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Abstract. The Bott class is a cohomological invariant for transversely holomorphic
foliations which can vary continuously as foliations are deformed. In this article, an
infinitesimal derivative of the Bott class of transversely holomorphic foliations is
defined by generalizing Heitsch’s construction. It will be shown that the infinitesimal
derivatives are expressed in terms of a kind of curvature tensors of the projective
Schwarzian derivatives. Our formula is also valid for the Godbillon-Vey class of real
foliations and it is a generalization of the Maszczyk formula for the Godbillon-Vey
class of real codimension-one foliations. As an application, some properties of the
Julia-Fatou decompositions due to Ghys, Gomez-Mont and Saludes will be discussed.

Introduction

The Bott class is a secondary characteristic class of transversely holomorphic
foliations defined in a similar manner as the Godbillon-Vey class. One of the most
important properties of these classes is that they can vary continuously if foliations
are deformed. If an infinitesimal deformation is given, then one can naturally define
the derivative of the Godbillon-Vey class with respect to it. An explicit construction
was given by Heitsch [12], [13]. We call in this article such derivatives infinitesi-
mal derivatives. An infinitesimal derivative of the Bott class is already defined by
Heitsch if the complex normal bundle is trivial [13]. He has also constructed in
the same paper the infinitesimal derivative of the imaginary part of the Bott class
without assuming the triviality of normal bundles. When applications are consid-
ered, infinitesimal derivatives of the Bott class will be important in relationship
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with localizations of the Bott class and with the Julia sets in the sense of Ghys,
Gomez-Mont and Saludes [11] when the complex codimension is equal to one, and
in relationship to the Futaki invariant [9], [10] when the complex codimension is
greater than one. In the both cases, it is necessary to generalize infinitesimal deriva-
tives for arbitrary transversely holomorphic foliations. In the present paper, we will
first give such a generalization and some applications concerning the Fatou-Julia
decomposition will be discussed, while applications concerning Futaki invariants
will be discussed elsewhere.

On the other hand, Maszczyk showed in [17] that infinitesimal derivatives of the
Godbillon-Vey class of real codimension-one foliations can be written in terms of
the Schwarzian derivative and cohomology classes representing infinitesimal defor-
mations. His formula is also valid for the Bott class for transversely holomorphic
foliations of complex codimension one. We will give in this article a version of the
Maszczyk formula for arbitrary transversely holomorphic foliations. Instead of the
classical Schwarzian derivative, multi-dimensional projective Schwarzian will ap-
pear when complex codimension is greater than one. Multi-dimensional Schwarzian
derivatives and derived tensors which we will need are studied by several authors,
e.g., [16], [19], [21], [18], [5], [20]. The Čech-de Rham cohomology is useful in the
construction, because the Bott class is a cohomology class with coefficients in C/Z

so that the usual de Rham cohomology does not work very well. We will try to
avoid the use of partitions of unity so far as possible, because it often makes difficult
to calculations in examples. The Čech-de Rham cohomology is also useful for this
purpose. Finally, we remark that our constructions are also valid for real foliations
and that corresponding formulae for the Godbillon-Vey can be obtained.

This paper is organized as follows. In the first section, relevant definitions on
transversely holomorphic foliations and basic tools treating the Bott class are re-
called. In the second section, an infinitesimal derivative of the Bott class gener-
alizing the previous ones will be introduced. In the third section, the projective
Schwarzian derivatives will be introduced. In the forth section, a kind of Maszczyk
formula will be shown. It will be also shown that the infinitesimal derivative is ob-
tained as a result of composition of certain operators. In the fifth section, two kinds
of residues are introduced. One is after Heitsch, and the other one is defined by
using transverse projective structures. In the sixth section, complex codimension-
one foliations are studied in relationship with the Julia-Fatou decomposition due to
Ghys, Gomez-Mont and Saludes [11]. Finally in the seventh section, some examples
are given.
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1. Relevant definitions

The Bott class is usually considered when the complex normal bundle of the
foliation is trivial, and it is an element of H2q+1(M ; C). Its deformations are
studied by Heitsch in [13]. In this section, we will show that his construction can
be adapted also in the case where the complex normal bundle is non-trivial so that
the Bott class is an element of H2q+1(M ;C/Z).

We first briefly recall a construction in [2] of a representative of the Bott class in
terms of the Čech-de Rham complex. In this paper, a manifold will always mean a
smooth manifold without boundary. We begin with some relevant definitions.

Definition 1.1. A foliation F of a manifold is said to be transversely holomorphic
if there is an open covering U = {Ui} of M with the following properties:

1) Each Ui is homeomorphic to Vi × D2q, where Vi is an open subset of Rp

and D2q is an open ball in Cq (p + 2q = dim M).
2) The foliation restricted to Ui is given by {Vi × {z}}, z ∈ D2q.
3) Under the identification in 1), the transition function ϕji from Ui to Uj is

of the form ϕji(x, z) = (ψji(x, z), γji(z)), where γji is a local biholomorphic
diffeomorphism.

Such an open covering U is called a foliation atlas. An open covering of M is said
to be adapted if it is simple and a refinement of a foliation atlas for F .

Definition 1.2. Let F be a transversely holomorphic foliation. Denote by E =

E(F) the complex subbundle TCM = TM ⊗C locally spanned by
∂

∂xi
k

and
∂

∂z̄j
k

,

where (xk, zk) = (x1
k, · · · , xp

k, z1
k, · · · , zq

k) is a local coordinate as in 1) of Definition
1.1. The complex normal bundle Q(F) of F is by definition TCM/E. The line
bundle KF =

∧q
Q(F)∗ is called the canonical bundle, and −KF =

∧q
Q(F) is

called the anti-canonical bundle.

Notation 1.3. We denote by I(1)(U) the ideal of C-valued differential forms Ω∗(U)
on U locally generated by dz1, · · · , dzq, and set I(k)(U) = I(1)(U)k. The sheaf on
M formed by these ideals is denoted by I(k). The intersection I(k)(U) ∩ Ωp(U)
is denoted by Ip

(k)(U) and the corresponding sheaf is denoted by Ip
(k). We set

Ip
(k,l) = Ip

(k)/Ip
(l), namely, an element of Ip

(k,l)(U) is a family {ωi}, where ωi ∈ Ip
(k)

is defined on an open subset Vi of U , where ∪Vi = U , such that ωi = ωj mod
Ip
(l)(Vi ∩ Vj) if Vi ∩ Vj 6= ∅. Finally, we set I(k,l) = ⊕pI

p
(k,l).
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Note that I(k) = {0} for k > q. If p < l, then Ip
(k,l) = Ip

(k) because Ip
(l) = {0}.

Note also that E∗ ∼= I1
(0,1), where the left hand side is regarded as the sheaf of

germs of sections of E∗.

Notation 1.4. If S is a presheaf and U is an open covering of M , then denote
by Čr(U ;S) the Čech r-cochains valued in S. When U is obvious, then it will be
often omitted. Čech cochains are represented by adding or removing indices, for
example, a cochain {ωi} is usually denoted by ω and vice versa.

Definition 1.5. Denote by Ap,q(U) = Čp(U ; Ωq) the space of the Čech-de Rham
(p, q)-cochains. The modified Čech-de Rham complex is by definition the quo-
tient A∗,∗(U)/Č∗(U ;Z) of the Čech-de Rham complex by the Čech complex with
coefficients in Z, where Čp(U ; Z) ⊂ Ap,0(U). If c ∈ Ap,q(U) and c′ ∈ Ar,s(U),
then the product c ∪ c′ ∈ Ap+r,q+s(U) is defined by setting (c ∪ c′)i0···ip+r =
(−1)qrci0···ip ∧ c′ip···ip+r

.

Let U = {Ui} be an adapted covering, then −KF is trivial when restricted to
each Ui. Let ei be a trivialization of −KF |Ui , then there is a family {Jij} of non-zero
functions such that ej = eiJij . (Under the notation in [2], Jij = α̃−1

ij .) Noticing
that log Jij is well-defined since the covering is adapted, set Θ = (2π

√−1)−1δ log J ,
where δ denotes the Čech differential. It is classical that Θ represents c1(Q(F)) in
Ȟ2(M ;Z). Let ∇i be a Bott connection defined on Ui and let θi be its connection
form with respect to ei.

Definition 1.6. We set βij = θj − θi− d log Jij , then βij ∈ I(1). We call {βij} the
difference cochain of {∇i}.

The Bott class is represented in terms of the following cochains in the modified
Čech-de Rham complex:

Definition 1.7. Set u1(∇, e) = −1
2π
√−1

(θ + log J), ū1(∇, e) = 1
2π
√−1

(θ + log J),

v1(∇, e) = −1
2π
√−1

(dθ + β) and v̄1(∇, e) = 1
2π
√−1

(dθ + β). ∇ and e are omitted
when they are clear.

The equations Du1 = v1 −Θ and Dū1 = v̄1 −Θ hold.
The Bott class is a kind of so-called Cheeger-Chern-Simons classes. It is an

element of H2q+1(M ; C/Z) characterized by certain properties. A representative
of the Bott class can be given as follows.

Theorem 1.8 [2]. Let Bq(∇, e) be the cochain in the modified Čech-de Rham com-
plex defined by the formula

Bq(∇, e) = u1 ∪ vq
1 + Θ ∪ u1 ∪ vq−1

1 + · · ·+ Θq ∪ u1,
4



then Bq(∇, e) is independent of the choice of U , local trivializations e of −KF , the
family of Bott connections ∇. This class is indeed the Bott class of F and denoted
by Bq(F).

Definition 1.9. Let {Fs}s∈S be a family of transversely holomorphic foliations of
a fixed codimension, of a fixed manifold M . Then {Fs} is said to be a continuous
deformation of F0 if {Fs} is a continuous family as plane fields and the transverse
holomorphic structures also vary continuously, where 0 ∈ S is the base point. If the
family is in fact smooth and the transverse holomorphic structures vary smoothly,
then it is said to be smooth.

In what follows, S is assumed to be (−ε, ε), where ε is a sufficiently small positive
number.

Given a smooth family {Fs} of transversely holomorphic foliations, set −Ks =∧q
Q(Fs), then we may assume that there is a family {es,i} of local trivializations

of −Ks such that each es,i is defined on Ui. We may assume that the function Js,ij

defined by es,j = es,iJs,ij is independent of s, so Js,ij is denoted by Jij . The cocycle
Θs = (2π

√−1)−1δ log Js is also independent of s and denoted by Θ. Choose then
a smooth family ∇s of local Bott connections and let {θs,i} be its connection forms
with respect to {es,i}. We denote by {βs,ij} the difference cochain of ∇s, then by
definition θs,j − θs,i = d log Jij + βs,ij . Finally, for any cochain ωs, we denote by
ω̇s the partial derivative of ωs with respect to s.

Under these choices of cochains, we have the following

Proposition 1.10. Denote u1(∇s, es) and v1(∇s, es) by u1(s) and v1(s), respec-

tively. Define ū1(s) and v̄1(s) similarly, and set u̇1(s) = −1
2π
√−1

θ̇s. Then,
∂Bq(Fs)

∂s

is naturally an element of H2q+1(M ; C) and is represented by
q∑

k=0

v1(s)k ∪ u̇1(s) ∪

v1(s)q−k.

Proof. First note that u̇1(s) is indeed the partial derivative of u1(s) with respect
to s. Moreover, if we set v̇1(s) = −1

2π
√−1

(dθ̇s + β̇s), then Du̇1(s) = v̇1(s). We have
the following equation, namely,

∂

∂s
Bq(∇s, es) =

q∑

k=0

Θk ∪ u̇1(s) ∪ v1(s)q−k

+
q−1∑

k=0

q−k−1∑

l=0

Θk ∪ u1(s) ∪ v1(s)l ∪ v̇1(s) ∪ v1(s)q−k−l−1.
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For k > 0, set

ρk =
q−k∑

l=0

Θk−1 ∪ u1(s) ∪ v1(s)l ∪ u̇1(s) ∪ v1(s)q−k−l,

then

Dρk =
q−k∑

l=0

Θk−1 ∪ (v1(s)−Θ) ∪ v1(s)l ∪ u̇1(s) ∪ v1(s)q−k−l

−
q−k∑

l=0

Θk−1 ∪ u1(s) ∪ v1(s)l ∪ v̇1(s) ∪ v1(s)q−k−l

=−
q−k∑

l=0

Θk ∪ v1(s)l ∪ u̇1(s) ∪ v1(s)q−k−l

+
q−k∑

l=0

Θk−1 ∪ v1(s)l+1 ∪ u̇1(s) ∪ v1(s)q−k−l

−
q−k∑

l=0

Θk−1 ∪ u1(s) ∪ v1(s)l ∪ v̇1(s) ∪ v1(s)q−k−l.

By adding Dρ1 + · · · + Dρq to
∂

∂s
Bq(∇s, es), the cocycle as in the statement is

obtained. ¤

Note that if each ∇s is a global connection, then
∂Bq(Fs)

∂s
is represented by

a globally well-defined (2q + 1)-form (−2π
√−1)−(q+1)(q + 1)θ̇s ∧ (dθs)q. This is

the same formula as the derivative of the Bott class of transversely holomorphic
foliations with trivial normal bundles given by Heitsch [13].

Finally we make some remarks on the imaginary part of the Bott class, which is
an element of H2q+1(M ; R). It can be represented without using the cocycle Θ as
follows.

Theorem 1.11. Let ξq(∇, e) be the cocycle in the Čech-de Rham complex defined
by the formula

ξq(∇, e) =
1
2
√−1

q∑

k=0

(
v̄k
1 ∪ (u1 − ū1) ∪ vq

1 + vk
1 ∪ (u1 − ū1) ∪ v̄q

1

)
,

then ξq(∇, e) represents ξq(F) =
√−1(Bq(F) − Bq(F)) independent of the choice

of ∇ and e.
6



Proof. We first show that
q∑

k=0

v̄k
1 ∪(u1− ū1)∪vq

1 is cohomologous to Bq(F)−Bq(F).

Define cochains αk,r by αk,r = Θk ∪ ū1 ∪ v̄r
1 ∪ (u1 − ū1) ∪ vq−k−r−1

1 and set αk =
q−k−1∑

r=0
αk,r. Then

Dαk =
q−k∑
r=1

Θk ∪ v̄r
1 ∪ (u1 − ū1) ∪ vq−k−r

1

−
q−k−1∑

r=0

Θk+1 ∪ v̄r
1 ∪ (u1 − ū1) ∪ vq−k−r−1

1

−Θk ∪ ū1 ∪ vq−k
1 + Θk ∪ ū1 ∪ v̄q−k

1 .

It is easy to see that
q∑

k=0

v̄k
1∪(u1−ū1)∪vq

1−D(α0+· · ·+αq−1) = Bq(∇, e)−Bq(∇, e).

It follows that ξq(∇, e)−D√−1(α0+· · ·+αq−1−α0−· · ·−αq−1) = 2
√−1(Bq(∇, e)−

Bq(∇, e)). This completes the proof. ¤

A representative of
∂

∂s
ξq(Fs) can be obtained by Proposition 1.10 and Theorem

1.11. If log J is valued in
√−1R and if β = 0, then ũ1 = u1 − ū1, v1 and v̄1 are

globally well-defined differential forms. In this case, the representative coincides
with the Heitsch’s one [13], and the formula in Theorem 1.11 becomes the standard
definition of ξq. On the other hand, a representative of ξq(F) is obtained by setting
θ = 0. The latter representative was used in [1] for studying local properties of
this class. However, if we choose {es,i} so that θs,i = 0 for any s and i, then Js,ij

depends on s in general. Thus corresponding formula for the derivative cannot be
obtained.

2. Infinitesimal derivatives of the Bott class

We begin with the definition of infinitesimal deformations given in [12]. Let
{ei = (ei,1, · · · , ei,q)} be a family of local trivializations of Q(F) and let {ωi =
t(ω1

i , · · · , ωq
i )} be its dual. Let Aji = ((aji)

k
l ) be the matrix valued function such

that (ei,1, · · · , ei,q) = (ej,1, · · · , ej,q)Aji, then Ajiωi = ωj . Let ∇ = ({θi}, {βij
})

be a pair of a family of local Bott connection forms and the difference cochain
with respect to {ei}. That is, θi is the connection form with respect to ei of a
Bott connection ∇i on Ui so that ∇iei = (∇ei,1, · · · ,∇ei,q) = (ei,1, · · · , ei,q)θi and
β

ij
= A−1

ji dAji +A−1
ji θjAji−θi. One has then dωi +θi∧ωi = 0, β

ji
= −Ajiβij

A−1
ji

and β
ij
∈ I(1)(Uij), where Uij = Ui ∩ Uj .

In what follows, for a vector bundle V , the sheaf of germs of sections of V is also
denoted by V by abuse of notation.
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Definition 2.1. Set Es⊗Q(F) =
∧s

E∗⊗Q(F) and Et,s(Q(F)) = Čt(Es⊗Q(F)).
If an open covering U is specified, then Et,s(Q(F)) is also denoted by Et,s(U ; Q(F)).
The complex Et,s(Q(F)) is equipped with the differential δ + (−1)td∇ where δ is
the Čech differential and d∇ is defined below. The total complex is denoted by
E∗(Q(F)).

The differential d∇ is defined as follows. Let U = {Ui} and let s ∈ (Es ⊗
Q(F))(U), where U is an open subset of M contained in Ui. Define then a mapping
d∇,i : (Es ⊗Q(F))(U) → (Es+1 ⊗Q(F))(U) by setting

d∇,i(s) = ei(dϕ + θi ∧ ϕ),

where ϕ = ωi(s) and ϕ is considered as an s-form by arbitrarily extending.

Lemma 2.2. d∇,i is independent of i so that {d∇,i} induces a well-defined mapping
d∇ : Es ⊗Q(F) → Es+1 ⊗Q(F).

Proof. Let s be a section of (Es ⊗Q(F))(Ui ∩ Uj), then

d∇,j(ejωj(s)) = d∇,i(ei(ωi(s)) + ei(βij
∧ ωi(s)).

The right hand side is equal to d∇,i(eiωi(s)) as a section of (Es+1 ⊗ Q(F))(Ui ∩
Uj). ¤

It is shown in [7] that ((E∗⊗Q(F))(M), d∇) is a resolution of ΘF if ∇ is a global
Bott connection. By using this fact it is easy to show that the cohomology of the
total complex (E∗(Q(F)), δ + (−1)sd∇) also coincides with H∗(M ; ΘF ) even if d∇
is defined from a local Bott connection, because we consider smooth sections. The
following type of deformations are useful.

Definition 2.3. Denote by H∗(M ; ΘF ) the cohomology of ((Es⊗Q(F))(M), d∇).

It is easy to see that the natural mapping Hp(M ; ΘF ) → Hp(M ; ΘF ) is injective
if p = 1. Under our assumptions, Hp(M ; ΘF ) and Hp(M ; ΘF ) are in fact isomor-
phic. However, we continue to distinguish them because there will appear a certain
difference when defining infinitesimal derivatives without using partitions of unity
(cf. Definitions 2.16 and 4.15).

Taking these observations into account, we introduce the following (cf. [13])

Definition 2.4. An element µ of H1(M ; ΘF ) is called an infinitesimal deformation
of F . If ({σi}, {sij}) ∈ E1(Q(F)) = Č0(E∗⊗Q(F))⊕ Č1(Q(F)) is a representative
of µ, then the pair ({−σi}, {−sij}) is called the infinitesimal derivative of ω = {ωi}.
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It is shown in [12] that a smooth family {Fs} naturally determines an infinites-
imal deformation as an element of H1(M ; ΘF ). We will briefly recall the construc-
tion after stating Theorem 2.17.

Noticing that E∗ ∼= I1
(0,1), the pair ({σi}, {sij}) in the above definition should

satisfy the following relations for some gl(q;C)-valued function g
ij

on Uij and some
gl(q;C)-valued 1-form θ′i on Ui:

ei (d(ωi(σi)) + θi ∧ (ωi(σi))) = eiθ
′
i ∧ ωi,(2.5.a)

(σj − σi)− ei

(
d(ωi(sij)) + θiωi(sij)

)
= eigij

ωi,(2.5.b)

(δs)ijk = 0,(2.5.c)

where {θ′i} and {gij} are obtained by computing the left hand sides of the above
equations after extending {σi} to Q(F)-valued differential forms. Note that gij 6=
−gji in general.

Infinitesimal derivatives of Bott connections can be defined as follows if µ is
represented by an element of Č0(E∗⊗Q(F)). Note that cocycles in Č0(E∗⊗Q(F))
are elements of (E1 ⊗Q(F))(M) closed under d∇.

Definition 2.6. Suppose that µ ∈ H1(M ; ΘF ) and let σ = {σi} ∈ Č0(E∗⊗Q(F))
be a representative of µ. Then any pair∇′ = ({θ′i}, {gij}) which satisfies (2.5.a) and
(2.5.b) is called an infinitesimal derivative of the Bott connection ∇ = ({θi}, {βij

})
with respect to σ.

The infinitesimal derivative of the Bott class is defined as follows.

Definition 2.7. Let µ ∈ H1(M ; ΘF ) and let σ ∈ (E1 ⊗Q(F))(M) be a represen-
tative. Set θ′ = tr θ′, θ = tr θ, β = tr β and u′1 = −1

2π
√−1

(θ′ + g). The cohomology
class in H2q+1(M ; C) represented by

DσBq(∇,∇′) =
q∑

k=0

vk
1 ∪ u′1 ∪ vq−k

1

= (2π
√−1)−(q+1)

q∑

k=0

(dθ + β)k ∪ (θ′ + g) ∪ (dθ + β)q−k

is called the infinitesimal derivative of the Bott class with respect to µ and denoted
by DµBq(F).

We will later show in Theorems 2.15 and 2.17 that the infinitesimal derivative is
well-defined and is independent of the choice of σ, ∇, ∇′ and local trivializations.
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The infinitesimal derivative of the Bott class can be reconstructed in terms of
−KF as follows. Let {ei} be a family of local trivializations of −KF , where ei is
defined on Ui. Let {Jij} a family of smooth functions such that ei = ejJji. A Bott
connection on Q(F)|Ui

naturally induces a connection on −KF |Ui
, which is also

called a Bott connection. Then, a family of local Bott connections on −KF is a
pair ({θi}, {βij}) satisfying θj− θi = d log Jij +βij , where θi is the connection form
of a Bott connection on −KF |Ui

with respect to ei.
Recalling that E∗ ∼= I1

(0,1), we introduce the following

Definition 2.8. We denote (E∗ ⊗Q(F))(U) also by I1
(0,1)(U ;Q(F)), and set

I∗(q−1,q)(U ;−KF ) = I∗(q−1,q)(U)⊗ (−KF |U ) =
(
I∗(q−1)(U)/I∗(q)(U)

)
⊗ (−KF |U ).

Let ϕ ∈ Ip
(q−1,q)(Ui ∩ Uj ;−KF ), then ϕ can be written as ϕ = ei ⊗ ϕi on Ui,

where ϕi ∈ Ip
(q−1,q)(Ui). Set then d∇,iϕ = ei(dϕi + θi ∧ ϕi). Since βij ∈ I(1)(Uij),

the equation

d∇,jϕ = ej(dϕj + θj ∧ ϕj)

= ei(dϕi + θi ∧ ϕi + βij ∧ ϕi)

= d∇,iϕ

holds. Hence {d∇,i} induces a globally well-defined map, which is denoted by d∇.
One has d∇ ◦ d∇ = 0, indeed, the equalities

d∇(d∇(eiϕi)) = d∇(ei(dϕi + θi ∧ ϕi)) = ei(dθi ∧ ϕi)

hold on Ui. Since ϕi ∈ Ip
(q−1,q)(Ui) and dθi ∈ I(1)(Ui), dθi ∧ ϕi = 0 in Ip

(q−1,q)(Ui).

Definition 2.9. Set Kr,s = Čr(Is+q−1
(q−1,q)(U ;−KF )) and equip it with the differen-

tial δ + (−1)rd∇. We denote by K∗ the total complex and by H∗(M ;−KF ) the
cohomology of K∗.

In practice, K0, K1 and K2 are relevant. We have

K0 = Č0(Iq−1(U ;−KF )),

K1 = Č0(Iq
(q−1,q)(U ;−KF ))⊕ Č1(Iq−1(U ;−KF )),

K2 = Č0(Iq+1
(q−1,q)(U ;−KF ))⊕ Č1(Iq

(q−1,q)(U ;−KF ))⊕ Č2(Iq−1(U ;−KF )).

Let {ωi} be the family of local trivializations of KF dual to {ei}. A version of
infinitesimal deformations of −KF is defined as follows.
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Definition 2.10. An element µ of H1(M ;−KF ) is called an infinitesimal defor-
mation of −KF . If ({σi}, {sij}) ∈ K1 is a representative of µ, then the cocycle
({−σi}, {−sij}) is called the infinitesimal derivative of ω = {ωi} with respect to
(σ, s).

If ({−σi}, {−sij}) is an infinitesimal derivative, then the following equations
hold, namely,

ei

(
d(ωi(σi)) + θi ∧ (ωi(σi))

)
= eiθ

′
i ∧ ωi,(2.11.a)

(σj − σi)− ei

(
d(ωi(sij)) + θi ∧ ωi(sij)

)
= eigijωi,(2.11.b)

sjk − sik + sij = 0.(2.11.c)

Lemma 2.12. Regard the complex (I∗+q−1
(q−1,q)(M ;−KF ), d∇) as a subcomplex of

(K∗, δ + (−1)rd∇) and denote by H∗(M ;−KF ) its cohomology. Then, the nat-
ural mapping H1(M ;−KF ) → H1(M ;−KF ) is injective. It is an isomorphism if
there is a partition of unity.

The proof is easy and omitted.
When local trivializations and local connections of Q(F) are given, we always

consider local trivializations and local connections of −KF in the following way.
Let {ei} be a family of local trivializations of Q(F) and set ei = ei,1 ∧ · · · ∧ ei,q,
then {ei} is a family of local trivializations of −KF . Similarly, {ωi = ω1

i ∧ · · · ∧ωq
i }

is a natural family of local trivializations of KF . Finally, {θi = tr θi} is a family
of local Bott connection forms with respect to {ei}. They satisfy the equations
dωi + θi ∧ ωi = 0 and θj − θi = d log Jij + βij , where Jij = det Aij and βij = tr β

ij
.

Lemma 2.13. Let µ ∈ H1(M ; ΘF ) and let m = ({σi}, {sij}) ∈ E1(U ; Q(F)) be its
representative. Set then

r0(m)i =
q∑

k=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ ωk
i (σi) ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei,

r1(m)ij =
q∑

k=1

(−1)k−1ω1
i ∧ · · · ∧ ωk−1

i ∧ ωk
i (sij) ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei,

then r = r0 ⊕ r1 induces an isomorphism from H1(M ; ΘF ) to H1(M ;−KF ) under
which H1(M ; ΘF ) is mapped to H1(M ;−KF ). Moreover, if m satisfies (2.5.a),
(2.5.b) and (2.5.c), then r(m) satisfies (2.11.a), (2.11.b) and (2.11.c) with θ′ = tr θ′

and g = tr g.

The induced mapping on the cohomology is again denoted by r.
11



Proof. It is clear that the mapping r is well-defined at the cochain level. By (2.5.a),
d(ωi(σi))+θi∧ (ωk

i (σi)) = θ′i∧ωi for some gl(q; C)-valued 1-form θ′i. Since θ = tr θ

and β = tr β, one has the following equations, namely,

dr0(m)i + θi ∧ r0(m)i

=
q∑

k=1

∑

l 6=k

(−1)l−1ω1
i ∧ · · · ∧ dωl

i ∧ · · · ∧ ωk−1
i ∧ ωk

i (σi) ∧ ωk+1
i ∧ · · · ∧ ωq

i ⊗ ei

+ θi ∧
q∑

k=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ ωk
i (σi) ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei

+
q∑

k=1

(−1)k−1ω1
i ∧ · · · ∧ ωk−1

i ∧ d(ωk
i (σi)) ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei

=−
q∑

k=1

∑

l 6=k

(θi)
l
l ∧ ω1

i ∧ · · · ∧ ωk−1
i ∧ ωk

i (σi) ∧ ωk+1
i ∧ · · · ∧ ωq

i ⊗ ei

+
q∑

k=1

∑

l 6=k

(θi)
l
k ∧ ω1

i ∧ · · · ∧ ωl−1
i ∧ ωk

i (σi) ∧ ωl+1
i ∧ · · · ∧ ωk−1

i ∧ ωk
i ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei

+ θi ∧
q∑

k=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ ωk
i (σi) ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei

+
q∑

l=1

(−1)l−1ω1
i ∧ · · · ∧ ωl−1

i ∧ d(ωl
i(σi)) ∧ ωl+1

i ∧ · · · ∧ ωq
i ⊗ ei

=
q∑

l=1

q∑

k=1

(−1)l−1ω1
i ∧ · · · ∧ ωl−1

i ∧ (θ′i)
l
k ∧ ωk

i ∧ ωl+1
i ∧ · · · ∧ ωq

i ⊗ ei

=(tr θ′) ∧ ωi ⊗ ei.

On the other hand, by repeating similar calculations, one has the following equation
on Uij ;

r0(m)j − r0(m)i

=
q∑

k=1

ω1
j ∧ · · · ∧ ωk−1

j ∧ ωk
j (σj) ∧ ωk+1

j ∧ · · · ∧ ωq
j ⊗ ej ,

−
q∑

k=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ ωk
i (σi) ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei,

=
q∑

k=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ (
ωk

i (σj)− ωk
i (σi)

) ∧ ωk+1
i ∧ · · · ∧ ωq

i ⊗ ei,
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=
q∑

k=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ (
d(ωk

i (sij)) +
q∑

l=1

(θi)
k
l ∧ ωl

i(sij)
) ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei

+
q∑

k=1

q∑

l=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ (g
i
)k
l ωl

i ∧ ωk+1
i ∧ · · · ∧ ωq

i ⊗ ei

=(dr1(m)ij + θi ∧ r1(m)ij) + (tr g
i
) ωi ⊗ ei

= d∇r1(m)ij + (tr g
i
)ωi ⊗ ei.

Finally, it is easy to see that δr1(m)ijk = 0. Thus r(m) is closed under δ+(−1)rd∇
and the last part of the lemma is shown.

Assume that m is exact, then σi = ei (dfi + θifi) and sij = ejfj − eifi for some
collection {eifi} of local sections of Q(F). Setting

ρi =
q∑

k=1

(−1)k−1ω1
i ∧ · · · ∧ ωk−1

i ∧ fk
i ∧ ωk+1

i ∧ · · · ∧ ωq
i ⊗ ei,

it is easy to verify that d∇ρi = r0(m)i and that ρj − ρi = r1(m)ij .
Conversely, let m = ({σi}, {sij}) be a cocycle in K1, then (2.11.a), (2.11.b) and

(2.11.c) hold. Define 1-forms {σ̃k
i } and functions {s̃k

ij} by requiring ωk
i ∧ (ωi(σi)) =

−σ̃k
i ∧ ωi and ωk

i ∧ ωi(sij) = s̃k
ij ∧ ωi. Set r′0(m)i =

q∑
k=1

ei,k ⊗ σ̃k
i and r′1(m)ij =

q∑
k=1

ei,k ⊗ s̃k
ij . It is clear that r′(m) = r′0(m)⊕ r′1(m) is well-defined as an element

of K1. Let σ̃i = t(σ̃1
i , · · · , σ̃q

i ) and ωi = t(ω1
i , · · · , ωq

i ), then one has the following
equations, namely,

d(σ̃i ∧ ωi) = d (−ωi ∧ ωi(σi))

= θi ∧ ωi ∧ ωi(σi) + ωi ∧ d(ωi(σi))

= −θi ∧ σ̃i ∧ ωi + ωi ∧ d(ωi(σi)),

while

d (σ̃i ∧ ωi) = dσ̃i ∧ ωi − σ̃i ∧ dωi

= dσ̃i ∧ ωi + σ̃i ∧ θi ∧ ωi

= dσ̃i ∧ ωi − ωi ∧ θi ∧ ωi(σi).

Hence

(dσ̃i + θi ∧ σ̃i) ∧ ωi = ωi ∧ (d(ωi(σi)) + θi ∧ ωi(σi)) = 0.
13



Similarly, by the equations

d(s̃ijωi) = (ds̃ij) ∧ ωi − s̃ijθi ∧ ωi = (ds̃ij) ∧ ωi + ωi ∧ θi ∧ ωi(sij)

and

d(s̃ijωi) = d(ωi ∧ ωi(sij)) = −θi ∧ s̃ijωi − ωi ∧ d(ωi(sij)),

one sees that

ei(ds̃ij + θi ∧ s̃ij) ∧ ωi = −eiωi ∧ (d(ωi(sij)) + θi ∧ ωi(sij))

= −eiωi ∧ (ωi(σj)− ωi(σi))

= −ejωj ∧ aijωj(σj)− eiσ̃iωi

= ej σ̃j ∧ aijωj − eiσ̃i ∧ ωi

= (ej σ̃j − eiσ̃i) ∧ ωi.

It follows that r′(m) is closed. Almost the same argument shows that r′ descends
to a mapping on the cohomology. Finally, it is clear from the construction that
H1(M ; ΘF ) is mapped to H1(M ;−KF ) under the mapping r. This completes the
proof. ¤

Infinitesimal derivatives of the Bott class is determined by infinitesimal defor-
mations of −KF as follows. We still assume that deformations are represented by
elements of Iq

(q−1,q)(M ;−KF ).

Definition 2.14. Let µ ∈ H1(M ;−KF ) and let σ = {σi} ∈ Iq
(q−1,q)(M ;−KF ) be

a representative of µ. Then any pair ∇′ = ({θ′i}, {gij}) which satisfies (2.11.a) and
(2.11.b) is called an infinitesimal derivative of the Bott connection∇ = ({θi}, {βij})
with respect to σ.

Theorem 2.15. Let µ ∈ H1(M ;−KF ) be an infinitesimal deformation. Let
σ = {σi} ∈ Iq

(q−1,q)(M ;−KF ) be a representative and let ∇′ = ({θ′i}, {gij}) be
the infinitesimal derivative of ∇ with respect to σ. Set

DσBq(∇,∇′) =
q∑

k=0

vk
1 ∪ u′1 ∪ vq−k

1

= (2π
√−1)−(q+1)

q∑

k=0

(dθ + β)k ∪ (θ′ + g) ∪ (dθ + β)q−k,
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where u′1 = −1
2π
√−1

(θ′ + g), then DσBq(∇,∇′) represents a class in H2q+1(M ; C)
independent of the choice of cochains and connections.

Proof. Claims are proved in steps. Denote by D the differential in the Čech-de
Rham complex.
Claim 1. DσBq(∇,∇′) is closed.

First of all,

D(DσBq(∇,∇′)) = (2π
√−1)−(q+1)

q∑

k=0

(dθ + β)k ∪ D(θ′ + g) ∪ (dθ + β)q−k

since D(dθ + β) = 0. By (2.11.a), one has

(2.15.a) dθi ∧ (ωi(σi)) = dθ′i ∧ ωi.

One also has

ejθ
′
j ∧ ωj = ej

(
d(ωj(σj)) + θj ∧ (ωj(σj))

)

= ei

(
d(ωi(σi)) + θi ∧ (ωi(σi)) + βij ∧ (ωi(σi)) + dgij ∧ ωi

)

= eiθ
′
i ∧ ωi + eiβij ∧ (ωi(σi)) + eidgij ∧ ωi,

namely,

(2.15.b) (δθ′ − dg)ij ∧ ωi = βij ∧ (ωi(σ)).

On the other hand, since σi ∈ Iq
(q−1,q)(Ui;−KF ),

(2.15.c) ωm
i ∧ ωi(σi) = −σ̃m

i ∧ ωi

for some 1-form σ̃m
i defined on Ui. We may assume that σ̃m

i is well-defined modulo
I1
(1)(Ui) and σ̃j = Ajiσ̃i modulo I1

(1)(Ui), where σ̃i = t(σ̃1
i , · · · , σ̃q

i ). Writing dθi =
∑

m ∂mθi ∧ ωm
i and βij =

∑
m(bij)mωm

i , we set ∂̃θ′i = −∑
m ∂mθi ∧ σ̃m

i and β̃′ij =
−∑

m(bij)mσ̃m
i . Then by (2.15.a), (2.15.b) and (2.15.c),

∂̃θ′i ∧ ωi = dθ′i ∧ ωi,

β̃′ij ∧ ωi = (δθ′ − dg)ij ∧ ωi.

Finally, ei(δgijk)ωi = 0 by (2.11.b) and by the assumption s = {sij} = 0. It follows
that

(dθ + β)k ∪ D(θ′ + g) ∪ (dθ + β)q−k = (dθ + β)k ∪ (∂̃θ′ + β̃′) ∪ (dθ + β)q−k.
15



Let Φ = {ϕ0, · · · , ϕq} be an ordered sequence such that ϕk is either dθ or β, then

q∑

k=0

ϕ0 ∪ · · · ∪ ϕk−1 ∪ ϕ̃′k ∪ ϕk+1 ∪ · · · ∪ ϕq = 0.

Indeed, each ϕk in the above cochain appears in the form ψk ∧ ωlk for some ψk

and lk. This differential form is equal to ψk ∧ Alk,iωi. On the other hand, since
−σ̃j ∧ ωj = −Ajiσ̃i ∧ ajiωi, one has σ̃j = Ajiσ̃i modulo I1

(1)(Uij). It follows that
the above sum is equal to

∂

∂t

q∑

k=0

ϕ0(t) ∪ · · · ∪ ϕq(t)
∣∣∣∣
t=0

,

where ϕk(t) = ψkAlk,i ∧ (ωi − tσ̃i). If we denote by Ii(t) the ideal generated by
ωm

i − tσ̃m
i , m = 1, · · · , q, then ϕ0(t) ∪ · · · ∪ ϕq(t) belongs to Ii(t)q+1 = {0}. Hence

DσBq(∇,∇′) is closed.

Claim 2. DσBq(∇,∇′) is independent of the choice of ∇′ once σ is fixed.

Let ({θ̃′i}, {g̃ij}) be another choice of an infinitesimal derivative of ∇ with respect
to σ, then ei(θ̃′i−θ′i)∧ωi = 0 and g̃ij = gij . Hence (dθ+β)k∪(θ̃′+ g̃)∪(dθ+β)q−k =
(dθ + β)k ∪ (θ′ + g) ∪ (dθ + β)q−k for each k.

Claim 3. The class [DσBq(∇,∇′)] is independent of the choice of σ.

Let {σ̃i} be another representative of µ and choose an infinitesimal derivative
∇̃′ = ({θ̃′i}, {g̃ij}) of ∇ with respect to {σ̃i}. Set ψ = σ̃−σ, then there is an element
τ = {τi} ∈ Iq−1

(q−1,q)(U ;−KF ) and a family {hi} of functions on Ui such that

eiωi(ψi) = ei

(
d(ωi(τi)) + θi ∧ (ωi(τi)) + hiωi

)
,(2.15.d)

τj − τi = 0.(2.15.e)

Let now τ̃m
i , m = 1, · · · , q be 1-forms such that ωm

i ∧ωi(τ) = −τ̃m
i ∧ωi, and define

∂̂θ and β̂ij by setting ∂̂θi = −∑
m ∂mθi ∧ τ̃m

i and β̂ij = −∑
m(bij)mτ̃m

i . Then by
(2.15.d) and (2.15.e),

ei(θ̃′i − θ′i) ∧ ωi = ei

(
d(ωi(ψi)) + θi ∧ (ωi(ψi))

)

= ei(dθi ∧ ωi(τ) + dhi ∧ ωi)

= ei(∂̂θi + dhi) ∧ ωi,

ejhjωj − eihiωi = −βij ∧ ωi(τ) + ei(g̃ij − gij)ωi

= (−β̂ij + (g̃ij − gij)) ∧ ωi.
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By repeating the same argument as in the proof of Claim 1, one obtains the equation
q∑

k=0

(dθ + β)k ∪ (∂̂θ + β̂) ∪ (dθ + β)q−k = 0.

Hence

(2π
√−1)q+1

(
DeσBq(∇, ∇̃′)−DσBq(∇,∇′)

)

=
q∑

k=0

(dθ + β)k ∪ (θ̃′ + g̃ − θ′ − g) ∪ (dθ + β)q−k

=
q∑

k=0

(dθ + β)k ∪ (∂̂θ + dh + δh + β̂) ∪ (dθ + β)q−k

=
q∑

k=0

(dθ + β)k ∪ (δh + dh) ∪ (dθ + β)q−k

=D
(

q∑

k=0

(dθ + β)k ∪ h ∪ (dθ + β)q−k

)
.

This completes the proof of Claim 3.
Claim 4. The class [DσBq(∇,∇′)] is independent of the choice of ∇.

Let ∇̃ = ({ϕi}, {ρij}) be another Bott connection and set ψi = ϕi−θi, then ψi ∈
I1
(1)(Ui). Assume that {σi} satisfies (2.11.a), (2.11.b) and (2.11.c), then d(ωi(σi))+

ϕi ∧ (ωi(σi)) = θ′i ∧ ωi + ψi ∧ (ωi(σi)) = ϕ′i ∧ ωi for some 1-form ϕ′i. Noticing
that (2.11.b) for ∇̃ is the same as (2.11.b) for ∇ because s = {sij} = 0, we may
adopt ({ϕ′i}, {gij}) as an infinitesimal derivative of ∇̃. Denote {ψi} by ψ, then
Dψ = (dϕ + ρ)− (dθ + β). Setting ψ′ = ϕ′ − θ′, one has ψi ∧ (ωi(σi)) = ψ′i ∧ ωi.

Define ∂̃θ′ and β̃′ as in the proof of Claim 1 and define ∂̃ϕ′ and ρ̃′ in the same
way, then by repeating the argument as above, one obtains

ψ′ ∪ (dϕ + ρ)q + ψ ∪ (∂̃ϕ′ + ρ̃′) ∪ (dϕ + ρ)q−1 + · · ·(2.15.f)

+ ψ ∪ (dϕ + ρ)q−1 ∪ (∂̃ϕ′ + ρ̃′) = 0,

(∂̃θ′ + β̃′) ∪ (dθ + β)k ∪ ψ ∪ (dϕ + ρ)q−k−1(2.15.g)

+ (dθ + β) ∪ (∂̃θ′ + β̃′) ∪ (dθ + β)k−1 ∪ ψ ∪ (dϕ + ρ)q−k−1

+ · · ·
+ (dθ + β)k ∪ ψ′ ∪ (dϕ + ρ)q−k−1

+ (dθ + β)k ∪ ψ ∪ (∂̃ϕ′ + ρ̃′) ∪ (dϕ + ρ)q−k−2

+ · · ·
+ (dθ + β)k ∪ ψ ∪ (dϕ + ρ)q−k−2 ∪ (∂̃ϕ′ + ρ̃′) = 0.
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On the other hand,

(2π
√−1)q+1

(
DσBq(∇̃, ∇̃′)−DσBq(∇,∇′)

)
(2.15.h)

=




ψ′ ∪ (dϕ + ρ)q + (θ′ + g) ∪ Dψ ∪ (dϕ + ρ)q−1

+ (θ′ + g) ∪ (dθ + β) ∪ Dψ ∪ (dϕ + ρ)q−2

+ · · ·+ (θ′ + g) ∪ (dθ + β)q−1 ∪ Dψ




+




Dψ ∪ (ϕ′ + g) ∪ (dϕ + ρ)q−1 + (dθ + β) ∪ ψ′ ∪ (dϕ + ρ)q−1

+ (dθ + β) ∪ (θ′ + g) ∪ Dψ ∪ (dϕ + ρ)q−2 + · · ·
+ (dθ + β) ∪ (θ′ + g) ∪ (dθ + β)q−2 ∪ Dψ




+ · · ·
+Dψ ∪ (dϕ + ρ)q−1 ∪ (ϕ′ + g) + · · ·+ (dθ + β)q ∪ ψ′.

Since ψ ∈ I1
(1)(U), one has

D(
(dθ + β)m ∪ (θ′ + g) ∪ (dθ + β)k ∪ ψ ∪ (dϕ + ρ)l

)
(2.15.i)

=(dθ + β)m ∪ (∂̃θ′ + β̃′) ∪ (dθ + β)k ∪ ψ ∪ (dϕ + ρ)l

− (dθ + β)m ∪ (θ′ + g) ∪ (dθ + β)k ∪ Dψ ∪ (dϕ + ρ)l,

and

D(−(dθ + β)m ∪ ψ ∪ (dϕ + ρ)k ∪ (ϕ′ + g) ∪ (dϕ + ρ)l
)

(2.15.j)

=− (dθ + β)m ∪ Dψ ∪ (dϕ + ρ)k ∪ (ϕ′ + g) ∪ (dϕ + ρ)l

+ (dθ + β)m ∪ ψ ∪ (dϕ + ρ)k ∪ (∂̃ϕ′ + ρ̃′) ∪ (dϕ + ρ)l,

where m + k + l = q − 1.
Adding (2.15.i) and (2.15.j) to the right hand side of (2.15.h) varying m, k, l and

by using (2.15.f) and (2.15.g), one sees that DσBq(∇̃, ∇̃′)−DσBq(∇,∇′) is exact.
Claim 5. DσBq(∇,∇′) is independent of the choice of the family of local trivial-
ization {ei}.

Fix σ, ∇ = ({θi}, {βij}), and let {e′i} be another family of local trivializations,
then we may assume that e′i = eiui for some C∗-valued function ui. Hence ω′i =
u−1

i ωi and e′j = uju
−1
i αije

′
i. It is easy to see that the connection form of ∇ with

respect to {e′i} is ({θi + u−1
i dui}, {βij}). It follows the equation

e′i
(
d(ω′i(σi)) + (θi + u−1

i dui) ∧ (ω′i(σi))
)

= eiui

(−u−2
i dui ∧ ωi(σi) + u−1

i d(ωi(σi)) + u−1
i θi ∧ ωi(σi) + u−2

i dui ∧ ωi(σi)
)

= ei

(
d(ωi(σi)) + θi ∧ (ωi(σi))

)

= − eiθ
′
i ∧ ωi = −e′iθ

′
i ∧ ω′i.
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One also has σj − σi = eigijωi = e′igijω
′
i. Hence we may still adopt ({θ′i}, {gij}) as

an infinitesimal derivative of ∇. This completes the proof of Claim 5 and therefore
of the theorem. ¤

Definition 2.16. The infinitesimal derivative of the Bott class with respect to µ ∈
H1(M ;−KF ) is the cohomology class in H2q+1(M ;C) represented by DσBq(∇,∇′)
in Theorem 2.15 and denoted by DµBq(F).

Definition 2.16 is compatible with Definition 2.7 as follows.

Theorem 2.17. Let µ ∈ H1(M ; ΘF ), then DµBq(F) = Dr(µ)Bq(F), where the
left hand side is defined in Definition 2.7 and the right hand side is defined in
Definition 2.16.

Proof. This is an immediate consequence of Lemma 2.13 and Theorem 2.15. ¤

In the rest of this section, some justification of Definition 2.16 will be given. We
will first recall how a smooth family {Fs} of transversely holomorphic foliations
induces an element of H1(M ; ΘF ) [12]. We may assume that there is a family
{ωs} of local trivializations of Q(Fs) such that the transition functions (As)ji are
constant: (ωs)j = Aji(ωs)i. Choose a family {∇s} of Bott connections so that the
corresponding connection forms ({(θs)i}, {(βs)ij}) form a smooth family and the
equation d(ωs)i = −(θs)i ∧ (ωs)i holds.

Fix a smooth family TCM = Es⊕νs of splittings and denote by π′s the projection
from TCM to νs. Let π0 : TCM → Q(F0) be the projection to the normal bundle.

Define then a section σ of E∗
0⊗Q(F0) by setting σ(X) = −π0

(
∂

∂s
π′s(X)

∣∣∣∣
s=0

)
. Note

that σ is in fact a Q(F0)-valued 1-form so that σj−σi = 0, or equivalently, gij = 0.
One can verify that σ is a cocycle by using the equation dω̇i+(θ0)i∧ω̇i = −θ̇i∧(ω0)i,

where ω̇ =
∂

∂s
ωs

∣∣∣∣
s=0

and θ̇ =
∂

∂s
θs

∣∣∣∣
s=0

. Thus {Fs} induces in fact an element of

H1(M ; ΘF ), hence also an element H1(M ;−KF ) by Lemma 2.13.

Theorem 2.18. If µ ∈ H1(M ;−KF ) is derived from a smooth family {Fs}, then

DµBq(F) =
∂

∂s
Bq(Fs)

∣∣∣∣
s=0

.

Proof. Let µ be the element of H1(M ; ΘF ) determined by {Fs}, then it suffices

to show that Dr(µ)Bq(F) =
∂

∂s
Bq(Fs)

∣∣∣∣
s=0

. One has then the following equation,
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namely,

σ(X)|Ui = −π0

(
∂

∂s

q∑

k=1

ẽ(s)i,kω(s)k
i (X)

∣∣∣∣
s=0

)

= −
q∑

k=1

ẽ(0)i,k
∂

∂s
ω(s)k

i (X)
∣∣∣∣
s=0

= −
q∑

k=1

ẽ(0)i,kω̇k
i (X)

= −e(0)iω̇i(X).

Hence {θ̇i} can be chosen as an infinitesimal derivative when calculating Dr(µ)Bq(F).
Theorem now follows from Proposition 1.10. ¤

The infinitesimal derivative of the Bott class constructed above is related with
the previously constructed infinitesimal derivatives as follows.

Theorem 2.19. Let µ ∈ H1(M ; ΘF ).

1) Assume that −KF is trivial, then DµBq(F) coincides with the infinitesimal
derivative of the Bott class in [13].

2) Let Dµξq(F) be the infinitesimal derivative of the imaginary part of the Bott
class defined in [13] (and [4]), then Dµξq(F) = −2ImDµBq(F).

Proof. These infinitesimal derivatives are constructed under the assumption that
β = 0 and g = 0. Hence DµBq(F) is represented by a global (2q + 1)-form
(−2π

√−1)−(q+1)θ′ ∧ (dθ)q. The claims are now obvious. ¤

3. Schwarzian Derivatives

Notation 3.1. The natural coordinate of Cq will be usually denoted by z =
t(z1, · · · , zq). Holomorphic vectors of the form X1 ∂

∂z1
+ · · · + Xq ∂

∂zq
are usually

abbreviated as
∂

∂z
X, where

∂

∂z
=

(
∂

∂z1
· · · ∂

∂zq

)
and X = t(X1 · · · Xq). (The

partial derivative of X by z is denoted by
∂X

∂z
.) Similarly, holomorphic 1-forms of

the form a1dz1 + ·+aqdzq are denoted as a dz = (a1 · · · aq) t(dz1 · · · dzq). In what
follows, tensors are usually represented in this way, namely, they will represented
in matrices and the multiplications are considered under the usual multiplication
laws together with the tensor or wedge products.
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Notation 3.2. Sections of
⊗p

Q(F) ⊗ ⊗q
Q(F)∗ are said to be tensors of type

[p, q] or a [p, q]-tensor, in order to avoid confusions with Čech-de Rham cochains of
bidegree (p, q). A [0, q]-tensor is also called simply a q-tensor.

Definition 3.3 ([16], [20], etc.). Let γ be a biholomorphic local diffeomorphism
of Cq. Let u = t(u1, · · · , uq) be the natural coordinate for the target so that
u = γ(z). Denote by γk be the k-th component of γ: γ = t(γ1, · · · , γq). The
projective Schwarzian derivative Σγ of γ is a tensor of type [1, 2] given as follows:

Σγ =
∑

k,l,t,s

∂zl

∂uk

∂2γk

∂zt∂zs

∂

∂zl
⊗ dzt ⊗ dzs

+
∑

l,t,s

−1
q + 1

(
∂ log Jγ

∂zt
δl,s

∂

∂zl
⊗ dzt ⊗ dzs +

∂ log Jγ

∂zs
δl,t

∂

∂zl
⊗ dzt ⊗ dzs

)
,

where Dγ denotes the differential of γ, Jγ = det Dγ is the Jacobian and δl,t is the

Kronecker delta. If q > 1, then let Σl
t,s be the coefficient of

∂

∂zl
⊗ dzt ⊗ dzs in Σγ

and define a 2-tensor Λγ by the formula

Λγ =
−1

q − 1

q∑

l=1

(
∂Σl

t,s

∂zl
−

q∑
u=1

Σl
t,uΣu

s,l

)
dzt ⊗ dzs

=
∑
t,s

−1
q + 1

∂2 log Jγ

∂zt∂zs
dzt ⊗ dzs

−
∑
t,s

−1
q + 1

∂ log Jγ

∂zt

−1
q + 1

∂ log Jγ

∂zs
dzt

i ⊗ dzs

−
∑

l,t,s

−1
q + 1

∂ log Jγ

∂zl

∂zl

∂uk

∂2γk

∂zt∂zs
dzt ⊗ dzs.

If q = 1, then we define Λγ directly by the above formula because Σγ = 0, then

Λγ = −1
2

(
γ′′′

γ′
− 3

2

(
γ′′

γ′

)2
)

dz ⊗ dz,

where γ′ji =
dγji

dzi
, γ′′ji =

d2γji

dz2
i

and γ′′′ji =
d3γji

dz3
i

by definition so that Λγ is the

classical Schwarzian. Finally, the projective Schwarzian derivatives are also called
the Schwarzian derivatives or the Schwarzians for short.

It is classical that γ is the restriction of a projective transformation if and only
if Λγ = 0 if q = 1. When q > 1, then the following is a fundamental
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Fact 3.4 ([18],[19] for 1) and 2), [8] and [18] for 3)).

1) If q > 1, then γ is the restriction of a projective transformation if and only
if Σγ = 0.

2) Σl
t,s = Σl

t,s and
q∑

l=1

Σl
l,s = 0.

3) Λγ can be seen as a kind of the curvature tensor for Σγ .

The following Lemma is useful in succeeding calculations.

Lemma 3.5. Set ∂ log Jγ =
(

∂ log Jγ

∂z1
· · · ∂ log Jγ

∂zq

)
, then

Σγ =
∂

∂z
⊗Dγ−1 · dDγ ⊗ dz

+
q∑

k=1

−1
q + 1

(
∂

∂zk
⊗ (∂ log Jγ · dz)⊗ dzk +

∂

∂zk
⊗ dzk ⊗ (∂ log Jγ · dz)

)
,

Λγ =
−1

q + 1
d∂ log Jγ ⊗ dz − −1

q + 1
∂ log JγDγ−1 · dDγ ⊗ dz

− −1
q + 1

(∂ log Jγ · dz)⊗ −1
q + 1

(∂ log Jγ · dz).

Let X be a vector field on an open set U of C, then denote by ιX the interior
product with X. For a p-form ω, set ι′Xω = (−1)p−1ιXω, or equivalently, ι′Xω =
ω( · , · · · , · , X).

Definition 3.6. For a p-form ω, define a Q(F)∗-valued p-form 〈ω |Σγ〉 be setting

〈ω |Σγ〉 =
∑

i,t,s

(ι′∂i
ω)Σi

t,s ∧ dzt ⊗ dzs,

where ι′∂i
= ι′ ∂

∂zi
. If in addition a Q(F)-valued 1-form σ =

∑ ∂

∂zi
⊗ σi is given, set

〈ω |Σγ |σ〉 =
∑

i,t,s

(ι′∂i
ω)Σi

t,s ∧ dzt ⊗ σs,

which is also a Q(F)∗-valued p-form. We define a 2-tensor 〈Λγ |σ〉 and a p-form
〈ω |σ〉 in a similar way. Note that we have

〈ω1 ∧ · · · ∧ ωr|σ〉
=〈ω1|σ〉 ∧ ω2 ∧ · · · ∧ ωr + ω1 ∧ 〈ω2|σ〉 ∧ ω3 ∧ · · · ∧ ωr + · · ·+ ω1 ∧ · · · ∧ ωr−1 ∧ 〈ωr|σ〉
for differential forms ω1, · · · , ωr.

By abuse of notation, the differential forms obtained by reduction are also de-
noted by the same symbols if there is no fear of confusions, e.g., 〈ω |Σγ〉 will also
stand for a (p + 1)-form.
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Lemma 3.7. Let γji and γkj be local biholomorphic diffeomorphisms and let zi

and zj be the variables of γji and γkj, respectively. Set γki = γkj ◦ γji, and denote
Σγab

and Λγab
by Σba and Λba, where ab = ji, kj or ki, then

γ∗jiΛjk − Λik + Λij =
1

q + 1
〈
d log Jij

∣∣ γ∗1Σjk

〉
,

γ∗jiΣjk − Σik + Σij = 0.

Proof. Denote Jγab
simply by Jab, where ab = ji, kj or ki, then we have by Lemma

3.5 the following equation, namely,

(q + 1)Λik =(q + 1)Λγki

=− d∂i log Jki ⊗ dzi + ∂i log JkiDγ−1
ki dDγki ⊗ dzi

− 1
q + 1

(d log Jki)⊗ (d log Jki)

=− d(∂j log JkjDγji + ∂i log Jji)⊗ dzi

+ (∂j log JkjDγji + ∂i log Jji)Dγ−1
ji Dγ−1

kj (dDγkjDγji + DγkjdDγji)⊗ dzi

− 1
q + 1

(d log Jkj + d log Jji)⊗ (d log Jkj + d log Jji)

=(q + 1)Λij + (q + 1)γ∗jiΛjk

+ ∂j log JjiDγ−1
kj dDγkj ⊗ dzj

− 1
q + 1

(d log Jkj ⊗ d log Jji + d log Jji ⊗ d log Jkj)

= 〈d log Jji|Σjk〉 .

The equation for Σ can be shown in a parallel way. ¤

In what follows, pull-backs of the tensors are abbreviated, e.g., γ∗1Λ12 is simply
denoted by Λ12.

4. Relation between the infinitesimal derivative

of the Bott class and the Schwarzian derivative

Let ω = {ωi} be a family of local trivializations of −KF =
∧q

Q∗(F) and let∇ be
a family of local Bott connections on −KF induced by a family of Bott connections
on Q(F). For each i, let zi be the local coordinate in the transversal direction and
let {γji} be the transition functions in the transversal direction so that zj = γji(zi).
Finally let µ be an element of H1(M ;−KF ), then µ can be regarded as an element
of H1(M ; ΘF ) by Lemma 2.13. Let σ = {σi} be a representative of the latter
element.
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Definition 4.1. Set Σij = Σγji
and Λij = Λγji

. Let {θi} be the family of local

connection forms of ∇ with respect to
{

∂

∂z1
i

∧ · · · ∧ ∂

∂zq
i

}
. then we define Čech-de

Rham (1, 2)-cochains L = {Lij} and S = {Sij} by setting

Lij = 〈Λij |σi〉 ,
Sij = 〈θi|Σij |σi〉 ,

where the right hand sides are considered as 2-forms by reduction. More explicitly,

Lij =
−1

q + 1
(d∂j log Jji) ∧ σ′i −

−1
q + 1

∂i log JjiDγ−1
ji · dDγji ∧ σ′i

−
( −1

q + 1
d log Jji

)
∧

( −1
q + 1

〈d log Jji|σi〉
)

Sij =fiDγ−1
ji · dDγji ∧ σ′i

+
−1

q + 1
(
(∂i log Jji · dzi) ∧ (fi · σ′i) + (fi · dzi) ∧ (∂i log Jji · σ′i)

)

=fiDγ−1
ji · dDγji ∧ σ′i

+
−1

q + 1
(
d log Jji ∧ 〈θi|σi〉+ θi ∧ 〈d log Jji|σi〉

)
,

where ∂i log Jji =
(

∂ log Jji

∂z1
i

, · · · ,
∂ log Jji

∂zq
i

)
, θi = fi · dzi, Jji = Jγji and σ′i is the

1-form such that σi =
∂

∂zi
· σ′i.

In what follows, we adopt the following

Notation 4.2.

(
∧l

d log J)i0···il
= d log Ji0i1 ∧ d log Ji1i2 ∧ · · · ∧ d log Jil−1il

, and

(d log J)l
i0···il

= (d log J ∪ d log J ∪ · · · ∪ d log J)i0···il

= (−1)
l(l−1)

2 d log Ji0i1 ∧ · · · ∧ d log Jil−1il

= (−1)
l(l−1)

2 (
∧l

d log J)i0···il
.

A generalization of the Maszczyk formula [17] for arbitrary transversely holo-
morphic foliations is as follows.

Theorem 4.3. Let µ ∈ H1(M ;−KF ) be an infinitesimal derivative. Consider µ

as an element of H1(M ; ΘF ) and let σ ∈ I1
(0,1)(M ; Q(F)) be a representative of µ,
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then the infinitesimal derivative of the Bott class DµBq(F) is represented by the
Čech-de Rham (q, q + 1)-cocycle whose value on Ui0···iq is given by

q−1∑

l=0

(−1)q−l−1(
∧l

d log J)i0···il
∧ Liliq

∧ (
∧q−l−1

d log J)il+1···iq

−
q−2∑

l=0

(−1)q−l−1(
∧l

d log J)i0···il
∧ Lil+1iq ∧ (

∧q−l−1
d log J)il+1···iq

multiplied by (−2π
√−1)−(q+1)(q + 1)2(−1)

q(q+1)
2 . If q = 1, then the infinitesimal

Bott class is represented by the Čech-de Rham (1, 2)-cocycle

− 1
2π2

(
γ′′′

γ′
− 3

2

(
γ′′

γ′

2
))

dz ∧ σ.

Theorem 4.3 will be shown in steps. We compute firstly the derivatives of L and
S.

Lemma 4.4. The following equations hold modulo I(q−1) after reduction to differ-
ential forms:

(δL)ijk =
1

q + 1
〈d log Jij |Σjk|σj〉 ,

(δS)ijk = 〈d log Jij |Σjk|σj〉 ,
(dL)ij = 0,

(dS)ij = 〈dθj |Σij |σj〉.

Proof. First, since σ ∈ I1
(0,1)(M ; Q(F)), one has the following equations modulo

I(q−1) by Lemma 3.7, namely,

(δL)ijk =〈Λij |σi〉 − 〈Λik|σi〉+ 〈Λjk|σj〉
=〈(δΛ)ijk|σj〉
=

1
q + 1

〈d log Jij |Σjk|σj〉,
(δS)ijk =〈θi|Σij |σi〉 − 〈θi|Σik|σi〉+ 〈θj |Σjk|σj〉

=〈θi| (δΣ)ijk|σi〉+ 〈(δθ)ij |Σjk|σj〉
=〈d log Jij |Σjk|σj〉.
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Second, from the fact that dσi
k∧dz1

i ∧· · ·∧dzq
i = 0 for any k, it follows easily that

(dL)ij = 0 modulo I(q−1). For the same reason, dSij modulo I(q−1) is calculated as
follows:

dSij = dfiDγ−1
ji · dDγji ∧ σ′i + fid(Dγ−1

ji ) · dDγji ∧ σ′i

+
−1

q + 1
(−d log Jji ∧ 〈dθi|σi〉+ dθi ∧ 〈d log Jji|σi〉 − θi ∧ 〈d∂i log Jji|σi〉)

= dfiDγ−1
ji · dDγji ∧ σ′i

+
−1

q + 1
(−d log Jji ∧ 〈dθi|σi〉+ dθi ∧ 〈d log Jji|σi〉)

= 〈dθj |Σij |σj〉,

where the sign of the second term is due to the fact that dfj is a 1-form. ¤

Definition 4.5. Let c0, · · · , cq be an ordered sequence of cochains such that c0

and c1 are cochains of degree 1 and the others are of degree 2. Set then

S(c0, · · · , cq) =
∑

τ∈Sq+1

ε cτ(0) ∪ · · · ∪ cτ(q),

where ε = −1 if τ(0) > τ(1), otherwise ε = 1. Even if c0 or c1 is of degree 2, we de-
note by S(c0, · · · , cq) the cochain obtained by the above formula, where ε is always
set to be 1. By abuse of notation, repetition of cochains (of even degree) is rep-
resented by superscripts, e.g., S(c0, c1, c

i
2, c

q−i−1
3 ) = S(c0, c1, c2, · · · , c2, c3, · · · , c3),

where c2 appears i-times and c3 appears (q − i− 1)-times.

Lemma 4.6. Suppose that each ci belongs to I(1), then

S(〈c0 |σ〉, c1, · · · , cq) + S(c0, 〈c1 |σ〉, c2, · · · , cq) + · · ·+ S(c0, · · · , cq−1, 〈cq |σ〉) = 0.

Proof. It is easy to see that the mapping such that

ϕ0 ∧ · · · ∧ ϕq 7→ 〈ϕ0 |σ〉 ∧ ϕ1 ∧ · · · ∧ ϕq + · · ·+ ϕ0 ∧ · · · ∧ ϕq−1 ∧ 〈ϕq |σ〉

is well-defined. It follows that the left hand side of the formula in the claim is equal
to the image of S(c0, · · · , cq) by this mapping. However, S(c0, · · · , cq) = 0 because
each ci belongs to I(1). ¤
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Lemma 4.7. S ((θ′ + g), (dθ + β)q) is cohomologous to (−1)qS ((θ′ + g + 〈θ |σ〉), (d log J)q).

Proof. Taking the signature in Definition 4.5 into account, one sees that the fol-
lowing equations hold. First,

DS
(
θ, (θ′ + g), (dθ + β)i, (d log J)q−i−1

)

= S
(
dθ + β + d log J, (θ′ + g), (dθ + β)i, (d log J)q−i−1

)

+ S
(
θ, 〈dθ + β |σ〉, (dθ + β)i, (d log J)q−i−1

)

= S
(
dθ + β, (θ′ + g), (dθ + β)i, (d log J)q−i−1

)
(4.7.a)

+ S
(
d log J, (θ′ + g), (dθ + β)i, (d log J)q−i−1

)

+ S
(
θ, 〈dθ + β |σ〉, (dθ + β)i, (d log J)q−i−1

)

= S
(
(θ′ + g), (dθ + β)i+1, (d log J)q−i−1

)

+ S
(
(θ′ + g), (dθ + β)i, (d log J)q−i

)

+ S
(
θ, 〈dθ + β |σ〉, (dθ + β)i, (d log J)q−i−1

)
,

and

DS
(
θ, 〈θ |σ〉, (dθ + β)j , (d log J)q−j−1

)

= S
(
dθ + β + d log J, 〈θ |σ〉, (dθ + β)j , (d log J)q−j−1

)

− S
(
θ, 〈dθ + β + d log J |σ〉, (dθ + β)j , (d log J)q−j−1

)

= S
(〈θ |σ〉, (dθ + β)j+1, (d log J)q−j−1

)
(4.7.b)

+ S
(〈θ |σ〉, (dθ + β)j , (d log J)q−j

)

− S
(
θ, 〈dθ + β |σ〉, (dθ + β)j , (d log J)q−j−1

)

− S
(
θ, 〈d log J |σ〉, (dθ + β)j , (d log J)q−j−1

)
.

On the other hand, the following equation holds by Lemma 3.5, namely,

S
(〈θ |σ〉, (dθ + β)i, (d log J)q−i

)

=− iS
(
θ, 〈dθ + β |σ〉, (dθ + β)i−1, (d log J)q−i

)
(4.7.c)

− (q − i)S
(
θ, 〈d log J |σ〉, (dθ + β)i, (d log J)q−i−1

)
.

Combining (4.7.b) and (4.7.c), one has

DS
(
θ, 〈θ |σ〉, (dθ + β)j , (d log J)q−j−1

)

=− (j + 2)S
(
θ, 〈dθ + β |σ〉, (dθ + β)j , (d log J)q−j−1

)

− (q − j − 1)S
(
θ, 〈d log J |σ〉, (dθ + β)j+1, (d log J)q−j−2

)
(4.7.d)

+ S
(〈θ |σ〉, (dθ + β)j , (d log J)q−j

)

− S
(
θ, 〈d log J |σ〉, (dθ + β)j , (d log J)q−j−1

)
.
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It follows from (4.7.a) and (4.7.d) that S ((θ′ + g), (dθ + β)q) is cohomologous to
s(j), where

s(j) = (−1)jS
(
(θ′ + g), (dθ + β)q−j , (d log J)j

)

+ (−1)j j

q + 1
S

(〈θ |σ〉, (dθ + β)q−j , (d log J)j
)

− (−1)j j

q + 1
S

(
θ, 〈d log J |σ〉, (dθ + β)q−j , (d log J)j−1

)
.

Indeed, the claim is obvious if j = 0. One has from (4.7.a) the following equation
modulo exact cochains:

s(j) = (−1)j+1S
(
(θ′ + g), (dθ + β)q−j−1, (d log J)j+1

)

+ (−1)j+1S
(
θ, 〈dθ + β |σ〉, (dθ + β)q−j−1, (d log J)j

)

+ (−1)j+1 j(q − j)
q + 1

S
(
θ, 〈dθ + β |σ〉, (dθ + β)q−j−1, (d log J)j

)

+ (−1)j+1 j2

q + 1
S

(
θ, 〈d log J |σ〉, (dθ + β)q−j , (d log J)j−1

)

− (−1)j j

q + 1
S

(
θ, 〈d log J |σ〉, (dθ + β)q−j , (d log J)j−1

)

= (−1)j+1S
(
(θ′ + g), (dθ + β)q−j−1, (d log J)j+1

)

+ (−1)j+1 (j + 1)(q − j + 1)
q + 1

S
(
θ, 〈dθ + β |σ〉, (dθ + β)q−j−1, (d log J)j

)

+ (−1)j+1 (j + 1)j
q + 1

S
(
θ, 〈d log J |σ〉, (dθ + β)q−j , (d log J)j−1

)
.

Then by (4.7.d), s(j) is seen to be cohomologous to the cocycle

(−1)j+1S
(
(θ′ + g), (dθ + β)q−j−1, (d log J)j+1

)

+ (−1)j+1 j + 1
q + 1

S
(〈θ |σ〉, (dθ + β)q−j−1, (d log J)j+1

)

− (−1)j+1 j + 1
q + 1

S
(
θ, 〈d log J |σ〉, (dθ + β)q−j−1, (d log J)j

)

= s(j + 1).

Thus the claim is proved. Finally, by the equation

S(θ, 〈d log J |σ〉, (d log J)q−1) = −1
q
S (〈θ |σ〉, (d log J)q))

we see that

s(q) = (−1)qS ((θ′ + g), (d log J)q) + (−1)qS (〈θ |σ〉, (d log J)q) .

Thus we are done. ¤
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Definition 4.8. For a (q, q)-cochain ϕ and 0 ≤ k ≤ q, define a family ∂(k)ϕ =
{(∂(k)ϕ)i0···iq} of Q(F)∗-valued q-forms on Ui0···iq by setting

(∂(k)ϕ)i0i1···iq
=

q∑

l=1

∂ϕi0i1···iq

∂zl
ik

⊗ dzl
ik

,

where
∂

∂zl
ik

fdzl1
ik
∧ · · · ∧ dz

lq
ik

=
∂f

∂zl
ik

dzl1
ik
∧ · · · ∧ dz

lq
ik

by definition. Define then a

(q, q + 1)-cochain σk(ϕ) by

σk(ϕ)i0i1···iq = 〈(∂(k)ϕ)i0i1···iq |σik
〉

=
q∑

l=1

∂ϕi0i1···iq

∂zl
ik

∧ σl
ik

,

where σik
=

q∑
l=1

∂

∂zl
ik

σl
ik

. Finally, set

σ(ϕ) =
q∑

k=0

σk(ϕ).

Our calculations can be continued as follows.

Lemma 4.9. (d log J)k∪(θ′+g+〈θ |σ〉)∪(d log J)q−k is cohomologous to σk((d log J)q).

Proof. First of all, note that c1 ∪ · · · ∪ ck = (−1)
k(k−1)

2 c1 ∧ · · · ∧ ck if each ci is a
(1, 1)-cochain. Note also that we may assume that σ̃ik

= σ1
ik
∧ dz2

ik
∧ · · · ∧ dzq

ik
+

· · ·+ dz1
ik
∧ · · · ∧ dzq−1

ik
∧ σq

ik
by Lemma 2.13. Hence by the equation (2.11.b),

(d log J)k ∪ θ′ ∪ (d log J)q−k

=(−1)
q(q+1)

2 θ′ik
∧ ωik

det(∂ik
log Ji0i1 , · · · , ∂ik

log Jiq−1iq
)

= (−1)
q(q+1)

2 (dσ̃ik
+ θik

∧ σ̃ik
) det(∂ik

log Ji0i1 , · · · , ∂ik
log Jiq−1iq ),

where ωik
= dz1

ik
∧ · · · ∧ dzq

ik
, and each ∂ik

log Jil−1il
is considered as a vector in

row.

Noticing that θik
∧ σ̃ik

= −〈θik
|σik

〉 ∧ ωik
, one has

(−1)
q(q+1)

2 (θik
∧ σ̃ik

) det(∂ik
log Ji0i1 , · · · , ∂ik

log Jiq−1iq )

=− ((d log J)k ∪ 〈θ |σ〉 ∪ (d log J)q−k)i0···iq ,
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where 〈θ |σ〉i = 〈θi|σi〉. Similarly,

dσ̃ik
det(∂ik

log Ji0i1 , · · · , ∂ik
log Jiq−1iq

)

=〈d log Ji0i1 | dσik
〉 ∧ (d log Ji1i2) ∧ · · · ∧ (d log Jiq−1iq

)

− (d log Ji0i1) ∧ 〈d log Ji1i2 | dσik
〉 ∧ (d log Ji2i3) ∧ · · · ∧ (d log Jiq−1iq

)

+ · · ·
+ (−1)q−1(d log Ji0i1) ∧ · · · ∧ (d log Jiq−2iq−1) ∧ 〈d log Jiq−1iq | dσik

〉.

Let ρ(k) be the (q, q)-cochain such that

ρ(k)i0···iq = (−1)
q(q−1)

2 〈d log Ji0i1 ∧ · · · ∧ d log Jiq−1iq |σik
〉.

By the above equation, we see that

(−1)
q(q+1)

2 (D′′ρ(k))i0···iq

= dσ̃ik
det(∂ik

log Ji0i1 , · · · , ∂ik
log Jiq−1iq )

+ 〈d∂ik
log Ji0i1 |σik

〉 ∧ (d log Ji1i2) ∧ · · · ∧ (d log Jiq−1iq )

− (d log Ji0i1) ∧ 〈d∂ik
log Ji1i2 |σik

〉 ∧ (d log Ji2i3) ∧ · · · ∧ (d log Jiq−1iq )

+ · · ·
+ (−1)q−1(d log Ji0i1) ∧ · · · ∧ (d log Jiq−2iq−1) ∧ 〈d∂ log Jiq−1iq |σik

〉
= dσ̃ik

det(∂ik
log Ji0i1 , · · · , ∂ik

log Jiq−1iq )

− (−1)
q(q+1)

2 σik
((d log J)q)i0···iq .

On the other hand,

(D′ρ(k))i0,··· ,iq+1

=
k∑

l=0

(−1)l(−1)
q(q−1)

2 〈d log Ji0i1 ∧ · · · ∧ d log Jil−1il+1 ∧ · · · ∧ d log Jiqiq+1 |σik+1〉

+
q∑

l=k+1

(−1)l(−1)
q(q−1)

2 〈d log Ji0i1 ∧ · · · ∧ d log Jil−1il+1 ∧ · · · ∧ d log Jiqiq+1 |σik
〉

=(−1)
q(q−1)

2 (−1)k〈d log Ji0i1 ∧ · · · ∧ ̂d log Jikik+1 ∧ · · · ∧ d log Jiqiq+1 | gikik+1
ωik
〉

=(−1)
q(q−1)

2 (−1)kd log Ji0i1 ∧ · · · ∧ d log Jik−1ik
· (tr g

ikik+1
) · d log Jik+1ik+2 ∧ · · · ∧ d log Jiqiq+1

=
(
(d log J)k ∪ g ∪ (d log J)q−k

)
i0i1···iq+1

.

Thus we are done. ¤
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Note that σ((d log J)q) is the reduction of
(

q∑
k=0

∂(k)(d log J)q

)
⊗ σ to a differ-

ential form. We identify (
∧l

T ∗M)∧ (T ∗M ⊗V )∧ (
∧q−l−1

T ∗M) with
∧q

T ∗M ⊗V

for any vector bundle V , then the tensor
q∑

k=0

∂(k)(d log J)q is calculated as follows;

Lemma 4.10.

(−1)
q(q−1)

2

q∑

k=0

∂(k)(d log J)q

=(q + 1)2
q−1∑

l=0

(
∧l

d log J)i0···il
∧ Λiliq

∧ (
∧q−l−1

d log J)il+1···iq

− (q + 1)2
q−2∑

l=0

(
∧l

d log J)i0···il
∧ Λil+1iq ∧ (

∧q−l−1
d log J)il+1···iq ,

where (
∧l

d log J)i0···il
= d log Ji0i1 ∧ d log Ji1i2 ∧ · · · ∧ d log Jil−1il

.

Proof. Firstly,

Dγ−1
lk dDγlk ⊗ dzk =

l−1∑

m=k

Dγ−1
m,kDγ−1

m+1,mdDγm+1,m ⊗ dzm.

Hence d∂k log Jl,l+1 ⊗ dzk can be rewritten as follows if k 6= l.

Case 1. k < l:

d∂k log Jl,l+1 ⊗ dzk

= d∂l log Jl,l+1 ⊗ dzl + ∂l log Jl,l+1DγlkDγ−1
lk dDγlk ⊗ dzk

= d∂l log Jl,l+1 ⊗ dzl +
l−1∑

m=k

∂m log Jl,l+1Dγ−1
m+1,mdDγm+1,m ⊗ dzm.

Case 2. k > l:

d∂k log Jl,l+1 ⊗ dzk

= d∂l log Jl,l+1 ⊗ dzl − ∂l log Jl,l+1Dγ−1
kl dDγkl ⊗ dzl

= d∂l log Jl,l+1 ⊗ dzl −
k−1∑

m=l

∂m log Jl,l+1Dγ−1
m+1,mdDγm+1,m ⊗ dzm.
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Hence we have the following equations, namely,

∑

0≤k≤q
0≤l≤q−1

(
∧l

d log J)i0···il
∧ d∂ik

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq
⊗ dzik

=
q−1∑

l=0

q∑

k=l+1

(
∧l

d log J)i0···il
∧ d∂ik

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq
⊗ dzik

+
q−1∑

l=0

(
∧l

d log J)i0···il
∧ d∂il

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq
⊗ dzil

+
q−1∑

l=0

l−1∑

k=0

(
∧l

d log J)i0···il
∧ d∂ik

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq ⊗ dzik

=
q−1∑

l=0

q∑

k=l+1

(
∧l

d log J)i0···il
∧ d∂il

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq ⊗ dzil

−
q−1∑

l=0

q∑

k=l+1

k−1∑

m=l

(
Vld log J)i0···il

∧ ∂im log Jilil+1Dγ−1
im+1im

dDγim+1im ∧ (
Vq−l−1d log J)il+1···iq ⊗ dzim

+
q−1∑

l=0

(
∧l

d log J)i0···il
∧ d∂il

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq ⊗ dzil

+
q−1∑

l=0

l−1∑

k=0

(
∧l

d log J)i0···il
∧ d∂il

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq ⊗ dzil

+
q−1∑

l=0

l−1∑

k=0

l−1∑

m=k

(
Vld log J)i0···il

∧ ∂im log Jilil+1Dγ−1
im+1im

dDγim+1im ∧ (
Vq−l−1d log J)il+1···iq ⊗ dzim

=(q + 1)
q−1∑

l=0

(
∧l

d log J)i0···il
∧ d∂il

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq ⊗ dzil

−
q−1∑

l=0

q−1∑

m=l

(q −m)(
Vld log J)i0···il

∧ ∂im log Jilil+1Dγ−1
im+1im

dDγim+1im ∧ (
Vq−l−1d log J)il+1···iq ⊗ dzim

+
q−1∑

l=0

l−1∑
m=0

(m + 1)(
Vld log J)i0···il

∧ ∂im log Jilil+1Dγ−1
im+1im

dDγim+1im ∧ (
Vq−l−1d log J)il+1···iq ⊗ dzim .

On the other hand, the following equations hold. First,

q−1∑

l=0

(
∧l

d log J)i0···il
∧ (∂im log Jilil+1Dγ−1

im+1im
dDγim+1im) ∧ (

∧q−l−1
d log J)il+1···iq ⊗ dzim

=− d log Ji0i1 ∧ · · · ∧ d log Jiq−1iq ⊗ d log Jimim+1 .
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Second, rewriting the formulae in Lemma 3.5, one has

Λilil+1 =− 1
q + 1

d∂il
log Jil+1il

⊗ dzil
− −1

q + 1
∂il

log Jil+1il
Dγ−1

il+1il
dDγil+1il

⊗ dzil

− 1
(q + 1)2

d log Jil+1il
⊗ d log Jil+1il

=
1

q + 1
d∂il

log Jilil+1 ⊗ dzil
+

−1
q + 1

∂il
log Jilil+1Dγ−1

il+1il
dDγil+1il

⊗ dzil

− 1
(q + 1)2

d log Jilil+1 ⊗ d log Jilil+1 ,

and

Σilil+1 =
∂

∂zil

⊗Dγ−1
il+1il

dDγil+1il
⊗ dzil

− 1
q + 1

q∑

k=1

(
∂

∂zk
il

⊗ d log Jil+1il
⊗ dzk

il
+

∂

∂zk
il

⊗ dzk
il
⊗ d log Jil+1il

)

=
∂

∂zil

⊗Dγ−1
il+1il

dDγil+1il
⊗ dzil

+
1

q + 1

q∑

k=1

(
∂

∂zk
il

⊗ d log Jilil+1 ⊗ dzk
il

+
∂

∂zk
il

⊗ dzk
il
⊗ d log Jilil+1

)
.

It follows that

(q + 1)2
q−1∑

l=0

(
∧l

d log J)i0···il
∧ Λilil+1 ∧ (

∧q−l−1
d log J)il+1···iq

= (q + 1)
q−1∑

l=0

(
∧l

d log J)i0···il
∧ d∂il

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq ⊗ dzil

− (q + 1)
q−1∑

l=0

(
∧l

d log J)i0···il
∧ ∂il

log Jilil+1Dγ−1
il+1il

dDγil+1il
∧ (

∧q−l−1
d log J)il+1···iq ⊗ dzil

−
q−1∑

l=0

(
∧l

d log J)i0···il
∧ d log Jilil+1 ∧ (

∧q−l−1
d log J)il+1···iq ⊗ d log Jilil+1 ,

and that

〈d log Jilil+1 |Σimim+1〉
= ∂im log Jilil+1Dγ−1

im+1im
dDγim+1im ⊗ dzim

+
1

q + 1
(
d log Jimim+1 ⊗ d log Jilil+1 + d log Jilil+1 ⊗ d log Jimim+1

)
.
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Combining these equations, one obtains the following equation, namely,
∑

0≤k≤q
0≤l≤q−1

(
∧l

d log J)i0···il
∧ d∂ik

log Jilil+1 ∧ (
∧q−l−1

d log J)il+1···iq
⊗ dzik

=(q + 1)2
q−1∑

l=0

(
∧l

d log J)i0···il
∧ Λilil+1 ∧ (

∧q−l−1
d log J)il+1···iq

+ (q + 1)
q−1∑

l=0

(
∧l

d log J)i0···il
∧ ∂il

log Jilil+1Dγ−1
il+1il

dDγil+1il
∧ (

∧q−l−1
d log J)il+1···iq

⊗ dzil

+
q−1∑

l=0

d log Ji0i1 ∧ · · · ∧ d log Jiq−1iq
⊗ d log Jilil+1

−
q−1∑

l=0

q−1∑

m=l

(q + 1)(
Vld log J)i0···il

∧ ∂im log Jilil+1Dγ−1
im+1im

dDγim+1im ∧ (
Vq−l−1d log J)il+1···iq ⊗ dzim

+
q−1∑

l=0

q−1∑
m=0

(m + 1)(
Vld log J)i0···il

∧ ∂im log Jilil+1Dγ−1
im+1im

dDγim+1im ∧ (
Vq−l−1d log J)il+1···iq ⊗ dzim

=(q + 1)2
q−1∑

l=0

(
∧l

d log J)i0···il
∧ Λilil+1 ∧ (

∧q−l−1
d log J)il+1···iq

+
q−1∑

l=0

d log Ji0i1 ∧ · · · ∧ d log Jiq−1iq ⊗ d log Jilil+1

−
q−1∑
m=1

m−1∑

l=0

(q + 1)(
Vld log J)i0···il

∧ ∂im log Jilil+1Dγ−1
im+1im

dDγim+1im ∧ (
Vq−l−1d log J)il+1···iq ⊗ dzim

−
q−1∑
m=0

(m + 1)d log Ji0i1 ∧ · · · ∧ d log Jiq−1iq ⊗ d log Jimim+1

=(q + 1)2
q−1∑

l=0

(
∧l

d log J)i0···il
∧ Λilil+1 ∧ (

∧q−l−1
d log J)il+1···iq

−
q−1∑
m=1

m−1∑

l=0

(q + 1)(
∧l

d log J)i0···il
∧ 〈d log Jilil+1 |Σimim+1〉 ∧ (

∧q−l−1
d log J)il+1···iq

+
q−1∑
m=1

m−1∑

l=0

(
∧l

d log J)i0···il
∧ d log Jimim+1 ∧ (

∧q−l−1
d log J)il+1···iq ⊗ d log Jilil+1

+
q−1∑
m=1

m−1∑

l=0

(
∧l

d log J)i0···il
∧ d log Jilil+1 ∧ (

∧q−l−1
d log J)il+1···iq ⊗ d log Jimim+1

−
q−1∑
m=0

md log Ji0i1 ∧ · · · ∧ d log Jiq−1iq ⊗ d log Jimim+1
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=(q + 1)2
q−1∑

l=0

(
∧l

d log J)i0···il
∧ Λilil+1 ∧ (

∧q−l−1
d log J)il+1···iq

−
q−2∑

l=0

q−1∑

m=l+1

(q + 1)(
∧l

d log J)i0···il
∧ 〈d log Jilil+1 |Σimim+1〉 ∧ (

∧q−l−1
d log J)il+1···iq

+
q−1∑
m=1

md log Ji0i1 ∧ · · · ∧ d log Jiq−1iq
⊗ d log Jimim+1

−
q−1∑
m=0

md log Ji0i1 ∧ · · · ∧ d log Jiq−1iq ⊗ d log Jimim+1

=(q + 1)2
q−1∑

l=0

(
∧l

d log J)i0···il
∧ Λilil+1 ∧ (

∧q−l−1
d log J)il+1···iq

−
q−2∑

l=0

(q + 1)(
∧l

d log J)i0···il
∧ 〈d log Jilil+1 |Σil+1iq 〉 ∧ (

∧q−l−1
d log J)il+1···iq .

Finally by Lemma 3.7,

〈d log Jilil+1 |Σil+1iq 〉 = (q + 1)(Λil+1iq − Λiliq + Λilil+1).

Lemma 4.10 follows from the last two equations. ¤

Proof of Theorem 4.3. First, by Lemmas 4.7 and 4.9, DσBq(F) is cohomologous

to −(2π
√−1)−(q+1)σ((d log J)q) = −(2π

√−1)−(q+1)

〈
q∑

k=0

∂(k)(d log J)q

∣∣∣∣ σ

〉
. Sec-

ond, by Lemma 4.10,〈
q∑

k=0

∂(k)(d log J)q

∣∣∣∣ σ

〉

i0···iq

=(−1)
q(q−1)

2 (q + 1)2
q−1∑

l=0

(−1)q−l−1(
∧l

d log J)i0···il
∧ Liliq ∧ (

∧q−l−1
d log J)il+1···iq

− (−1)
q(q−1)

2 (q + 1)2
q−2∑

l=0

(−1)q−l−1(
∧l

d log J)i0···il
∧ Lil+1iq ∧ (

∧q−l−1
d log J)il+1···iq .

Theorem 4.3 follows from these equations. ¤

In general, sections of vector bundles over M are said to be foliated if they are
locally constant along the leaves and if they are transversely holomorphic. Let
ΓF (KF ) be the sheaf of germs of foliated sections of KF =

∧q
Q(F)∗, and let

ΓF (KF ⊗Q(F)∗) be the sheaf of germs of foliated sections of KF ⊗Q(F)∗. Čech
cochains with values in these sheaves are denoted respectively by Č∗F (U ;KF ) and
Č∗F (U ; KF ⊗Q(F)∗), and the cohomology groups are denoted by Ȟ∗

F (M ; KF ) and
Ȟ∗
F (M ;KF ⊗Q(F)∗).
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Lemma 4.11. The mapping

S =
q∑

k=0

∂(k) : Č∗F (U ;KF ) → Č∗F (U ; KF ⊗Q(F)∗)

given by

S(ϕ)i0···ip
=

q∑

k=0

∂(k)(ϕ)i0···ip
=

q∑

k=0

q∑

l=1

∂ϕi0···ip

∂zl
ik

⊗ dzl
ik

induces a homomorphism on the cohomology. We denote again by this homomor-
phism by S.

The proof is straightforward and omitted. It is easy to verify that S is indepen-
dent of the choice of a foliation chart.

Lemma 4.12. There is a well-defined pairing

( · | · ) : Čq
F (U ; KF ⊗Q(F)∗)× E1(Q(F)) → Aq,q+1(U)⊕Aq+1,q(U) ⊂ A2q+1(U)

such that if η = {ηi0···iq} and (a, b) = ({ai}, {bij}), then

(η |(a, b))i0···iq,i0···iq+1
=

〈
ηi0···iq | aiq

〉⊕ (−1)q
〈
ηi0···iq | biqiq+1

〉
.

This pairing induces a pairing

〈 · | · 〉 : Ȟq
F (M ;KF ⊗Q(F)∗)×H1(M ; ΘF ) → H2q+1(M ; C).

Proof. We adopt
∂

∂z1
i

, · · · ,
∂

∂zq
i

as a local trivialization of Q(F). Choose a family

of local Bott connections and let {θi} be the family of local connection forms, then
θi ∈ I1

(1)(Ui) and θj − DγjiθiDγ−1
ji − dDγjiDγ−1

ji ∈ I1
(1)(Uij ; End(Q(F)). Let µ

be an element of H1(M ; ΘF ) represented by an element ({αi}, {sij}) of E1(Q(F)).

Recall that each αi and sij can be written as αi =
∂

∂zi
α′i for some Cq-valued 1-

form α′i, and sij =
∂

∂zi
s′ij for some Cq-valued function s′ij . The families {α′i} and

{s′ij} satisfy dα′i + θi ∧ α′i ∈ I(1)(Ui), (Dγ−1
ji α′j − α′i) − (ds′ij + θis

′
ij) ∈ I(1)(Uij)

and s′ij − s′ik + Dγjis
′
jk = 0. Note that these conditions are consistent even though

the connection is not necessarily globally well-defined. Let ρ be an element of
Ȟq
F (M ;KF ⊗Q(F)∗) represented by an element η of Čq

F (U ; KF ⊗Q(F)∗).
Claim 1. (η |(α, s)) is a Čech-de Rham cocycle.

First, d〈ηi0···iq |αiq 〉 = 0 because dα′i ∈ I(1)(Ui) and that η is foliated. Second,

(δ〈η |α〉)i0···iq+1 = (−1)q〈ηi0···iq | dsiqiq+1〉, where dsij =
∂

∂zi
ds′ij . Since η is foliated,
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the right hand side is equal to (−1)q+1D′′ 〈ηi0···iq
| siqiq+1

〉
. Finally, δ〈η| s〉 = 0

because δη = 0 and δs = 0. This completes the proof of the claim 1 and the first
part of the lemma.
Claim 2. The cohomology class represented by (η |(α, s)) depends only on the
cohomology class of (α, s) once η is fixed.

Assume that there is an element {βi} of E0(Q(F)) = A0,0(U) such that α′i −
(dβ′i + θiβ

′
i) ∈ I1

(1)(Ui) and that s′ij − (Dγ−1
ji β′j − β′i) ∈ I0

(1)(Uij) = {0}, where

βi =
∂

∂zi
β′i. Then, D′′〈η |βi〉 =

〈
η

∣∣∣∣
∂

∂zi
dβ′i

〉
=

〈
η

∣∣∣∣
∂

∂zi
(dβ′i + θiβ

′
i)

〉
= 〈η |αi〉,

where the index of η is omitted for simplicity. On the other hand, D′〈η |β〉i0···iq+1 =
(−1)q〈ηi0···iq

|βiq+1−βiq
〉 = (−1)q〈ηi0···iq

| siqiq+1〉. Thus (η |(α, s)) is null-cohomol-
ogous.
Claim 3. The cohomology class represented by (η |(α, s)) depends only on the
cohomology class of η once (α, s) is fixed.

Suppose that η = δϕ for some ϕ ∈ Čq−1
F (U ; KF ⊗Q(F)∗). By repeating similar

arguments as above, we see that D′′〈ϕ |α〉 = 0, D′〈ϕ |α〉 = 〈η |α〉+(−1)q−1〈ϕ | ds〉,
D′′〈ϕ |s〉 = 〈ϕ | ds〉 and D′〈ϕ |s〉 = 0, where indices are omitted for simplicity. Hence
〈η |(α, s)〉 = D(〈ϕ |α〉 ⊕ (−1)q〈ϕ | s〉). This completes the proof. ¤

The Čech-de Rham (q, q)-cocycle (d log J)q determines a class in Ȟq
F (M ; KF ).

This class is independent of the choice of a foliation chart and denoted by [d log Jq].
Note that d log J determines a class [d log J ] in Ȟ1

F (M ; Q(F)∗), and [d log Jq] =
[d log J ]q.

Definition 4.13. Denote by L the cochain S(d log J)q. The cohomology class
in Ȟq

F (M ; KF ⊗ Q(F)∗) represented by L is denoted by L(F), that is, L(F) =
S([d log J ]q).

Corollary 4.14. Under the assumption of Theorem 4.3, the cocycle σ((d log J)q)
is equal to 〈L |σ〉. Hence DµBq(F) is represented by 〈L(F)|µ〉.

From the viewpoint of calculations, Lemma 4.10 is the principal reason for which
DµBq(F) can be expressed in terms of the projective Schwarzian. It is naturally
understood by a classical understanding of the Schwarzian derivative in terms of
difference of Affine connections [16], [8] (cf. [18], [5], [20]). Indeed, the difference
of the derivatives of (d log J)q is calculated in defining L. Here is an example of

calculation of L = S(d log J)q when q = 1. Note that Jij =
∂γij

∂zj
= γ′ij and that

d log Jij =
γ′′ij
γ′ij

dzj = −γ′′ji

γ′ji

dzi. Then, we have the following equations as promised
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by Theorem 4.3, namely,

S(d log J)ij

=− ∂

∂zi

γ′′ji

γ′ji

dzi ⊗ dzi +
∂

∂zj

γ′′ij
γ′ij

dzj ⊗ dzj

=−

γ′′′ji

γ′ji

−
(

γ′′ji

γ′ji

)2

 dzi ⊗ dzi +


γ′′′ij

γ′ij
−

(
γ′′ij
γ′ij

)2

 dzj ⊗ dzj

=− 2


γ′′′ji

γ′ji

− 3
2

(
γ′′ji

γ′ji

)2

 dzi ⊗ dzi.

Corollary 4.14, Lemmas 4.11 and 4.12 justify the following

Definition 4.15. Let µ ∈ H1(M ;−KF ) ∼= H1(M ; ΘF ), then the infinitesimal
derivative of the Bott class DµBq(F) is by definition the Čech-de Rham cohomology
class 〈L(F)|µ〉, where L(F) = S([d log J ]q).

By Lemma 4.10, L(F) is the obstruction for F admitting a transverse projective
structure if q = 1. If q > 1, it remains true that L(F) is closely related with the
existence of transverse projective structures, however, it will be an obstruction for
certain reduced structures. Indeed, the tensor Λ appears in the formulae instead
of the Schwarzian derivative Σ. It is clear that Λ = 0 if Σ = 0 (q > 1) but the
converse is not true. Such a property of L(F) is reflected in infinitesimal derivatives
as follows.

Definition 4.16. The Bott class of a transversely holomorphic foliation F is said
to be infinitesimally rigid if 〈L(F)|µ〉 = 0 for any µ ∈ H1(M ; ΘF ).

Definition 4.17. A transversely holomorphic foliation F is said to be transversely
complex projective on U if F admits a structure of a (PSL(q+1; C),CP q)-foliation
on U . If U = M , then U is omitted. Here we always assume that the underlying
transverse holomorphic structure coincides with the original one. A transverse
complex projective structure is also called a transverse projective structure for
short. If a transverse complex projective structure P is given on an open subset U ,
then a foliation atlas is said to be adapted to P if the atlas gives the structure P
on U .

Corollary 4.18. The Bott class of transversely projective foliations are infinites-
imally rigid. Indeed, the Bott class of transversely holomorphic foliations are in-
finitesimally rigid if the tensor Λ is equal to zero.
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Note that there are transversely projective foliations with non-trivial Bott classes.
In fact, there are transversely projective foliations with non-trivial Godbillon-Vey
classes [4]. We will cite an example as Example 7.2.

Remark 4.19. The constructions are also valid for the Godbillon-Vey class of real
foliations with obvious replacements. Especially, a formula of the same kind as
Theorem 4.3 holds and a definition of the same kind as Definition 4.15 makes a sense.
The codimension-one case is exactly the Maszczyk formula [17]. Theorem 4.3 and
Definition 4.15 for real foliations are highly non-trivial, because it is well-known
that the Godbillon-Vey class admits continuous deformations (due to Thurston,
cf. [14]). However, it is known that the infinitesimal derivative of the Godbillon-
Vey class always vanishes when restricted to transversely holomorphic foliations
[4]. So these real versions make sense for foliations which do not admit transverse
holomorphic structures.

5. Localization

We have obtained two expressions of the infinitesimal derivative as DµBq(F)
and 〈L(F)|µ〉. These expressions lead to two kinds of localizations. We begin with
some relevant definitions.

Definition 5.1. Let ω = {ωi0,··· ,ip} be a Čech-de Rham (p, q)-cochain. Let I be
the index set of the open covering U = {Ui} and set

Iω =
{
i ∈ I ∃(i1, · · · , ip) ∈ Ip s.t. ωi,i1,··· ,ip 6= 0

}
.

The open set
supp ω =

⋃

i∈Iω

Ui.

is called the support of ω. If supp ω is relatively compact, then ω is said to be of
compact support.

Let ω be a globally defined differential form and denote by s(ω) the support of
ω in the usual sense. If V is an open set containing s(ω), then taking refinements
of coverings, we may assume that s(ω) ⊂ supp ω ⊂ V .

We denote by H∗
c the cohomology of compactly supported cocycles. If U1 and

U2 are open subsets of M such that U ⊂ V , then there is a natural mapping
H∗

c (U1; R) → H∗
c (U2; R), where R is an arbitrary coefficient.

The localization of DµBq(F) is defined by means of Γ -vector fields. The notion
of Γ -vector fields and basic X-connections below is originally due to Heitsch [14].
In what follows, we take refinements of open coverings if necessary.
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Definition 5.2 [2]. A vector field X defined on an open set OX of M is said to
be a Γ -vector field for F if [E, X] ⊂ E on OX . Set ZX = {X ∈ E} ∪ (M \ OX),
then F and X form a transversely holomorphic foliation on the open set M \ ZX .
This foliation is denoted by FX .

Note that ZX is saturated by leaves of F if OX is saturated. Note also that if
X is a Γ -vector field on OX , then X is locally leafwise constant and transversely
holomorphic as a section of Q(F) on OX .

Notation 5.3. Given a Γ -vector field X defined on OX , denote by XQ the foliated
section of Q(F) on OX induced by X.

In what follows, for a Γ -vector field X, we denote by UX an open neighborhood
(which is not necessarily saturated) of ZX and by VX an open neighborhood of
M \ UX . The neighborhood UX will be arbitrary small.

Definition 5.4. Let X be a Γ -vector field for F and let UX and VX be as above.
A Bott connection ∇ = {∇i} of −KF is said to be a basic X-connection for F
supported off VX if (∇i)Xs = LXs if Ui ⊂ U , where LX denotes the Lie derivative
with respect to X. Basic X-connections are usually denoted by ∇X .

Note that basic X-connections depends only on XQ but not on X itself. In other
words, if X and X ′ are lifts to TCM of the same foliated section of Q(F), then
∇X = ∇X′

.
Let ∇ = {∇i} be a basic X-connection, then it is easy to see the following

properties:

1) The curvature form of ∇i belongs to I2
(1)(FX) on VX , where I2

(1)(FX) is the
ideal I(1) appeared in Notation 1.3 but F is replaced with FX .

2) If ∇′ = {∇′i} be another basic X-connection, then ∇′i −∇i ∈ I1
(1)(FX) on

VX .

It follows that the Bott vanishing for FX can be applied on VX when basic X-
connections are used. If one admits to use a partition of unity, ∇X may be assumed
to be globally defined. Then it is a basic X-connection for F supported off VX in
the sense of Heitsch. Remark finally that once fixed an isomorphism Q(F) ∼=
CXQ ⊕Q(FX), a basic X-connection induces a Bott connection for FX on VX .

If W is an open subset of M , then elements of H1
c (W ; ΘF |W ) can be regarded as

infinitesimal deformations of F whose support is compact and is contained in W .

Definition 5.5. Let X be a Γ -vector field for F , and let UX and VX be as
above. Let W be an open subset of M and let µ ∈ H1

c (W ; ΘF |W ). Assume
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that µ admits a representative σ ∈ Iq
(q−1,q)(W ;−KF ) which is of compact support.

Then, denote by res DµBq(F , X) the element of H2q+1
c (UX ∩ W ; C) represented

by DσBq(∇X , (∇X)′), where ∇X is a basic X-connection supported off VX , and
(∇X)′ is the infinitesimal derivative of ∇X with respect to σ.

It is clear that res DµBq(F , X) depends on XQ but not on X itself so that
res DµBq(F , X) is also denoted by res DµB(F , XQ).

Theorem 5.6. resDµBq(F , X) is well-defined and ι∗resDµBq(F , X) = DµBq(F),
where ι : UX∩W → M is the inclusion and ι∗ : H2q+1

c (UX∩W ;C) → H2q+1(M ; C)
is the natural mapping. Moreover, if ZX is decomposed into connected components
Z1, · · · , Zr, then the residue is naturally decomposed into elements of H2q+1(Ui ∩
W ; C) as well, where Ui, i = 1, . . . , r, are mutually disjoint open neighborhoods of
Zi.

Proof. By the assumption, µ is represented by a cocycle compactly supported in W .
It follows from (2.11.a) and (2.11.b) that the support of the infinitesimal derivative
of any Bott connection is compact and contained in W when taken the wedge
product with elements of I(q)(M). On the other hand, if basic-X connections are
used in calculation, cochains such as (dθ + β)q vanish on VX thanks to the Bott
vanishing for FX . It follows that the supports of the coboundaries constructed in
Claims 3 and 4 in the proof of Theorem 2.15 are compact and contained in UX ∩W .
The last claim also follows from similar arguments. This complete the proof. ¤

Let X be a Γ -vector field for F and let UX and VX be as above. Suppose that
there is a trivialization eVX of −KF |VX exists, then it is shown in [2] that the Bott
class is naturally an element of H2q+1

c (UX ; C/Z), which is called the residue of the
Bott class. When residues are considered, a version of Theorem 2.18 holds under
some additional conditions. Since the residue is defined as above, it is natural to
consider a family of triples {(Fs, Xs, es)} with the following properties:

1) {Fs} is a smooth family of transversely holomorphic foliations with F0 = F .
2) {Xs} is a smooth family of Γ -vector fields with X0 = X, that is, each Xs

is a Γ -vector field for Fs. We assume moreover that ZXs is independent of
s, and denote ZXs by ZX .

3) There is an open neighborhood UX of ZX and an open neighborhood VX of
M \UX such that es restricted to VX forms a smooth family of trivializations
of −KFs |VX

. Note here that we may assume that −KFs is isomorphic by
assuming that s is small. We denote e0 simply by e.

Note that res Bq(Fs, Xs, es) is well-defined as an element of H2q+1
c (UX ; C/Z).
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Theorem 5.7. Let {(Fs, Xs, es)} be a smooth family of triples as above. Assume
that e is foliated and that LXe = 0, where LX denotes the Lie derivative with
respect to X. Let µ ∈ H1(M ;−KF ) be the infinitesimal derivative induced from

{Fs}, then resDµBq(F , X) =
∂

∂s
resBq(Fs, Xs, es)

∣∣∣∣
s=0

.

Remark 5.8.

1) The assumption on e can be rephrased as ‘e is foliated with respect to FX ’.
2) As Example 7.3 shows, Theorem 5.7 fails if the assumption on e is dropped.

Notice however that the left hand side is independent of e. The assumption
is needed in order that Proposition 1.10 works in a compactly supported
way.

3) If q = 1, then it is natural to choose XQ as e0.

Proof of Theorem 5.7. The proof is basically a repetition of the proof of Theorem
2.18. Under the assumptions, one can proceed in a parallel way and a cocycle of
the same kind as the one given in the beginning of the proof of Proposition 1.10
can be obtained. Since there is a trivialization of −KF on VX , the cocycle Θ is zero
on VX . Moreover, since e is foliated with respect to FX , the cochain u1 as well as
v1 belong to I(1)(FX). Hence the cochains ρk is equal to zero on VX . Therefore,
the both hand sides in the statement coincide as an element of H2q+1

c (M ; C). ¤

Another localization can be defined in terms of the cocycle L as follows. Recall
that we do not need the assumption on representatives of µ (cf. Definition 4.15)
and that the cocycle L strongly depends on the choice of foliation charts.

Theorem 5.9. Let F be a transversely holomorphic foliation of M . Suppose that
F admits on an open set V of M a transversal complex projective structure and fix
such a structure P. It is possible that V = ∅. Let U be an open neighborhood of
M \ V . Finally let µ ∈ H1

c (W ; ΘF |W ), where W is an open subset of M , and let σ

be a representative of µ. Then 〈L |σ〉 represents an element of H2q+1
c (U ∩W ; C)

which is independent of the choice of representatives, where foliation charts are
always chosen to be adapted to P on V .

Proof. By the choice of foliation charts, the support of L is contained in U . Hence
the support of 〈L |σ〉 is contained in U ∩W . If we choose another foliation chart
adapted to P and denote by L′ the resulting cocycle, it is clear that L and L′ are
cohomologous as cocycles supported on U . On the other hand, by Claim 2 in the
proof of Lemma 4.12, 〈L |σ〉 and 〈L |σ′〉 represent the same cohomology class if σ

and σ′ are representatives of µ. ¤
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Definition 5.10. We denote by res 〈L(F ,P)|µ〉 the resulting element of H2q+1
c (U∩

W ; C).

If a compactly supported infinitesimal derivative is given, then they coincide as
follows.

Proposition 5.11. Let W be an open subset of M and let µ ∈ H1
c (W ;−KF |W ).

Then res DµBq(F , X) and res 〈L(F ,P) |µ〉 coincides as elements of H2q+1
c (W ; C)

for any Γ -vector field X and any transverse projective structure P.

Proof. Under the assumptions, the support of the coboundaries constructed in Lem-
mas 4.7 and 4.9 are compact and contained in W . ¤

6. Relation to the Fatou-Julia decomposition

If the complex codimension is equal to one, the localization in terms of res 〈L(F ,P)|µ〉
and the Fatou-Julia decomposition by Ghys, Gomez-Mont and Saludes [11] are re-
lated as follows. Note that in this case L is the classical Schwarzian (Definition
3.3). Let BF be the sheaf of germs of locally L∞ foliated sections of Q(F)∗⊗Q(F),
where Q(F) denotes the complex conjugate of Q(F), then H0(M ;BF ) is the space
of locally L∞ foliated sections of Q(F)∗ ⊗ Q(F). The space H0(M ;BF ) is a Ba-
nach space with the essential supremum norm and there is a natural mapping
δ : H0(M ;BF ) → H1(M ; ΘF ). It is natural to regard the image of δ as infini-
tesimal deformations preserving FR, where FR denotes the real foliation obtained
from F by forgetting the transverse holomorphic structure.

Lemma 6.1. Let M be a closed manifold and let σ ∈ H0(M ;BF ). Set µ = δ(σ),
then 〈L |σ〉 is well-defined as an integrable 3-form which is equal to 〈L(F)|µ〉 as
an element of HomC(Hdim M−3(M ; C), C) ∼= H3(M ; C).

Proof. After extending σ as a section of E∗ ⊗ Q(F) by requiring σ|TF = 0, the
lemma follows by approximating σ by differential forms of class C∞ and by Lebesgue
convergence theorem. ¤

More detailed information on H0(M ;BF ) was obtained in [11]. Let F be the
Fatou set and Fl be its connected components, and let J be the Julia set and
J0 be the recurrent component and J1, · · · , Jr be the ergodic components. Since
measurable sections are considered, there is a decomposition

H0(M ;BF ) =H0(J ;BF )⊕H0(F ;BF )(6.2)

=
r⊕

k=0

H0(Jk;BF )⊕
s⊕

l=1

H0(Fl;BF ).
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It is known that the mapping δ restricted to H0(J ;BF ) is injective [11, p.307].
Moreover δ|J0 is by definition equal to zero and the image of δ|Jk

, k 6= 0 is one-
dimensional. Recalling that H0(M ;BF ) is a Banach space, choose a basis σk of unit
length of H0(Jk;BF ) for each k > 0. By choosing a section, we fix an isomorphism
H1(M ; ΘF ) ∼= H0(J ;BF ) ⊕H′F ⊕HO, where H0(J ;BF ) ⊕H′F = Im δ, and HO

∼=
coker δ.

Remark 6.3. Elements of H′F correspond to infinitesimal deformations preserving
FR but which cannot be induced by infinitesimal deformations supported on J .
Elements of HO correspond to infinitesimal deformations which cannot arise from
deformations preserving FR.

We normalize the volume of M to be 1 and denote by |Jk| the volume of Jk.
Note that |Jk| > 0 for k > 0. We propose the following

Definition 6.4. Let ∂Jk
B1(F), k > 0, be an element of H3(M ; C) determined by

|Jk| 〈L |σk〉, and call it the infinitesimal derivative of the Bott class with respect to
the ergodic component Jk.

It is easy to see that ∂Jk
B1(F) is independent of the choice of σk.

Corollary 6.5. Let µ ∈ H1(M ; ΘF ) and let µ = µJ +µ′F +µO be the decomposition

given by the isomorphism (6.2). Decompose further µJ as
r∑

k=1

ak(|Jk|σk), then there

is a measurable decomposition

〈L(F)|µ〉 =
r∑

k=1

ak∂Jk
B1(F) + 〈L(F)|µ′F 〉+ 〈L(F)|µO〉.

Although each Fatou component admits a transversal projective structure [11],
〈L(F)|µ′F 〉 need not vanish. Indeed, the transition functions from the Fatou set to
the Julia set are not necessarily transversely projective. However, it is possible to
assume that such phenomena occur only in an arbitrary small neighborhood of the
Julia set. Recalling Theorem 5.9, we introduce the following

Definition 6.6. Let U be an arbitrary small neighborhood of the Julia set J . Fix
a transverse projective structure on the union of Fatou components and denote it
by P. Let µ ∈ H1(M ; ΘF ) and let σ be a representative of µ, then denote by
res 〈L(F ,P)|µ〉 the element of H3

c (U ;C) represented by 〈L |σ〉.
The class res 〈L(F ,P)|µ〉 is independent of the choice of a foliation chart adapted

to P and the representative σ. If J can be decomposed into connected components,
then the residue admits a natural decomposition.
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Remark 6.7. As Example 7.1 shows, the image of res 〈L(F ,P)|µ〉 in H3(M ;C) and
r∑

k=1

ak∂Jk
B1(F) are distinct in general.

There are foliated sections (hence trivializations) of Q(F) on most of the Fatou
components. Indeed, the wandering Fatou components are locally trivial fibrations
of which base spaces (or equivalently leaf spaces) are finite Riemann surfaces, while
semi-wandering and dense components are G-Lie foliations [11], where G consists of
projective transformations. The only exceptional case is that the Fatou component
is a wandering component of which the base space is closed surface of genus g 6= 1.
Let F ′ be the union of such wandering Fatou components and let U be an arbitrary
small neighborhood of J∪F ′. Then one can always find a foliated trivialization XQ

of Q(F) on a neighborhood of M \ U . Thus there is an element res DµB1(F , XQ)
of H3

c (U ; C), where the residue is defined by choosing a lift of XQ as a Γ -vector
field.

This residue and the residue given in Definition 6.6 can be related as follows.
Let X be a Γ -vector field defined on O, then a transverse projective structure on O

is naturally chosen because TCO = E|O⊕CX. More precisely, let {Oi} be an open
covering of O by foliation charts, then there are projections πi : Oi → C which give
the transverse holomorphic structure. Let Xi be the (1, 0)-part of πi∗X|Oi , then
Xi is well-defined and holomorphic because X is a Γ -vector field. By integrating
2Re Xi, one obtains a foliation atlas {Vi} with the following properties:

1) {Vi} is a refinement of {Oi}.
2) The transversal direction of transition functions from Vi to Vj is the restric-

tion of a translation in C.
3) Xi =

∂

∂zi
on Vi, where zi denotes the transverse coordinate on Vi.

Hence the atlas {Vi} gives a transverse projective structure on O such that the
connection form of the basic X-connection (note that it is unique because TCM =
E ⊕ CX) is equal to zero with respect to the local trivializations { ∂

∂zi
} of Q(F).

Note that this family of local trivializations of Q(F) is used in Section 4. It is clear
that this transverse projective structure depends only on XQ.

Definition 6.8. The transverse projective structure obtained as above is called
the transverse projective structure associated with X and denoted by PX .

Recalling the previous definitions, we have then the following

Corollary 6.9. resDµB1(F , X) = res 〈L(F ,PX)|µ〉 as elements of H3
c (UX ;C).
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The above Corollary 6.9 corresponds to the following version of Corollary 5.4 in
[2], where a version of residues res ∗W B1(F , e) is defined by using transverse invariant
Hermitian metric and trivialization of Q(F) (Definition 5.1 in [2]). We give a proof
because it is slightly stronger than the original one.

Proposition 6.10. Let F ′, W and X as above. Then, there is a well-defined
element res B1(F , X, e) of H3

c (W ; C), where e = ei is a family of local trivializations
of Q(F) such that ei = X if Ui ⊂ M \ (J ∪ F ′). Moreover res B1(F , X, e) =
res ∗W B1(F , e).

Proof. In [2], the claim is stated for J ∪F0, where F0 is the union of the wandering
Fatou components. Since there is foliated trivializations of Q(F)(= −KF ) on
F0 \ F ′, the arguments in [2] remain valid even if F0 is replaced with F ′. ¤

7. Examples

We begin with a fundamental example.

Example 7.1. Let X = λ0z
0 ∂

∂z0
+ λ1z

1 ∂

∂z1
be a holomorphic vector field on

C2, where (z0, z1) is the natural coordinate. Assume that λ0λ1 6= 0 and that
λ = λ0/λ1 6∈ R<0. Then, X naturally induces a transversely holomorphic foliation
of S3, which is denoted by Fλ. If λ = 1, then F1 is formed by the orbits of the Hopf
fibration, in particular F1 is transversely projective. The family {Fλ} is a smooth
family of transversely holomorphic foliations and it is well-known that B1(Fλ) is
the natural image of (λ + λ−1)[S3], where [S3] is the generator of H3(S3; Z). Let

Y = νz1 ∂

∂z1
, then it induces a Γ -vector field for Fλ. We denote the Γ -vector field

again by Y . Let µ ∈ H1(M ;Fα) be the infinitesimal deformation induced by the
family {Fλ}, where Fα is considered as the base point. Then ZY consists of two
circles C0 and C1. Let Ui be a tubular neighborhood of Ci and identify H3

c (Ui; C)
with H1(Ci; C) by integration along the fiber. The residue res DµB1(Fα, Y ) is
naturally decomposed into the sum of elements of H1(Ci; C), i = 0, 1. We denote
these elements by res CiDµB1(Fα, Y ), i = 0, 1, then by Theorem 5.7,

res C0DµB1(Fα, Y ) = [C0] ∈ H1(C0; C),

res C1DµB1(Fα, Y ) = − 1
α2

[C1] ∈ H1(C1; C).

On the other hand, one has by Theorem 4.3 that

〈L(Fα)|µ〉 =
(

1− 1
α2

)
[S3] ∈ H3(S3; C).
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Hence 〈L(Fα)|µ〉 = res C0DµB1(Fα, Y ) + res C1DµB1(Fα, Y ) in H3(S3; C). If one
adopts on a neighborhood of S3 \ (U0 ∪U1) the projective structure PY associated
with Y , then res 〈L(Fα,PY )|µ〉 is naturally decomposed into elements of H1(Ci;C),
i = 0, 1. We denote these elements by res i〈L(Fα,PY )|µ〉, i = 0, 1, then

res i〈L(Fα,PY )|µ〉 = res CiDµB1(Fα, Y )

by Corollary 6.9.
If α = 1, then res C0DµB1(Fα, Y ) + res C1DµB1(Fα, Y ) = 0 in H3(S3; C). The

foliation F1 is indeed the Hopf fibration so that L(F1) = 0 in Ȟ1(S3; Q∗(F1) ⊗
Q∗(F1)) and the infinitesimal derivative is always equal to zero. However, res i〈L(F1,PY )|µ〉
can be non-trivial because the projective structure PY cannot be extended to the
whole S3.

If α 6= 1, then L(Fα) is non-trivial so that Fα cannot admit any transverse
projective structures. Similar foliations can be constructed on S2q+1 from the

vector field
q∑

i=0

λiz
i ∂

∂zi
on Cq+1, where λi 6= 0 for all i. Assuming that none of

λi/λj is a negative real number, this vector field induces a foliation Fλ of S2q+1,

and it is known that Bq(Fλ) =
(λ0 + · · ·+ λq)q

λ0 · · ·λq
[S2q+1]. It follows from Theorem

2.18 that most of Fλ does not admit any transverse projective structures.
Coming back to complex codimension-one foliations, the localization given in

Section 6 for foliations Fα is as follows. If α = 1, then the Julia set is empty. If
α 6= 1, then J = C0 ∪ C1. In the both cases, J is of Lebesgue measure zero so
that ∂JB1(Fα) = 0. This implies that 〈L(F)|µ′F 〉+ 〈L(F)|µO〉 6= 0 in general. An
example of µO is given in [3].

Example 7.2. Let F be a foliation given as follows. Let H be the subgroup

of SL(q + 1; C) defined by H =
{

(ai
j)0≤i,j≤q

∣∣∣∣ ai
0 = 0 if i > 0

}
. Let Γ be a dis-

crete subgroup of SL(q + 1; C) such that M = Γ\SL(q + 1; C)/U(q) is a closed
manifold, where U(q) is considered as a subgroup of SL(q + 1; C) by the map-
ping A ∈ U(q) 7→ (det A)−1 ⊕ A ∈ SL(q + 1; C). Note that U(q) ⊂ H. The
cosets {gH}g∈SL(q+1;C) naturally induce a transversely holomorphic foliation F
of M , of complex codimension q, and it is known that the Godbillon-Vey class
GV2q(F) is non-trivial [4]. In this sense the dynamics of the foliation F is com-
plicated. On the other hand, F is transversely projective since the transversal
geometry of F is locally modeled on CP q = SL(q + 1; C)/H. It follows that L(F)
is equal to zero and the Bott class is infinitesimally rigid. Thus the rigidity of the
Godbillon-Vey class of F is also derived from the rigidity of the Bott class, because
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GV2q(F) = (Im Bq(F)) c1(Q(F))q up to multiplication of a constant determined
by the codimension.

Example 7.3 [15]. Consider S1 as R/Z and let Fλ be the foliation of S1 ×
Cq induced by the vector field

∂

∂t
+

q∑
j=1

λjz
j ∂

∂zj
, there (t, z1, · · · , zq) denotes the

standard coordinate. Let Yδ =
q∑

j=1

δjz
j ∂

∂zj
, then Yδ naturally induces a Γ -vector

field for each λ. We adopt e =
∂

∂z1
∧ · · · ∧ ∂

∂zq
as a trivialization of Q(Fλ), then

Bq(Fλ, Yδ, e) =
1

2π
√−1

(λ1 + · · ·+ λq)
(δ1 + · · ·+ δq)q

δ1 · · · δq
[S1], where [S1] denotes the

natural generator of H1(S1;Z). This implies that even if Fλ remains the same,
the residue DµBq(Fλ, Yδ) can vary if Γ -vector fields are deformed. On the other
hand, e is foliated with respect to FYδ

if λ1 + · · ·+ λq = δ1 + · · ·+ δq = 0. If these
conditions are fulfilled, then the derivative of Bq(Fλ, Yδ, e) is certainly well-defined
and in fact equal to zero.
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