mo

M = (≠+
M \DM )/O+(M?). We consider ≠+

M as the period domain for
2-elementary K3 surfaces of type M . By Baily-Borel-Satake, both of MM

and Mo
M are quasi-projective algebraic varieties.

The topological type of the set of fixed points of (X, ∂) was determined by
Nikulin. We need the following partial result. See [33] for the general cases.

Lemma 2.5. Let (X, ∂) be a 2-elementary K3 surface of type M and let

X∂ := {x ∈ X; ∂(x) = x}.
If r(M) + l(M) = 22, then X∂ is the disjoint union of (r(M) − 10)-smooth
rational curves.

By the adjunction formula, a smooth irreducible curve of a K3 surface is
rational if and only if its self-intersection number is equal to −2.

3 Automorphic forms on the moduli space

Throughout this section, we assume that M Ω LK3 is a primitive 2-elementary
hyperbolic sublattice. In this section, we recall the definition of automorphic
forms on the period domain ≠+

M and give its differential geometric character-
ization.

Let us fix a vector lM ∈ M?
R with hlM , lM i ≥ 0. We set

jM (∞, [z]) :=
h∞ · z, lM i
hz, lM i [z] ∈ ≠+

M , ∞ ∈ O+(M?).

Since HlM = ;, jM (∞, ·) is a nowhere vanishing holomorphic function on ≠+
M .
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Definition 3.1. Let Γ Ω O+(M?) be a cofinite subgroup. A holomorphic
function f ∈ O(≠+

M ) is called an automorphic form for Γ of weight p if

f(∞ · [z]) = χ(∞) jM (∞, [z])pf([z]), [z] ∈ ≠+
M , ∞ ∈ Γ,

where χ : Γ → C§ is a character.

Let KM ([z]) be the Bergman kernel function of ≠+
M :

KM ([z]) :=
hz, z̄i

|hz, lM i|2 .

For an automorphic form of weight p, the Petersson norm of f is the function
on ≠+

M defined as
kf([z])k2 := KM ([z])p |f([z])|2.

If r(M) ∑ 17 and if Γ Ω O+(M?) is a cofinite subgroup, then kfk2 is a
Γ -invariant C1 function on ≠+

M , because the group Γ/[Γ,Γ ] is finite and
Abelian in this case.

Let ωM be the Kähler form of the Bergman metric on ≠+
M :

(3.1) ωM := −ddc log KM ,

where dc = (@ − @̄)/4πi and hence ddc = @̄@/2πi for complex manifolds. For
a divisor D on ≠+

M , let δD be the Dirac δ-current on ≠+
M with support D.

Theorem 3.2. Let p ∈ N and let D be a divisor on ≠+
M . Let Γ Ω O+(M?)

be a cofinite subgroup. Let ' be a non-negative, Γ -invariant C1 function on
≠M \D satisfying log ' ∈ L1

loc(≠M ) and the equation of currents on ≠+
M :

(3.2) ddc log ' = δD − p ωM .

If r(M) ∑ 17, then there exists an automorphic form F for Γ of weight p with
zero divisor D such that ' = kFk2.
Proof. Set √ = ' K−p

M . Then log √ ∈ L1
loc(≠

+
M ). We get the following equation

of currents on ≠+
M by (3.1), (3.2):

ddc log √ = δD,

so that @ log √ is a meromorphic 1-form on ≠+
M with at most logarithmic poles

along D. Fix a point [η0] ∈ ≠+
M \D, and set

F ([η]) := exp

√Z [η]

[η0]
@ log √

!
, [η] ∈ ≠+

M .

Since the residues of @ log √ are integers, we get F ∈ O(≠+
M ) and

d log F = @ log √, div(F ) = D.
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Let ∞ ∈ Γ . By the identity KM (∞[η]) = |jM (∞, [η])|−2 KM ([η]) and by the
Γ -invariance of ', we get √(∞[η]) = |jM (∞, [η])|2p √([η]), which yields that

∞§@ log √ = @ log √ + p · d log jM (∞, ·).
Namely, d log(∞§F/jM (∞, ·)p F ) = 0 and hence

χ(∞) := F (∞[η]) jM (∞, [η])−pF ([η])−1

is a non-zero constant on ≠+
S . Then χ is a character of Γ because for every

∞, ∞0 ∈ Γ ,

χ(∞∞0) =
F (∞∞0[η])

jM (∞∞0, [η])pF ([η])

=
F (∞∞0[η])

jM (∞, ∞0[η])pF (∞0[η])
× jM (∞, ∞0[η])pF (∞0[η])

jM (∞∞0, [η])pF ([η])
= χ(∞)χ(∞0).

Hence F is an automorphic form on ≠+
M for Γ of weight p with character χ

such that div(F ) = D. Since r(M) ∑ 17, kFk is Γ -invariant. By the Poincaré-
Lelong formula, the following equation of currents on ≠+

M holds:

(3.3) ddc log kFk2 = δD − p ωM .

By comparing (3.1) and (3.3), log('/kFk2) is a Γ -invariant pluriharmonic
function on ≠+

M , so that log('/kFk2) descends to a pluriharmonic function on
MM . Since MM , the Baily-Borel-Satake compactification of MM , is a normal
projective variety with codim(MM \MM ) ≥ 2 when r(M) ∑ 17, log('/kFk2)
extends to a pluriharmonic function on MM by Grauert-Remmert. Since MM

is compact, log('/kFk2) is constant by the maximum principle for pluri-
harmonic functions. This proves the existence of a positive constant C with
' = C kFk2. ut

4 Equivariant analytic torsion and 2-elementary K3
surfaces

4.1 Equivariant analytic torsion

Let (X,∑) be a compact Kähler manifold. Let G be a finite group acting
holomorphically on X and preserving ∑. Let §q = (@̄+@̄§)2 be the @̄-Laplacian
acting on C1 (0, q)-forms on X. Let σ(§q) be the spectrum of §q. For ∏ ∈
σ(§q), let Eq(∏) be the eigenspace of §q with respect to the eigenvalue ∏.
Since G preserves ∑, Eq(∏) is a finite-dimensional unitary representation of
G. For g ∈ G and s ∈ C, set

≥q(g)(s) :=
X

∏∈σ(§q)\{0}
Tr (g|Eq(∏)) ∏−s.

Then ≥q(g)(s) converges absolutely when Re s > dimX, admits a meromor-
phic continuation to the complex plane C, and is holomorphic at s = 0.
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Definition 4.1. The equivariant analytic torsion of (X,∑) is the class func-
tion on G defined by

τG(X,∑)(g) := exp[−
X
q≥0

(−1)qq ≥ 0q(g)(0)], g ∈ G.

When g = 1, τG(X,∑)(1) is denoted by τ(X,∑) and is called the analytic
torsion of (X,∑).

4.2 An invariant for 2-elementary K3 surfaces

Let (X, ∂) be a 2-elementary K3 surface of type M . Let Z2 be the subgroup
of Aut(X) generated by ∂. Let ∑ be a Z2-invariant Kähler form on X. Set
vol(X,∑) := (2π)−2

R
X ∑2/2!. Let ηX be a nowhere vanishing holomorphic

2-form on X. The L2-norm of ηX is defined as kηXk2L2 := (2π)−2
R

X ηX ∧ η̄X .
Let X∂ =

P
i Ci be the decomposition of the fixed point set of ∂ into the

connected components. Set vol(Ci,∑|Ci) := (2π)−1
R

Ci
∑|Ci . Let c1(Ci,∑|Ci)

be the Chern form of (TCi,∑|Ci).

Definition 4.2. Define

τM (X, ∂) : = vol(X,∑)
14−r(M)

4 τZ2(X,∑)(∂)
Y

i

vol(Ci,∑|Ci)τ(Ci,∑|Ci)

× exp

"
1
8

Z
Ci

log
µ

ηX ∧ η̄X

∑2/2!
· vol(X, ∑)
kηXk2L2

∂ØØØØ
Ci

c1(Ci,∑|Ci)

#
.

Obviously, τM (X, ∂) is independent of the choice of ηX . It is worth remark-
ing that if ∑ is Ricci-flat, then

τM (X, ∂) = vol(X,∑)
14−r(M)

4 τZ2(X,∑)(∂)
Y

i

vol(Ci, ∑|Ci)τ(Ci, ∑|Ci).

Theorem 4.3. Let M Ω LK3 be a primitive 2-elementary hyperbolic sublattice
satisfying 11 ∑ r(S) ∑ 17 and r(M) + l(M) = 22. Then there exists an
automorphic form ΦM on ≠+

M for O+(M?) of weight (r(S) − 6) with zero
divisor DS such that for every 2-elementary K3 surface (X, ∂) of type M and
for every Z2-invariant Kähler form ∑ on X,

τM (X, ∂) = kΦM ($M (X, ∂))k− 1
2 .

Proof. Theorem 4.3 follows from the following two claims:
• The number τM (X, ∂) is independent of the choice of a Z2-invariant Kähler
form, and it gives rise to a function τM on Mo

M .
• Regarded as a ΓM -invariant function on ≠o

M , log τM lies in L1
loc(≠M ) and

satisfies the following equation of currents on ≠M :
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(4.1) ddc log τM =
r(M)− 6

4
ωM − 1

4
δDM .

The first claim follows immediately from the curvature formula for equivariant
Quillen metrics [7], [29]. To prove the second claim, it suffices to determine
the singularity of τM near the divisor DM . Let ∞ : ∆ → ≠M be a holomorphic
curve intersecting Do transversally at t = 0. Then Eq. (4.1) is deduced from
the following estimate:

(4.2) log τM (∞(t)) = −1
4

log |t|2 + O(log(− log |t|)), t → 0.

Under a certain technical assumption on the curve ∞, Eq. (4.2) follows from
the embedding formula of Bismut [5] for equivariant Quillen metrics. See [39]
for more details about the proof. ut

In the cases M = U(2)©E8(2) and M = U©E8(2), an explicit formula for
ΦM was given in [39, Sect. 8]; in the first case, ΦM is given by the Borcherds
Φ-function of dimension 10; in the second case, ΦM is given by the restriction
of the Borcherds Φ-function of dimension 26 to ≠M .

5 The Borcherds products

In this section, we recall Borcherds products. For simplicity, we restrict our
explanation for those lattices that splits into two hyperbolic lattices.

Let Mp2(Z) be the metaplectic group (cf. [8], [9]):

Mp2(Z) :=
Ωµµ

a b
c d

∂
,
√

cτ + d

∂
;
µ

a b
c d

∂
∈ SL2(Z),

√
cτ + d ∈ O(H)

æ
,

which is generated by the following two elements

S :=
µµ

0 −1
1 0

∂
,
√

τ

∂
, T :=

µµ
1 1
0 1

∂
, 1

∂
.

Let K be an even hyperbolic lattice with signature (1, b−−1). Let N ∈ N.
Let f , f 0 be a basis of U(N) such that

f · f = f 0 · f 0 = 0, f · f 0 = N.

Set
L := U(N)©K.

The signature of L is (2, b−). Let l ∈ N be the level of L; i.e., l is the smallest
natural number such that lh∞, ∞i/2 ∈ Z and lh∞, δi ∈ Z for all ∞, δ ∈ AL.

Let C[AL] be the group ring of the discriminant group AL. Let {e∞}∞∈AL

be the standard basis of C[AL]. Let ρL : Mp2(Z) → GL(C[AL]) be the Weil
representation. Namely, for the generators S and T of Mp2(Z), we define
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(5.1) ρL(T ) e∞ = eπi∞2
e∞ , ρL(S) e∞ =

i
b−−2

2p|AL|
X

δ∈AL

e−2πi∞·δeδ.

Here the bilinear form on L is denoted by x · y = hx, yi for simplicity. Then
ρL extends to a group homomorphism from Mp2(Z) to GL(C[AL]).

Definition 5.1. A C[AL]-valued holomorphic function F (τ) on the complex
upper-half plane H is a modular form of weight 1 − b−

2 of type ρL if the
following conditions are satisfied:
(1) For all (

°a b
c d

¢
,
√

cτ + d) ∈ Mp2(Z) and τ ∈ H,

F

µ
aτ + b

cτ + d

∂
=
√

cτ + d
2−b−

ρL

µµ
a b
c d

∂
,
√

cτ + d

∂
· F (τ).

(2) F (τ) is meromorphic at +i1 and admits the integral Fourier expansion:

F (τ) =
X

∞∈AL

e∞

X
k∈ 1

l Z

c∞(k) e2πikτ ,

where c∞(k) ∈ Z for all k ∈ 1
l Z and c∞(k) = 0 for k ø 0.

By [8, p.512 Th. 5.3], F (τ) induces an elliptic modular form FK(τ) of the
same weight 1− b−

2 of type ρK .
As before, define

≠L := {[x] ∈ P(LC); hx, xi = 0, hx, x̄i > 0}.
For ∏ ∈ LR with h∏, ∏i < 0, we define H∏ as before in Sect. 2. Let

CK = {v ∈ KR; hv, vi > 0}
be the light cone of K. Then the tube domain KR + iCK is identified with
≠L by the map

(5.2) KR + iCK 3 z →
∑
f − hz, zi

2
f 0 + z

∏
∈ P(LC).

Since K is hyperbolic, CK consists of two connected components. Let C+
K be

one of them. Let ≠+
L be the component of ≠L corresponding to KR + i C+

K
via the isomorphism (5.2).

By [8, p.517], FK(τ) induces a chamber structure of the cone C+
K . Each

chamber of C+
K is called a Weyl chamber. Let W be a Weyl chamber of C+

K .
The dual cone of W is defined by

W∨ = {v ∈ KR; hv, wi > 0, 8w ∈ W}.
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Theorem 5.2. (Borcherds) There exists an automorphic form ™L(z, F ) on
≠+

L with the following properties:
(1) ™L(z, F ) is an automorphic form of weight c0(0)/2 for a cofinite subgroup
of O+(L).
(2) The divisor of ™L(·, F ) is given by

div(™L(·, F )) =
X

∏∈L∨, ∏2<0

c∏

µ
∏2

2

∂
H∏.

(3) There exists a vector ρ = ρ(K, FK(τ), W ) ∈ KQ determined by K, FK(τ)
and W such that ™L(z, F ) admits the following infinite product expansion for
z ∈ KR + iW with hz, zi ¿ 0:

™L(z, F ) = e2πiρ·z Y
∏∈K∨∩W∨

Y
n∈Z/NZ

≥
1− e2πi(∏·z+ n

N )
¥c∏+ n

N f0 (∏
2/2)

.

The automorphic form ™L(z, F ) is called the Borcherds product associated with
L and F (τ). The vector ρ is called the Weyl vector of ™L(z, F ).

Proof. See [8] and [12].

6 Borcherds products for odd unimodular lattices

Define the symmetric unimodular matrix I1,m of rank m+1 and with signature
(1,m) by

I1,m :=

0BBB@
1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 0 −1

1CCCA .

We identify I1,m with the corresponding unimodular hyperbolic lattice. Define
2-elementary lattices Sk, Tk (1 ∑ k ∑ 9) by

Tk := U(2)© I1,9−k(2), Sk := T?k .

Then Sk verifies the conditions in Theorem 4.3:
(6.1)
11 ∑ r(Sk) = 22− r(Tk) ∑ 17, r(Sk) + l(Sk) = 22− r(Tk) + l(Tk) = 22.

By Nikulin [33, Th. 4.2.2, P.1434 table 1], Sk are the only 2-elementary hyper-
bolic lattices satisfying (6.1), up to an automorphism of LK3. In this section,
we give an explicit expression of the automorphic form ΦSk in Theorem 4.3 as
a Borcherds product.

We define the Weyl vector of I1,9−k(2) by
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ρk :=
1
2
(3,−1, . . . ,−1) ∈ I1,9−k(2)∨.

We set
V := S−1T 2S =

µµ
1 0
−2 1

∂
,
√−2τ + 1

∂
∈ Mp2(Z)

and we define e0, e1,v0,v1,v2,v3 ∈ C[ATk ] by

e0 := e(0,0,0), e1 := e(0,0,ρk), vi :=
X

δ∈ATk
, 2hδ,δi≡i mod 4

eδ.

where vectors in Tk are denoted by (m,n, ∏), m, n ∈ Z, ∏ ∈ I1,9−k(2).
Set q = e2πiτ . For τ ∈ H, let η(τ) = q1/24

Q1
n=1(1− qn) be the Dedekind

η-function and let

θ2(τ) =
X
m∈Z

q(m+ 1
2 )2/2, θ3(τ) =

X
m∈Z

qm2/2, θ4(τ) =
X
m∈Z

(−1)mqm2/2

be Jacobi’s theta functions. Notice that we use the notation q = e2πiτ while
q = eπiτ in [13, Chap. 4]. For δ ∈ {0, 1/2}, let θA1+δ/2(τ) be the theta function
of the A1-lattice

θA1(τ) := θ3(2τ), θA1+1/2(τ) := θ2(2τ).

Define holomorphic functions f (0)
k (τ), f (1)

k (τ) and the series {c(0)
k (l)}l∈Z,

{c(1)
k (l)}l∈Z+1/4 by

f (0)
k (τ) :=

η(2τ)8 θA1(τ)k

η(τ)8η(4τ)8
=

X
l∈Z

c(0)
k (l) ql = q−1 + 8 + 2k + O(q),

f (1)
k (τ) := −16

η(4τ)8 θA1+1/2(τ)k

η(2τ)16
=

X
l∈1/4+Z

2c(1)
k (l) ql.

We define holomorphic functions g(i)
k (τ), i ∈ Z/4Z by

g(i)
k (τ) =

X
l≡i mod 4

c(0)
k (l) ql/4.

By definition, X
i∈Z/4Z

g(i)
k (τ) =

η(τ/2)8 θA1(τ/4)k

η(τ)8η(τ/4)8
= f (0)

k (τ/4).

Define a C[ATk ]-valued holomorphic function on H by

Fk(τ) := f (0)
k (τ) e0 + f (1)

k (τ) e1 +
X

i∈Z/4Z

g(i)
k (τ)vi.
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Theorem 6.1. For 1 ∑ k ∑ 9, the following hold:
(1) Fk(τ) is a modular form for Mp2(Z) of type ρTk and of weight (k− 8)/2;
(2) the Weyl vector of ™Tk(z, Fk) is given by 2ρk;
(3) there exists a generalized Kac-Moody superalgebra with denominator func-
tion ΦSk ;
(4) if k < 8, then there exists a constant Ck 6= 0 such that

ΦSk(z)2 = Ck ™Tk(z, Fk).

The modular form Fk(τ) for Mp2(Z) is induced from the modular form
f (0)

k (τ) for Γ0(4). The modular form f (0)
k (τ) is reflective for Tk in the sense of

Borcherds [9, Sect. 11, pp.350-351].

Remark 6.2. Theorem 6.1 (2) is closely related to an example of Borcherds [8,
Example 15.3]. Theorem 6.1 (3), (4) seem to be closely related to a problem
of Borcherds [8, Problem 16.2] and conjectures of Harvey-Moore [20, Sect. 7
Conjecture] and Gritsenko-Nikulin [17]. See [40, Sect. 7] for more explanations.
The automorphic form ΦS7 was already found by Gritsenko-Nikulin [19].

We shall give a detailed proof of Theorem 6.1 in the forthcoming paper
[41]. In fact, the norm of ΦSk is regarded as an invariant of certain Calabi-Yau
threefolds, which was introduced by Bershadsky-Cecotti-Ooguri-Vafa [4] and
by Fang-Lu-Yoshikawa [15] using analytic torsion.

7 K3 surfaces of Matsumoto-Sasaki-Yoshida

In Sections 4 and 6, we extended Eqs. (1.6) and (1.7) to 2-elementary K3
surfaces of type Sk. In this section, we consider an analogue of Eq. (1.4) in
dimension 2. We focus on 2-elementary K3 surfaces of type S6. Those K3
surfaces were studied in detail by Matsumoto-Sasaki-Yoshida [30], [31], [36].

7.1 The construction of Matsumoto-Sasaki-Yoshida

Recall that

Mo(3, 6) := {A = (a1, . . . ,a6) ∈ M(3, 6); ai ∧ aj ∧ ak 6= 0 for i < j < k}.
For A ∈ Mo(3, 6), we define

SA := {((x1 : x2 : x3), y) ∈ OP2(3); y2 =
6Y

i=1

(a1i x1 + a2i x2 + a3i x3)}.

The natural projection p = pr2 : SA → P2 is a double covering with branch
divisor

LA,1 ∪ · · · ∪ LA,6,
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where

LA,i := {(x1 : x2 : x3) ∈ P2; a1i x1 + a2i x2 + a3i x3 = 0} ª= P1.

Set EA,ij := LA,i ∩ LA,j . Corresponding to the 15 points {EA,ij i 6= j} Ω
P2, SA has 15 ordinary double points. By [31], [36, Sect. 9.1], the minimal
resolution of SA, i.e., the blowing-up of these 15 singular points, is a K3
surface. In fact, the following 2-form ηA on XA is nowhere vanishing:

(7.1) ηA :=
dx

y
=

dxQ6
i=1(a1i x1 + a2i x2 + a3i x3)1/2

,

where
dx = x1 dx2 ∧ dx3 − x2 dx1 ∧ dx3 + x3 dx1 ∧ dx2.

Let θA : SA → SA be the involution defined as the non-trivial covering trans-
formation of the double covering p : SA → P2.

Definition 7.1. Let XA be the minimal resolution of SA, and let ∂A : XA →
XA be the involution on XA induced from θA.
(1) The pair (XA, ∂A) is called a Matsumoto-Sasaki-Yoshida (MSY) K3 sur-
face associated with A.
(2) Let LA := (LA,1, · · · , LA,6) be the ordered set of lines of P2 associated with
A. The triple (XA, ∂A, LA) is called a MSY-K3 surface with level 2 structure
associated with A.

Two MSY-K3 surfaces with level 2 structure (XA, ∂A, LA) and (XB , ∂B , LB)
are isomorphic if there exists an isomorphism ' : XA → XB such that

' ◦ ∂A = ∂B ◦ ', '(LA) = LB .

Let eEA,ij Ω XA be the proper transform of EA,ij by the blowing-up XA → SA.
Let HA Ω P2 be a line which does not pass any points EA,ij , and let eHA Ω XA

be the proper transform of p−1(HA) by the blowing-up XA → SA. Let eLA,i

be the proper transform of p−1(LA,i) by the blowing-up XA → SA. By [31,
Prop. 2.1.5], there exists a system of generators Eij (1 ∑ i < j ∑ 6), H, Li

(1 ∑ i ∑ 6) of S6 such that for every MSY-K3 surfaces with level 2 structure
(XA, ∂A, LA), there exists a marking α with

α−1(Eij) = c1([ eEA,ij ]), α−1(H) = c1([ eHA]), α−1(Li) = c1([eLA,i]).

Here [D] denotes the line bundle on XA associated with the divisor D. The
triple (XA, ∂A, LA) defines a S6-polarized K3 surface in the sense of Dolgachev
[14]. A marking of (XA, ∂A) satisfying these conditions is called a marking of
MSY-K3 surfaces with level 2 structure (XA, ∂A, LA).

Define
O(T6)(2) := ker{O(T6) → O(AT6)}.
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If α, β are markings of (XA, ∂A, LA), then

β ◦ α−1|S6 = idS6 , β ◦ α−1|T6 ∈ O(T6)(2).

Since β ◦ α−1|T6 ∈ O(T6)(2), the O(T6)(2)-orbit of the period π(XA, ∂A, α)
is independent of the choice of a marking of MSY -K3 surface with level 2
structure. The O(T6)(2)-orbit

O(T6)(2) · π(XA, ∂A, α) ∈ ≠o
S6

/O(T6)(2)

is called the Griffiths period of a MSY -K3 surface (XA, ∂A, LA).

Lemma 7.2. A MSY-K3 surface is a 2-elementary K3 surface of type S6.

Proof. Let (XA, ∂A) be a MSY-K3 surface. Since XA/∂A is the blowing-up of
P2 at the 15 points {EA,ij}i<j and is a rational surface, ∂A acts non-trivially
on H0(XA,KXA). The type of (XA, ∂A) is S6 by [31, Prop. 2.1.5]. ut

We have a family of K3 surfaces with involution π : (X , ∂) → Mo(3, 6) such
that π−1(A) = (XA, ∂A). On Mo(3, 6), acts the group GL3(C)× (C§)6 by

(g,∏1, · · · ,∏6) ·A := g ·A · diag(∏1, · · · ,∏6).

Definition 7.3. Define the configuration space of six lines in gerenal position
on P2 by

Xo(3, 6) := GL3(C)\Mo(3, 6)/(C§)6.

The configuration space Xo(3, 6) is a Zariski open subset of C4. In fact,
every element of Xo(3, 6) has a unique representative of the form (cf. [36,
Chap. 7 Sect. 2]): 0@a1 a2 1 1 0 0

a3 a4 1 0 1 0
1 1 1 0 0 1

1A , a1, . . . , a4 ∈ C.

Hence there exists an embedding j : Xo(3, 6) ↪→ Mo(3, 6) with

(7.2) j(Xo(3, 6)) =

8<:
0@a1 a2 1 1 0 0

a3 a4 1 0 1 0
1 1 1 0 0 1

1A ∈ Mo(3, 6); a1, a2, a3, a4 ∈ C

9=; .

By the expression (7.2), there exist 15 hyperplanes H1, . . . , H15 Ω C4 and a
hyperquadric Q ∈ C4 such that Xo(3, 6) = C4 \H1 ∪ · · · ∪H15 ∪Q.

The permutation group on 6 letters S6 acts on M(3, 6;C) by

σ · (a1, . . . ,a6) := (aσ(1), . . . ,aσ(6)), (a1, . . . ,a6) ∈ M(3, 6;C), σ ∈ S6.

Following [36, Chap. 7 Sect. 3], we define an automorphism of Mo(3, 6) by
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T (U, V ) := (det(U)tU−1,det(V )tV −1), U, V ∈ GL3(C).

Notice that the (i, j)-entry of det(U)tU−1 is the (i, j)-minor of U for U ∈
GL3(C). For all A ∈ Mo(3, 6), g ∈ GL3(C), ∏1, . . . , ∏6 ∈ C§, one has

σ(gA) = gσ(A), σ(A · diag(∏1, · · · , ∏6)) = σ(A) · diag(∏σ(1), · · · ,∏σ(6))

T (gA) = tg−1T (A), T (A · diag(∏1, · · · , ∏6)) = T (A) · diag(µσ(1), · · · , µσ(6))

where µi = ∏1∏2∏3/∏i for i = 1, 2, 3 and µj = ∏4∏5∏6/∏j for j = 4, 5, 6. Hence
the actions of S6 and T on Mo(3, 6) descend to the ones on Xo(3, 6).

Let hT i ª= Z2 be the subgroup of Aut(Xo(3, 6)) generated by T . Let G be
the finite automorphism group of Xo(3, 6) generated by S6 and T . Since S6

commutes with hT i by [36, Chap. 7 Prop. 3.3], one has G ª= S6 × Z2.
Set

Mo
S6

(2) := ≠o
S6

/O(T6)(2).

Theorem 7.4. (Matsumoto-Sasaki-Yoshida) The period map for the family
of MSY -K3 surfaces with level 2 structure π : (X , ∂) → Mo(3, 6) with fiber
π−1(A) = (XA, ∂A, LA), induces an isomorphisms of analytic spaces

Xo(3, 6) ª= Mo
S6

(2), Xo(3, 6)/G ª= Mo
S6

.

In particular, Xo(3, 6)/G (resp. Xo(3, 6)) is a coarse moduli space of MSY-K3
surfaces (resp. with level 2 structure).

Proof. By [31, Prop. 2.10.1] [36, Sect. 9.5], the period map for the family
π : (X , ∂) → Mo(3, 6) induces an isomorphism of analytic spaces ' : Xo(3, 6) ª=
Mo

S6
(2) such that the following diagram is commutative:

(7.3)
Mo(3, 6) id−−−−→ Mo(3, 6)??yq ??yφ
Xo(3, 6) '−−−−→ Mo

S6
(2),

where q : Mo(3, 6) → Xo(3, 6) is the natural projection and φ : Mo(3, 6) →
Mo

S6
(2) is the period map for the family π : (X , ∂) → Mo(3, 6). This proves the

first isomorphism. Since the isomorphism ' induces an isomorphism of groups
G ª= O(T6)/O(T6)(2) by [36, Prop. 9.4], we have Xo(3, 6)/G ª= ≠o

S6
/O(T6) =

Mo
S6

. This proves the second assertion. See [30], [31, Prop. 2.10.1, p.22, l.7],
[36] for more details. ut

7.2 The Freitag theta functions

Let M(2,C) denote the vector space of 2× 2 complex matrices. Then ≠S6 is
biholomorphic to a tube domain H2 Ω M(2,C) defined by

H2 := Λ + iCΛ =
Ω

W ∈ M(2,C);
W −W §

2i
> 0

æ
, W § := tW.
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The isomorphism between ≠S6 and H2 is given as follows. Let Λ be the real
vector space of 2× 2 Hermitian matrices:

Λ :=
Ωµ

u w
w̄ v

∂
∈ M(2,C); u, v ∈ R, w ∈ C

æ
.

Let CΛ := {H ∈ Λ : H > 0} be the light cone of Λ, where H > 0 if and only
if H is positive-definite. Let {h,d1,d2,d3} be the basis of Λ defined as

h =
µ

1 1
1+i

1
1−i 1

∂
, d1 =

µ
1 1

1+i
1

1−i 0

∂
, d2 =

µ
0 1

1+i
1

1−i 1

∂
, d3 =

µ
0 i

1+i−i
1−i 0

∂
We consider the following coordinates y = (y0, y1, y2, y3) on H2 = Λ + iCΛ:

y = y0 h + y1 d1 + y2 d2 + y3 d3

=
µ

y0 + y1 (y0 + y1 + y2 + iy3)/(1 + i)
(y0 + y1 + y2 − iy3)/(1− i) y0 + y2

∂
∈ H2.

The period domain ≠S6 is isomorphic to the tube domain H2 by the map:

(7.4) µ : H2 3 y → (1 : −det(y) : y0 : y1 : y2 : y3) ∈ ≠S6 .

Definition 7.5. (1) For a, b ∈ {0, 1+i
2 }2 and W ∈ H2, define

Θ

µ
a

b

∂
(W ) =

X
m∈Z[i]2

expπi
Ωµ

m +
a

1 + i

∂§
W

µ
m +

a

1 + i

∂
+ 2Re

µ
b

1 + i

∂§
m

æ
.

The Freitag theta function Θ
°a

b

¢
(W ) is said to be even if a§b ∈ Z.

(2) Define the Matsumoto-Sasaki-Yoshida form ∆MSY by

∆MSY(W ) :=
Y

(a
b) even

Θ

µ
a

b

∂
(W ).

Let P be the set of all partitions
° ijk
lmn

¢
of the set {1, . . . , 6}, whereµ

ijk

lmn

∂
:= {i, j, k} ∪ {l,m, n} = {1, . . . , 6}, i < j < k, l < m < n.

There exists a one to one correspondence between P and the set of even
Freitag theta functions. Since #P = 10, there exists ten even Freitag theta
functions. The Freitag theta function corresponding to the partition

°
ijk
lmn

¢
is

denoted by Θ
° ijk
lmn

¢
(W ). Hence

∆MSY(W ) =
Y

( ijk
lmn)∈P

Θ

µ
ijk

lmn

∂
(W ).

See [30, Sect. 2.3], [36, Sect. 9.12.5] for the explicit correspondence between
the even characteristics {°a

b

¢} and the partitions {° ijk
lmn

¢}.
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Proposition 7.6. Under the identification µ : H2
ª= ≠+

S6
, the Matsumoto-

Sasaki-Yoshida form ∆MSY(W ) is an automorphic form on H2 for O(T6)+
of weight 10 with

div(∆MSY) = DS6 =
X

δ∈∆T6

Hδ.

Proof. See [30, Lemma 2.3.1 and Prop. 3.1.1]. ut

7.3 The discriminant of MSY K3 surfaces

We introduce an analogue of the function ∆(2,4) in the case Mo(3, 6).

Definition 7.7. (1) For A = (a1, . . . ,a6) ∈ Mo(3, 6) and a partition
° ijk
lmn

¢ ∈
P, define

D

µ
ijk

lmn

∂
(A) := det(ai,aj ,ak) det(al,am,an).

(2) Define a holomorphic function ∆(3,6) on Mo(3, 6) by

∆(3,6)(A) :=
Y

( ijk
lmn)∈P

D

µ
ijk

lmn

∂
(A) =

Y
( ijk

lmn)∈P
det(ai,aj ,ak) · det(al,am,an).

(3) Define a real-valued function k∆(3,6)k on Mo(3, 6) by

k∆(3,6)(A)k :=
µ

1
(2π)2

Z
XA

ηA ∧ ηA

∂10

|∆(3,6)(A)|.

Lemma 7.8. (1) Mo(3, 6) = M(3, 6;C) \ div(∆(3,6)).
(2) k∆(3,6)k is GL3(C)× (C§)6-invariant.

Proof. (1) The first assertion follows from the definition of Mo(3, 6).
(2) Let A = (aij) ∈ Mo(3, 6) and g ∈ GL3(C). We write gA = (a(g)

ij ).
We identify g with the corresponding projective transformation. Then the
projective transformation P2 3 [x] → [tg−1x] ∈ P2 lifts to an isomorphism
fg : XA → XgA such that

f§g (ηgA) = f§g

√
dxQ6

i=1(a
(g)
1i x1 + a(g)

2i x2 + a(g)
3i x3)1/2

!

=
d(tg−1x)Q6

i=1(a1i x1 + a2i x2 + a3i x3)1/2
= det(g)−1 ηA.

This, together with ∆(3,6)(gA) = det(g)20 ∆(3,6)(A), implies the GL3(C)-
invariance of k∆(3,6)k. Let us see the (C§)6-invariance of k∆(3,6)k. Identify
∏ = (∏i)6i=1 ∈ (C§)6 with the invertible diagonal matrix ∏ = (δij∏i)1∑i,j∑6 ∈
GL6(C). Since ηA∏ = (det∏)−1/2ηA and ∆(3,6)(A∏) = det(∏)10 ∆(3,6)(A), we
get the (C§)6-invariance of k∆(3,6)k. ut
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By Lemma 7.8, k∆(3,6)k descends to a function on Xo(3, 6). We identify
k∆(3,6)k with the corresponding function on Xo(3, 6).

Theorem 7.9. (1) There exist non-zero constants C1, C2 such that the fol-
lowing identity holds under the identification (7.4):

ΦS6 = C1 ∆MSY = C2 ™T6(·, F6)1/2.

(2) There exists an absolute constant C3 6= 0 such that for all A ∈ Mo(3, 6),

τS6(XA, ∂A) = C3 k∆(3,6)(A)k−1/4.

By Theorems 6.1 and 7.9 (1), we get an infinite product expansion of the
Igusa cusp form, i.e., the restriction of ∆MSY to the Siegel upper-half space
S2 = {W ∈ H2; tW = W}. The infinite product expansion of the Igusa cusp
form was first obtained by Gritsenko-Nikulin [18].

For the proof of Theorem 7.9, we recall the results of Matsumoto-Saasaki-
Yoshida in more details.

7.4 A compactification of Xo(3, 6)

For 1 ∑ i < j < k ∑ 6, we define

Mijk(3, 6) :=
Ω

A ∈ M(3, 6;C); ai ∧ aj ∧ ak = 0 if (k, l,m) = (i, j, k)
al ∧ am ∧ an 6= 0 if (k, l,m) 6= (i, j, k)

æ
,

Xijk(3, 6) := GL3(C)\Mijk(3, 6)/(C§)6,
and we set

M§(3, 6) := Mo(3, 6) ∪ qi<j<kMijk(3, 6)
X§(3, 6) := Xo(3, 6) ∪ qi<j<kXijk(3, 6).

Notice that if i < j < k, l < m < n and (i, j, k) 6= (l,m, n), then

Mijk(3, 6) ∩Mlmn(3, 6) = ;, Xijk(3, 6) ∩Xlmn(3, 6) = ;.
The subset M§(3, 6) is open in M(3, 6;C).

For A ∈ qi<j<kMijk(3, 6), we define SA and LA,i, i = 1, . . . , 6 as in
Sect. 7.1. Then Sing SA consists of only rational double points, i.e., 12 ordinary
double points and one A3-singularity. For A ∈ M§(3, 6), we define ηA as in
(7.1). Since ηA is nowhere vanishing on the regular part of SA, the minimal
resolution of SA, denoted again by XA, is a K3 surface. We have a flat family
of surfaces π : S → M§(3, 6) with fiber π−1(A) = SA.

With respect to the trivial GL3(C)× (C§)6-action on P29, there exists by
[31], [36] a GL3(C)× (C§)6-equivariant holomorphic map F : M§(3, 6) → P29

that induces an injection f : X§(3, 6) ↪→ P29. We consider the topology on
X§(3, 6) induced from the one on f(X§(3, 6)) via f ; we identify X§(3, 6) with
f(X§(3, 6)) as a topological space. Let X(3, 6) be the closure of f(X§(3, 6))
in P29 and let Xijk(3, 6) be the closure of f(Xijk(3, 6)) in P29.

Set MS6(2) := ≠+
S6

/O+(T6)(2). Since O+(T6)(2) is generated by reflec-
tions by [31, Prop. 2.5.2], MS6(2) is smooth.
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Theorem 7.10. (1) X(3, 6) is a projective variety of dimension 4. The iso-
morphism ' in (7.3) extends to an isomorphism ' between X(3, 6) and the
Baily-Borel-Satake compactification of MS6(2).
(2) X§(3, 6) Ω X(3, 6)reg := X(3, 6) \ Sing X(3, 6).
(3) X§(3, 6) is a Zariski open subset of X(3, 6) with dimX(3, 6)\X§(3, 6) ∑ 2.
(4) Xijk(3, 6) ∩X§(3, 6) is a smooth hypersurface of X§(3, 6).

Proof. See [31, Th.A6.2] for the first part of (1) and [30, Th. 3.2.4, Cor. 4.4.2]
for the second part of (1). Since XA is a K3 surface with at most rational
double points for A ∈ qi<j<kMijk(3, 6), Xijk(3, 6) is identified with a divisor
of MS6(2) via '. Hence X§(3, 6) is regarded as a subset of MS6(2) via '. Since
MS6(2) is smooth, X§(3, 6) consists of smooth points of X(3, 6). This proves
(2). See also [36, p.244] for the proof of (2). See [31, Prop.A5.3, Cor.A5.4,
Th.A6.2] for the proof of (3). Consider the following subset of M§(3, 6):

U :=

8<:
0@1 0 a 0 1 c

0 1 b 0 1 d
0 0 z 1 1 1

1A ∈ M§(3, 6); a, b, c, d, z ∈ C

9=; .

Let U123 Ω X§(3, 6) be the image of U by the natural projection M§(3, 6) →
X§(3, 6). By [31, Lemmas A6.8 and A6.9 and their proofs], U123 is an open
subset of X§(3, 6) containing Xo(3, 6) ∪ X123(3, 6). Since U123 is isomorphic
to an open subset of P2 × C2 and since X123(3, 6) ∩ U123 is defined by the
equation z = 0, X123(3, 6) is a smooth hypersurface of X§(3, 6). This proves
(4). By [36, p.244], Xijk(3, 6) is identified with a certain smooth hypersurface
of MS6(2), which also proves (4). ut

See [36, Chap. 7 Sect. 5] for the interpretation of the boundary locus
X(3, 6) \Xo(3, 6) in terms of degenerate matrices in M(3, 6;C).

Define a function K on M§(3, 6) by

K(A) :=
Z

XA

ηA ∧ η̄A, A ∈ M§(3, 6).

Lemma 7.11. K is a nowhere vanishing continuous function on M§(3, 6).

Proof. Let U ª= ∆18 be a small neighborhood of A in M§(3, 6) such that
U ∩ qi<j<kMijk(3, 6) ª= ∆17. By [25, Th. 4.28], there exists a finite holomor-
phic map h : V → U with branch divisor U ∩ qi<j<kMijk(3, 6) such that the
family pr2 : S ×U V → V induced from π : S → M§(3, 6) by h : V → U ad-
mits a simultaneous resolution. Namely, there exist a complex manifold X ,
holomorphic maps p : X → S ×U V and eπ : X → V such that the diagram

X p−−−−→ S ×U V??yeπ ??ypr2

V
id−−−−→ V
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is commutative and such that p : XB := eπ−1(B) → SB is the minimal
resolution for all B ∈ V. Hence {p§ηB}B∈U is a nowhere vanishing rela-
tive holomorphic 2-form on X . Since every fiber of eπ is smooth and since
h§K(B) =

R
XB

p§ηB ∧ p§η̄B for all B ∈ V, h§K is a continuous function on
V. Since p§ηB 6= 0 for all B ∈ V, h§K is nowhere vanishing on B. This proves
the assertion on U. Since A ∈ qi<j<kMijk(3, 6) is an arbitrary point, K is a
nowhere vanishing continuous function on M§(3, 6). ut

7.5 An intermediate modular variety

Let z = (z( ijk
lmn))( ijk

lmn)∈P be the homogeneous coordinates of P9 and define

Z := {z ∈ P9; Plkij(z) = 0 for all i < j},
where Plkij(z) := z( ijk

lmn) − z( ijl
mnk) + z(ijm

nkl) − z( ijn
klm) are the Plucker relations.

Then Z Ω P9 is a linear subspace of dimension 4.
After Matsumoto, we define

Pr: X(3, 6) 3 [A] → (· · · : D

µ
ijk

lmn

∂
(A) : · · · )( ijk

lmn)∈P ∈ P9

and

Θ : H2 3 W → (· · · : Θ

µ
ijk

lmn

∂2

(W ) : · · · )( ijk
lmn)∈P ∈ P9.

Recall that the period map φ : Mo(3, 6) → Mo
S6

(2) induces the iso-
morphism ' : Xo(3, 6) → Mo

S6
(2) in (7.3). Let ΓM (1 + i) Ω Aut(H2) be

the subgroup corresponding to O+(T6)(2) Ω Aut(≠S6) via the isomorphism
µ : H2

ª= ≠S6 . Let H2/ΓM (1 + i) be the Baily-Borel-Satake compactification
of H2/ΓM (1 + i).

Theorem 7.12. (1) The images of Pr and Θ are contained in Z;
(2) Pr extends to a double covering Pr: X(3, 6) → Z;
(3) Θ induces a double covering Θ : H2/ΓM (1 + i) → Z;
(4) The period map for the family π : (X , ∂) → Mo(3, 6) induces an isomor-
phism √ : X(3, 6) → H2/ΓM (1 + i) such that the following diagram is com-
mutative:

(7.5)
X(3, 6) √−−−−→ H2/ΓM (1 + i)??yPr

??yΘ

Z
id−−−−→ Z

Proof. See [30, Th. 4.4.1, Cor. 4.4.2] and [36, Chap. 7 Prop. 6.2, Chap. 9 Th. 12.7]
ut
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We regard the monomial
Q
P z( ijk

lmn) as an element of H0(P9,OP9(10)). Let
k · kOP9 (10) be the standard Hermitian metric on OP9(10) whose Chern form
is proportional to the Fubini-Study form on P9. Then

k∆(3,6)(A)k2
Pr§kQ

P z( ijk
lmn)k

2
OP9 (10)(A)

=
K(A)20

(
P

P |D
°

ijk
lmn

¢
(A)|2)10 , A ∈ M§(3, 6).

Since K(A)20/(
P

P |D
° ijk
lmn

¢
(A)|2)10 descends to a nowhere vanishing contin-

uous function on X§(3, 6) by Lemmas 7.8 and 7.11, there exists a continuous
Hermitian metric k · k0 on Pr§OP9(10) such that

kPr
§ Y
P

z( ijk
lmn)k

0 = k∆(3,6)k.

Lemma 7.13. Let ∞ : ∆ → X§(3, 6) be a holomorphic curve that intersects
qi<j<kXijk(3, 6) transversally at ∞(0). Then as t → 0,

log k∆(3,6)(∞(t))k2 = log |t|2 + O(1).

Proof. Let ∞(0) ∈ Xijk(3, 6). Let f be a local holomorphic function defin-
ing the divisor Xijk(3, 6) near ∞(0). Since k · k0 is a continuous metric on
Pr§OP9(10) and since

Q
P z( ijk

lmn) ∈ H0(X(3, 6),Pr§OP9(10)), we get

log k∆(3,6)(∞(t))k2 = log(kPr§
Y
P

z( ijk
lmn)(∞(t))k0)2 = (multt=0∞

§f) log |t|2+O(1).

Since ∞ intersects Xijk(3, 6) transversally at ∞(0), we get multt=0∞§f = 1. ut

Proof of Theorem 7.9

We keep the notation in (7.3) and (7.5).
(1) The identity ΦS6 = C2 ™T6(·, F6) follows from Theorem 6.1. We compare
the weights and the zeros of ΦS6 and ∆MSY. By Theorem 4.3 and Proposition
7.6, both of ΦS6 and ∆MSY have the same weight 10 and the same zero divisor
DS5 . From the Köcher principle, the assertion follows.
(2) By Theorems 4.3 and 7.9 (1), it suffices to prove that

(7.6) k∆(3,6)k2 = Const.'§k∆MSYk2.
Let Π : ≠S6 → ≠S6/O+(T6)(2) be the natural projection, and set

f := Π§('−1)§ log k∆(3,6)k2.
We compute the (1, 1)-current ddcf on ≠S6 . By Definition 7.7 (3) and the
definition of the Bergman metric, we get on Mo(3, 6)
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q§ddc log k∆(3,6)k2 = −20 φ§ωS6 .

Since Xo(3, 6) is regarded as a subvariety of Mo(3, 6) via the embedding (7.2),
we get on Xo(3, 6)

(7.7) ddc log k∆(3,6)k2 = −20 '§ωS6

because

L.H.S. = j§q§ddc log k∆(3,6)k2 = −20 j§φ§ωS6 = −20 j§q§'§ωS6 = R.H.S.

Since Π−1 ◦ '(Xo(3, 6)) = ≠o
S6

, we deduce from (7.7) the following equation
on ≠o

S6

(7.8) ddcf = −20ωS6 .

By the commutativity of (7.5), we get the equation of sets on H2/ΓM (1+i):

(7.9) (√−1)§div∆(3,6) = div∆MSY.

Let µ : H2/ΓM (1 + i) → MS6(2) = ≠+
S6

/O+(T6)(2) be the isomorphism in-
duced from the isomorphism µ : H2

ª= ≠S6 . Set DS6 := DS6/O+(T6)(2). Since
' = µ ◦ √, we get by Proposition 7.6 and (7.9)

('−1)§div∆(3,6) = (µ−1)§(√−1)§div∆(3,6) = (µ−1)§div∆MSY = DS6 ,

which yields the equation of sets

(7.10) Π§('−1)§div∆(3,6) = DS6 .

Set Do
S6

:= qi<j<kΠ§('−1)§(Xijk(3, 6)). By Theorem 7.10 (3), Do
S6

is
smooth and it is a dense Zariski open subset of DS6 . Let x ∈ Do

S6
be an

arbitrary point. Let ∞ : ∆ → X§(3, 6) be a holomorphic curve intersecting
qi<j<kXijk(3, 6) transversally at ∞(0). By [39, (2.3)], there exists a holomor-
phic curve c : ∆ → ≠S6 intersecting Do

S6
transversally at c(0) such that

Π ◦ c(t) = ' ◦ ∞(t2), t ∈ ∆.

By Lemma 7.13, we get

(7.11) f(c(t)) = 2 log |t|2 + O(1)

because

log k∆(3,6)('−1 ◦Π ◦ c(t))k2 = log k∆(3,6)(∞(t2))k2 = 2 log |t|2 + O(1).

Since c(0) is an arbitrary point of Do
S6

and since c(t) intersects Do
S6

transver-
sally at c(0), we deduce from (7.8), (7.11) the following equation of currents
on ≠S6 :
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(7.12) ddcf = −20 ωS6 + 2 δDS6 .

Since f is O+(T6)(2)-invariant, it follows from Theorem 3.2 and (7.12) the
existence of an automorphic form F for O+(T6)(2) of weight 20 with zero
divisor 2DS6 such that f = log kFk2. Comparing the weights and the zeros of
F and ∆2

MSY, we get F = Const.∆2
MSY. This proves (7.6). ut

Question 7.14. Recall that the constant C3 was defined as the ratio of τS6 and
k∆(3,6)k−1/4 in Theorem 7.9. Is it possible to compute log C3 in R/Q log 2 by
using the arithmetic Lefschetz-Riemann-Roch theorem [5], [23]? The corre-
sponding question for the family of elliptic curves over the configuration space
π : E → Mo(2, 4;C) was considered by Bost [11], who obtained Eq. (1.4) from
the arithmetic Riemann-Roch theorem [6], [16].

Question 7.15. Let L be an even lattice of signature (2, b−). In [8, Th. 14.3],
Borcherds constructed a correspondence from modular forms for Mp2(Z) of
type ρL with weight 1 + m+ − b−/2 to automorphic forms on ≠L for some
cofinite subgroup of O+(L) of weight m+. We call this correspondence the
Borcherds additive lifting, while we call the correspondence in Theorem 5.2
the multiplicative Borcherds product. Is it true that the even Freitag theta
functions {Θ° ijk

lmn

¢} are the Borcherds additive lifting of some modular forms
for Mp2(Z) of type ρT6? If it is the case, Theorem 7.9 (1) may be expressed
as follows:
(7.13)Y
finite

(additive Borcherds lifting) = (multiplicative Borcherds product)integer.

There are some examples of Eq. (7.13) given by Allcock-Freitag [1] and Kondo
[26]; Allcock-Freitag gave an example where the multiplicative Borcherds
product is the one given by Borcherds [10] characterizing the discriminant
locus on the moduli space of cubic surfaces; Kondo gave an example where
the multiplicative Borcherds product is the Borcherds Φ-function of dimen-
sion 10 characterizing the discriminant locus on the moduli space of Enriques
surfaces. It may be worth asking the existence of additive Borcherds liftings
such that Eq. (7.13) holds for the automorphic forms ΦSk in Theorem 6.1. Are
there many examples of Eq. (7.13)?

Question 7.16. In [27], Krieg studied automorphic forms on the period domain
≠S4 . There exist analogues of the Freitag theta functions on the period domain
≠S4 . Is it true that the automorphic form ΦS4 has an expression in terms of
those theta functions similar to the Matsumoto-Sasaki-Yoshida form ∆MSY?

Question 7.17. In [24], the moduli space and the period map for 2-elementary
K3 surfaces of type S4 were studied by Koike, Shiga, Takayama, and Tsutsui.
They proved that a general 2-elementary K3 surface of type S4 is obtained as
the minimal resolution of the following double covering of P1 ×P1:



26 Ken-Ichi Yoshikawa

S(x) := {((s, t), w) ∈ OP1(4)£OP1(4);w2 =
4Y

k=1

(x(k)
1 st+x(k)

2 s+x(k)
3 t+x(k)

4 )},

where s, t denote the inhomogeneous coordinates of the first P1 and the second
P1, respectively. Following Koike-Shiga-Takayama-Tsutsui, we set

xk :=

√
x(k)

1 x(k)
2

x(k)
3 x(k)

4

!
∈ M(2,C), 1 ∑ k ∑ 4

and define for x = (x1, x2, x3, x4) ∈ M(2,C)4

ηx :=
4Y

k=1

ds ∧ dt

(x(k)
1 st + x(k)

2 s + x(k)
3 t + x(k)

4 )1/2
∈ H0(S(x),KS(x)) \ {0}.

Then the following function seems to be an analogue of ∆(3,6) in the case of
2-elementary K3 surfaces of type S4:

k∆KSTT(x)k2 :=

ØØØØØ
4Y

k=1

det(xk)

ØØØØØ
2 √

1
(2π)2

Z
S(x)

ηx ∧ η̄x

!4

.

Let eS(x) be the minimal resolution of S(x). It may be worth asking if an
analogue of Theorem 7.9 (2) holds in this case, i.e., the existences of a rational
number ∫ and a non-zero real number C with

τS4(eS(x)) = C k∆KSTT(x)k∫ .

Question 7.18. Let A ∈ Mo(3, 6). Assume that there exists a smooth conic
QA such that all the six lines L1,A, . . . , L6,A are tangent to QA. Then XA is a
Kummer surface. Let CA be the double covering of QA with 6 branch points
L1,A∩QA, · · · , L6,A∩QA. Then CA is a curve of genus 2 and XA is the Kummer
surface associated with the Jacobian variety of CA, i.e., XA = Km(Jac(CA)).
Let τ(CA) be the analytic torsion of CA with respect to the metric induced
from the flat Kähler metric on Jac(CA). By e.g. [38], τ(CA) is expressed as
the Petersson norm of the Igusa cusp form. Explain the coincidence of τ(CA)
and τS6(XA, ∂A).

8 Discriminant of quartic surfaces

8.1 Discriminant of quartic hypersurfaces of P3

Let (Z0 : Z1 : Z2 : Z3) be the homogeneous coordinates of P3. Let H =
OP3(1) be the hyperplane bundle over P3. We identify Z0, . . . , Z3 as a basis
of H0(P3, H). For an index I = (i0, i1, i2, i3), we set |I| = i0+· · ·+i3 and define
ZI := Zi0

0 Zi1
1 Zi2

2 Zi3
3 . Then {ZI}|I|=4 is a basis of H0(P3, 4H). Let {ξI}|I|=4
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be the coordinates of H0(P3, 4H) with respect to the basis {ZI}|I|=4. Then
{ξI}|I|=4 is regarded as a basis of the dual vector space H0(P3, 4H)∨.

Let Φ|4H| : P3 3 Z ↪→ (ZI) ∈ P(H0(P3, 4H))∨ be the projective em-
bedding associated with the very ample line bundle 4H. Let Φ|4H|(P3)∨ Ω
P(H0(P3, 4H)) be the projective dual variety of Φ|4H|(P3) (cf. [22]). Then
Φ|4H|(P3)∨ is a hypersurface of P(H0(P3, 4H)). The discriminant of quartic
hypersurfaces of P3 is the reduced homogeneous polynomial ∆(P3,4H)(ξ) ∈
Z[ξ] such that

(8.1) Φ|4H|(P3)∨ = div∆(P3,4H)(ξ).

The choice of ∆(P3,4H)(ξ) is unique, up to a constant. We fix one polynomial
∆(P3,4H)(ξ) satisfying (8.1).

We define

F (Z, ξ) :=
X
|I|=4

ξIZ
I ∈ H0(P3, 4H)∨ ≠H0(P3, 4H).

Set
P := P(H0(P3, 4H)),

Xξ := {[Z] ∈ P3; F (Z, ξ) = 0}, ξ ∈ P.

and
X := {([Z], ξ) ∈ P3 × P; F (Z, ξ) = 0}, π := pr2.

Then π : X → P is a universal family of quartic hypersurfaces of P3 with fiber
π−1(ξ) = Xξ. Let D be the discriminant locus of the family π : X → P:

D := {ξ ∈ P; Sing Xξ 6= ;},
which is an irreducible divisor of P such that

D = div∆(P3,4H)(ξ) = Φ|4H|(P3)∨.

By a formula of Katz [22, Cor. 5.6], we have

(8.2) deg D = deg ∆(P3,4H)(ξ) = (−1)3
Z
P3

c(TP3)
(1 + 4 c1(H))2

= 108,

where c(TP3) = (1 + c1(H))4 denotes the total Chern class of TP3.
For ξ ∈ P \D, (Xξ, H|Xξ) is a polarized K3 surface of degree 4, i.e., a K3

surface equipped with an ample line bundle of degree 4. For ξ ∈ P \D, set

ηξ := ResXξ

µP
σ∈S4

sgn σ Zσ(1) dZσ(2) ∧ dZσ(3) ∧ dZσ(4)

F (Z, ξ)

∂
.

Then ηξ is a non-zero holomorphic 2-form on Xξ.
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Definition 8.1. The norm of ∆(P3,4H)(ξ) is defined by

k∆(P3,4H)(ξ)k2 :=

√
1

(2π)2

Z
Xξ

ηξ ∧ η̄ξ

!108

|∆(P3,4H)(ξ)|2.

By (8.2), k∆(P3,4H)(ξ)k is a C1 function on P \ D. In this section, we
prove that k∆(P3,4H)(ξ)k is expressed as the norm of a Borcherds product on
the period domain for polarized K3 surfaces of degree 4 (cf. Theorem 8.11).

8.2 The polarized period for quartic surfaces

Fix a primitive vector h ∈ LK3 of norm 4. The choice of h is unique up to an
automorphism of LK3. Set

T := h? ª= U© U© E8 © E8 © h−4i.
A marking of (Xξ, H) is an isometry α : H2(Xξ,Z) ª= LK3 with α(c1(H)) = h.
There exists a marking of (Xξ, H). The triple (Xξ, H,α) is called a marked
polarized K3 surface of degree 4. The polarized period of (Xξ, H,α) is the
point of ≠T defined by

π(Xξ,H,α) := [α(ηξ)].

We define
M4 := ≠T/O(T).

The Griffiths period of (Xξ, H) is then defined as the orbit

$(Xξ, H) := O(T) · [α(ηξ)] ∈M4.

Let $o : P \ D → M4 be the period map for the universal family of quartic
surfaces π : (X , (pr1)§H)|P\D → P \D

$o(ξ) := $(Xξ, H), ξ ∈ P \D.

As in Section 2, we define the discriminant locus of ≠T by

DT :=
[

d∈∆T

Hd

and set DT := DT/O(T) ΩM4. We regard DT as a reduced divisor of ≠T.

Lemma 8.2. One has $o(P \D) ΩM4 \ DT.

Proof. Let ξ ∈ P \ D and assume that $(ξ) ∈ DT. There is a marking α of
Xξ and a root δ ∈ ∆T such that π(Xξ, H,α) ∈ Hδ. By the Riemann-Roch
theorem, there exists an effective divisor E of Xξ with α(c1([E])) = ±δ. Since
hh, δi = 0, we get deg H|E = 0, which contradicts the ampleness of H. Hence
$(ξ) ∈M4 \ DT. ut
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Define

Do := {ξ ∈ P; Sing Xξ consists of a unique ordinary double point}.
Let Do

reg := Do\Sing Do be the regular part of Do. Since Do is a dense Zariski
open subset of D by [22, Prop. 3.2], so is Do

reg. By the Borel-Kobayashi-Ochiai
extension theorem, the period map $o extends to a holomorphic map from
(P \ D) ∪ Do

reg to M4, the Bail-Borel-Satake compactification of M4. This
extension of $o is denoted by $.

Let us make a geometric construction of the Borel-Kobayashi-Ochiai ex-
tension $. Let Z Ω P3 × ∆ be a smooth complex threefold such that
p := pr2 : Z → ∆ is a proper, surjective holomorphic function without critical
points on Z \ p−1(0). Set Zt = p−1(t) for t ∈ ∆. Then p : Z → ∆ is called an
ordinary singular family of quartic surfaces if p has a unique, non-degenerate
critical point on Z0 and if Zt is a quartic surface for all t ∈ ∆.

We define

Ho
δ := Hδ \

[
d∈∆T\{±δ}

Hd, Do
T :=

X
d∈∆T

Ho
d

and set Do
T := Do

T/O(T).

Lemma 8.3. Let p : Z → ∆ be an ordinary singular family of quartic sur-
faces. Let c : ∆§ →M4 \ DT be the Griffiths period map for p : Z → ∆. Let
Π : ≠T →M4 be the natural projection. Then there exist a holomorphic curve
c : ∆ → ≠T and a root δ ∈ ∆T satisfying
(1) Π ◦ c(t) = c(t2) for all t ∈ ∆ and c(0) ∈ Ho

δ;
(2) c intersects Ho

δ transversally at c(0).

Proof. (1) Let e∆ be another disc and let Z ×∆
e∆ be the induced family

over e∆ by the map e∆ 3 t → t2 ∈ ∆. By e.g. [25, Th. 4.28], there exists a
simultaneous resolution π : eZ → Z ×∆

e∆, i.e., a resolution satisfying the
commutative diagram eZ π−−−−→ Z ×∆

e∆??yep ??ypr2e∆ id−−−−→ e∆
such that π|ep−1(t) : ep−1(t) → pr−1

2 (t) is an isomorphism for t 6= 0 and is
the minimal resolution for t = 0. In particular, ep is a smooth morphism. Seteπ := pr1◦π : eZ → Z. For t ∈ e∆, we set eZt := ep−1(t) and eπt := eπ| eZt

: eZt → Zt2 .
Then eπt is an isomorphism for t ∈ e∆§ and is the minimal resolution for t = 0.

Since the family ep : eZ → e∆ is differentiably trivial, it admits a marking
α such that ( eZt, eπ§H,αt := α| eZt

) is a marked polarized K3 surface of degree
4 for t ∈ e∆§. Let c : e∆ → ≠T be the period map for the marked family
(ep : eZ → e∆, α). Since ( eZt, eπ§H) ª= (Zt2 , H) for t 6= 0, we have Π ◦c(t) = c(t2).
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Let E0 Ω eZ0 be the exceptional curve of ep0. Since Z0 has a unique ordinary
double point, the self-intersection number of E0 is equal to −2. Set

δ := α0(c1([E0])) ∈ ∆LK3 .

Since E0 is an algebraic cycle, we have c(0) ∈ Hδ. By the same argument as
in [39, p.70 Claim 2], we get c(0) ∈ Ho

δ . This proves (1).
(2) Let KZ be the canonical line bundle of Z. Since KZ is trivial by e.g. [39,
Lemma 2.3], there exists a nowhere vanishing 3-form ξ on Z. For t ∈ ∆, set

(8.3) ηt := ResZt

ξ

p(z)− t
∈ H0(Zt,KZt) \ {0}.

Then eηt := ηt2 is regarded as a holomorphic 2-form on eZt for t 6= 0. There
exists a system of coordinates (z1, z2, z3) near the critical point of p with

(8.4) p(z) = z2
1 + z2

2 + z2
3 .

In the local expression (8.4), the vanishing cycle α−1
t (δ) ∈ H2( eZt,Z) is realized

as the following embedded 2-sphere Et Ω eZt under the identification eZt = Zt2 :
(8.5)

Et :=
Ω

(z1, z2, z3) ∈ C3;
≥z1

t

¥2
+

≥z2

t

¥2
+

≥z3

t

¥2
= 1,

z1

t
,
z2

t
,
z3

t
∈ R

æ
.

By (8.3), (8.4), (8.5), there exists a germ ≤(t) ∈ C{t} with

hαt(eηt), δi =
Z

Et

ηt2 = t ≤(t), ≤(0) 6= 0.

Fix l ∈ TR with hl, li ≥ 0. Since h·, δi/h·, li is an equation defining Ho
δ , c(t)

intersects H0
δ transversally at c(0). This proves (2). ut

Lemma 8.4. The following hold:
(1) $(Do

reg) Ω Do
T;

(2) Do
T ΩM4 \ SingM4 and Do

T Ω DT \ SingDT;
(3) Do

reg is an irreducible divisor of (P \D) ∪Do
reg.

Proof. (1) The result follows from Lemma 8.3 (1).
(2) One can prove the result by the same argument as in [39, Prop. 1.9].
(3) The result follows from the irreducibility of the divisor D of P. ut

Let L Ω P be a line, i.e., a smooth rational curve of degree 1. Then L is
general if the induced family π|L : X|L → L is a Lefschetz pencil, i.e.,
(i) X|L is a smooth threefold;
(ii) all the critical points of the projection π|L are non-degenerate;
(iii) any singular fiber of π|L has only one critical point of π|L.

By [22, Cor. 3.2.1], the set of general lines of P is a dense Zariski open
subset of the set of all lines of P.
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Lemma 8.5. Let L Ω P be a general line. Let $|L : L → (M4 \ DT) ∪Do
T be

the period map for π|L : X|L → L. Then $|L intersects Do
T transversally at

$(L ∩D).

Proof. The result follows from Lemma 8.3 (2). ut
Let ωT be the Kähler form of the Bergman metric on ≠T:

(8.6) ωT([η]) = −ddc log
hη, η̄i
|hη, li|2 , [η] ∈ ≠T,

where l ∈ TR is a fixed vector with hl, li ≥ 0. Since ωT is invariant under the
action of Aut(≠T), it descends to a Kähler form ωM4 on M4 in the sense of
orbifolds. By (8.6) and the definition of the period map $, we get the following
equation of (1, 1)-forms on P \D:

(8.7) ddc log k∆(P3,4H)(ξ)k2 = −108 ($o)§ωM4 .

Lemma 8.6. The semi-positive (1, 1)-form ($o)§ωM4 on P \D has Poincaré
growth along Dreg. In particular, ($o)§ωM4 extends trivially to a closed pos-
itive (1, 1)-current on P.

Proof. By the same argument as in [39, Prop. 3.8 and Th. 3.9] using the
Schwarz lemma for Bergman metrics on symmetric bounded domains, the
semi-positive (1, 1)-form ($o)§ωM4 has Poincaré growth along Dreg. It ex-
tends trivially to a closed positive (1, 1)-current on (P \ D) ∪ Dreg by an
extension theorem of Skoda. Since Sing D is a subvariety of P with codimen-
sion ≥ 2 and with (P \ D) ∪Dreg = P \ Sing D, the result follows from Siu’s
extension theorem [34, p.53 Th. 1]. ut

The trivial extension of ($o)§ωM4 from P \D to P is denoted by $§ωM4 .

Lemma 8.7. The function log k∆(P3,4H)(ξ)k2 is locally integrable on P and
satisfies the following equation of (1, 1)-currents on P:

(8.8) ddc log k∆(P3,4H)(ξ)k2 = δD − 108 $§ωM4 .

Proof. By (8.7) and Siu’s extension theorem, it suffices to prove the assertion
on (P \D) ∪Do

reg. By the same argument as in [39, Prop. 3.11], it suffices to
prove the following: let ∞ : ∆ → P be a holomorphic curve intersecting Do

reg

transversally at ∞(0). Then

(8.9) log k∆(P3,4H)(∞(t))k2 = log |t|2 + O(1).

Since X∞(0) has only one ordinary double point as its singular set, the
function log(

R
X∞(t)

η∞(t) ∧ η̄∞(t)) is bounded as t → 0 by [37, Proof of Theorem
8.1]. By Definition 8.1, we get (8.9). ut
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8.3 A Borcherds product

Let D7 be the root lattice of type D7, which is assumed to be negative-definite.
Then D7 is a primitive sublattice of E8 with D?7 = h−4i. Hence T is regarded
as the orthogonal complement of D7 in U© U© E8 © E8 © E8:

T = {(x, y, a, b, c) ∈ U© U© E8 © E8 © E8; hc, D7i = 0}.
Since U© U© E8 © E8 © E8 is unimodular, we get

(8.10) AT = AD7 = Ah−4i =
1
4
Z/Z =

Ω
0,

1
4
,
2
4
,
3
4

æ
.

In what follows, 0, 1
4 , 2

4 , 3
4 often denote the corresponding elements of the dis-

criminant group AT = AD7 = Ah−4i.
Let e0, e1/4, e2/4, e3/4 be the standard basis of C[AD7 ]. Let ΘD7(τ) be the

theta series of the lattice D7:

ΘD7(τ) := θD7(τ) e0 + θD7+1/4(τ) e1/4 + θD7+2/4(τ) e2/4 + θD7+3/4(τ) e3/4,

where
θD7+δ/4(τ) :=

X
l∈D7+δ/4

q−hl,li, q = e2πiτ .

Notice that D7 is negative-definite.

Lemma 8.8. ΘD7(τ)/∆(τ) is a modular form for Mp2(Z) of type ρT of weight
−17/2.

Proof. Since ∆(τ) is a modular form for SL2(Z) of weight 12 and since ρT =
ρD7 by (8.10), it suffices to prove that ΘD7(τ) is a modular form for Mp2(Z)
of weight 7/2 and of type ρD7 . This follows from [8, Th. 4.1]. ut
Lemma 8.9. The following identity holds:

ΘD7(τ)/∆(τ) ≡ (q−1 + 108) e0 + 26 q−1/8 e1/4 + 14 q−1/2 e2/4 + 26 e3 mod q.

Proof. Recall that the Jacobi theta functions θ2(τ), θ3(τ), θ4(τ) were defined
in Sect. 6. By [13, Chap. 4, p.118, Eqs. (8.7), (8.8), (8.9)], we get
(8.11)

ΘD7(τ) =
θ3(τ)7 + θ4(τ)7

2
e0+

θ2(τ)7

2
e1/4+

θ3(τ)7 − θ4(τ)7

2
e2/4+

θ2(τ)7

2
e3/4.

By the definitions of the Jacobi theta functions, we get

θ2(τ)7 = 27 q7/8 + 7 · 27 q15/8 + O(q2), θ3(τ)7 = 1 + 14 q1/2 + 84 q + O(q3/2),

θ4(τ)7 = 1− 14 q1/2 + 84 q + O(q3/2),

which, together with (8.11), yield that
(8.12)

ΘD7(τ) ≡ (1 + 84 q) e0 + 26q7/8 e1/4 + 14 q1/2 e2/4 + 26 q7/8 e3 mod q3/2.

The result follows from (8.12) and the identity 1/∆(τ) = q−1 +24+O(q). ut



Discriminant of certain K3 surfaces 33

By Lemma 8.8, we can apply Theorem 5.2 to the lattice T and the modular
form ΘD7(τ)/∆(τ).

Lemma 8.10. Let ™T(·,ΘD7/∆) be the Borcherds product associated with T
and ΘD7(τ)/∆(τ). Then ™T(·,ΘD7/∆) has weight 54 and the zero divisor

div ™T(·,ΘD7/∆) = DT + 27
X

d∈T+1/4, d2=−1/4

Hd + 14
X

d∈T+2/4, d2=−1

Hd.

Proof. By Theorem 5.2 (1) and Lemma 8.9, the weight of ™T(·,ΘD7/∆) is
given by c0(0)/2 = 108/2 = 54. By Theorem 5.2 (2) and Lemma 8.9, we get

div ™T(·,ΘD7/∆) =
X

d∈∆T

Hd + 26
X

d∈T+1/4, d2=−1/4

Hd + 14
X

d∈T+2/4, d2=−1

Hd

+26
X

d∈T+3/4, d2=−1/4

Hd

= DT + 27
X

d∈T+1/4, d2=−1/4

Hd + 14
X

d∈T+2/4, d2=−1

Hd,

where we used Hd = H−d to get the second equality. ut
Define the effective divisor D0 on ≠T by

D0 := 27
X

d∈T+1/4, d2=−1/4

Hd + 14
X

d∈T+2/4, d2=−1

Hd

and set D0 := D0/O(T). Then D0 is an effective divisor of M4.
The discriminant ∆(P3,4H)(ξ) is expressed as the Borcherds product:

Theorem 8.11. There exists a non-zero constant C such that the following
identity of C1 functions on P \D holds:

k∆(P3,4H)k2 = C $§k™T(·,ΘD7/∆)k4.
Proof. By the Poincaré-Lelong formula and Lemma 8.10, we get the following
equation of currents on ≠T:

ddc log k™T(·, ΘD7/∆)k2 = δDT + δD0 − 54 ωT,

which descends to the following equation of currents on M4:

(8.13) ddc log k™T(·,ΘD7/∆)k2 =
1
2
δDT + δD0 − 54 ωM4 .

In (8.13), the coefficient 1/2 of δDT is necessary because the natural projection
≠T →M4 doubly ramifies along DT (cf. [39, Prop. 1.9 (4)]).

Since $§Do
T Ω Do

reg by Lemma 8.4 (1) and since Do
reg is an irreducible

divisor of (P \D)∪Do
reg by Lemma 8.4 (3), there exists an integer ∫ ≥ 1 with
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(8.14) $§Do
T = ∫ Do

reg.

Let L Ω P be a general line. We compute the intersection number of L and
the divisor $§Do

T. Since the period map $|L : L → (M4 \DT)∪Do
T intersects

Do
T transversally at $(L ∩Do

reg) by Lemma 8.5, we get by (8.14)

∫ #(L ∩Do
reg) = #(L ∩$§Do

T) = #($(L) ∩Do
T) = #(L ∩Do

reg),

which yields that ∫ = 1.
Let x be an arbitrary point of M4. Let f = 0 be a local equation near x

defining the divisor DT + 2D0. (When x 6∈ DT + 2D0, we can choose f to be
a non-zero constant function.) By (8.13), log(k™T(·,ΘD7/∆)k4/|f |2) is a local
potential function for −108 ωM4 :

(8.15) ddc log(k™T(·,ΘD7/∆)k4/|f |2) = −108 ωM4

as currents on an open subset of M4. Let ξ ∈ P be a point with $(ξ) = x.
Since log(k™T(·,ΘD7/∆)k4/|f |2) is locally bounded near x, we deduce from
[39, Prop. 3.11] the following equation of currents near ξ:

(8.16) ddc$§ log(k™T(·,ΘD7/∆)k4/|f |2) = −108 $§ωM4 .

Since x is an arbitrary point of M4 and hence ξ is an arbitrary point of
(P \ D) ∪ Do

reg, we deduce from (8.16) and ∫ = 1 the following equation of
currents on (P \D) ∪Do

reg:

(8.17) ddc$§ log k™T(·,ΘD7/∆)k2 =
1
2

δDo
reg

+ δ$§D0 − 54 $§ωM4 .

Comparing (8.8) and (8.17), we get the equation of currents on (P\D)∪Do
reg:

(8.18) ddc log
k∆(P3,4H)k2

k™T(·, ΘD7/∆)k4 = −2 δ$§D0 .

Set F := log(k∆(P3,4H)k2/k™T(·,ΘD7/∆)k4). Since D\Do
reg is a subvariety of P

whose codimension is strictly greater than 1, we deduce from Siu’s extension
theorem [34, p.53 Th. 1] that F ∈ L1(P) and that Eq. (8.18) holds on P.
Assume that $§D0 6= ;. Let L Ω P be a general line. By (8.18), @F |L is
a logarithmic 1-form on L with div(@F |L) = ($§D0) ∩ L. Since $§D0 is an
effective divisor and hence so is ($§D0) ∩ L, the sum of the residues of @F |L
does not vanish, which contradicts the residue theorem. Hence $§D0 = ; and
F is a constant function on P. This proves the theorem. ut

We do not know if k∆(P3,4H)k admits an analytic expression using (equiv-
ariant) analytic torsion. After Beauville [3, Sect. 6], Voisin [35], Huybrechts
[21, Example 2.7], it is possible to associate to X an irreducible compact
holomorphic symplectic 4-fold with anti-symplectic involution as follows.
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For a smooth quartic surface X Ω P3, let Hilb(2)(X) denote the Hilbert
scheme of zero-cycles of degree 2 of X, which is a symplectic resolution of the
second symmetric product of X. Since X is a quartic surface, Hilb(2)(X) has
a natural involution defined as follows. Let P1 + P2, P1 6= P2, be a point of
Σ(2)X, the second symmetric product of X. Let L be the line of P3 connecting
P1 and P2. Then there exist P3, P4 ∈ X such that X∩L = {P1, P2, P3, P4}. Let
∆ be the diagonal locus of Σ(2)X. We define the involution θ : Σ(2)X \∆ →
Σ(2)X \ ∆ by θ(P1 + P2) := P3 + P4. By [3, Sect. 6 Prop. 11], θ extends to
an anti-symplectic holomorphic involution on Hilb(2)(X). As an analogue of
Theorem 4.3, it may be worth asking the following:

Question 8.12. Is it possible to express k∆(P3,4H)k2 as a combination of the
equivariant analytic torsions of the bundles ≠p

Hilb(2)(X)
, p ≥ 0?
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7. Bismut, J.-M., Gillet, H., Soulé, C. Analytic torsion and holomorphic determi-
nant bundles I,II,III, Comm. Math. Phys. 115 (1988) 49-78, 79-126, 301-351

8. Borcherds, R.E. Automorphic forms with singularities on Grassmanians, Invent.
Math. 132 (1998), 491-562

9. Reflection groups of Lorenzian lattices, Duke Math. Jour. 104 (2000),
319-366

10. An automorphic form related to cubic surfaces, math.AG/0002079 (2000)
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