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Abstract

In this paper, we prove a Carleman estimate for a Kirchhoff plate

equation and apply the Carleman estimate to inverse problems of de-

termining spatially varying two Lamé coefficients and the mass density

by a finite number of boundary observations.

Our main results are Lipschitz stability estimates for the inverse

problems under suitable conditions of initial values and boundary val-
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ues, which are satisfied, in particular, by paraboloid initial displace-

ments.

1 Introduction and the main results.

We consider a classical model by Kirchhoff for flexural waves in a thin plate,

whose governing equation is given as follows:

(Ly)(t, x) = (Lλ,µ,ρy)(t, x) ≡ ρ(x)∂2
t y(t, x) + (λ(x) + µ(x))∆2y(t, x)

+2∇(λ + µ)(x) · ∇(∆y(t, x))

+∆(λ + µ)(x)∆y(t, x) + 2(∂1∂2µ)(x)∂1∂2y(t, x) (1.1)

−(∂2
1µ)(x)∂2

2y(t, x)− (∂2
2µ)(x)∂2

1y(t, x) = H(t, x), 0 < t < T, x ∈ Ω.

Here Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω and x =

(x1, x2) ∈ R2, ∂1 = ∂
∂x1

, ∂2 = ∂
∂x2

, ∇ = (∂1, ∂2), ∆ = ∂2
1 + ∂2

2 . Moreover let

∂α
x = ∂α1

1 ∂α2
2 with α = (α1, α2) ∈ (N ∪ {0})2, |α| = α1 + α2.

Physically ρ = ρ(x) is the mass density per volume of the plate, and

λ = λ(x), µ = µ(x) are Lamé coefficients and for more physical details of the

flexural waves, see for example, Lagnese [32], Graff [12], Landau and Lifshitz

[33], Lions and Lagnese [38].

1991 Mathematics Subject Classification. 35R30, 73D50, 35B60.

Key Words and Phrases. Kirchhoff plate, Carleman estimate, boundary observations,

Lipschitz stability.
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To (1.1) we attach initial and boundary conditions:

y(0, x) = a(x), ∂ty(0, x) = 0, x ∈ Ω, (1.2)

and

(B1(λ, µ)y)(t, x) = g(t, x), (B2(λ, µ)y)(t, x) = h(t, x),

0 < t < T, x ∈ ∂Ω, (1.3)

where we set

B1y = B1(λ, µ)y = (λ+µ)∆y+µ(2ν1ν2∂1∂2y−ν2
2∂

2
1y−ν2

1∂
2
2y) on ∂Ω, (1.4)

and

B2y = B2(λ, µ)y = ∂ν [(λ + µ)∆y]− ∂1(µ∂2
2y)ν1 − ∂2(µ∂2

1y)ν2

+∂1(µ∂1∂2y)ν2 + ∂2(µ∂1∂2y)ν1

+∂τ [µ(ν2
1 − ν2

2)∂1∂2y + µν1ν2(∂
2
2y − ∂2

1y)] on ∂Ω. (1.5)

Here and henceforth ν(x) = (ν1(x), ν2(x)) denote the unit outward normal

vector to ∂Ω at x, while τ(x) = (−ν2(x), ν1(x)) is a unit tangential vector

on ∂Ω at x, and we set ∂νy = ∇y · ν, ∂τy = ∇y · τ . In boundary condition

(1.3) g and −h describe the moment of action force and the action force per

unit length on the boundary respectively (e.g., Landau and Lifshitz [33]).

This kind of plate model can be derived by the principle of virtual work (e.g.

Lagnese [32], Landau and Lifshitz [33], Lions and Lagnese [38]) or other kind

of method (e.g. Graff [12]).
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In this paper, we discuss

Inverse Problem. Determine all or some of λ(x), µ(x) and ρ(x) in (1.1)

by boundary measurements on (0, T )× ∂Ω of solutions y to (1.1) - (1.3).

Remark 1. The main results on the inverse problems in this paper are also

valid for other kinds of boundary conditions. For example, in the case where

boundary conditon (1.3) is replaced by y = g and ∂νy = h, we can discuss

inverse problems similarly.

The plate equation (1.1) is a basic equation for thin plates such as wings of

an airplane, and determination of λ, µ, ρ is practically important for example

for the sake of evaluation of strength or the optimal design of the wing.

Our main concern is the mathematical analysis, that is, the uniqueness and

the stability for the inverse problem. We formulate our inverse problem. Let

y = y(λ, µ, ρ; g, h, a,H)(t, x) denote the solution to (1.1) - (1.3) provided that

we will specify the class of solutions later. Take k0, J ∈ N and choose a

set of {gj, hj, aj, Hj}1≤j≤J of boundary values, initial values and force terms

which are considered as inputs to an unknown system. Then determine

λ(x), µ(x), ρ(x), x ∈ Ω by ∂k
νy(λ, µ, ρ; gj, hj, aj, Hj)(t, x), 0 < t < T , x ∈ ∂Ω,

1 ≤ j ≤ J , 0 ≤ k ≤ k0, which are observation data and regarded as

outputs. In particular, we will search for stability estimates for the inverse

problem: Estimate ‖λ1 − λ2‖H2(Ω), ‖µ1 − µ2‖H2(Ω) and/or ‖ρ1 − ρ2‖H1(Ω) by

suitable norms of ∂k
νy(λ1, µ1, ρ1; gj, hj, aj, Hj) − ∂k

νy(λ2, µ2, ρ2; gj, hj, aj, Hj),

1 ≤ j ≤ J , 1 ≤ k ≤ k0.

The stability in inverse problems is not only important as mathematical
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subject but also for example for estimation of convergence rate of Tikhonov’s

regularization (e.g., Cheng and Yamamoto [11]).

The number J corresponds to the number of experiments where we suit-

ably choose initial values, boundary values and force terms to execute the

vibration processes and make observations. In the case where we want to

determine several coefficients among λ, µ, ρ, we can expect that J = 1, a

single measurement, may not guarantee the uniqueness as well as the stabil-

ity and we will look for the minimum J . Moreover, in order that initial and

boundary data and force terms are effective for our identification process,

we have to require conditions on gj, hj, aj, Hj, 1 ≤ j ≤ J . For example, we

must not choose a1 = 0, g1 = h1 = 0 and H1 = 0, which can not stimulate

the system at all. It is another interest to seek for such generous conditions

for gj, hj, aj, Hj.

We will consider two kinds of inverse problems:

Inverse Problem I. We assume that ρ = ρ(x) is known. Then determine

λ(x) and µ(x), x ∈ Ω.

Inverse Problem II. Determine λ(x), µ(x) and ρ(x), x ∈ Ω.

Inverse Problem I is practically motivated by the fact that the mass den-

sity ρ(x) can be determined by a different way (e.g., some static method)

from the method for elastic properties λ(x) and µ(x), and so it is worth an

independent research.

For the statements of our main results, we need a set of admissible initial

values, boundary values and force terms, and an admissible set of unknown
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coefficients. Henceforth ε0 > 0, M > 0, x0 = (x0
1, x

0
2) ∈ R2 \ Ω be arbitrarily

given and let λ0, µ0 ∈ C14(Ω), ρ0 ∈ C12(Ω) be given such that





λ0 + µ0, µ0, ρ0 > ε0 on Ω

∇ log
(

ρ0(x)
λ0(x)+µ0(x)

)
· (x− x0) > −1, x ∈ Ω.

(1.6)

We note that if λ0, µ0, ρ0 are positive constants or close to positive constants

for example, then (1.6) is satisfied. We define an admissible set of initial

values, boundary values and force terms.

V = {(g, h, a, H); ∂tH(0, ·) = 0 in Ω,

‖y(λ0, µ0, ρ0; g, h, a,H)‖W 4,∞(0,T ;C(Ω))∩W 2,∞(0,T ;C4(Ω)) ≤ M}. (1.7)

Remark 2. We can write the conditions for (g, h, a,H) ∈ V explicitly

in terms of sufficient smoothness and compatibility conditions of sufficient

orders. This can be proved by results presented for example in Lions and

Magenes [39].

For the statement of the compatibility conditions, we set A = Aλ0,µ0 ≡
Lλ0,µ0,ρ0 − ρ0∂

2
t , which is the stationary part of L defined by (1.1). We first

define

a(0) = a, b(0) = 0,

a(j) =
1

ρ0

(−Aa(j−1) + ∂
2(j−1)
t H(0, x)), j = 1, 2, 3, · · ·

b(j) =
1

ρ0

(−Ab(j−1) + ∂2j−1
t H(0, x)), j = 1, 2, 3, · · ·

provided that a(j), b(j) are well-defined in L2(Ω). We note that b(1) = 0 by
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∂tH(0, ·) = 0. Let us assume smoothness conditions:

a(j), b(j) ∈ H4(Ω), 0 ≤ j ≤ 2, a(3) ∈ H4(Ω), b(3) ∈ H3(Ω),





g ∈ H7(0, T ; H
3
2 (∂Ω)) ∩H

31
4 (0, T ; L2(∂Ω)),

h ∈ H7(0, T ; H
1
2 (∂Ω)) ∩H

29
4 (0, T ; L2(∂Ω)),

H ∈ H7(0, T ; L2(Ω)), ∂3
t H ∈ C([0, T ]; H4(Ω))

and compatibility conditions of order 6:




B1(λ0, µ0)a
(j)(x) = ∂2j

t g(0, x),

B2(λ0, µ0)a
(j)(x) = ∂2j

t h(0, x),

B1(λ0, µ0)b
(j)(x) = ∂2j+1

t g(0, x),

B2(λ0, µ0)b
(j)(x) = ∂2j+1

t h(0, x), 0 ≤ j ≤ 3, x ∈ ∂Ω.

(1.8)

Then we can apply Theorem 3.1 of Chapter 5 in Lions and Magenes [39] to

∂j
t y, 0 ≤ j ≤ 6, and we see that y ∈ H6(0, T ; H4(Ω)) ∩H3(0, T ; H8(Ω)). By

the Sobolev embedding, this yields that y ∈ W 4,∞(0, T ; C(Ω))∩W 2,∞(0, T ; C5(Ω)).

One can relax the smoothness conditions and the compatibility conditions

by refined regularity properties in [39]. However for concentrating on inverse

problems, we will not pursue more.

Next we introduce an admissible set of unknown λ and µ for Inverse

Problem I:

UI = {(λ, µ); ‖λ‖C14(Ω), ‖µ‖C14(Ω) ≤ M,

λ + µ, µ > ε0 on Ω. There exists a neighbourhood U = U(λ, µ)

of ∂Ω such that λ = λ0 and µ = µ0 in U,

∇ log
(

ρ(x)
λ(x)+µ(x)

)
· (x− x0) > −1, x ∈ Ω}. (1.9)
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Remark 3. The last condition in (1.9):

∇ log

(
ρ(x)

λ(x) + µ(x)

)
· (x− x0) > −1, x ∈ Ω (1.10)

restricts an admissible set of unknown coefficients, but the uniqueness as well

as the Lipschitz stability are extremely difficult to be established without such

a condition. Condition (1.10) is a sufficient condition for our key Carleman

estimate, and for hyperbolic operators of the second order, we have to assume

similar conditions and as for related discussions, see Amirov and Yamamoto

[3], Cheng, Isakov, Yamamoto and Zhou [10], Imanuvilov and Yamamoto

[20], Triggiani and Yao [41].

We set

H4,2(Q) = L2(0, T ; H4(Ω)) ∩H2(0, T ; L2(Ω)),

H`,2((0, T )× ∂Ω) = L2(0, T ; H`(∂Ω)) ∩H2(0, T ; L2(∂Ω)), ` ≥ 0

and

‖u‖H4,2(Q) = ‖u‖L2(0,T ;H4(Ω)) + ‖u‖H2(0,T ;L2(Ω)),

‖u‖H`,2((0,T )×∂Ω) = ‖u‖L2(0,T ;H`(∂Ω)) + ‖u‖H2(0,T ;L2(∂Ω)).

We are ready to state the first result on the Lipschitz stability for Inverse

Problem I.

Theorem 1. We assume that (gj, hj, aj, 0) ∈ V, 1 ≤ j ≤ 6 satisfy

det (∆2aj, ∂1(∆aj), ∂2(∆aj), ∂
2
1aj, ∂

2
2aj, ∂1∂2aj)1≤j≤6 6= 0 on Ω. (1.11)
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Then there exists a constant C1 = C1(Ω, T, gj, hj, aj,UI , λ0, µ0, ρ0) > 0 such

that

‖λ1 − λ2‖H2(Ω) + ‖µ1 − µ2‖H2(Ω)

≤ C1

∑6
j=1

∑3
k=0 ‖∂k

ν∂2
t y(λ1, µ1, ρ0; gj, hj, aj, 0)

− ∂k
ν∂2

t y(λ2, µ2, ρ0; gj, hj, aj, 0)‖
H

7
2−k,2((0,T )×∂Ω)

(1.12)

for (λ1, µ1), (λ2, µ2) ∈ UI .

Since λ = λ0 and µ = µ0 near ∂Ω for (λ, µ) ∈ UI , as is seen in Remark

2, we can verify that for aj, 1 ≤ j ≤ 6 satisfying (1.11), we can choose gj, hj

such that (gj, hj, aj, 0) ∈ V and that there exists a constant M1 > 0 such

that

‖y(λ, µ, ρ0; gj, hj, aj, 0)‖W 4,∞(0,T ;C(Ω))∩W 2,∞(0,T ;C4(Ω)) ≤ M1, 1 ≤ j ≤ 6,

(1.13)

for any (λ, µ) ∈ UI . In particular, the right hand side of (1.12) is finite.

Theorem 1 asserts that if we choose six input data satisfying (1.11), then

we have the Lipschitz stability (1.12) in determining two coefficients λ and

µ. Assumption (1.11) is not physical and should be realized artificially in our

identification process. In Theorems 2 - 4 below, we have to pose assumptions

of similar characters for initial values.

The requirement of the six choices of input implies an overdetermining

formulation for the inverse problem. If we choose quadratic functions a1, a2,

then we prove
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Theorem 2. We set

aj(x1, x2) =
p1j

2
x2

1 +
p2j

2
x2

2 + p3jx1x2, (1.14)

where p1j, p2j, p3j ∈ R, j = 1, 2 and

r1 =
p11

p11 + p21

− p12

p12 + p22

, r2 =
p21

p11 + p21

− p22

p12 + p22

,

r3 =
p31

p11 + p21

− p32

p12 + p22

,

if p11 + p21 6= 0 and p12 + p22 6= 0. We assume that there exist (gj, hj, aj, 0) ∈
V, j = 1, 2, such that

|r1|+ |r2| 6= 0, p11 + p21 6= 0, p12 + p22 6= 0, r1r2 6= r2
3 (1.15)

or

p11 6= 0, p11 + p21 = 0, p12 + p22 6= 0, p11p21 6= p2
31. (1.16)

Then there exists a constant C2 = C2(Ω, T, gj, hj, aj,UI , λ0, µ0, ρ0) > 0 such

that

‖λ1 − λ2‖H2(Ω) + ‖µ1 − µ2‖H2(Ω)

≤ C2

∑2
j=1

∑3
k=0 ‖∂k

ν∂2
t y(λ1, µ1, ρ0; gj, hj, aj, 0)

− ∂k
ν∂2

t y(λ2, µ2, ρ0; gj, hj, aj, 0)‖
H

7
2−k,2((0,T )×∂Ω)

(1.17)

for (λ1, µ1), (λ2, µ2) ∈ UI .

The two is the minimum number of choices of inputs because we have

two unknown coefficients depending on two independent variables and one
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boundary data depend on two independent variables x ∈ ∂Ω and t. Con-

ditions (1.15) and (1.16) allow the following simple functions which may be

realized easily in the realistic experiments at a laboratory:

a1(x) = x2
1, a2(x) = x2

2. (1.18)

If λ0 and µ0 are constants near ∂Ω for example, then compatibility conditions

(1.8) are satisfied for a1(x) if we choose g and h such that

g(0, x) = 2(λ0 + µ0)− 2ν2
2µ0,

∂j
t g(0, x) = 0, 1 ≤ j ≤ 7,

∂k
t h(0, x) = 0, 0 ≤ k ≤ 7, x ∈ ∂Ω.

Next we will show the stability in Inverse Problem II of determining three

coefficients λ, µ, ρ. We introduce a admissible set of λ, µ, ρ.

UII = {(λ, µ, ρ); ‖λ‖C14(Ω), ‖µ‖C14(Ω), ‖ρ‖C12(Ω) ≤ M,

λ + µ, µ, ρ > ε0 on Ω. There exists a neighbourhood U = U(λ, µ, ρ)

of ∂Ω such that λ = λ0, µ = µ0 and ρ = ρ0 in U,

∇ log
(

ρ(x)
λ(x)+µ(x)

)
· (x− x0) > −1, x ∈ Ω}. (1.19)

Now we are ready to state the main results for Inverse Problem II.

Theorem 3. We assume that (gj, hj, aj, Hj) ∈ V, 1 ≤ j ≤ 7 satisfy

det(∆2aj, ∂1(∆aj), ∂2(∆aj), ∂
2
1aj,

∂2
2aj, ∂1∂2aj, Hj(0, ·))1≤j≤7 6= 0 on Ω. (1.20)
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Then there exists a constant C3 = C3(Ω, T, gj, hj, aj, Hj,UII , λ0, µ0, ρ0) > 0

such that

‖λ1 − λ2‖H2(Ω) + ‖µ1 − µ2‖H2(Ω) + ‖ρ1 − ρ2‖H1(Ω)

≤ C3

7∑
j=1

3∑

k=0

‖∂k
ν∂2

t y(λ1, µ1, ρ1; gj, hj, aj, Hj)

−∂k
ν∂2

t y(λ2, µ2, ρ2; gj, hj, aj, Hj)‖H
7
2−k,2((0,T )×∂Ω)

(1.21)

for (λ1, µ1, ρ1), (λ2, µ2, ρ2) ∈ UII .

For the simultaneous determination of λ, µ, ρ, we have to choose also

external forces Hj suitably. Like Theorem 1, the 7 choices of inputs make

our inverse problem overdetermining. The following theorem gives the Lip-

schitz stability with special choices of a1, a2, a3 whose number is three, the

minimum.

Theorem 4. We set

aj(x) =
p1j

2
x2

1 +
p2j

2
x2

2, p1j, p2j ∈ R, j = 1, 2, 3. (1.22)

We assume that there exist (gj, hj, aj, Hj) ∈ V, j = 1, 2, 3 such that

det (Hj(0, x), p1j, p2j)1≤j≤3 6= 0, x ∈ Ω. (1.23)

Then there exists a constant C4 = C4(Ω, T, gj, hj, aj, Hj,UII , λ0, µ0, ρ0) > 0

such that

‖λ1 − λ2‖H2(Ω) + ‖µ1 − µ2‖H2(Ω) + ‖ρ1 − ρ2‖H1(Ω)
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≤ C4

3∑
j=1

3∑

k=0

‖∂k
ν∂2

t y(λ1, µ1, ρ1; gj, hj, aj, Hj)

−∂k
ν∂2

t y(λ2, µ2, ρ2; gj, hj, aj, Hj)‖H
7
2−k,2((0,T )×∂Ω)

(1.24)

for (λ1, µ1, ρ1), (λ2, µ2, ρ2) ∈ UII .

Condition (1.23) can be realized by simple choices. For example, let

H1(0, x) = 1, H2(0, x) = H3(0, x) = 0, x ∈ Ω. Setting

a1(x) = x2
1, a2(x) = x2

1, a3(x) = x2
2,

we see that the matrix in (1.23) is




1 2 0

0 2 0

0 0 2




and (1.23) is satisfied.

Since the smoothness and the compatibility conditions of sufficient or-

ders guarantee the sufficient smooth solutions y(λ`, µ`, ρ`; gj, hj, aj, Hj) by

Remark 2, for given aj satisfying (1.15) - (1.16), (1.20) and (1.23) respectively

in Theorems 2 - 4, we can choose gj, hj, Hj such that (gj, hj, aj, Hj) ∈ V .

Our formulation is with a finite number of observations and this kind of

inverse problems was firstly solved by Bukhgeim and Klibanov [9], whose

methodology is based on Carleman estmates. Since then, rich references

have been available: Amirov [2], Baudouin and Puel [4], Bellassoued [5], Bel-

lassoued and Yamamoto [6], Bukhgeim [7], Bukhgeim, Cheng, Isakov and

Yamamoto [8], Imanuvilov and Yamamoto [16], [17], [18], Isakov [22], Isakov

and Yamamoto [23], Khăıdarov [25] , Klibanov [26], Klibanov and Timonov

[28], Klibanov and Yamamoto [29], Kubo [31], Li Shumin [35], Yamamoto
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[42]. Inverse problems for isotropic Lamé systems, see Ikehata, Nakamura

and Yamamoto [14], Isakov [21], Imanuvilov, Isakov and Yamamoto [15],

Imanuvilov and Yamamoto [19], and for similar inverse problems for the

Lamé system with residual stresses, see Lin and Wang [36]. On the other

hand, as for the corresponding inverse problem for plate equations, to the

authors’ knowledge, there are no papers. Theorems 1 - 4 are proved by a mod-

ification of arguments in Bukhgeim and Klibanov [9], Imanuvilov, Isakov and

Yamamoto [15], Imanuvilov and Yamamoto [18], Klibanov and Yamamoto

[29]. In particular, an argument in [29] can improve the stability for the

inverse problems to establish the Lipschitz stability. That argument is based

on an energy estimate which is closely related with an observability inequal-

ity (Kazemi and Klibanov [24], Klibanov and Malinsky [27], Klibanov and

Timonov [28], Komornik [30], Lions [37]).

This paper is composed of five sections. In Sections 2 and 3, we will

prove a key Carleman estimate and an observability inequality respectively.

In Sections 4 and 5, we prove Theorems 1-2 and Theorems 3-4 respectively.

2 Carleman Inequalities

We set

Q = (0, T )× Ω

and

Lu ≡ ρ∂2
t u + (λ + µ)42u + 2∇(λ + µ) · ∇ (4u) +4(λ + µ)4u

14



+2 (∂1∂2µ) (∂1∂2u)− (∂2
1µ)(∂2

2u)− (∂2
2µ)(∂2

1u)

= ρ∂2
t u + ∆((λ + µ)∆u)

+2(∂1∂2µ)(∂1∂2u)− (∂2
1µ)(∂2

2u)− (∂2
2µ)(∂2

1u), (t, x) ∈ Q.

In Sections 2 and 3, we assume a weaker smoothness assumption that ρ =

ρ(x), λ = λ(x) and µ = µ(x) are in C2(Ω) and positive on Ω . Moreover

L1v := ip(x)∂tv +4v, L2v := −ip(x)∂tv +4v, (2.1)

ϕ(t, x) = eγ(|x−x0|2−β|t−t0|2), (t, x) ∈ Q, (2.2)

where p ∈ C1(Ω), p(x) > 0, x ∈ Ω, γ and β are positive constants, x0 =

(x1
0, x

2
0) ∈ R2\Ω, t0 ∈ (0, T ) and i =

√−1. By c we denote the complex

conjugate of c ∈ C, while Ω means the closure of a domain Ω.

First we will show Carleman estimates for the Schrödinger operators L1

and L2.

Lemma 2.1. Let p ∈ C1(Ω) satisfy p(x) > 0, x ∈ Ω and

∇ log p(x) · (x− x0) > −2, x ∈ Ω. (2.3)

Then there exists a number γ0 > 0 such that for arbitrary γ ≥ γ0, we can

choose s0 ≥ 0 satisfying: there exists a constant C5 > 0 such that

∫

Q

{
s|∇v|2 + s3|v|2} e2sϕdxdt ≤ C5

∫

Q

|L`v|2e2sϕdxdt, ` = 1, 2, (2.4)

for all v ∈ C∞
0 (Ω) and all s > s0.

Here and henceforth Cj > 0 denote generic constants which may be de-

pendent on Ω, T , other quantities but independent of s.
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Proof. It sufficient to prove (2.4) for ` = 1 because we can prove (2.4) for

` = 2 in the same way. Let ζ = (ζ0, ζ1, ζ2) and ζ ′ = (ζ1, ζ2), and by L(x, ζ)

we denote the symbol of L1: L(x, ζ) = −p(x)ζ0−
2∑

j=1

ζ2
j . In terms of Theorem

3.2.1 (p.49) in Isakov [22], it is sufficient to prove the following. If

L(x, ζ) = 0, x ∈ Ω, ζ0 = ξ0, ζj = ξj + 2isγ(xj − xj
0)ϕ, j = 1, 2,

s ∈ R\{0}, ξ0, ξ1, ξ2 ∈ R (2.5)

or

L(x, ξ) = 0,
2∑

j=1

∂L

∂ξj

(x, ξ)∂jϕ = 0, ξ ∈ R3\{0} (2.6)

implies that

J = J(x, ζ) ≡
2∑

j,k=1

(∂j∂kϕ)
∂L

∂ζj

(x, ζ)
∂L

∂ζk

(x, ζ)+
1

s
Im

2∑

k=1

∂kL(x, ζ)
∂L

∂ζk

(x, ζ) > 0.

(2.7)

We see that (2.5) or (2.6) implies that

|ξ′|2 − 4s2γ2|x− x0|2ϕ2 = −p(x)ξ0, s ∈ R, ξ′ · (x− x0) = 0. (2.8)

Therefore using the second equation in (2.8), we have

J = 8γϕ|ξ′|2 + 64s2γ4ϕ3|x− x0|4 + 32s2γ3ϕ3|x− x0|2

−4(∇p(x) · (x− x0))γϕξ0. (2.9)

By (2.8), we have

−p(x)ξ0 = |ξ′|2 − 4s2γ2|x− x0|2ϕ2
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and we substitute it into the last term, so that

−4(∇p(x) · (x− x0))γϕξ0 = 4(∇ log p(x) · (x− x0))γϕ(−p(x)ξ0).

Hence

J ≥ s2γ4ϕ3

{
64|x− x0|4 − 16

γ
|x− x0|2(∇ log p(x) · (x− x0))

}

+8γϕ|ξ′|2
{

1 +
1

2
(∇ log p(x) · (x− x0))

}
. (2.10)

Hence by (2.3), there exist positive constants C6 and γ0 such that for γ ≥ γ0,

we have

J ≥ C6γϕ|ξ′|2 + C6γ
4s2ϕ3,

for all x ∈ Ω and ξ′ ∈ R2 satisfying (2.8). If s 6= 0, then J > 0. If s = 0,

then (2.8) implies |ξ′|2 = −p(x)ξ0, which yields ξ′ 6= 0 by the second case

(2.6). Therefore also in the case of s = 0, we have J > 0. Thus the proof of

Lemma 2.1 is complete.

Now we are ready to show a Carleman estimate for the Kirchhoff plate

equation.

Theorem 2.1. We assume that ρ, µ and λ are in C2(Ω) and positive on

Ω and that

∇ log

(√
ρ

λ + µ

)
· (x− x0) > −2, x ∈ Ω. (2.11)

Then there exists a number γ0 > 0 such that for arbitrary γ ≥ γ0, we can

choose s0 ≥ 0 satisfying: there exists a constant C7 > 0 such that

∫
Q

{
s|∇∂tv|2 + s|∇4v|2 + s3|∂tv|2 + s2

2∑
j,k=1

|∂j∂kv|2 + s4|∇v|2 + s6|v|2
}

e2sϕdxdt

17



≤ C7

∫
Q
|Lv|2e2sϕdxdt (2.12)

for every real-valued v ∈ H4,2(Q) with compact support in Q and all s ≥ s0.

Proof. By the mollifier and Friedrich’s lemma (e.g., Lemma 17.1.5 in

Hörmander [13 , vol. III]), it suffices to prove (2.12) for v ∈ C∞
0 (Q). First

we will prove a Carleman estimate for the operator P̃ :

P̃ v := P1P2v =
ρ

λ + µ
∂2

t v +42v + i4
(√

ρ

λ + µ

)
∂tv + 2i∇

(√
ρ

λ + µ

)
· ∇∂tv,

where

P1v = −i

√
ρ

λ + µ
∂tv +4v, P2v = i

√
ρ

λ + µ
∂tv +4v.

By virtue of Lemma 2.1 we have

∫

Q

{
s|∇v|2 + s3|v|2} e2sϕdxdt ≤ C8

∫

Q

|P2v|2e2sϕdxdt, s ≥ s0, (2.13)

and

∫

Q

{
s|∇(P2v)|2 + s3|P2v|2

}
e2sϕdxdt ≤ C8

∫

Q

|P̃ v|2e2sϕdxdt. (2.14)

Therefore, noting that v is real-valued, we can see from (2.14) that

∫

Q

{
s

∣∣∣∣∇
(√

ρ

λ + µ
∂tv

)∣∣∣∣
2

+ s|∇4v|2 + s3

∣∣∣∣
√

ρ

λ + µ
∂tv

∣∣∣∣
2

+ s3|4v|2
}

e2sϕdxdt

≤ C9

∫

Q

|P̃ v|2e2sϕdxdt.

Combining (2.13) and (2.14), we have

∫

Q

{
s4|∇v|2 + s6|v|2} e2sϕdxdt ≤ C10

∫

Q

|P̃ v|2e2sϕdxdt.
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Hence we take sufficiently large s0, so that

∫
Q
{s|∇∂tv|2 + s|∇4v|2 + s3|∂tv|2 + s3|4v|2 + s4|∇v|2 + s6|v|2} e2sϕdxdt

≤ C10

∫
Q
|P̃ v|2e2sϕdxdt, s ≥ s0. (2.15)

Moreover we have

4(vesϕ) = (4v)esϕ + 2s(∇v · ∇ϕ)esϕ + (s4ϕ + s2|∇ϕ|2)vesϕ

and

vesϕ|∂Ω = 0.

Therefore we apply a usual a priori estimate for the Dirichlet problem for

the Laplace operator and integrate over (0, T ), so that

2∑

j,k=1

∫

Q

|∂j∂k(vesϕ)|2dxdt ≤ C11

∫

Q

(|4v|2 + s2|∇v|2 + s4v2)e2sϕdxdt,

so that

s2

2∑

j,k=1

∫

Q

|∂j∂k(vesϕ)|2dxdt ≤ C11

∫

Q

(s2|4v|2 + s4|∇v|2 + s6v2)e2sϕdxdt.

Hence combining (2.14) and (2.15), we can obtain

∫
Q

{
s|∇∂tv|2 + s|∇4v|2 + s3|∂tv|2 + s2

2∑
j,k=1

|∂j∂kv|2 + s4|∇v|2 + s6|v|2
}

e2sϕdxdt

≤ C11

∫
Q
|P̃ v|2e2sϕdxdt. (2.16)

Since

(λ + µ)P̃ v = Lv + i(λ + µ)
(
4

√
ρ

λ+µ

)
∂tv + 2i(λ + µ)

(
∇

√
ρ

λ+µ

)
· ∇(∂tv)

−2∇(λ + µ) · ∇(4v)−4(λ + µ)4v − 2(∂1∂2µ)(∂1∂2v)

+(∂2
1µ)(∂2

2v) + (∂2
2µ)(∂2

1v),
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in (2.16) we can absorb the lower order terms by taking large s0, so that we

obtain (2.12). Thus the proof of Theorem 2.1 is complete.

Remark. As for Carleman estimates, see Hömander [13], Isakov [22]CKlibanov

and Timonov [28], Tataru [40], Triggiani and Yao [41].

We conclude this section with a Carleman estimate for a third order

partial differential operator.

Lemma 2.2. Let (r1, r2, r3) ∈ R3 satisfy

|r1|+ |r2| 6= 0, r2
3 6= r1r2. (2.17)

Then there exists a number γ0 > 0 such that for arbitrary γ ≥ γ0, we can

choose s0 ≥ 0 satisfying: there exists a constant C12 > 0 such that

s

∫

Ω

∑

|α|≤2

|∂α
x u|2e2sϕ(0,x)dx ≤ C12

∫

Ω

|∇(r1∂
2
1u + r2∂

2
2u + 2r3∂1∂2u)|2e2sϕ(0,x)dx

(2.18)

for all v ∈ H3
0 (Ω) and all s > s0. Here in (2.2) we set t0 = 0, that is, we put

ψ(t, x) = |x− x0|2 − βt2, ϕ(t, x) = eγψ(t,x).

Proof. We assume r2 6= 0 and r2
3 6= r1r2. Setting

(Pu)(x) = r1∂
3
1u(x) + r2∂1∂

2
2u(x) + 2r3∂

2
1∂2u(x), x ∈ Ω,

we will prove

s

∫

Ω

∑

|α|≤2

|∂α
x u|2e2sϕ(0,x)dx ≤ C12

∫

Ω

|Pu|2e2sϕ(0,x)dx.
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we will apply Theorem 3.2.1 (p.49) in Isakov [22]. We set m = (m1,m2) =

(3.3) and |α : m| = α1

3
+ α2

3
for α = (α1, α2) ∈ (N∪{0})2. Then we can write

P in the form

Pu =
∑

|α:m|=1

aα∂α
x u

with suitable aα ∈ R. Hence the operator P is treated by [22]. We further

set ζ ′ = (ζ1, ζ2) ∈ C2 and P (ζ ′) = −i(r1ζ
3
1 + r2ζ1ζ

2
2 + 2r3ζ

2
1ζ2). By ∂jP = 0

for j = 1, 2, for the proof, it suffices to verify that

2∑

j,k=1

(∂j∂kϕ)(0, x)
∂P

∂ζj

(ζ ′)
∂P

∂ζk

(ζ ′) > 0 (2.19)

if

x ∈ Ω and P (ζ ′) = 0, ζ ′ = ξ′ + 2isγ(x− x0)ϕ, s 6= 0, ξ′ ∈ R2,

or

P (ξ′) = 0, ξ′ ∈ R2\{0}.

Since x0 ∈ R2\Ω, it suffices to prove (2.19) for

x ∈ Ω and ζ ′ 6= 0 with P (ζ ′) = 0,

ζ ′ = ξ′ + 2isγ(x− x0)ϕ, ξ′ ∈ R2. (2.20)

Since ϕ(0, x) = eγ|x−x0|2 , we have

∑2
j,k=1(∂j∂kϕ)(0, x) ∂P

∂ζj
(ζ ′) ∂P

∂ζk
(ζ ′)

= γϕ
∑2

j=1 ∂2
j ψ(0, x)

∣∣∣ ∂P
∂ζj

(ζ ′)
∣∣∣
2

+ γ2ϕ
∣∣∣(∂1ψ)(0, x) ∂P

∂ζ1
(ζ ′) + (∂2ψ)(0, x) ∂P

∂ζ2
(ζ ′)

∣∣∣
2

.
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Hence, for the verification of (2.19), it is sufficient to prove

1

2

2∑
j=1

∂2
j ψ(0, x)

∣∣∣∣
∂P

∂ζj

(ζ ′)

∣∣∣∣
2

= |3r1ζ
2
1 + r2ζ

2
2 +4r3ζ1ζ2|2 +4|ζ1|2|r3ζ1 + r2ζ2|2 > 0

(2.21)

if x ∈ Ω and ζ ′ 6= 0 satisfies (2.20). First let ζ1 6= 0. Then P (ζ ′) = 0 implies

r1ζ
2
1 + r2ζ

2
2 + 2r3ζ1ζ2 = 0. (2.22)

We will prove that

3r1ζ
2
1 + r2ζ

2
2 + 4r3ζ1ζ2 = 0, r3ζ1 + r2ζ2 = 0 (2.23)

and (2.22) are not compatible. Subtracting (2.22) from the first equation

in (2.23), we have r1ζ
2
1 + r3ζ1ζ2 = 0, which implies that r1ζ1 + r3ζ2 = 0

by ζ1 6= 0. In view of (2.17), this and the second equation in (2.23) yield

that ζ1 = ζ2 = 0, which contradicts that ζ ′ 6= 0. Second let ζ1 = 0. The

second equation in (2.23) and r2 6= 0 yield ζ2 = 0. This is impossible by

ζ ′ = (ζ1, ζ2) 6= 0. That is, under (2.20) inequality (2.21) holds true. Finally

in (2.17) we assume that r1 6= 0 . Then exchanging ∂2 by ∂1 and considering

P̂ u = ∂2(r1∂
2
1u + r2∂

2
2u + 2r3∂1∂2u), we can complete the proof of Lemma

2.2.

3 Observability inequalities

In this section, we will derive an observability inequality which may have an

independent interest. Let Γ0 and Γ1 be relatively open subsets of ∂Ω, Γ0 be
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possibly empty, and satisfy

Γ0 ∪ Γ1 = ∂Ω and Γ0 ∩ Γ1 = ∅.

We consider an initial value/boundary value problem for the Kirchhoff plate

equation.

Ly ≡ ρ∂2
t y + ∆((λ + µ)∆y) + 2 (∂1∂2µ) (∂1∂2y)− (∂2

1µ)(∂2
2y) (3.1)

−(∂2
2µ)(∂2

1y) = H(t, x), (t, x) ∈ Q,

y = ∂y
∂ν

= 0, (t, x) ∈ (0, T )× Γ0, (3.2)

B1y = B2y = 0, (t, x) ∈ (0, T )× Γ1, (3.3)

y(0, x) = y0(x), ∂ty(0, x) = y1(x) x ∈ Ω, (3.4)

where the boundary operators B1 = B1(λ, µ) and B2 = B2(λ, µ) are defined

by (1.4) and (1.5).

For any y ∈ H4,2(Q) and v ∈ H4,2(Q), integrating by parts over Ω, and

noting

∂1 = ν1∂ν − ν2∂τ , ∂2 = ν2∂ν + ν1∂τ on (0, T )× ∂Ω,

we can obtain a formula as follows:

∫
Ω

v(t, x)H(t, x)dx =
∫

Ω
v(t, x)∂2

t y(t, x)dx +
∫
Ω
{λ4y(t, x)4v(t, x)

+µ∂2
1y(t, x)∂2

1v(t, x) +µ∂2
2y(t, x)∂2

2v(t, x) + 2µ∂1∂2y(t, x)∂1∂2v(t, x)} dx

+
∫

∂Ω
(v(t, x)B2y(t, x)− ∂νv(t, x)B1y(t, x)) dS, 0 < t < T. (3.5)

Now we are ready to state an observability inequality.

Theorem 3.1. Let (2.11) hold and H ∈ L2(Q). We assume that y ∈
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H4,2(Q) satisfy (3.1) - (3.4). Then there exist a positive constant C13 such

that

∫
Ω

{
|∂ty(t, x)|2 + |y(t, x)|2 + |∇y(t, x)|2 +

∑2
j,k=1 |∂j∂ky(t, x)|2

}
dx

≤ C13

(
‖H‖2

L2(Q) +
∑3

k=0 ‖∂k
νy‖2

H
7
2−k,2((0,T )×∂Ω)

)
, 0 ≤ t ≤ T.

This theorem enables us to estimate initial values by means of lateral

Cauchy data, which is called an observability inequality. Observability in-

equalities are essential also for proving the exact controllability (e.g., Ko-

mornik [30], Lions [37]), and for plate equations, see Lions and Lagnese [38],

Lasiecka and Triggiani [34].

The method of Carleman estimate was used for proofs of observability

inequalities firstly by Klibanov and Malinsky [27] and Kazemi and Klibanov

[24]. See also Klibanov and Timonov [28].

Proof. According to [24], [27] and [28], our proof is based on the Carleman

estimate in Theorem 2.1. First we will show an energy estimate.

Lemma 3.1. Let y0 ∈ H2(Ω), y1 ∈ L2(Ω) and H ∈ L2(Q). We assume

that the solution y of (3.1) - (3.4) belongs to H4,2(Q). Then there exists a

positive constant C14 such that

∫

Ω

(
|y(t, x)|2 + |∂ty(t, x)|2 + |∇y(t, x)|2 +

2∑

j,k=1

|∂j∂ky(t, x)|2
)

dx

≤ C14‖H‖2
L2(Q) + C14

∫

Ω

(
y2

0 + y2
1 +

2∑

j,k=1

|∂j∂ky0|2
)

dx
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holds for all t ∈ (0, T ).

Proof of Lemma 3.1. Setting v = 2∂ty(t) in (3.5) and integrating by

parts over the cylindrical domain Qt = (0, t)× Ω for an arbitrary t ∈ (0, T ),

by using boundary conditions (3.2) and (3.3), we obtain

∫
Ω

{
|∂ty(t, x)|2 + λ|∆y(t, x)|2 + µ

(
|∂2

1y(t, x)|2 + |∂2
2y(t, x)|2 + 2 |∂1∂2y(t, x)|2

)}
dx

=
∫
Ω

{
|y1(x)|2 + λ|∆y0(x)|2 + µ

(
|∂2

1y0(x)|2 + |∂2
2y0(x)|2

+2 |∂1∂2y0(x)|2)} +
∫

Qt
2H∂tydxdτ.

Hence, using the Cauchy-Schwarz inequality, we obtain

∫
Ω

{
|∂ty(t, x)|2 + λ|∆y(t, x)|2 + µ

(
|∂2

1y(t, x)|2 + |∂2
2y(t, x)|2 + 2 |∂1∂2y(t, x)|2

)}
dx

≤ ∫
Ω

{
|y1(x)|2 + λ|∆y0(x)|2 + µ

(
|∂2

1y0(x)|2 + |∂2
2y0(x)|2 + 2 |∂1∂2y0(x)|2

)}

+
∫

Qt
|H|2dxdτ +

∫
Qt
|∂ty(t, x)|2dxdt. (3.6)

We also have

y(t, x) = y0(x) +

∫ t

0

∂ty(τ, x)dτ.

Hence ∫

Ω

y2(t, x)dx ≤ C14

(
‖y0‖2

L2(Ω) + ‖∂ty‖2
L2(Qt)

)
. (3.7)

From (3.6) and (3.7), we have

∫

Ω

(|∂ty|2 + y2)(t, x)dx ≤ C14

∫ t

0

∫

Ω

(|∂ty|2 + y2)(t, x)dxdt + C14

∫

Qt

|H|2dxdτ

+C14

∫

Ω


|y1|2 + |y0|2 +

∑

|α|=2

|∂α
x y0|2


 dx.
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By the Gronwall inequality,

∫

Ω

(|∂ty|2+y2)(t, x)dx ≤ C15

∫

Ω



|y1|2 + |y0|2 +

∑

|α|=2

|∂α
x y0|2



 dx+C15

∫

Qt

|H|2dxdτ.

This inequality together with (3.6) leads to

∫
Ω

(
y2 + |∂ty|2 +

∑
|α|=2 |∂α

x y|2
)

(t, x)dx

≤ C15

∫
Ω

(
y2

1 + y2
0 +

∑
|α|=2 |∂α

x y0|2
)

dx + C15

∫
Qt
|H|2dxdτ.

From the interpolation inequality in a Sobolev space (e.g., Adams [1]), we

know that there exists a positive constant C16 such that

∫

Ω

|∇y(t, x)|2dx ≤ C16

∫

Ω

|y(t, x)|2dx + C16

∫

Ω

∑

|α|=2

|∂α
x y(t, x)|2dx

for all t ∈ (0, T ). From the last two inequalities above, the proof of Lemma

3.1 is complete.

Now we proceed to the completion of the proof of Theorem 3.1. Let

d = infx∈Ω exp(γ|x− x0|2). We choose β > 0 such that

sup
x∈Ω

γ|x− x0|2 < log d +
T 2

4
γβ.

With this β, we set ϕ(t, x) = exp{γ(|x− x0|2 − β|t− T
2
|2)}. Then we have

ϕ

(
T

2
, x

)
≥ d, ϕ(0, x) = ϕ(T, x) < d, x ∈ Ω.

Thus, for given ε > 0, we can choose a sufficiently small δ = δ(ε) > 0 such

that

ϕ(t, x) ≥ d− ε, (t, x) ∈
[
T

2
− δ,

T

2
+ δ

]
× Ω, (3.8)
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ϕ(t, x) ≤ d− 2ε, (t, x) ∈ ([0, 2δ] ∪ [T − 2δ, T ])× Ω (3.9)

and

T ≥ 6δ. (3.10)

We introduce a cut-off function χ satisfying 0 ≤ χ ≤ 1, χ ∈ C∞[0, T ] and

χ(t) =

{
0, t ∈ [0, δ] ∪ [T − δ, T ],

1, t ∈ [2δ, T − 2δ].
(3.11)

By using the Sobolev extension theorem (e.g., [1]), we can find a function y∗

such that 



∂j
νy
∗ = ∂j

νy on [0, T ]× ∂Ω, 0 ≤ j ≤ 3,

‖y∗‖H4,2(Q) ≤ C17

∑3
k=0 ‖∂k

νy‖
H

7
2−k,2((0,T )×∂Ω)

.
(3.12)

We set

z(t, x) = y(t, x)− y∗(t, x) in Q (3.13)

and

Φ = sup
(t,x)∈Q

ϕ(t, x), F 2 = ‖H‖2
L2(Q) +

3∑

k=0

‖∂k
νy‖2

H
7
2−k,2((0,T )×∂Ω)

.

By (3.1) and (3.11), we can see

L(zχ) = χH + ρ(∂2
t χ)z + 2ρ(∂tχ)∂tz − L(χy∗).

By (3.11) and (3.12) we can see χz has compact support in Q and χz ∈
H4,2(Q). Applying the Carleman estimate in Theorem 2.1 to χz and noting

that ∂tχ 6= 0 only in the case where ϕ(t, x) ≤ d− 2ε, we have

∫

Q

{
s3|∂t(χz)|2 + s2

2∑

j,k=1

|∂j∂k(χz)|2 + s4|∇(χz)|2 + s6|χz|2
}

e2sϕdxdt

≤ C18

{
F 2e2sΦ + (‖z‖2

L2(Q) + ‖∂tz‖2
L2(Q))e

2s(d−2ε)
}

.
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On the other hand, χ = 1 in the case where 2δ < t < T − 2δ and

{
t;

T

2
− δ < t <

T

2
+ δ

}
⊆ {t; 2δ < t < T − 2δ}

by (3.10). Therefore, using also (3.10), we obtain

∫
Q

{
s3|∂t(χz)|2 + s2

∑2
j,k=1 |∂j∂k(χz)|2 + s4|∇(χz)|2 + s6|χz|2

}
e2sϕdxdt

≥ ∫
(T

2
−δ, T

2
+δ)×Ω

{
s3|∂tz|2 + s2

∑2
j,k=1 |∂j∂kz|2 + s4|∇z|2 + s6|z|2

}
e2sϕdxdt

≥ e2s(d−ε)
∫
(T

2
−δ, T

2
+δ)×Ω

{
s3|∂tz|2 + s2

∑2
j,k=1 |∂j∂kz|2

+s4|∇z|2 + s6|z|2} e2sϕdxdt.

Consequently,

∫
(T

2
−δ, T

2
+δ)×Ω

{
|∂tz|2 +

∑2
j,k=1 |∂j∂kz|2 + |∇z|2 + |z|2

}
dxdt

≤ C19F
2e2s(Φ−d+ε) + C19

(
‖z‖2

L2(Q) + ‖∂tz‖2
L2(Q)

)
e−2sε, s ≥ s0.

By (3.12) and (3.13), we can obtain

∫
(T

2
−δ, T

2
+δ)×Ω

{
|∂ty|2 +

∑2
j,k=1 |∂j∂ky|2 + |∇y|2 + |y|2

}
dxdt

≤ C19F
2e2s(Φ−d+ε) + C19

(
‖y‖2

L2(Q) + ‖∂ty‖2
L2(Q)

)
e−2sε, s ≥ s0.

Thus by the mean value theorem, there exists a constant T
2
− δ < t1 < T

2
+ δ

such that

∫
Ω

{
|∂ty(t1, x)|2 +

∑
|α|≤2 |∂α

x y(t1, x)|2
}

dx

≤ C19

2δ

(
‖∂ty‖2

L2(Q) + ‖y‖2
L2(Q)

)
e−2sε + C19F

2e2s(Φ−d+ε). (3.14)
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Considering (3.1) in the time intervals (t1, T ) and (0, t1), in terms of the time

reversibility of (3.1), we apply Lemma 3.1 to have

∫
Ω

(
|∂ty(t, x)|2 +

∑
|α|≤2 |∂α

x y(t, x)|2
)

dx (3.15)

≤ C20‖H‖2
L2(Q) + C20

∫
Ω

(
|∂ty(t1, x)|2 +

∑
|α|≤2 |∂α

x y(t1, x)|2
)

dx, 0 ≤ t ≤ T.

Hence

‖∂ty‖2
L2(Q) + ‖y‖2

L2(Q) ≤ C21T
∫

Ω
(|∂ty(t1, x)|2 +

∑
|α|≤2

|∂α
x y(t1, x)|2)dx

+C21T‖H‖2
L2(Q). (3.16)

Substituting (3.16) into (3.14), we have

(1− C22e
−2sε)

∫

Ω


|∂ty(t1, x)|2 +

∑

|α|≤2

|∂α
x y(t1, x)|2


 dx ≤ C22e

C22sF 2.

Taking s > 0 sufficiently large and fixing, we obtain

∫

Ω


|∂ty(t1, x)|2 +

∑

|α|≤2

|∂α
x y(t1, x)|2


 dx ≤ C23F

2.

Inequality (3.15) completes the proof of Theorem 3.1.

4 Lipschitz stability in determining coefficients

λ and µ

Now we are in the position to prove our main results.

Proof of Theorem 1.
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We set y
(1)
j = y(λ1, µ1, ρ0; gj, hj, aj, 0), y

(2)
j = y(λ2, µ2, ρ0; gj, hj, aj, 0),

uj = y
(2)
j − y

(1)
j , 1 ≤ j ≤ 6, f1 = λ2 − λ1, f2 = µ2 − µ1 and

L2y(t, x) ≡ ρ(x)∂2
t y(t, x) + (λ2(x) + µ2(x))∆2y(t, x) + 2∇(λ2 + µ2)(x) · ∇(∆y(t, x))

+∆(λ2 + µ2)∆y(t, x) + 2(∂1∂2µ2)(x)∂1∂2y(t, x)

−(∂2
1µ2)(x)∂2

2y(t, x)− (∂2
2µ2)(x)∂2

1y(t, x).

Then from (1.1), we can obtain

L2uj = − (f1 + f2)42y
(1)
j − 2∇ (f1 + f2) · ∇4y

(1)
j −4 (f1 + f2)4y

(1)
j

−2(∂1∂2f2)
(
∂1∂2y

(1)
j

)
+ (∂2

1f2)
(
∂2

2y
(1)
j

)
+ (∂2

2f2)
(
∂2

1y
(1)
j

)
in Q . (4.1)

We extend y
(1)
j and uj in (0, T )×Ω by y

(1)
j (−t, x) = y

(1)
j (t, x) and uj(−t, x) =

uj(t, x), (t, x) ∈ (−T, 0) × Ω. Then, since ∂ty
(1)
j (0, ·) = 0 and ∂tuj(0, ·) = 0,

we have ∂3
t y

(1)
j (0, ·) = ∂3

t uj(0, ·)(0, ·) = 0, by H ≡ 0. Therefore y
(1)
j , uj ∈

W 4,∞(−T, T ; L∞(Ω))∩W 2,∞(−T, T ; W 4,∞(Ω)). We set d = infx∈Ω exp(γ|x−
x0|2) and choose β > 0 such that

sup
x∈Ω

γ|x− x0|2 < log d + T 2γβ.

Let ϕ(t, x) = exp{γ(|x− x0|2 − βt2)}. Then we have

ϕ(0, x) ≥ d, ϕ(−T, x) = ϕ(T, x) < d, x ∈ Ω.

Thus, for given ε > 0, we can choose a sufficiently small δ = δ(ε) > 0 such

that

ϕ(t, x) ≥ d− ε, (t, x) ∈ [−δ, δ]× Ω
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and

ϕ(t, x) ≤ d− 2ε, (t, x) ∈ ([−T,−T + 2δ] ∪ [T − 2δ, T ])× Ω.

We introduce a cut-off function χ satisfying 0 ≤ χ ≤ 1, χ ∈ C∞[−T, T ] and

χ(t) =

{
0, t ∈ [−T,−T + δ] ∪ [T − δ, T ],

1, t ∈ [−T + 2δ, T − 2δ].
(4.2)

By using the Sobolev extension theorem we can find a function u∗j such that

∂k
νu∗j = ∂k

ν∂2
t uj on [−T, T ]× ∂Ω, k = 0, 1, 2, 3 (4.3)

and

‖u∗j‖H4,2(Q) ≤ C23

3∑

k=0

‖∂k
ν∂2

t uj‖H
7
2−k,2((0,T )×∂Ω)

. (4.4)

Here we recall that

‖u∗j‖H4,2(Q) = ‖u∗j‖L2(0,T ;H4(Ω)) + ‖u∗j‖H2(0,T ;L2(Ω)).

We set

zj = zj(t, x) = ∂2
t uj(t, x)− u∗j(t, x), 1 ≤ j ≤ 6. (4.5)

Henceforth we set

V 2 =
3∑

k=0

‖∂k
ν∂2

t uj‖2

H
7
2−k,2((0,T )×∂Ω)

, U2 =
6∑

j=1

(
‖zj‖2

L2(Q) + ‖∂tzj‖2
L2(Q) + ‖∇zj‖2

L2(Q)

)

and

Φ = sup
(t,x)∈Q

ϕ(t, x).
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Then by using (4.1) and (4.2), we can see

L2(zjχ) = χ
{
− (f1 + f2)42∂2

t y
(1)
j − 2∇ (f1 + f2) · ∇4∂2

t y
(1)
j −4 (f1 + f2)4∂2

t y
(1)
j

−2(∂1∂2f2)
(
∂1∂2∂

2
t y

(1)
j

)
+ (∂2

1f2)
(
∂2

2∂
2
t y

(1)
j

)

+(∂2
2f2)

(
∂2

1∂
2
t y

(1)
j

)}
+ ρ(∂2

t χ)(∂2
t uj) + 2ρ(∂tχ)(∂3

t uj)− L2

(
u∗jχ

)
. (4.6)

Let

Q̃ = (−T, T )× Ω.

By definition (1.7) of V , we can choose a constant C24 such that

∥∥∥y
(1)
j

∥∥∥
W 4,∞(−T,T ;L∞(Ω))∩W 2,∞(−T,T ;W 4,∞(Ω))

≤ C24, 1 ≤ j ≤ 6. (4.7)

By (4.2) and (4.3), we can see that χzj has compact support in Q̃ and

χzj ∈ H4,2(Q̃). Applying Theorem 2.1 to (4.6) and noting (4.4) and (4.7),

we can obtain

∫
eQ

{
s|∇∂t(χzj)|2 + s3|∂t(χzj)|2 + s2

2∑
k,`=1

|∂k∂`(χzj)|2 + s4|∇(χzj)|2 + s6|χzj|2
}

e2sϕdxdt

≤ C25

∫
eQ

∑
|α|≤2

(|∂α
x f1|2 + |∂α

x f2|2)e2sϕdxdt

+C25V
2e2sΦ + C25(V

2 + U2)e2s(d−2ε). (4.8)

By noting zj(t, x) = ∂2
t uj(t, x)− u∗j(t, x) and using (4.4), we can obtain

∫
eQ

{
s|∇∂t(χ∂2

t uj)|2 + s3|∂t(χ∂2
t uj)|2 + s

2∑
k,`=1

|∂k∂`(χ∂2
t uj)|2

+s4|∇(χ∂2
t uj)|2 +s6|χ∂2

t uj|2} e2sϕdxdt (4.9)

≤ C26

(
∫
eQ

∑
|α|≤2

(|∂α
x f1|2 + |∂α

x f2|2)e2sϕdxdt + s6V 2e2sΦ + (V 2 + U2)e2s(d−2ε)

)
.
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On the other hand, we have

s
∫
Ω
|∂2

t uj(0, x)|2 e2sϕ(0,x)dx = s
∫

Ω
χ(0)2 |∂2

t uj(0, x)|2 e2sϕ(0,x)dx

= s
∫ 0

−T
∂
∂t

(∫
Ω

χ(t)2 |∂2
t uj(t, x)|2 e2sϕ(t,x)dx

)
dt

= s
∫ 0

−T

∫
Ω

(
2χ(t)∂tχ(t) |∂2

t uj(t, x)|2 e2sϕ(t,x) (4.10)

+2χ(t)2∂3
t uj(t, x)∂2

t uj(t, x)e2sϕ(t,x) +2sχ(t)2 |∂2
t uj(t, x)|2 (∂tϕ)e2sϕ(t,x)

)
dxdt.

By the Cauchy-Schwarz inequality and χ∂3
t uj = ∂t(χ∂2

t uj) − ∂tχ (∂2
t uj), we

have

s
∫
Ω
|∂2

t uj(0, x)|2 e2sϕ(0,x)dx ≤ C27

∫
eQ

(
s |∂t (χ∂2

t uj)|2 + s2 |χ∂2
t uj|2

)
e2sϕ(t,x)dxdt

+C27

∫
eQ s |∂tχ (∂2

t uj)|2 e2sϕ(t,x)dxdt. (4.11)

In a similar way, we can obtain

∫
Ω
|∇(∂2

t uj)(0, x)|2 e2sϕ(0,x)dx ≤ C28

∫
eQ

(
|∂t (χ∂2

t∇uj)|2

+s |∇ (χ∂2
t uj)|2

)
e2sϕ(t,x)dxdt

+C28

∫
eQ |(∂tχ)∇(∂2

t uj)|2 e2sϕ(t,x)dxdt. (4.12)

Noting that ∂tχ 6= 0 only in the case where ϕ(t, x) ≤ d− 2ε, we can see from

(4.4) and (4.5) that ∇(∂2
t uj) = ∇zj + ∇u∗j , and that the second terms on

the right hand sides of (4.11) and (4.12) can be estimated by C(s + 1)(V 2 +

U2)e2s(d−2ε). This together with (4.9), (4.11) and (4.12) leads to

s
∫

Ω
|(∂2

t uj)(0, x)|2 e2sϕ(0,x)dx +
∫
Ω
|(∇∂2

t uj)(0, x)|2 e2sϕ(0,x)dx

≤ C29

∫
Ω

∑
|α|≤2

|∂α
x f1|2

(∫ T

0
e2sϕdt

)
dx + C29

∫
Ω

∑
|α|≤2

|∂α
x f2|2

(∫ T

0
e2sϕdt

)
dx

+C29s(V
2 + U2)e2s(d−2ε) + C29s

6V 2e2sΦ, (4.13)
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for all large s > 1. Noting uj(0, ·) = 0 and y
(1)
j (0, ·) = aj(·), by (4.1) we have

ρ∂2
t uj(0, x) = −(f1 + f2)42aj − 2∇(f1 + f2) · ∇4aj + (−4f1 − ∂2

1f2) (∂2
1aj)

+(−4f1 − ∂2
2f2) (∂2

2aj)− 2(∂1∂2f2)(∂1∂2aj), x ∈ Ω, 1 ≤ j ≤ 6. (4.14)

By (1.11), we can solve the equations. Then we have

−4f1 − ∂2
1f2 =

det(42aj, ∂1(4aj), ∂2(4aj), ρ∂2
t uj(0, x), ∂2

2aj, ∂1∂2aj)

det(42aj, ∂1(4aj), ∂2(4aj), ∂2
1aj, ∂2

2aj, ∂1∂2aj)
.(4.15)

By (1.7), we see that aj ∈ C5(Ω). Hence we can write (4.15) by

−4f1 − ∂2
1f2 =

6∑
j=1

c1j(x)ρ∂2
t uj(0, x), (4.16)

where c1j ∈ C1(Ω), 1 ≤ j ≤ 6. Similarly there exist c2j ∈ C1(Ω), 1 ≤ j ≤ 6

such that we can have

−4f1 − ∂2
2f2 =

6∑
j=1

c2j(x)ρ∂2
t uj(0, x). (4.17)

Subtracting (4.17) from (4.16), we have

−∂2
1f2 + ∂2

2f2 =
6∑

j=1

(c1j(x)− c2j(x))ρ∂2
t uj(0, x). (4.18)

Because (λ1, µ1), (λ2, µ2) ∈ UI , we have f1, f2 ∈ C3
0(Ω), and we can apply

Lemma 2.2 to (4.18). Therefore we obtain

s
2∑

k,`=1

∫
Ω
|∂k∂`f2|2e2sϕ(0,x)dx + s

∫
Ω
|∇f2|2e2sϕ(0,x)dx + s

∫
Ω
|f2|2e2sϕ(0,x)dx

≤ C30

6∑
j=1

∫
Ω
|∂2

t uj(0, x)|2e2sϕ(0,x)dx

+C30

6∑
j=1

∫
Ω
|∇∂2

t uj(0, x)|2e2sϕ(0,x)dx. (4.19)
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By virtue of the Carleman estimate for the Laplace operator, in a similar

way to the proof of Theorem 2.1, from (4.16) we can derive

1
s

∑2
k,`=1

∫
Ω
|∂k∂`f1|2e2sϕ(0,x)dx + s

∫
Ω
|∇f1|2e2sϕ(0,x)dx + s3

∫
Ω
|f1|2e2sϕ(0,x)dx

≤ C31

6∑
j=1

∫
Ω
|∂2

t uj(0, x)|2e2sϕ(0,x)dx

+C31

∑2
k,`=1

∫
Ω
|∂k∂`f2|2e2sϕ(0,x)dx. (4.20)

By (4.19) and (4.20), we can obtain

∑2
k,`=1

∫
Ω
|∂k∂`f1|2e2sϕ(0,x)dx + s2

∫
Ω
|∇f1|2e2sϕ(0,x)dx + s4

∫
Ω
|f1|2e2sϕ(0,x)dx

≤ C32s
6∑

j=1

∫
Ω
|∂2

t uj(0, x)|2e2sϕ(0,x)dx

+C32

6∑
j=1

∫
Ω
|∇∂2

t uj(0, x)|2e2sϕ(0,x)dx. (4.21)

In terms of (4.19) and (4.21), we have

∑2
k,`=1

∫
Ω
|∂k∂`f1|2e2sϕ(0,x)dx + s2

∫
Ω
|∇f1|2e2sϕ(0,x)dx + s4

∫
Ω
|f1|2e2sϕ(0,x)dx

+s
∑2

k,`=1

∫
Ω
|∂k∂`f2|2e2sϕ(0,x)dx + s

∫
Ω
|∇f2|2e2sϕ(0,x)dx + s

∫
Ω
|f2|2e2sϕ(0,x)dx

≤ C33s
6∑

j=1

∫
Ω
|∂2

t uj(0, x)|2e2sϕ(0,x)dx

+C33

6∑
j=1

∫
Ω
|∇∂2

t uj(0, x)|2e2sϕ(0,x)dx. (4.22)

Applying (4.13) in (4.22), we have

∫
Ω

(
∑
|α|≤2

|∂α
x f1|2 +

∑
|α|≤2

|∂α
x f2|2

)
e2sϕ(0,x)dx

≤ C34

∫
Ω

(
∑
|α|≤2

|∂α
x f1|2 +

∑
|α|≤2

|∂α
x f2|2

)
e2sϕ(0,x)

(∫ T

0
e2s(ϕ(t,x)−ϕ(0,x))dt

)
dx

+C34s
6V 2e2sΦ + C34s(V

2 + U2)e2s(d−2ε).
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Recalling the form of ϕ and applying the Lebesgue theorem, we have

sup
x∈Ω

∣∣∣∣
∫ T

0

e2s(ϕ(t,x)−2sϕ(0,x))dt

∣∣∣∣ = sup
x∈Ω

∣∣∣∣
∫ T

0

exp
(
2seγ|x−x0|(e−γβt2 − 1)

)
dt

∣∣∣∣

≤
∫ T

0

exp
(
2seγσ(e−γβt2 − 1)

)
dt = o(1),

as s −→∞, where σ = infx∈Ω |x− x0|. Hence, we have

(1− o(1))




∫

Ω


∑

|α|≤2

|∂α
x f1|2 +

∑

|α|≤2

|∂α
x f2|2


 e2sϕ(0,x)dx




≤ C35s
6V 2e2sΦ + C35s(V

2 + U2)e2s(d−2ε), s −→∞.

By using ϕ(0, x) ≥ d, we can obtain

∫

Ω


∑

|α|≤2

|∂α
x f1|2 +

∑

|α|≤2

|∂α
x f2|2


 dx

≤ C36s
6V 2e2sΦ + C36s(U

2 + V 2)e−4sε. (4.23)

In terms of (4.1), (1.2) and (1.3), we have

L2∂
2
t uj = −(f1 + f2)42∂2

t y
(1)
j − 2∇(f1 + f2) · ∇4∂2

t y
(1)
j −4(f1 + f2)4∂2

t y
(1)
j

−2(∂1∂2f2)
(
∂1∂2∂

2
t y

(1)
j

)
+ (∂2

1f2)
(
∂2

2∂
2
t y

(1)
j

)
+ (∂2

2f2)
(
∂2

1∂
2
t y

(1)
j

)
,

B1(λ2, µ2)∂
2
t uj = B2(λ2, µ2)∂

2
t uj = 0 on ∂Ω× (0, T ),

∂2
t uj(0, ·) = 0, ∂t(∂

2
t uj)(0, ·) = 0 in Ω.

Since uj ∈ W 4,∞(−T, T ; L∞(Ω))∩W 2,∞(−T, T ; W 4,∞(Ω)), we see that ∂2
t uj ∈

H4,2(Q̃). By virtue of Theorem 3.1 and (4.7), we can obtain

U2 ≤ C37

∫

Ω


∑

|α|≤2

|∂α
x f1|2 +

∑

|α|≤2

|∂α
x f2|2


 dx + C37V

2. (4.24)
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Substituting (4.24) into (4.23) and taking s large enough, we obtain

∫

Ω


∑

|α|≤2

|∂α
x f1|2 +

∑

|α|≤2

|∂α
x f2|2


 dx ≤ C38V

2.

Thus we complete the proof of Theorem 1.

Proof of Theorem 2.

To prove Theorem 2, we argue similarly to Theorem 1. From the proof of

Theorem 1, we can see it is sufficient to prove (4.19) and (4.20) from (4.14)

with aj(x1, x2) =
p1j

2
x2

1 +
p2j

2
x2

2 + p3jx1x2 where p1j, p2j, p3j ∈ R, j = 1, 2.

Consequently we have

−(p11 + p21)4f1 − p11∂
2
1f2 − p21∂

2
2f2 − 2p31∂1∂2f2 = ρ∂2

t u1(0, x) (4.25)

and

−(p12 + p22)4f1 − p12∂
2
1f2 − p22∂

2
2f2 − 2p32∂1∂2f2 = ρ∂2

t u2(0, x). (4.26)

We will consider two cases separately:

1). If p11 = −p21 and p12 6= −p22, then

p11∂
2
1f2 + 2p31∂1∂2f2 − p11∂

2
2f2 = −ρ∂2

t u1(0, x). (4.27)

2). If p11 + p21 6= 0 and p12 + p22 6= 0, then we can readily obtain

r1∂
2
1f2 + 2r3∂1∂2f2 + r2∂

2
2f2 =

−ρ∂2
t u1(0, x)

p11 + p21

+
ρ∂2

t u2(0, x)

p12 + p22

, (4.28)

where rk = pk1

p11+p21
− pk2

p12+p22
, k = 1, 2, 3.

Thus it suffices to prove (4.19) and (4.20) from either (4.27) or (4.28).

We consider only case (4.28), because one can discuss for (4.27) similarly.
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By (1.15), we can apply Lemma 2.2 to (4.28), and (4.19) follows. On the

other hand, by applying the Carleman estimate for the Laplace operator to

(4.26), we obtain (4.20). Thus the proof of Theorem 2 is complete.

5 Lipschitz stability in determining coefficients

λ, µ and ρ

Proof of Theorem 3.

We set y
(1)
j = y(λ1, µ1, ρ1; gj, hj, aj, Hj), y

(2)
j = y(λ2, µ2, ρ2; gj, hj, aj, Hj),

uj = y
(2)
j − y

(1)
j , 1 ≤ j ≤ 7, f1 = λ2 − λ1, f2 = µ2 − µ1, f3 = ρ2 − ρ1 and

L2y(t, x) ≡ ρ2(x)∂2
t y(t, x) + (λ2(x) + µ2(x))∆2y(t, x) + 2∇(λ2 + µ2)(x) · ∇(∆y(t, x))

+∆(λ2 + µ2)∆y(t, x) + 2(∂1∂2µ2)(x)∂1∂2y(t, x)

−(∂2
1µ2)(x)∂2

2y(t, x)− (∂2
2µ2)(x)∂2

1y(t, x).

Then from (1.1), we can obtain

L2uj = − (f1 + f2)42y
(1)
j − 2∇ (f1 + f2) · ∇4y

(1)
j −4 (f1 + f2)4y

(1)
j

−2(∂1∂2f2)
(
∂1∂2y

(1)
j

)
+ (∂2

1f2)
(
∂2

2y
(1)
j

)

+(∂2
2f2)

(
∂2

1y
(1)
j

)
− f3∂

2
t y

(1)
j in Q. (5.1)

We extend y
(1)
j and uj in (0, T )×Ω by y

(1)
j (−t, x) = y

(1)
j (t, x) and uj(−t, x) =

uj(t, x), (t, x) ∈ (−T, 0) × Ω. Then, since ∂ty
(1)
j (0, ·) = 0 and ∂tuj(0, ·) =

∂tH(0, ·) = 0, we have ∂3
t y

(1)
j (0, ·) = ∂3

t uj(0, ·) = 0. Therefore y
(1)
j , uj ∈
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W 4,∞(−T, T ; L∞(Ω))∩W 2,∞(−T, T ; W 4,∞(Ω)). In the same way as the proof

of Theorem 1, we choose constants d > 0, β > 0, γ > 0, ε > 0, δ > 0 and

the weight function ϕ(t, x) = exp{γ(|x− x0|2 − βt2)}. We choose the cut-off

function χ(t) defined by (4.2). For ∂2
t uj, we apply the Sobolev extension

theorem to find a function u∗j such that

∂k
νu∗j = ∂k

ν∂2
t uj on [−T, T ]× ∂Ω, 0 ≤ k ≤ 3 (5.2)

and

‖u∗j‖H4,2(Q) ≤ C39

3∑

k=1

‖∂k
ν∂2

t uj‖H
7
2−k,2((0,T )×∂Ω)

. (5.3)

We set

zj = zj(t, x) = ∂2
t uj(t, x)− u∗j(t, x), 1 ≤ j ≤ 7. (5.4)

Henceforth we set

V 2 =
3∑

k=1

‖∂k
ν∂2

t uj‖2

H
7
2−k,2((0,T )×∂Ω)

, U2 =
7∑

j=1

(
‖zj‖2

L2(Q) + ‖∂tzj‖2
L2(Q) + ‖∇zj‖2

L2(Q)

)
,

and

Φ = sup
(x,t)∈Q

ϕ(x, t).

Then by (5.1) and (5.2), we can see

L2(zjχ) = χ
{
−(f1 + f2)42∂2

t y
(1)
j − 2∇(f1 + f2) · ∇4∂2

t y
(1)
j −4(f1 + f2)4∂2

t y
(1)
j

−2(∂1∂2f2)
(
∂1∂2∂

2
t y

(1)
j

)
+ (∂2

1f2)
(
∂2

2∂
2
t y

(1)
j

)
+ (∂2

2f2)
(
∂2

1∂
2
t y

(1)
j

)

−f3∂
4
t y

(1)
j

}
+ ρ2(∂

2
t χ)(∂2

t uj) + 2ρ2(∂tχ)(∂3
t uj)− L2(u

∗
jχ). (5.5)

In terms of (5.3), (5.4) and

‖y(1)
j ‖W 4,∞(−T,T ;L∞(Ω))∩W 2,∞(−T,T ;W 4,∞(Ω)) ≤ M, 1 ≤ j ≤ 7,
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we apply Theorem 2.1 to (5.5), and similarly to (4.8), we obtain

∫
eQ

{
s|∇∂t(χzj)|2 + s3|∂t(χzj)|2 + s

2∑
k,`=1

|∂k∂`(χzj)|2 + s4|∇(χzj)|2 + s6|χzj|2
}

e2sϕdxdt

≤ C40

∫
eQ

(
∑
|α|≤2

|∂α
x f1|2 +

∑
|α|≤2

|∂α
x f2|2 + |f3|3

)
e2sϕdxdt

+C40V
2e2sΦ + C40(V

2 + U2)e2s(d−2ε).

Therefore, similarly to (4.9), we have

∫
eQ

{
s|∇∂t(χ∂2

t uj)|2 + s3|∂t(χ∂2
t uj)|2 + s

2∑
k,`=1

|∂k∂`(χ∂2
t uj)|2

+s4|∇(χ∂2
t uj)|2 +s6|χ∂2

t uj|2} e2sϕdxdt

≤ C41

∫
eQ

(
∑
|α|≤2

|∂α
x f1|2 +

∑
|α|≤2

|∂α
x f2|2 + |f3|3

)
e2sϕdxdt

+C41s
6V 2e2sΦ + C41(V

2 + U2)e2s(d−2ε).

For uj, 1 ≤ j ≤ 7, we argue in the same way as (4.10)-(4.12), so that

s

∫

Ω

|(∂2
t uj)(0, x)|2e2sϕ(0,x)dx +

∫

Ω

|(∇∂2
t uj)(0, x)|2e2sϕ(0,x)dx

≤ C42

∫

Ω


∑

|α|≤2

|∂α
x f1|2 +

∑

|α|≤2

|∂α
x f2|2 + |f3|2




(∫ T

0

e2sϕdt

)
dx

+C42s(V
2 + U2)e2s(d−2ε) + C42s

6V 2e2sΦ, (5.6)

for all large s > 1. From (5.1) we have

ρ2∂
2
t uj(0, x) = −(f1 + f2)42aj − 2∇(f1 + f2) · ∇4aj − 2(∂1∂2f2)(∂1∂2aj)

+(−4f1 − ∂2
2f2)(∂

2
2aj) + (−4f1 − ∂2

1f2)(∂
2
1aj)

−f3∂
2
t y

(1)
j (0, x), 1 ≤ j ≤ 7. (5.7)
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We note

∂2
t y

(1)
j (0, x) = 1

ρ1
{−(λ1 + µ1)42aj − 2∇(λ1 + µ1) · ∇4aj −4(λ1 + µ1)4aj

−2(∂1∂2µ1)(∂1∂2aj) + (∂2
1µ1)(∂

2
2aj) + (∂2

2µ1)(∂
2
1aj) + Hj(0, x)}

≡ bj(x). (5.8)

Then (5.7) becomes

ρ2∂
2
t uj(0, x) = −(f1 + f2)42aj − 2∇(f1 + f2) · ∇4aj

−2(∂1∂2f2) (∂1∂2aj) + (−4f1 − ∂2
2f2) (∂2

2aj) + (−4f1 − ∂2
1f2) (∂2

1aj)

−f3bj(x), 1 ≤ j ≤ 7. (5.9)

Thanks to (1.20), we can solve (5.9) with respect to−4f1−∂2
1f2, −4f1−∂2

2f2

and f3. Similarly to the proof of Theorem 1, there exist c1j,c2j, c3j ∈ C1(Ω),

1 ≤ j ≤ 7, such that

−4f1 − ∂2
1f2 =

7∑
j=1

c1j(x)ρ2∂
2
t uj(0, x), (5.10)

−4f1 − ∂2
2f2 =

7∑
j=1

c2j(x)ρ2∂
2
t uj(0, x) (5.11)

and

f3 =
7∑

j=1

c3j(x)ρ2∂
2
t uj(0, x). (5.12)

Now, by the same argument in the proof of Theorem 1, we can obtain

∫

Ω


∑

|α|≤2

|∂α
x f1|2 +

∑

|α|≤2

|∂α
x f2|2


 e2sϕ(0,x)dx

≤ C43

7∑
j=1

∫

Ω

(
s|∂2

t uj(0, x)|2 + |∇∂2
t uj(0, x)|2) e2sϕ(0,x)dx. (5.13)
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As for f3, we directly see that

∫
Ω

(|f3|2 + |∇f3|2) e2sϕ(0,x)dx ≤ C44

7∑
j=1

∫
Ω

(|∂2
t uj(0, x)|2

+|∇∂2
t uj(0, x)|2) e2sϕ(0,x)dx, (5.14)

for s > 1. From (5.6), (5.13) and (5.14), we have

∫
Ω

(
∑
|α|≤2

|∂α
x f1|2 +

∑
|α|≤2

|∂α
x f2|2 + |f3|2 + |∇f3|2

)
e2sϕ(0,x)dx

≤ C45

∫
Ω

(
∑
|α|≤2

|∂α
x f1|2 +

∑
|α|≤2

|∂α
x f2|2 + |f3|2 + |∇f3|2

)
e2sϕ(0,x)

(∫ T

0
e2s(ϕ(t,x)−ϕ(0,x))dt

)
dx

+C45s(V
2 + U2)e2s(d−2ε) + C45s

6V 2e2sΦ.

By the same argument in the proof of Theorem 1, we can obtain (1.21). Thus

the proof of Theorem 3 is complete.

Proof of Theorem 4.

According to the proof of Theorem 3, it is sufficient to derive (5.10)-(5.12)

from

ρ2∂
2
t uj(0, x) = −(f1 + f2)42aj − 2∇(f1 + f2) · ∇4aj − 2(∂1∂2f2)(∂1∂2aj)

+(−4f1 − ∂2
2f2)(∂

2
2aj) + (−4f1 − ∂2

1f2)(∂
2
1aj)

−f3bj, j = 1, 2, 3. (5.15)

Since aj(x) =
p1j

2
x2

1 +
p2j

2
x2

2, p1j, p2j ∈ R and bj are defined by (5.8), we

obtain

ρ2∂
2
t uj(0, x) = (−4f1 − ∂2

2f2)p2j + (−4f1 − ∂2
1f2)p1j − f3bj,

j = 1, 2, 3.
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In view of (1.23), the equations are solvable with respect to −4f1 − ∂2
2f2,

−4f1 − ∂2
1f2 and f3. Therefore we can similarly have (5.10)-(5.12), and the

proof of Theorem 4 is complete.
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