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Abstract In this paper, a boundary integral method is used to solve an inverse heat
conduction problem. An algorithm for the inverse problem of the one dimensional case
is given by using the fundamental solution. Numerical results show that our algorithm is
effective.
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1 Introduction

The inverse heat conduction problem (IHCP) arising in most thermal manufacturing processes
has recently attracted much attention. The typical case is the determination of the heat flux
on an inaccessible boundary through measurements on an accessible boundary or inside the
domain. Only discrete data with noise at finite points are usually available for solving this
problem ([10]). This problem is known to be extremely ill-posed ([1]): a small perturbation
in the data may cause a dramatically large error in the solution.

This problem has been studied by many authors, for example: an approximate in-
verse method([14]), a residual-minimization lease squares method([9]), a boundary element
method ([15]), a fundamental solution method([5], [13]), a wavelet and Fourier method([8])
and some other methods([3], [4], [7], [16], [17]). In this paper, we use the boundary integral
method(BIM) to solve this problem. The BIM uses the prescribed initial and boundary
data, together with the fundamental solution of a given differential equation defined in some
domain Ω, and we construct integral equations on the boundary of Ω. In our case, the solu-
tion to the integral equation is a single layer potential. By the boundary integral equation
one can obtain the unknown kernel, and the solution to the given problem will be obtained
by integrating the product of the fundamental solution and the unknown kernel over the
boundary.

The advantage of our approach is that the computation can be limited to the boundary,
which reduces the problem from two dimensions to one dimension. As a result of the
reduction, we may expect substantial savings in computer time and memory.

The work outlined below is based on the use of single layer potentials. Ammari and
Kang used boundary integral method to solve inverse conductivity problem and related
problems[2]. In [2], both the single layer potential and the double layer potential are used.
In this article, our boundary integral method is based on the result of [11], which gives a
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representation formula for the heat conduction problem with Neumann boundary condition.
The equation is assumed to be homogeneous.

As the trade-off we must execute integration for each point at which we want to know
the solution. However, in many applications such as semiconductor fabrication, one only
need to know the solution at a few points. In such cases, we expect our technique to be
useful.

2 The Mathematical Problem

2.1 The direct problem

We consider the following problem:

ut − a2uxx = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T, (2.1)
u(x, 0) = u0(x), 0 ≤ x ≤ 1, (2.2)
∂u

∂x
(0, t) = f(t), 0 ≤ t ≤ T, (2.3)

∂u

∂x
(1, t) = g(t), 0 ≤ t ≤ T, (2.4)

where a > 0 is a constant and u(x, t) is the temperature distribution.
Solving the equation with given f(t), g(t) is called a direct problem.
From the theory of heat equation, we can see that for f(t) and g(t) in some function

space there exists a unique solution ([6]).

2.2 The inverse problem

Let

ut − a2uxx = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T, (2.5)
u(x, 0) = u0(x), 0 ≤ x ≤ 1, (2.6)
∂u

∂x
(1, t) = g(t), 0 ≤ t ≤ T, (2.7)

u(x∗, t) = `(t), 0 ≤ t ≤ T, (2.8)

where x∗ ∈ (0, 1) is a fixed observation point.
The inverse problem is then to determine the value of ∂u

∂x (0, t) = f(t) and u(x, t) from
g(t) and `(t). In real applications, only the discrete values of g(t) and `(t) at some points
are given. Therefore boundary conditions (2.7) and (2.8) will be changed to the following:

u(x∗, ti) = `i,
∂u

∂x
(1, ti) = g(ti) i = 1, 2, · · · , N

where 0 < t1 < t2 < · · · < tN = T .
This problem is seem to be an ill-posed problem([1]). In fact, if we know `(t) and g(t),

then we can first solve the heat equation for (x, t) ∈ (x∗, 1) × (0, T ), and then we have to
discuss the Cauchy boundary conditions problem for (x, t) ∈ (0, x∗) × (0, T ). The second
part is known to be ill-posed.
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3 Boundary integral method

Here after [11], we explain a solution by the boundary integral equation. First we consider
the case of homogeneous initial data, i.e., we assume that u0(x) ≡ 0.

Let G(x, t) be the fundamental solution of the heat conduction problem:

G(x, t) =
H(t)

2a
√

πt
exp(−x2/4a2t)

where H(t) is the Heaviside function.
For (2.1)-(2.4), we have the following formula according to the single layer potential( e.g.

[11]):

u(x, t) =
∫ t

0

G(x, t− τ)ψ1(τ)dτ +
∫ t

0

G(x− 1, t− τ)ψ2(τ)dτ. (3.1)

Substitute (3.1) into (2.3) and (2.4), and we obtain

1
2
ψ1(t)−

∫ t

0

∂G

∂x
(−1, t− τ)ψ2(τ)dτ = f(t) (3.2)

1
2
ψ2(t) +

∫ t

0

∂G

∂x
(1, t− τ)ψ1(τ)dτ = g(t) (3.3)

We solve (3.2) and (3.3) with respect to ψ1(t) and ψ2(t), and then we can obtain u(x, t).
Thus the direct problem (2.1) - (2.4) is solved.

For inhomogeneous initial data, it can be seen that a function

v(x, t) =
∫ 1

0

G(x− y, t)u0(y)dy

satisfies
vt − a2vxx = 0

and
lim

t→0+
v(x, t) = u0(x).

Setting ũ = u− v, we see

ũt − a2ũxx = 0, (x, t) ∈ (0, 1)× (0, T ),
ũ(x, 0) = 0, x ∈ (0, 1),
∂ũ

∂x
(0, t) = f(t)− ∂v

∂x
(0, t), 0 ≤ t ≤ T,

∂ũ

∂x
(1, t) = g(t)− ∂v

∂x
(1, t), 0 ≤ t ≤ T.

Since ũ is the solution of (2.1)-(2.4) with homogeneous initial data, it can be solved by
(3.1)-(3.3). Thus we can solve the problem by the superpositions of v and the solution of
homogenous initial data.

We will discretize (3.2) and (3.3) as follows:
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Let t0 = 0, ti = t0 + ih, i = 1, 2, · · · , N where N is an integer and h = T/N . Then we
can discretize (3.2) and (3.3) as

1
2
ψ1(ti) + h

i∑

j=1

∂G

∂x
(−1, ti − tj)ψ2(tj) = f(ti) i = 1, 2, · · · , N,

1
2
ψ2(ti) + h

i∑

j=1

∂G

∂x
(1, ti − tj)ψ1(tj) = g(ti) i = 1, 2, · · · , N.

Thus the problem of solving integral equations (3.2) and (3.3) is changed to linear equa-
tions:

(
1
2
I + G)x = f . (3.4)

where we set

G =
(

G11 G12

G21 G22

)
, (3.5)

G11 = 0, G22 = 0,

G12(i, j) = h
∂G

∂x
(−1, ti − tj), G21(i, j) = h

∂G

∂x
(1, ti − tj), if j ≤ i,

G12(i, j) = G21(i, j) = 0, if j ≥ i + 1.

f = (f 1, f 2)
T , f 1(i) = f(ti), f 2(i) = g(ti), i = 1, 2, · · · , N,

where T denotes the transpose of a vector.
By solving this linear equations, we can obtain x , and then

ψ1(i) = x (i), i = 1, 2, · · · , N,

ψ2(i) = x (i + N), i = 1, 2, · · · , N.

Thus the discrete values of ψ1(t) and ψ2(t) are obtained.
Next in (3.1), we set x0 = 0, xi = x0 + ihx, i = 1, · · · ,M where M is an integer and

hx = 1
M , xM = 1. Thus we have

u(xi, tj) =
j∑

k=1

G(xi, tj − tk) · ψ1(k) · h +
j∑

k=1

G(xi − 1, tj − tk) · ψ2(k) · h

i = 0, 1, · · · ,M ; j = 1, 2, · · · , N.

4 Numerical scheme for the inverse problem

For the inverse problem, our numerical method is based on the boundary integral equation
in section 3. As the measured data for inverse problem, the numerical data obtained by
solving the direct problem can be used. The inverse problem is then to solve the following
problem:
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ut(x, t)− a2uxx(x, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

∂u

∂x
(1, t) = g(t), 0 ≤ t ≤ T,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(x∗, ti) = `i, i = 1, 2, · · · , N.

We use the following equation together with (3.3) to solve the above problem:

u(x∗, t) =
∫ t

0

G(x∗, t− τ)ψ1(τ)dτ +
∫ t

0

G(x∗ − 1, t− τ)ψ2(τ)dτ. (4.1)

With (3.3) and (4.1), we have an equation of the first kind with respect to ψ1(t) and
ψ2(t). Choose x∗ ∈ (0, 1), and u(x∗, ti), i = 1, 2, · · · , N are our discrete data. Similarly to
(3.4), we can discretize the equation of the first kind.

Define

Ĝ =
(

Ĝ11 Ĝ12

Ĝ21
1
2I

)
, (4.2)

Ĝ11(i, j) = hG(x∗, ti − tj), if j ≤ i; Ĝ11(i, j) = 0, if j ≥ i + 1,

Ĝ12(i, j) = hG(x∗ − 1, ti − tj), if j ≤ i; Ĝ12(i, j) = 0, if j ≥ i + 1,

Ĝ21(i, j) = h
∂G

∂x
(−1, ti − tj), if j ≤ i; Ĝ21(i, j) = 0, if j ≥ i + 1.

f̂ = (f̂ 1, f̂ 2)
T , f̂ 1(i) = u(x∗, ti), f̂ 2(i) = g(ti), i = 1, 2, · · · , N,

x̂ = (x̂ 1, x̂ 2)T , x̂ 1(i) = ψ1(ti), x̂ 2(i) = ψ2(ti), i = 1, 2, · · · , N,

Then we have
Ĝx̂ = f̂

After calculating ψ1 and ψ2 we substitute them into (3.2) and we have

f(ti) =
1
2
ψ1(ti)− h

i∑

j=1

∂G

∂x
(−1, ti − tj)ψ2(tj), i = 0, 1, · · · , N.

The approximation of u(x, t) is also obtained:

u(xi, tj) =
j∑

k=1

G(xi, tj − tk)ψ1(k)h +
j∑

k=1

G(xi − 1, tj − tk)ψ2(k)h

i = 0, 1, · · · ,M ; j = 1, 2, · · · , N.

5



5 Numerical example

Example 1:
We consider the following direct problem:

ut − uxx = 0, 0 < x < 1, 0 < t < 10,

u(x, 0) = 0,

∂u

∂x
(0, t) = 10sin(5t), 0 ≤ t ≤ 10,

∂u

∂x
(1, t) = 1, 0 ≤ t ≤ 10.

We solve this problem by using boundary integral method which is presented in section
3. The parameter is chosen as M = 50, N = 100. A numerical result is shown in Figure 1:

1 2 3 4 5 6 7 8 9 100

0.5

1

−100

−50

0

50

t

x

u(
x,

t)

Figure 1: u(x, t)

Here x varies from 0 to 1 and t varies from 0 to 10.
Now we solve the inverse problem by values generated numerically by the direct problem.

We choose x∗ = 0.95,M = 50, N = 100. The condition number of the coefficient matrix
Ĝ is approximately 54.3253 and we can consider that the condition number is not large, so
that we need not the regularization. If we have a large condition number, which means the
resulting linear system is ill-posed, we can apply the Tikhonov regularization method([12]).

We denote the numerical result of the inverse problem as f∗(t). If we do not introduce
any random noises to data u(x∗, t), which is generated by the direct problem, then the result
is shown in Figure 2:
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Figure 2: solid line–f(t); ’o’–f∗(t)

Next, in order to test the ill-posedness, we add some random noises on the values of
u(x∗, t) whose level is at most 0.05. Then the result is shown in Figure 3:
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Figure 3: solid line–f(t); ’o’–f∗(t)

The following two figures show the errors between f(t) and f∗(t). Figure 4a shows the
error without random noise, and Figure 4b shows the error with random noise whose level
is at most 0.05.
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Figure 4a: f(t)− f∗(t) without random noise
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Figure 4b: f(t)− f∗(t) with random noise

Example 2:
In this example we choose a piecewise continuous function f(t) for problem (2.1)-(2.4).

We choose g(t) = 1, and f(t) is defined as follows:

f(t) =
{

1, 0 ≤ t ≤ 4,

−1, 4 < t ≤ 10.

First we use the boundary integral method to obtain the solution for the direct problem.
Then we use these numerical values as measured data for the inverse problem. We choose
x∗ = 0.5,M = 50, N = 50. Then the condition number of the coefficient matrix Ĝ is
48.8323. The numerical result for the inverse problem is denoted as f∗(t).
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Figure 5a: f∗(t)
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Figure 5: f(t)− f∗(t)

Figure 5a is the numerical result for f(t), and the error between exact f(t) and numerical
result f∗(t) is shown in Figure 5b.

From Figure 5, we can see that the error near the discontinuous point t = 4 is larger but
still acceptable, and the error at other points are quite good.

6 Conclusion

In this paper, we discussed the boundary integral method for the one-dimensional inverse
heat conduction problem. We presented an algorithm for the inverse problem. Numerical
results show that this method is effective, even for noisy data and discontinuous functions.
The algorithm for two-dimensional cases is to be considered.
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