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ABSTRACT. The Bott class is a cohomological invariant for transversely holomorphic
foliations which can vary continuously as foliations are deformed. In this article, an
infinitesimal derivative of the Bott class of transversely holomorphic foliations is
defined by generalizing Heitsch’s construction. It will be shown that the infinitesimal
derivatives are expressed in terms of a kind of curvature tensors of the projective
Schwarzian derivatives. Our formula is also valid for the Godbillon-Vey class of real
foliations and it is a generalization of the Maszczyk formula for the Godbillon-Vey
class of real codimension-one foliations. As an application, some properties of the
Julia-Fatou decompositions due to Ghys, Gomez-Mont and Saludes will be discussed.

INTRODUCTION

The Bott class is a secondary characteristic class of transversely holomorphic
foliations defined in a similar manner as the Godbillon-Vey class. One of the most
important properties of these classes is that they can vary continuously if foliations
are deformed. If an infinitesimal deformation is given, then one can naturally define
the derivative of the Godbillon-Vey class with respect to it. An explicit construction
was given by Heitsch [12], [13]. We call in this article such derivatives infinitesi-
mal derivatives. An infinitesimal derivative of the Bott class is already defined by
Heitsch if the complex normal bundle is trivial [13]. He has also constructed in
the same paper the infinitesimal derivative of the imaginary part of the Bott class
without assuming the triviality of normal bundles. When applications are consid-

ered, infinitesimal derivatives of the Bott class will be important in relationship

2000 Mathematics Subject Classification. Primary 57R32; Secondary 32565, 58 H10, 53B10.
Key words and phrases. Infinitesimal deformations, Bott class, Schwarzian derivatives.
The author is partially supported by Grant-in Aid for Scientific research (No. 13740042)

Typeset by AMS-TEX



with localizations of the Bott class and with the Julia sets in the sense of Ghys,
Gomez-Mont and Saludes [11] when the complex codimension is equal to one, and
in relationship to the Futaki invariant [9], [10] when the complex codimension is
greater than one. In the both cases, it is necessary to generalize infinitesimal deriva-
tives for arbitrary transversely holomorphic foliations. In the present paper, we will
first give such a generalization and some applications concerning the Fatou-Julia
decomposition will be discussed, while applications concerning Futaki invariants

will be discussed elsewhere.

On the other hand, Maszczyk showed in [17] that infinitesimal derivatives of the
Godbillon-Vey class of real codimension-one foliations can be written in terms of
the Schwarzian derivative and cohomology classes representing infinitesimal defor-
mations. His formula is also valid for the Bott class for transversely holomorphic
foliations of complex codimension one. We will give in this article a version of the
Maszczyk formula for arbitrary transversely holomorphic foliations. Instead of the
classical Schwarzian derivative, multi-dimensional projective Schwarzian will ap-
pear when complex codimension is greater than one. Multi-dimensional Schwarzian
derivatives and derived tensors which we will need are studied by several authors,
e.g., [16], [19], [21], [18], [5], [20]. The Cech-de Rham cohomology is useful in the
construction, because the Bott class is a cohomology class with coefficients in C'/Z
so that the usual de Rham cohomology does not work very well. We will try to
avoid the use of partitions of unity so far as possible, because it often makes difficult
to calculations in examples. The Cech-de Rham cohomology is also useful for this
purpose. Finally, we remark that our constructions are also valid for real foliations

and that corresponding formulae for the Godbillon-Vey can be obtained.

This paper is organized as follows. In the first section, relevant definitions on
transversely holomorphic foliations and basic tools treating the Bott class are re-
called. In the second section, an infinitesimal derivative of the Bott class gener-
alizing the previous ones will be introduced. In the third section, the projective
Schwarzian derivatives will be introduced. In the forth section, a kind of Maszczyk
formula will be shown. It will be also shown that the infinitesimal derivative is ob-
tained as a result of composition of certain operators. In the fifth section, two kinds
of residues are introduced. One is after Heitsch, and the other one is defined by
using transverse projective structures. In the sixth section, complex codimension-
one foliations are studied in relationship with the Julia-Fatou decomposition due to
Ghys, Gomez-Mont and Saludes [11]. Finally in the seventh section, some examples

are given.
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1. RELEVANT DEFINITIONS

The Bott class is usually considered when the complex normal bundle of the
foliation is trivial, and it is an element of H29T1(M;C). Its deformations are
studied by Heitsch in [13]. In this section, we will show that his construction can
be adapted also in the case where the complex normal bundle is non-trivial so that
the Bott class is an element of H2(M;C/Z).

We first briefly recall a construction in [2] of a representative of the Bott class in
terms of the Cech-de Rham complex. In this paper, a manifold will always mean a

smooth manifold without boundary. We begin with some relevant definitions.

Definition 1.1. A foliation F of a manifold is said to be transversely holomorphic

if there is an open covering U = {U;} of M with the following properties:

1) Each U; is homeomorphic to V; x D??, where V; is an open subset of RP
and D?? is an open ball in C? (p + 2q = dim M).

2) The foliation restricted to U; is given by {V; x {z}}, 2 € D?%.

3) Under the identification in 1), the transition function ¢;; from U; to U, is
of the form ¢;;(x, 2) = (VY;i(x, 2),7,i(2)), where v;; is a local biholomorphic
diffeomorphism.

Such an open covering U is called a foliation atlas. An open covering of M is said

to be adapted if it is simple and a refinement of a foliation atlas for F.

Definition 1.2. Let F be a transversely holomorphic foliation. Denote by E =

0
E(F) the complex subbundle Tc M = TM ® C locally spanned by 5 and PR
where (zy,2) = (2}, -+ , 2%, 24, , 2z7) is a local coordinate as in 1) of Definition

1.1. The complex normal bundle Q(F) of F is by definition TcM/E. The line
bundle K = A‘Q(F)* is called the canonical bundle, and —Kz = AQ(F) is

called the anti-canonical bundle.

Notation 1.3. We denote by I()(U) the ideal of C-valued differential forms Q*(U)
on U locally generated by dz!,--- ,dz?, and set Iy (U) = I(l)(U)k. The sheaf on
M formed by these ideals is denoted by I(3). The intersection I (U) N QP(U)
is denoted by I&)(U ) and the corresponding sheaf is denoted by Ifk). We set
Iy = 10y /10y, namely, an element of I, (U) is a family {w;}, where w; € I,
is defined on an open subset V; of U, where UV; = U, such that w; = w; mod

IZ)(VZ- NV;) if ViNV; # @. Finally, we set I, ;) = EBpIg’kyl).
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Note that Iy = {0} for k > ¢. If p < [, then I(k ) = I( ») because I = {0}.

Note also that E* = I(lo 1)

germs of sections of E*.

where the left hand side is regarded as the Sheaf of

Notation 1.4. If S is a presheaf and U is an open covering of M, then denote
by C"(U;S) the Cech r-cochains valued in S. When I is obvious, then it will be
often omitted. Cech cochains are represented by adding or removing indices, for

example, a cochain {w;} is usually denoted by w and vice versa.

Definition 1.5. Denote by AP9(U) = CP(U; Q) the space of the Cech-de Rham
(p, q)-cochains. The modified Cech-de Rham complex is by definition the quo-
tient A**(U)/C*(U; Z) of the Cech-de Rham complex by the Cech complex with
coefficients in Z, where CP(U; Z) C APO(U). If ¢ € API(U) and ¢ € A™*(U),
then the product ¢ U ¢ € APT™IT$(Y) is defined by setting (¢ U ¢)y..i =

20 tptr
—1)4r
( ]‘) CZO Zp/\c’l,p “Uptr®

Let U = {U;} be an adapted covering, then —Kx is trivial when restricted to
each U;. Let e; be a trivialization of —K z|y,, then there is a family {.J;; } of non-zero

functions such that e; = e;J;;. (Under the notation in [2], J;; = a;;'.) Noticing

ij
that log .J;; is well-defined since the covering is adapted, set © = (27/—1)"!dlog J,
where & denotes the Cech differential. It is classical that © represents ci(Q(F)) in
H?(M; Z). Let V; be a Bott connection defined on U; and let 6; be its connection

form with respect to e;.
Definition 1.6. We set 3;; = 0; — 0; — dlog J;;, then 3;; € I(1). We call {8;;} the
difference cochain of {V,}.

The Bott class is represented in terms of the following cochains in the modified

Cech-de Rham complex:

Definition 1.7. Set u1(V,e) = - h(@—l—logg]),_al(v_,e) = 5= F(H—i—logJ)
v1(V,e) = F(d@ + ) and v1(V,e) = ﬁ( 0 + (). V and e are omitted

when they are clear.

The equations Du; = v; — © and Duy = v1 — © hold.
The Bott class is a kind of so-called Cheeger-Chern-Simons classes. It is an
element of H?4TY(M;C/Z) characterized by certain properties. A representative

of the Bott class can be given as follows.

Theorem 1.8 [2]. Let B,(V,e) be the cochain in the modified Cech-de Rham com-
plex defined by the formula
B,(V,e) =u; Uv] + O Uuy Uv(f_l—f—"-—i—@qUul,
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then By(V,e) is independent of the choice of U, local trivializations e of —Kr, the
family of Bott connections V. This class is indeed the Bott class of F and denoted
by Bq(F).

Definition 1.9. Let {F}scs be a family of transversely holomorphic foliations of
a fixed codimension, of a fixed manifold M. Then {F;} is said to be a continuous
deformation of Fy if {Fs} is a continuous family as plane fields and the transverse
holomorphic structures also vary continuously, where 0 € S' is the base point. If the
family is in fact smooth and the transverse holomorphic structures vary smoothly,

then it is said to be smooth.

In what follows, S is assumed to be (—¢, €), where € is a sufficiently small positive
number.

Given a smooth family {Fs} of transversely holomorphic foliations, set —Ky =
N!Q(F;), then we may assume that there is a family {e,;} of local trivializations
of —K such that each e, ; is defined on U;. We may assume that the function J ;;
defined by e ; = e4,;Js,4; is independent of s, so J, ;; is denoted by J;;. The cocycle

= (2my/—1)"1dlog J, is also independent of s and denoted by ©. Choose then
a Smooth family V of local Bott connections and let {65 ;} be its connection forms
with respect to {es;}. We denote by {3 ;} the difference cochain of Vg, then by
definition 0, ; — 0, ; = dlog J;; + Bs,i;. Finally, for any cochain wg, we denote by
w, the partial derivative of w, with respect to s.

Under these choices of cochains, we have the following

Proposition 1.10. Denote u1(Vg,es) and v1(Vg,es) by ui(s) and vi(s), respec-
0By (Fs)

tively. Define u1(s) and v1(s) similarly, and set u1(s) = r& Then,
s

is naturally an element of H?T1(M; C) and is represented by Zvl Uy (s)U
k=0
vy (s)77F.

Proof. First note that 4 (s) is indeed the partial derivative of u;(s) with respect

to s. Moreover, if we set 01(s) = - F(d@ + B,), then Dy (s) = 1(s). We have

the following equation, namely,

8 k —k
63 +(Vs,es) z%@ U (s) Uwvy(s)?

—1qg— 1

k—
+) ) e Uu(s) Uni(s) Uin(s) U (s)?F
0 (=0

Q

>
Il
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For k£ > 0, set

q—k

pr =3 OF T Uuy(s) Uvi(s) Utia(s) Uws(s)?F T,
=0

then

q—k
Dpr. = 051U (vi(s) — ©) Ui (s)! Uig (5) Uy (5)0 4
=0

q—k

=) 0F M Uu(s) Uwi(s)! Udn(s) Uvy(s)d !
=0
q—k

= — Z @k U vy (S)l U 111(8) U ’Ul(S)q_k_l

=0
q—k

+> O Ui () U (s) Uw (s)7F
=0

q—k
=) OF M Uu(s) Uni(s) Ubn(s) Uw(s)?F 0
=0

0
By adding Dpy + --- + Dpg to —

5 B,(Vs,es), the cocycle as in the statement is
s
obtained. [J

B, (Fs
Note that if each Vg is a global connection, then 084(F5) g(}_)
S .
a globally well-defined (2¢ + 1)-form (—27rw/_1)f(q+1)(q + 1)0, A (d6,)9. This is

the same formula as the derivative of the Bott class of transversely holomorphic

is represented by

foliations with trivial normal bundles given by Heitsch [13].
Finally we make some remarks on the imaginary part of the Bott class, which is
an element of H29T1(M; R). It can be represented without using the cocycle © as

follows.

Theorem 1.11. Let £,(V,e) be the cocycle in the Cech-de Rham complex defined
by the formula

1 q
§(V,e) = 5 V-1 > (0 U (ur — @) Uof 4+ 0 U (ug — 1) U DY),
k=0

then £,(V,e) represents £g(F) = v/ —1(By(F) — By(F)) independent of the choice
of V and e.



q _
Proof. We first show that Y 9FU (u; —u1)Uv{ is cohomologous to B, (F) — By(F).

Define cochains oy, by ag, = OF Ut UdT U (u; — 41) Uv? "1 and set ay, =
;v DY Q, 1 1
qg—k—1
> ag,. Then
r=0
q—k
Day, = Z OF Ut U (uy —ag) Un? F"
r=1
q—k—1
- Y O uni U (uy —m) Ui P
r=0

—eFUm UvITF ek U UtT"

It is easy to see that Z P U(up — 1 )Uv] —D(ag+- - +ay_1) = By(V,e)—B,(V,e).

It follows that £,(V, e) Dv—1(ap+- - Foag_1—ay—-—ag—1) = 2/—1(By(V, e)—
B,(V,e)). This completes the proof. O

A representative of §q( s) can be obtained by Proposition 1.10 and Theorem
1.11. If log J is valued in v—1R and if § = 0, then u; = u; — 41, v; and vy are

globally well-defined differential forms. In this case, the representative coincides
with the Heitsch’s one [13], and the formula in Theorem 1.11 becomes the standard
definition of ;. On the other hand, a representative of £,(F) is obtained by setting
6 = 0. The latter representative was used in [1] for studying local properties of
this class. However, if we choose {es;} so that 6,,; = 0 for any s and ¢, then J ;;
depends on s in general. Thus corresponding formula for the derivative cannot be

obtained.

2. INFINITESIMAL DERIVATIVES OF THE BOTT CLASS

We begin with the definition of infinitesimal deformations given in [12]. Let
{e; = ( €1, »€:.4)} be a family of local trivializations of Q(F) and let {w; =
Hwh, - wh} be 1ts dual. Let Aj;; = ((a;;)}") be the matrix valued function such
that (€1, ,€q) = (€51, an,q)Ajw then A;w; = w;. Let V = ({Qz}7{éw})
be a pair of a family of local Bott connection forms and the difference cochain
with respect to {e;}. That is, 6, is the connection form with respect to ¢; of a
Bott connection V; on U; so that V,e; = (Ve; 1, ,Ve; ) =(e;1, € ,)0; and
3 = Aﬁldéﬂ—i_éﬂlﬁjéjz’ —0,. One has then dw, + 0, Aw; = 0, éji = —Ajiﬁ”A,_.l

e

and ﬁij € I1)(Ui;), where U;; = U; N Uj.
In what follows, for a vector bundle V', the sheaf of germs of sections of V' is also

denoted by V by abuse of notation.



Definition 2.1. Set E°*®@Q(F) = A°E*@Q(F) and £4°(Q(F)) = CHE*@Q(F)).
If an open covering U is specified, then £%(Q(F)) is also denoted by £V (U; Q(F)).
The complex £%°(Q(F)) is equipped with the differential § + (—1)*dy where § is
the Cech differential and dy is defined below. The total complex is denoted by
£ (Q(F)).

The differential dy is defined as follows. Let 4 = {U;} and let s € (E®* ®
Q(F))(U), where U is an open subset of M contained in U;. Define then a mapping
dv,i: (E*@Q(F))(U) — (E* @ Q(F))(U) by setting

dv,i(s) = e;(dp+0; N\ ),

where ¢ = w;(s) and ¢ is considered as an s-form by arbitrarily extending.

Lemma 2.2. dy ; is independent of i so that {dy ;} induces a well-defined mapping
dy : B* @ Q(F) — E*T' @ Q(F).

Proof. Let s be a section of (E* ® Q(F))(U; NU;), then
dz,j(ﬁj%'(s)) = dy i(e;(w;(s)) ‘i‘Qi(ﬁij A w;(s)).

The right hand side is equal to dy ;(e;w;(s)) as a section of (EST @ Q(F))(U; N
U;). O

It is shown in [7] that ((E*®@Q(F))(M), dy) is a resolution of © £ if V is a global
Bott connection. By using this fact it is easy to show that the cohomology of the
total complex (E*(Q(F)),d + (—1)%dy) also coincides with H*(M;© ) even if dy
is defined from a local Bott connection, because we consider smooth sections. The

following type of deformations are useful.
Definition 2.3. Denote by H*(M;©Ox) the cohomology of ((E*®Q(F))(M),dy).

It is easy to see that the natural mapping H?(M;©x) — HP(M;©x) is injective
if p = 1. Under our assumptions, H?(M;Ox) and HP(M;Ox) are in fact isomor-
phic. However, we continue to distinguish them because there will appear a certain
difference when defining infinitesimal derivatives without using partitions of unity
(cf. Definitions 2.16 and 4.15).

Taking these observations into account, we introduce the following (cf. [13])

Definition 2.4. An element p of H'(M;© ) is called an infinitesimal deformation
of F. If ({o;}, {si;}) € E'(Q(F)) = CO(E* @ Q(F)) ® C*(Q(F)) is a representative

of p1, then the pair ({—g;},{—s;;}) is called the infinitesimal derivative of w = {w,}.
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It is shown in [12] that a smooth family {F,} naturally determines an infinites-
imal deformation as an element of H'(M;©x). We will briefly recall the construc-
tion after stating Theorem 2.17.

Noticing that E* = I(o 1), the pair ({g;},{s;;}) in the above definition should
satisfy the following relations for some gl(q; C')-valued function g,; on U;; and some
gl(g; C)-valued 1-form 6’ on U;:

(2.5.a) e; (d(w;(a;)) +6; A (w;(0;))) = &,0; Aw;,
(2.5.b) (g; — ;) — ¢ (dw;(s5)) + Oiwi(s;;)) = €i9;;%i»
(2.5.c) (08)ijk = 0,

where {0} and {g;;} are obtained by computing the left hand sides of the above
equations after extending {o;} to Q(F)-valued differential forms. Note that g;; #
—gji in general.

Infinitesimal derivatives of Bott connections can be defined as follows if p is
represented by an element of C°(E*® Q(F)). Note that cocycles in CO(E* ® Q(F))
are elements of (E' ® Q(F))(M) closed under dy.

Definition 2.6. Suppose that p € HY(M;0z) and let 0 = {0;} € C°(E* @ Q(F))
be a representative of . Then any pair V' = ({6}, {gi;}) which satisfies (2.5.a) and
(2.5.b) is called an infinitesimal derivative of the Bott connection V = ({6, }, {ém})

with respect to o.
The infinitesimal derivative of the Bott class is defined as follows.

Definition 2.7. Let u € H'(M;Of) and let o € (E* ® Q(F))(M) be a represen-
tative. Set 0’ =tr@’, 0 =tr6, g = tr and uj = 27rf(6/ + g). The cohomology
class in H?IT1(M; C) represented by

q
D,B,(V,Y) :Zv’fUUIlek
k=0

= (2rv=1)~ @+ Xq:(de +B)FU (0 + ) U (df + B)T

is called the infinitesimal derivative of the Bott class with respect to 1 and denoted

by D, By (F).

We will later show in Theorems 2.15 and 2.17 that the infinitesimal derivative is

well-defined and is independent of the choice of o, V, V' and local trivializations.
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The infinitesimal derivative of the Bott class can be reconstructed in terms of
— K5 as follows. Let {e;} be a family of local trivializations of —Kz, where e; is
defined on U;. Let {J;;} a family of smooth functions such that e; = e;J;;. A Bott
connection on Q(F)|y, naturally induces a connection on —K #|y,, which is also
called a Bott connection. Then, a family of local Bott connections on —Kr is a
pair ({6;},{0:;}) satistying §; —0; = dlog J;; + 3;;, where §; is the connection form
of a Bott connection on —K x|y, with respect to e;.

Recalling that £* = [ (1071), we introduce the following
Definition 2.8. We denote (E* @ Q(F))(U) also by I(loyl)(U; Q(F)), and set

L1y (Us =K5) = Tyt () @ (= Krlu) = (I (U)/ 1) (U)) @ (— K5 0).

Let ¢ € Ig’q_l (Ui NUj;—Kr), then ¢ can be written as ¢ = e; ® ¢; on Uj,

where @; € I&q,q)(Ui)- Set then dv ;o = e;(dp; +0; A ;). Since Bi; € I1)(Usy),

the equation

dv jp = ej(dp; + 05 N p;)
= e;(dpi + 0; N i + Bij N i)
=dv ;¢

holds. Hence {dy ;} induces a globally well-defined map, which is denoted by dy.
One has dy o dy = 0, indeed, the equalities

dv (dv(eip;)) = dv(ei(dp; +6; A p;)) = ei(dOi A i)
hold on U;. Since ©Y; € Igjq—l,q)(Ui) and db; € I(l)(UZ), df; N\ ©; = 0in Iénq—l,q)(Ui)‘
Definition 2.9. Set K™ = CV’T(I(S;_ql_;) (U; —Kx)) and equip it with the differen-
tial § + (—1)"dy. We denote by K* the total complex and by H*(M; —Kxr) the

cohomology of *.

In practice, K%, K! and K? are relevant. We have

KO =CV(17 Y (U; —K£)),
Kt=C1t | (Ui —Kx))® C (I (U; —KF)),

(¢—1,9)

K2 =COUE, Ui —KF) & CHIE_ (U —Kr)) @ CP (177 (U; —Kr)).

(¢—1,q9)

Let {w;} be the family of local trivializations of K dual to {e;}. A version of

infinitesimal deformations of —K # is defined as follows.
10



Definition 2.10. An element p of H'(M; —Kz) is called an infinitesimal defor-
mation of —Kx. If ({o;},{si;}) € K' is a representative of u, then the cocycle

({—oi},{—sij}) is called the infinitesimal derivative of w = {w;} with respect to
(0,s).

If ({—oi},{—si;}) is an infinitesimal derivative, then the following equations

hold, namely,

(2.11.a) ei (d(wi(07)) + 6; A (wiloy))) = e Aw;,
(211b> (O’j - O'i) — €; (d(wz(sw)) + Ql A wi(sij)) = €;G;;Ws,
(2.11.C) Sik — Sik + Sij = 0.

Lemma 2.12. Regard the complex (I;qtql_;)(M; —Kgz),dv) as a subcomplex of
(K*,6 + (—=1)"dv) and denote by H*(M;—Kgz) its cohomology. Then, the nat-
wral mapping H'(M; —Kz) — HY(M; —Kx) is injective. It is an isomorphism if

there is a partition of unity.

The proof is easy and omitted.

When local trivializations and local connections of Q(F) are given, we always
consider local trivializations and local connections of —K# in the following way.
Let {e;} be a family of local trivializations of Q(F) and set e; = ¢, 1 A~ Ag;
then {e;} is a family of local trivializations of —Kz. Similarly, {w; = w} A---Aw?}
is a natural family of local trivializations of Kz. Finally, {6; = trf,} is a family
of local Bott connection forms with respect to {e;}. They satisfy the equations

dwi + 92 Nw; = 0 and Gj - 91 = leg Jij + ﬂija where Jij = det Aij and ﬂij = tr@ij.
Lemma 2.13. Let p € H'(M;0x) and let m = ({g;}, {s,;}) € E'(U; Q(F)) be its

representative. Set then

ro(m)i =Y wiA-- AW PAWF (@) AT AW ® ey,

]

B
I

1

ri(m)i; = i

[]<

(=D wi A Awr T AW (si) Awi T A AWl e,

el
Il

1

then r = ro ® 11 induces an isomorphism from H'(M;Of) to H'(M; —Kz) under
which H*(M;Oz) is mapped to H'(M;—Kx). Moreover, if m satisfies (2.5.a),
(2.5.b) and (2.5.c), then r(m) satisfies (2.11.a), (2.11.b) and (2.11.c) with 0’ = tr§’
and g = trg.

The induced mapping on the cohomology is again denoted by 7.
11



Proof. 1t is clear that the mapping r is well-defined at the cochain level. By (2.5.a),
d(w;(a;))+0; A(wF(a,)) = 0; Aw, for some gl(g; C)-valued 1-form 6. Since = tr @

and 3 = tr 3, one has the following equations, namely,

dro(m); + 0; A ro(m);

—ZZ ANAWE A AT AW (@) AT A AW @ ey
k=1 I#k

q
+9MZ%1A"'/\ﬂf_l/\gf(gi)/\g?“/\--wg%@ei

q
+ ) (D i A AW T Ad(WE (@) AT A Al e

k=1

Z DAWEA AT AWF (@) AP A AW @ e

k=1 l;ék

q
+) Y @) Awi A AT AW (@) AW A AT AW AT A Al e

{2

On the other hand, by repeating similar calculations, one has the following equation

on Uij;



q
Z ;A\ k_l A (d(gi'c(iij)) ‘*’Z(Qz)gc /\"‘_)é(ﬁij» /\Q?H A Awi @ e

k=1 =1
q q

+Y N WA AT A (g )Pt AT A AWl @ e
k=11=1

=(d _(m) +6; Ari(m), )-l-(trgi)wi@ei
=dyri(m)i; + (trg,) wi @ e;.

Finally, it is easy to see that 071 (m);;x = 0. Thus r(m) is closed under 6 + (—1)"dv
and the last part of the lemma is shown.

Assume that m is exact, then o; = ¢; (df; + 0, f;) and s;; = €; f;j — e; fi for some
collection {e;f;} of local sections of Q(F). Setting

pi — Z(_l)k—lu_)/} /\ e /\u_}f_]- /\ fzk /\gf‘i‘l /\ L. /\Q;{] ®€Z"

it is easy to verify that dyp; = ro(m); and that p; — p; = r1(m);.
Conversely, let m = ({o;},{si;}) be a cocycle in K!, then (2.11.a), (2.11.b) and
(2.11.c) hold. Define 1-forms {5¥} and functions {s -} by requiring w¥ A (w;(0;)) =

—o% A w; and wF /\wl(sw)—s Awi. Set ri(m); = Zezk@)a and ] (m);; =

Z e ® ’§,’fj It is clear that 7/(m) = r{(m) @ r{(m) is well-defined as an element
k=1
of K. Let o; = ¥(a}, -+ ,0)) and w; = “(w}, -+ ,w?), then one has the following

7 79

equations, namely,

d(&z A wi) = d(—gl A\ wi(ai))
=0, Nw; Awi(03) +w; A d(wi(o:))
= _Qi N 51 N w; + Ww; A d(wi(al-)),

while
d(&i/\wi) :dﬁi/\wi—ﬁi/\dwi
:dgiAwi+5iA0iAwi
= db’vz N wj — W; VAN 01 VAN wi(ai).
Hence

(db’vl —f—Ql A 51) A wW; = W; A\ (d(wl(al)) + 91 A wi(ai)) = 0
13



Similarly, by the equations
d(’svwwz) == (d:s‘vw) A w; — §Z]91 A w; = (dglj) VAN w; —+ [9%] N 91 A wi(sij)
and

d(sijwi) = d(w; Awi(sij)) = —0; A Sijw; — w; A d(wi(siz)),
one sees that

ei(dsij + 8; Nsij) Awi = —egw; A (d(wilsiz)) + 05 Awi(si;))
= —e,w; N\ (wi(aj) - wi(ai))
= —ejw; N agw;(0;) — ;0w
= ngj A\ QW5 — Q,L-b'vi N\ w;

= (ngj —e,0;) N\ wj.

It follows that 7/(m) is closed. Almost the same argument shows that r’ descends
to a mapping on the cohomology. Finally, it is clear from the construction that
H'(M;0#) is mapped to H'(M; —K ) under the mapping 7. This completes the
proof. [J

Infinitesimal derivatives of the Bott class is determined by infinitesimal defor-

mations of —K r as follows. We still assume that deformations are represented by

elements of I, | (M;—Kg).
Definition 2.14. Let u € H'(M; —Kx) and let o = {0} € I(qq_1 q)(M; —Kr) be

a representative of . Then any pair V' = ({6}, {g:;}) which satisfies (2.11.a) and
(2.11.b) is called an infinitesimal derivative of the Bott connection V = ({6;},{0i;})

with respect to o.

Theorem 2.15. Let p € EI(M; —Kx) be an infinitesimal deformation. Let
o= {0} € ng_l oM —Kx) be a representative and let V' = ({0}, {gi;}) be
the infinitesimal derivative of NV with respect to o. Set

B,(V,V') = Z of Ul Ut F

q
k=0

= (2my/—1)"(@+Y) i(de +B8)F U@ +g)u(dd+B)TF,
k=0

14



where uy = ﬁ%(@' + g), then Dy By(V,V') represents a class in H*1T1(M;C)

independent of the choice of cochains and connections.

Proof. Claims are proved in steps. Denote by D the differential in the Cech-de

Rham complex.
Claim 1. D,B,(V,V’) is closed.
First of all,

DDy By(V.')) = (2rv/=T) @S (a4 B UD(O' + g) U (d8 + 5)7~*
k=0

since D(df + 3) = 0. By (2.11.a), one has
(2.15.&) dgz VAN (wl(az)) = dtg; N Wwi.
One also has

el Nwj = e;j(d(wj(oy)) +0; A (wj(0;)))
= ei(d(wi(o3)) + 0i A (wil07)) + Bij A (wi(03)) + dgij A w;)
== 610; A Wy —+ elﬂij A (wl(al)) —+ eidgij A Wi,

namely,

(215b> ((50/ - dg)l] VAN Ww; = ﬂij VAN (wz(cr))
On the other hand, since o; € I(qq_Lq)(Ui; —Kyr),

(2.15.C) g:n A wi(ai) = _g;rn AN Ws

for some 1-form o;" defined on U;. We may assume that o;" is well-defined modulo
I(ll)(UZ-) and 7; = A;;0; modulo I(ll)(UZ-), where i ="}, - ,0l). Writing d~9i =
Zm 8m01 /\w;” and ﬁij = Zm(bij)mw;n; we set 89; = — Zm &nﬁl VAN 5.zm and ﬁéj =

— > (bij)mai". Then by (2.15.a), (2.15.b) and (2.15.c),
é\é; /\wi = d@: /\wi,
B Awi = (80" — dg)ij A wi.

Finally, €;(0g;jx)w; = 0 by (2.11.b) and by the assumption s = {s;;} = 0. It follows
that

(d0+ B)* UD(O + g) U (d + B)IF = (do + B)F U (00" + B') U (df + B)4F.
15



Let ® = {0, -+ ,q} be an ordered sequence such that ¢y, is either df or [, then

q
ZSOOU"'US%AU@ZUS%HU"'U%:Q
k=0

Indeed, each ¢j in the above cochain appears in the form ¥y A w;, for some
and l. This differential form is equal to ¥, A A;, ;w;. On the other hand, since
—0j Nwj = —A;;0; A ajiw;, one has 0; = A;;0; modulo I(ll)(Uij). It follows that
the above sum is equal to

P

§Z¢0(t)u"'U¢q(t) ;

k=0 t=0

where ¢ (t) = Yr A, i N\ (wi —to;). If we denote by Z;(t) the ideal generated by
w™ —to™, m=1,---,q, then po(t) U---U p,(t) belongs to Z;(¢)?1 = {0}. Hence
D,B,(V,V') is closed.
Claim 2. D,B,(V,V’) is independent of the choice of V' once o is fixed.

Let ({0!},{gi;}) be another choice of an infinitesimal derivative of V with respect
to o, then e; (0 — ;) Aw; = 0 and §;; = g;;. Hence (d6+3)*U (0’ +3)U(d+B)IF =
(df + B)* U (0" + g) U (dO + 3)?~* for each k.

Claim 3. The class [D,B,(V,V’)] is independent of the choice of o.

Let {6;} be another representative of p and choose an infinitesimal derivative
V' = ({6}, {gi;}) of V with respect to {;}. Set ¢ = & —o, then there is an element
r={n} eI (U;—K5)and a family {h;} of functions on U; such that

(q_lvq)
(2.15.d) elwz(wl) =€ (d(u)@(ﬂ)) +6; A (wl(ﬂ)) + hiwi),
(2156) T} — Ty = 0.
Let now 7/, m = 1,--- ,q be 1-forms such that w* Aw;(7) = =7/ Aw;, and define

((/99 and Bij by setting 551 = — Zm 8m91 A 7A';m and Bij = — Zm(bm)mﬁm Then by
(2.15.d) and (2.15.e),

ei(0; — 0)) Nw; = e; (d(w; (¥:)) + 0; A (wi(1:)))
= e;(df; N w;(T) + dh; A\ w;)
= €(0; + dh;) A w;,

ejhjwj — eihiw; = =B ANwi(T) + €i(Jij — gij)w

= (=B + (Gij — 9ij)) Nwi-
16



By repeating the same argument as in the proof of Claim 1, one obtains the equation
q
> (df + B)F U (96 + B) U (df + B)*~F = 0.
k=0
Hence

(2my/—1)a+1 (Dng(V, V') — Dy B,(V, v’))

(dO+B)Fu@ +5—0 —g)U(do+p)TFk

[M]=

o
Il
=

(df + B)* U (90 + dh + 6k + B) U (df + 5)7*

-

e
I
=

(d6 + B)F U (6h + dh) U (df + B3)~F

M-

>
|

/_\O

=D i(d& +B8)*U h U (dh+ ﬁ)q"“) .

k=0
This completes the proof of Claim 3.

Claim 4. The class [D,B,(V,V’)] is independent of the choice of V.

Let V = ({¢s}, {pi;}) be another Bott connection and set ¢; = y; —0;, then ¢; €
I(ll)(UZ-). Assume that {o;} satisfies (2.11.a), (2.11.b) and (2.11.c), then d(w;(0;)) +
i N\ (wi(0)) = 0, AN w; + P A (wi(oy)) = ¢ Aw; for some 1-form ¢). Noticing
that (2.11.b) for V is the same as (2.11.b) for V because s = {si;} = 0, we may
adopt ({¥}},{gi;}) as an infinitesimal derivative of V. Denote {1;} by 1, then
Dy = (dp + p) — (dO + B). Setting ¢' = ¢’ — ', one has ¢; A (w;(0;)) = Y, Aw;.

Define 99’ and 3’ as in the proof of Claim 1 and define 5(70’ and p’ in the same

way, then by repeating the argument as above, one obtains
(215.6) @ U(dp+p)T+9 U0 + ) U (dp+p)? "+
+U (dp+p)Tt U@ +7) =0,

(2.15.g) (80" + B')U (dO + B)F Uy U (dp + p)?—F~1
+(dO+ B) U (90 + ') U (df + B)* LU U (dp + p)1~F
L.
+(d6 + 3)F U U (dp + p)I=+"
+(df + B)F U U (B¢’ + ') U (dg + )1+ 2
L.

+(d0+B)F U U (dp + p)TF 72U (09 +7) = 0.
17



On the other hand,
(2.15.h) (2my/—1)7+! <DUB (V, V') — )
W' U (de + p)? (9’+9)UD¢U(ds@+p)q !
= | + (0 +9)U(dd+B)UDYU (dp + p)?2
+ 4 (0 +g)U(dO+ B)T T UDY
DY U (@' +g) U (dp + p)?~" + (d6 + B) U U (dp+ p)* "
+| +@+B U@ +9)UDYU(dp+p)? 2+
+(d0+ B) U (8 +g)U(df+ B)1 2 UDy

+DY U (dp+p) T U(Q +g)+ -+ (dd+ B)T U
Since ¢ € I(l)(l/{), one has
(2.15.1) D((d6+ B)™ U (0 +g) U (df + B)* Uy U (dp + p)')
=(d + 8)™ U (90" + B') U (d0 + B)* Ut U (dip + p)’
—(dO+B)™ U (8" + g) U (df + B)F UDy U (dp + p)’,
and
(2.15.) D(—(d0+ B)™ Uy U (dp + p)* U (¢ + g) U (dp + p)')

= —(d0+B)" UDY U (dp + p)* U (¢ + 9) U (dp + p)'
+(d -+ B)" U U (dp + p)* U (99 + ) U (de + p)',
where m+k+1=q— 1.

Adding (2.15.i) and (2.15.j) to the right hand side of (2.15.h) varying m, k, [ and
by using (2.15.f) and (2.15.g), one sees that DUBq(ﬁ, V') — D,B,(V,V') is exact.
Claim 5. D,B,(V,V’) is independent of the choice of the family of local trivial-
ization {e;}.

Fix o, V.= ({6;},{8i;}), and let {e} be another family of local trivializations,
then we may assume that e; = e;u; for some C*-valued function u;. Hence w] =

1

u; tw; and e = uju; ajej. It is easy to see that the connection form of V with

respect to {e;} is ({0; +u; 'du;},{Bi;}). Tt follows the equation
i (d(w 0 + uj dug) A (wi(04)))

eiu; ( wy 2 du; A wl(az) +u; td(wi(oy)) + uy 0 Awioq) + u; 2du; A w;(0y))
=ei(d(wi(03)) + 0; A (wi(03)))

= — e Nw; = —€l0; AW,

18



One also has 0; — 0; = €;9;jw; = €,g;;w;. Hence we may still adopt ({6;},{gi;}) as
an infinitesimal derivative of V. This completes the proof of Claim 5 and therefore
of the theorem. [

Definition 2.16. The infinitesimal derivative of the Bott class with respect to u €
H'(M; —Kr) is the cohomology class in H24+1(M; C) represented by D, B,(V, V')
in Theorem 2.15 and denoted by D, B,(F).

Definition 2.16 is compatible with Definition 2.7 as follows.

Theorem 2.17. Let i € H'(M;0x), then DuBy(F) = Dy(u)By(F), where the
left hand side is defined in Definition 2.7 and the right hand side is defined in
Definition 2.16.

Proof. This is an immediate consequence of Lemma 2.13 and Theorem 2.15. [J

In the rest of this section, some justification of Definition 2.16 will be given. We
will first recall how a smooth family {F,} of transversely holomorphic foliations
induces an element of H'(M;©) [12]. We may assume that there is a family
{w,} of local trivializations of Q(Fs) such that the transition functions (A,);; are
constant: (ws); = A;;(ws)i- Choose a family {V} of Bott connections so that the
corresponding connection forms ({(€s)i},{(8s);}) form a smooth family and the
equation d(w,); = —(0s)i N (ws); holds.

Fix a smooth family Te M = E;@v; of splittings and denote by 7, the projection
from Te M to vs. Let mp : Te M — Q(Fy) be the projection to the normal bundle.

0
Define then a section o of Ef®Q(Fy) by setting o(X) = —mg <8—7r; (X) ) . Note
§ s=0

that o is in fact a Q(Fp)-valued 1-form so that o; —o; = 0, or equivalently, g;; = 0.

One can verify that o is a cocycle by using the equation dw,+(8,)i Aw; = —0;A(wo)s,

. 0
R d = —Us
0s |, and 6 83Q

H'(M:;0O7#), hence also an element

where w = —w, . Thus {Fs} induces in fact an element of

s

=0
Y(M; —K#) by Lemma 2.13.

Theorem 2.18. If u € H' (M; —Kgz) is derived from a smooth family {F,}, then

0
Dqu(}—) = %BqU:S)

s=0
Proof. Let u be the element of H Y(M;©) determined by {F,}, then it suffices

O By(F.)

to show that D,(,)B,(F) = s
= s

. One has then the following equation,

s=0
19



namely,

Hence {6,} can be chosen as an infinitesimal derivative when calculating D,y By(F).

Theorem now follows from Proposition 1.10. [

The infinitesimal derivative of the Bott class constructed above is related with

the previously constructed infinitesimal derivatives as follows.

Theorem 2.19. Let € H'(M;OF).
1) Assume that —Kg is trivial, then D, Bq(F) coincides with the infinitesimal
derivative of the Bott class in [13].

2) Let D&, (F) be the infinitesimal derivative of the imaginary part of the Bott
class defined in [13] (and [4]), then D §q(F) = —2Im D, By(F).

Proof. These infinitesimal derivatives are constructed under the assumption that
B =0and g = 0. Hence D,By(F) is represented by a global (2¢ + 1)-form
(—2my/—1)~(@+D@’" A (dF)9. The claims are now obvious. [

3. SCHWARZIAN DERIVATIVES

Notation 3.1. The natural coordinate of C? will be usually denoted by z =

t(z1,... 2%). Holomorphic vectors of the form Xl—1 + et Xq@ are usually

_ 0 o (0 0 vl ‘
abbreviated as OZX , where 9 ( 5.1 (?zq) and X =*(X X9). (The

partial derivative of X by z is denoted by %—f) Similarly, holomorphic 1-forms of
the form a;dz’ + -+ a,dz? are denoted as adz = (ay -+ ay) *(dz" ---dz9). In what
follows, tensors are usually represented in this way, namely, they will represented
in matrices and the multiplications are considered under the usual multiplication

laws together with the tensor or wedge products.

20



Notation 3.2. Sections of @” Q(F) ® ®?Q(F)* are said to be tensors of type
[p, q] or a [p, q]-tensor, in order to avoid confusions with Cech-de Rham cochains of

bidegree (p,q). A [0, g]-tensor is also called simply a g-tensor.

Definition 3.3 ([16], [20], etc.). Let v be a biholomorphic local diffeomorphism
of C%. Let u = *(ul,---,u9) be the natural coordinate for the target so that
u = 7(z). Denote by 7* be the k-th component of v: v = *(y!,--- ,44). The

projective Schwarzian derivative 3, of v is a tensor of type [1,2] given as follows:

0zt 924F 0
- Z ouF 82’5825@@%2 ®dz"

k,l,t,s
-1 (dlogJ, 0 Olog J. 0
Srs—— @ dzt ® dz* 25— @ det @ d
+§q—|—1<8zt Lag ®dsf @d2* + ——2 b @ de' @ d?

where D~ denotes the differential of v, J, = det D~ is the Jacobian and d;, is the

0
Kronecker delta. If ¢ > 1, then let X! | be the coefficient of 9.0 ®dz' ®dz® in X,
’ z
and define a 2-tensor A, by the formula

-1 q 6Zl s q
23 (G- e
u=1

=1

—1 9?log J,
. d t d s
Z qg+1 0210z v wdz

—1 OdlogJ, —1 0OlogJ, .,
- dzy ® dz*
Zq—l—l ozt q+1 0z° 4 @z
-1 1 l 2.k
B Z Olog J, 0z' 07y dst & da.

a4t 1 0z OuF 921028

If ¢ = 1, then we define A, directly by the above formula because ¥, = 0, then

1 " 3 " 2
Ay=—5 (7_/ - (’Y_,> )dz@dz,
Y vy

dv;; &2, 3
where 7/, = d?:’ V= dzﬂ and 7] = d%Z by definition so that A, is the

classical Schwarzian. Finally, the projective Schwarzian derivatives are also called

the Schwarzian derivatives or the Schwarzians for short.

It is classical that ~ is the restriction of a projective transformation if and only

if A, =0if ¢g=1. When ¢ > 1, then the following is a fundamental
21



Fact 3.4 ([18],[19] for 1) and 2), [8] and [18] for 3)).
1) If ¢ > 1, then vy is the restriction of a projective transformation if and only
if £, =0.
2) 3}, =%}, and lgqjl ¥, =0.

3) A, can be seen as a kind of the curvature tensor for ..

The following Lemma is useful in succeeding calculations.

dlog J, Olog J,
5,1 524 , then

Lemma 3.5. Set 0log J, = (

9 k
+Zq+1( ® (dlog J, - dz) ® dz" —l—ak®dz ®(8long-dz)>,
-1 _
A’Y :mdalog Jy ®@dz — m(‘?log Jy Dy L. dD~ ® dz
- q_f_—l(ﬁlogjfydz)(gq_f_—l(alOgJFde)

Let X be a vector field on an open set U of C, then denote by ¢x the interior
product with X. For a p-form w, set tyw = (—1)P"lixw, or equivalently, tjw =
Wy, X).

Definition 3.6. For a p-form w, define a Q(F)*-valued p-form (w|X,) be setting

(W|2y) =D (thw)Si, Adz' @ dz®,

2,t,8

where 1 =1, . If in addition a Q(F)-valued 1-form o =} 5
oz

(w|Xy]o) = Z(L/ai‘*})Zi,s Ndz' @ o®,

i,t,8

® ot is given, set

which is also a Q(F)*-valued p-form. We define a 2-tensor (A,|o) and a p-form
(w|o) in a similar way. Note that we have

(Wi A Awp|o)
=(wilo) Awa A Awp + w1 A{wa|o) Awg A Awp + -+ wr A Awp—1 A {wy|o)
for differential forms wq, - ,w,.

By abuse of notation, the differential forms obtained by reduction are also de-

noted by the same symbols if there is no fear of confusions, e.g., (w|X,) will also

stand for a (p + 1)-form.
22



Lemma 3.7. Let yj; and v be local biholomorphic diffeomorphisms and let z;
and z; be the variables of vj; and ~yy;, respectively. Set Yi; = Yij © Vji, and denote

Yw and Ay by Yy and Ay,, where ab = ji, kj or ki, then

* 1 *
Vil — Nik + Ny = o (dlog Jij | 11 Z5k)
Vii2jk — ik + X5 = 0.

Proof. Denote J, , simply by J,;, where ab = ji, kj or ki, then we have by Lemma

3.5 the following equation, namely,

(q + 1)Azk :((] + ]‘)A'Yki
= —do; log Ji; ® dz; + 0; log JkiD’y]:ildD’)/ki ® dz;
1
— —(dlo JZ X dlo JZ
(108 ) @ (dlog Ji)
= — d(8J 10g Jk:jD’in + 81 lOg Jﬂ) X dZZ
+ (aj log kaD”}/ji + (91 log in)D’)/j_ilD”yk_jl (dD”}/ij’)/ji + D’}/kdi’in) X dZZ'

1
— q_l_—l(dlog Jkj + dlog Jj;) ® (dlog Jy; + dlog J;;)

=(¢ + DAij + (¢ + )75 Ajk
+ 3j IOg JﬂD’}/k_JldD’)/k] & de

1
- (]‘f‘—l (dlog ka &® leg in + dlog in & leg ka>

The equation for ¥ can be shown in a parallel way. [

In what follows, pull-backs of the tensors are abbreviated, e.g., 7y A2 is simply
denoted by Ais.

4. RELATION BETWEEN THE INFINITESIMAL DERIVATIVE
OF THE BOTT CLASS AND THE SCHWARZIAN DERIVATIVE

Let w = {w;} be a family of local trivializations of — Kz = A?Q*(F) and let V be
a family of local Bott connections on — K induced by a family of Bott connections
on Q(F). For each i, let z; be the local coordinate in the transversal direction and
let {7;i} be the transition functions in the transversal direction so that z; = 7;;(2;).
Finally let 1 be an element of H*(M; —K ), then p can be regarded as an element
of H'(M;©£) by Lemma 2.13. Let 0 = {o;} be a representative of the latter

element.
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Definition 4.1. Set ¥;; = ¥,,, and A;; = A,,,. Let {6;} be the family of local
N

) g
5T A @} then we define Cech-de

Rham (1, 2)-cochains L = {L;;} and S = {S;;} by setting

connection forms of V with respect to

Lij = (Al 03)
Sij = (0i] Xij| o) ,

where the right hand sides are considered as 2-forms by reduction. More explicitly,

-1 -1 _
Lij :(]—F—l(daj 10g sz) VAN 0'7/; - m@, log inD’yjil . dl)’}/]Z AN 0'7/;

-1 -1
— ( ——dlog J;; ——(dlog J;;|o;
(S aton i) (5 tdiog o))
Sij =fiDvy;" - dDvji A o
—1
=fiDv;;" - dDvji Ao

—1
+ 1 (dlog Jj; A (b5]0:) + 0; A (dlog Jjilos)),

810g in 810g in

T J q
0z; 0z;

where 81 lOngi = ( ), 92 = fz . dzi, in = J’in and 0'; is the

o’

622' v

In what follows, we adopt the following

1-form such that o; =

Notation 4.2.

(/\ldlog J)ig-iy = dlog Jigi, ANdlog Jii, A+ ANdlog J;,_,i,, and
(dlog J)! . = (dlogJUdlogJU---Udlog.J

i0-++ig
1(1—1)

= (—1) 2 dlogJiyi, N---NdlogJ;

1(1—1)

=(=1)" 7 (A'dlogJ)ig..i,.

)iO"'il

1—1%g

A generalization of the Maszczyk formula [17] for arbitrary transversely holo-

morphic foliations is as follows.

Theorem 4.3. Let u € H'(M; —Kz) be an infinitesimal derivative. Consider p

as an element of H'(M;0x) and let o € 16071)(M;Q(F)) be a representative of p,
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then the infinitesimal derivative of the Bott class D, By(F) is represented by the
Cech-de Rham (q,q + 1)-cocycle whose value on Uig.-i, 15 given by

q—1

-1
Z )Y /\legJ)zo i A Ly, A (AT d1og J)iysy--i,
=0
q—2
> (=0T A dlog )iy A Li iy AN T dlog )iy,
=0

q(g+1)
2

multiplied by (—2m/—1)~ (@) (¢ 4 1)2(-1) . If ¢ = 1, then the infinitesimal
Bott class is represented by the Cech-de Rham (1,2)-cocycle

1 ’Y”I 3 7//2
(=2 ) )dzno.
271'2 <7/ 2 7/ < g

Theorem 4.3 will be shown in steps. We compute firstly the derivatives of L and
S.

Lemma 4.4. The following equations hold modulo 1,1y after reduction to differ-

ential forms:

1
(6L)ijk = i1 (dlog Jij| Xjk| oj)

(08)iji = (dlog Jij| Eji| o),
(dL);; = 0,
(dS)i; = (dO;| Zij] o).

Proof. First, since o € I} (0.1)(M;Q(F)), one has the following equations modulo
I(4—1) by Lemma 3.7, namely,

(0L)ijr =(Nijl o5) — (Nir| 03) + (Ajr| o)
=((6A)ijkl o5)
1
=q+—1<d10g Jijl Xkl o),
(08)ijr =(0:] Xij| 03) — (0s| X | o) + (05] Xju| o)
=(0:] (0%)ij| 03) + ((60)i5| Xjr| o)

:<d10g Jz]| Z]k| 0'j>.
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Second, from the fact that dot Adz} A---Adz] = 0 for any k, it follows easily that
(dL);; = 0 modulo I(4_1y. For the same reason, dS;; modulo I(,_) is calculated as

follows:

dSi; = df;Dv;;' - dDvji Ao} + fid(D;;') - dDvji Ao}
+ q_Tll (—dlog Jj; A (db;] o;) + db; A (dlog Jji| o) — 6; A (dO; log Jj;| 04))
= dfiva_il -dD~j; N\ o}
+ q_—+11 (—dlog Jj; A (db;| o5) 4 db; A (dlog Jji| o))
= (d0;] ;| 05),

where the sign of the second term is due to the fact that df; is a 1-form. [J

Definition 4.5. Let cg,---,c, be an ordered sequence of cochains such that cgy

and c; are cochains of degree 1 and the others are of degree 2. Set then

5(607"' 7Cq) = Z €Cr(0) U"'Ucr(q)7

TEGS 41
where e = —1if 7(0) > 7(1), otherwise € = 1. Even if ¢y or ¢; is of degree 2, we de-
note by S(co, - -, cq) the cochain obtained by the above formula, where € is always

set to be 1. By abuse of notation, repetition of cochains (of even degree) is rep-
resented by superscripts, e.g., S(co, c1, ch, cg_i_l) = S(co,c1,C2,+ ,C2,C3,++ ,C3),

where ¢y appears i-times and c3 appears (¢ — i — 1)-times.

Lemma 4.6. Suppose that each c; belongs to I(1), then

S((cola) c1,-+-seq) + S(co, {(er] o), e, - s cq) + -+ S(co, -+, cq—1,(cq | ) = 0.

Proof. 1t is easy to see that the mapping such that

is well-defined. It follows that the left hand side of the formula in the claim is equal
to the image of S(co, -+ ,¢q) by this mapping. However, S(co, - ,¢q) = 0 because
each ¢; belongs to [(1). U
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Lemma4.7. S((¢' + g), (d0 + (3)9) is cohomologous to (—1)4S (0" + g+ (0] 0)), (dlog J)?).

Proof. Taking the signature in Definition 4.5 into account, one sees that the fol-

lowing equations hold. First,
DS (0, (0 + g), (d0 + B)", (dlog J)T~" 1)
=S5 (d0+ B+ dlog J, (0' + g),(d0 + B3)", (dlog J)?~*~1)
+ S (0,(d0 + B o), (d6 + B)*, (dlog J)I~"~1)
(4.7.a) =S (d0+ 3,0 +g),(d0 + B)", (dlog J)I~"1)
+ S (dlog J, (0" + g), (d0 + B)", (dlog J)?~ ")
+ S (0,(d0 + B o), (d6 + B)*, (dlog J)I~" 1)
=S5((0' +g),(d0+ B)*", (dlog J)?*~1)
+S((0' + g),(d0 + B)", (dlog J)*™")
+5(0,(d0 + B| o), (d0 + B)', (dlog J)~ 1),
and
DS (0,(0]0),(d0+ B), (dlog J)? 7~ 1)
=S5 (d0+ B+ dlog J, (0|0), (d0 + B)’, (dlog J)?~771)
— 5 (0,(d0 + B+ dlog J | o), (d + B)7, (dlog J)4=I~1)
(4.7.b) =S ((0]0),(df + B)", (dlog J)T771)
+ S ((0]0),(d0+ B), (dlog J)77)
— S (0,(d0 + B o), (d0 + B)7, (dlog J)? I~ 1)
— S (0, (dlog J | o), (df + B), (dlog J)T771).
On the other hand, the following equation holds by Lemma 3.5, namely,
S ((0]0o),(d0+ B)’, (dlog J)I™7)
(4.7.c) = —iS (0,(d0 + 8| o), (d + B)""", (dlog J)7)
— (¢ —14)S (0, (dlog J | o), (d0 + B)", (dlog J)?~""1).
Combining (4.7.b) and (4.7.c), one has
DS (0,(0| o), (d6 + B)7, (dlog J)4~7~1)
=—(j+2)S(0,(d0+ B3 |0o),(d0 + B), (dlog J)? ™77 1)
(4.7.d) —(q—j—1)S(0,(dlog J | o), (d0 + B)"*, (dlog J)*~7~?)
+ S ((0]0),(d0 + B)7, (dlog J)?7)

— S (0, (dlog J | o), (d0 + B), (dlog J)I~7 7).
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It follows from (4.7.a) and (4.7.d) that S ((0' 4 g), (df + (5)?) is cohomologous to
s(j), where

s(j) = (=1)'S (¢ + g), (A0 + B)?77, (dlog J)?)

1Y i S ({010), (0 +5)"7, (dlog J)')
J

—(=1) Y 15 (0, (dlog J | o), (d0 + B)97, (dlog J)"71).

Indeed, the claim is obvious if j = 0. One has from (4.7.a) the following equation

modulo exact cochains:
s(j) = (=1)7F1S ((0' + g), (d6 + B)7~7 1, (dlog J)'*1)
+ (=1)7*1S (0, (d0 + B| o), (A + B)77 ", (d1og J))

+ (—1)J‘+1j(;T_1j)S (0,(d0 + 3| o), (d0+ B)? 771, (dlog J)7)

-2
+ (=1)7*? qj+—13 (6, (dlog J| o), (d6 + B)77, (dlog )1

- =5 (0. (dlog T | o). (d0 + 5" (dlog Ty ")

= (=1)T1 S ((0' + g), (d0 + B)T 771, (dlog J)7 ™)
j+1)(q—7+1)
qg-+1

+ (=1)7H! ( S(0,(d0 + B|a),(dd+ B)T 77, (dlog J)?)

+ (—DjH%S (0, (dlog T | o), (d0 + 3)7~7, (dlog J)T ).

Then by (4.7.d), s(j) is seen to be cohomologous to the cocycle
(=) ((0 + 9), (0 + B)*7 7", (dlog ) )

(LS (8], (00 + 91, (dlog I)7Y)

- (-1)]‘%%5 (8, (dlog T | o), (d8 + B)1, (dlog J))
=s(j+1).
Thus the claim is proved. Finally, by the equation
S(0,(dlog J | o), (dlog J)T™1) = —%S ((0|0),(dlog J)?))
we see that

s(q) = (=1)*S ((6" + g), (dlog J)*) + (=1)'S ({¢| ), (dlog J)?) .

Thus we are done. O
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Definition 4.8. For a (g, q)-cochain ¢ and 0 < k < ¢, define a family J)¢ =
{(Owyp)ig--i, } of Q(F)*-valued g-forms on Uj,...;, by setting

q
asol 11 1q
(a(k)go)zozl iq Z 00 i X d ik,
2
=1 ik
0
where —fdz CAdZ = —fdqu A Adze by definition. Define then a
0z e kT 'k
i 1k

(g,9+ 1)-cochain or(p) by

ok (P)igir-iy = <(3(k)<ﬂ)z'oi1 iq|%>

q
8

. 0
where 0;, = >
=1 azlk

ol . Finally, set

Our calculations can be continued as follows.

Lemma 4.9. (dlog J)*U(0'+g+(0|c))U(dlog J)?~F is cohomologous to o ((dlog J)9).

k(k—1)

Proof. First of all, note that ¢ U---Ucp = (—=1)" 2 ¢ A--- A¢y if each ¢; is a

(1,1)-cochain. Note also that we may assume that o;, = o, Adz;, A--- Adz] +
cddzl NN dzgk_1 Aof by Lemma 2.13. Hence by the equation (2.11.b),

(dlog J)* U@ U (dlog J)4~*

q(q+ )

= (_ ) 9/ A Wiy, det(alk log ']107,17 e 78ik log Jiqfliq>

q(q+ )

=(-1) (do, + 05, N 0yy,) det(0;, log Jigiy -+, 0y, log Ji, i),

where w;, = dz} A--- A dz}

i i.» and each 0;, log J;,_,;, is considered as a vector in

Trow.

Noticing that 0;, A c;, = —(0;,]04,) A w;, , one has

q(q+1)

(— ) (6 A ,G'Vzk) det((‘?ik 10g Jioiu s ,c‘%k log Jiq_1iq)

— ((dlog )Y* U (0| o) U (dlog J)IF )i, s
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where (0| 0); = (0;] 0;). Similarly,

d&zk det(@ik log J’ioila s ,8¢k 10g Jiq,liq)
:<d10g Ji0i1| dalk> (leg Jlllz) - A (leg ‘]iq_liq>
- (d lOg Jioh) A <d lOg Jiﬂz’ dalk> (d lOg ']1213) A (d 1Og Jiqfliq)
4+

+ ( )q 1(d10g Jzoh) AN (d IOg Jiq_ziq_1> A\ <d10g Jz | dO’Zk>

q—1%q

Let p(k) be the (g, q)-cochain such that

q(q 1)

p(k’)io,..iq = (—1) (dlog Jloh . /\dlog Jiq_1¢q|0ik>.

By the above equation, we see that

q(q+1)

()" (D k)i,
= d&zk det(aik log ‘]ioiw s ,&-k log Jiq_liq)
+ (d0;, 1og Jigiy | 04, ) A (dlog Jiyiy) A= -+ A (dlog Ji,_yi,)
— (dlog Jiyi, ) A (dO;, 1og Jy i, | 04 ) A (dlog Jiyiy) A -+ A (dlog Ji,_i,)
+ ...
+ ( 1)q 1(d10g ']1011) A (dlog Jiq72iq71) A <da log Jiq71iq| Uik>
= dO’ik det(@ik log Jioh? cee ,Oik log Jiq,liq)
a(q+1)
— (=1) "5 o, ((dlog J))ig..s, -

On the other hand,

(D/p(k))io,"' Jig41

k
q(q 1)
:Z<_1)l(_ <d10g Jloll : /\dlog Jil—1il+1 AREE /\dlog Jiqiq+1’0ik+1>
g q(q 1)
+ Z (— (dlog Jigi, N -+ Ndlog Ji,_ iy Ao+ Ndlog J; i, | 0i)
I=k+1

(1) (=1)*(dlog Jigi, A--- Adlog Jopsoy A---Adlog Jiiiii|g. . wi)

Zklk+1

— (— ) dlog Jiyi, N+~ Ndlog J;, i, - (trg. ) - dlog J;

= ((dlog J)* U g U (dlog J)*~*).

doi1ige1

7
Lipiptt k+1%k+2

Thus we are done. O
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q
Note that o((dlogJ)?) is the reduction of (Z Oy (dlog J)q> ® o to a differ-
k=0

ential form. We identify (A'T*M)A(T*M @ V) A (AT T* M) with AT*M @V
a

for any vector bundle V, then the tensor ) O(x)(dlogJ)? is calculated as follows;
k=0

Lemma 4.10.

-1

q
7> Oy (dlog J)*

k=
-1

o

- (C] + 1)2 (/\ldlog J)zo--'u N Ailiq A (/\q_l_ldlog ‘])iz+1~~-iq
=0

N

—(g+ 12D (AN'dlog J)igewi, ANiy i, AN dlog )iy i,
l

Q

I
=

where (N'dlog J)iy...;, = dlog Jiyi, Adlog Jii, A--- AdlogJ;

1—1t°

Proof. Firstly,

-1
Dyt dDyiy @ dzi = Y Dy, DYkt @DV 1.m @ dz.

m=k

Hence doj log J; ;41 ® dz;, can be rewritten as follows if k # [.
Case 1. k < [:

doy log Jl,H—l ® dzp,
=d0; log Jii41 @dz + 0, log Jl’l_i_lDka’}/l;ldD’)/lk ® dzp

-1
=dolog Jii+1 @ dz + Y O log JLis1 DYy @D Yma1,m @ 2.

m=k

Case 2. k> [:

doy, log Jl,l—|—1 ® dzp,

=d0o,log J; 141 ® dz; — Oy log lel+1D’yk_l1dD’ykl ® dz
k—1
=doylog Ji11 @ dz — Y Om10g Jiis1 Dy D Vi1 @ Az

m=l
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Hence we have the following equations, namely,

Z (N'dlog J)ig...iy A ddy log Jiyi, A (N dlog J)iy, i, @ dziy

0<k<q
0<I<g—1

g—1 g
=>" 3" (N'dlog J)ig.i, Addy, 1og Jiyip,, NN " dlog J)i,,.q, ® dzi,
=0 k=Il+1

q—1
+ Z(/\ldlog J)i()"'il A da” lOg ']ilil—o—l VAN (/\q_l_lleg J)il+1~~~iq X dZil
1=0
g—11-1
+ (A'dlog J)i.iy A ddy log Jiyiy., AN dlog J)iy i, @ d2iy
1=0 k=0
qg—1

=0 k=Il+1
q—1 q k—1
=D (Ndlog Digiy Adiy d0g Jiyi e, DL dDYi i A (AT R dlog )iy © daiy,
=0 k=Il4+1m=I
q—1
l —1—1
+ > (A'dlog J)ig...i, Ndd;, log Jiiyy AN dlog J)iy i, ® dz;,
=0
qg—11-1
l —1—1
+ (/\ leg J)iO"'il /\d(?il lOg Jilil+1 N (/\q leg J)'il+1"'iq ®d2’“
=0 k=0
q—11-1 1—1
FY DD (N dlog Digiy Adi 108 Tigiy o DYV i ADYig i A AT N dl0g )iy iy ® i,
=0 k=0 m=k
qg—1
l —1—1
:(q+ 1) (/\ dlog‘])iomiz /\d@il IOgJiﬂ'l+1 /\(/\q leg J)ilJrl...iq ®d2’il
=0
qg—1qg—1
- (g —m)(A'dlog J)ig...i, A Dy, log Jiyiy s Dyt s dDvi, yin AN dlog )iy i, ® dzi,
+ m+1tm + + q
=0 m=l
qg—1 1—-1
+ (m + 1) (A'dlog J)ig-iy A iy 108 Jiyiy s DV, i dD%igyi A (AT dlog )iy iy © iy
=0 m=0

On the other hand, the following equations hold. First,

q—1
> (N'd1og J)ig. iy A (D3, 108 Jiir DY dD%i i) AN dlog )iy iy @ di,
1=0
= —dlog Jiyi, N---NdlogJ; ® dlog Ji, iy -
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Second, rewriting the formulae in Lemma 3.5, one has

1 —1 _
Az‘ziz+1 - = q—|——1dail lOg Jiz+1iz ® dziz - q_+_—18u log Jiz+1izD7ili1iz dD7i1+1il ® dziz
1
_ Wdlog Jil+1il ® dlog ']iz+1iz

1 —1 _
= mdaﬂ 10g Jilil+1 & dZZ'l + mﬁzl log Jilil+1nyil_i1ildD’Yil+lil X dzil

1
- (q + 1)2d10g J’ilil+1 ® dlog Jilil+17

and

0 _
E’I;lil+1 — az. ® D,yil_;_llildDﬁyiH»lil ® dZ,L‘l
i
q
- — 0 ® dlog J; ®dzF + — 0 ® dzF @ dlog J;, . s
Oz k g 14171 i 9z k 2] g 1417
k=

0 _
- az ® D,y’il_ilildD’yil_;,_lil &® dZil
i

L)

1 0 0
+ q—i——lz (0 F ® dlog Jii, ®dz” + G_k ®dz“ ®dlongm+1) .
k=1

It follows that

—1

(q + 1)2 (/\ldlog J)iomil A Ailiz+1 N (/\q_l_ldlog J)il+1--~iq

Q

|~
~
o

q

= (q + 1) (/\ldlog J)io'-~iz A dazz log Jilil+1 N (/\q_l_ldlog J)il+1"~iq & dzil
=0

[ay

l — —l—
- (q + 1) (/\ leg J)iO'“il N a’iz log Jilil+1D7’ili1ildD’y7;l+1'il A (/\q 1d10g '])il+1'“iq ® dziz
l

Q

Q
I
-
I
=

(/\ dlog J)iy...i N dlog Jii A (/\qflfldlog J)iz+1~~~z'q ® dlog Jii, .
!

I
=

and that

<d log ']ilil+1 |E

Z.’rn‘i7n+1 >

= aim log Jizil+1D%—ml+1imdD7im+1im (%9 dZZ'm

1
+ q—l——l (leg Jimim+1 X leg Jilil+1 + leg Jilil+1 X leg Jimim+1) .
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Combining these equations, one obtains the following equation, namely,

> (Ndlog J)ig..i, Addy, log Jiyiyy, AN dlog )iy, ® dz,

0<k<gq
0<I<qg—1
q—1
l —1-1
:(q—|— 1)2 (/\ leg J)iO"'il /\Ailil+1 /\(/\q leg J)ilJrl...iq
=0
q—1
l — —1-1
+(q+1) Y (N'dlogJ)ig...i A9, 108 Tiyi e, Dviy Loy dDvi i A (N dlog )iy iy @ dzi,
=0
q—1

+ leg J’ioi1 ARERA leg Jiq_1iq ® leg Jiz’il+1

=0
q—1 g—1
- (q+1)(A'dlog J)ig...iy A i, log Jiyiy s DY, L i dD%ipyyi A (AT dlog J)iyy i, @ dziy,
=0 m=l
q—1 g—1
+ (m + 1) (A'dlog J)ig-iy A iy, 108 Jiiyo s DV, i dDVigyie A (AT dlog I)iy i, © dziy,

—1

= (q + )2 (/\ leg J)zo -1y Aizil+1 A (/\q_l_ldlog ‘])il+1"'iq

Q

=0
q—1
+ Z leg Jioil VANRRRIVAY leg Jiq_1iq X leg JiliH—l
=0
qg—1 m—1
- (¢ + 1)(A'dlog J)ig...i, A 85, log Jirirgq D'Yi_n3+1imdD'Yim+1im A (AT dlog S)igyqiq ® dziy,
m=1 [=0
q—1
— (m +1)dlog Jiys, A--- Ndlog J;,_ i, @ dlog J; i,
m=0
q—1
_i—
= q 0" Zl ilil+1 ! il+1"'iq
(g +1)? (/\ dlog J); A A A (N dlog J)
=0
qg—1 m—1
l —l—
- (q + 1)(/\ leg J)’iO""il N <d lOg Jizil+1 |Zimim+1> N (/\q 1d10g J)iz+1"'iq
m=1 [=0
g—1 m—1
+ 3 (N'dlog J)ig.i, Adlog Ji iy, AN dlog J)iy, i, ® dlog Ty,
m=1 [=0
qg—1 m—1
+ (A'dlog J)ig.iy Adlog Jiyiy, AN dlog )iy, @ dlog J; i
m=1 [=0
qg—1

mdlog Jiyi, A+ Ndlog J;, i, @ dlog J;, i,

3
I
=]
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=(q+ 12 (N'dlog J)igiy ANiiyyy AN dlog T)iy i,

1=0
qg—2 q—1
l —1-1
-3 (¢ + 1) (A dlog J)ig...iy A (dlog Jiyiyy [Zipiny) AN dlog )iy,
=0 m=I1+1
q—1
+ mdlog Jiyi, A+ NdlogJ;,_ i, @ dlog J;, i, .,
m=1
q—1
— md log Jloh A---Ndlog Jiq_liq ® dlog Jimim+1
m=0
q—1
= (q + )2 (/\ leg '])10 7] Ail’il+1 A (/\q_l_ldlog '])iz+1"'iq
1=0
q—2
) (g + D) (A'dlog J)ig...iy Ad1og Jiyiy,, | Zipsrin) A AT dlog Iy, -
1=0

Finally by Lemma 3.7,
(dlog Jivipyy | Bigig) = (@ + D) (Niyi, — Niiy + iy )-
Lemma 4.10 follows from the last two equations. [J
Proof of Theorem 4.3. First, by Lemmas 4.7 and 4.9, D,B,(F) is cohomologous

q
to —(2my/—1)" Vg ((dlog J)?) = —(2my/—1)~(a+1) < >~ Ouy(dlog J)4 a>. Sec-
k=0
ond, by Lemma 4.10,
O'>

q
<Za(k)(dlogJ)q
q—1
(q+ 12 (1) (Adlog J)igeiy A Liyi, AN dlog Ty,
=0

k=0

q(q 1)

—(-1)

q(q 1)

q—2
— (1) (g+1 22 I N dlog J)igeiy A Liy i, A (N dlog J)iy -
=0

Theorem 4.3 follows from these equations. [J

In general, sections of vector bundles over M are said to be foliated if they are
locally constant along the leaves and if they are transversely holomorphic. Let
I'=(Kz) be the sheaf of germs of foliated sections of Kr = AYQ(F)*, and let
I'r(Kr ® Q(F)*) be the sheaf of germs of foliated sections of Kz @ Q(F)*. Cech
cochains with values in these sheaves are denoted respectively by C’}(U ; Kr) and
C:U; Kr ® Q(F)*), and the cohomology groups are denoted by Hx(M; Kr) and

H(M; Kr ® Q(F)").
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Lemma 4.11. The mapping

q
S=> 0w : CxU; K5) - C3(U; K5 @ Q(F)")
k=0

given by

Q

q q
69% o s
’LO ’Lp Zo "’Lp l Zik

=0 =1
mduces a homomorphzsm on the cohomology. We denote again by this homomor-

phism by S.

The proof is straightforward and omitted. It is easy to verify that S is indepen-

dent of the choice of a foliation chart.
Lemma 4.12. There is a well-defined pairing
(1) CRUs Kr @ Q(F)") x ENQ(F)) — A™THU) ® ATFHI(U) C A2 (U)
such that if n = {ni,...., } and (a,b) = ({a:},{bs;}), then
(1@ 0))ig iy igvier = (Migrig] @ig) © (1) (igeriy [ bigigy) -
This pairing induces a pairing
(1) HE(M; K5 © Q(F)") x H'(M;©5) — H*™(M;C).

9 .2
0z 70z
of local Bott connections and let {6;} be the family of local connection forms, then
0; € I))(U;) and 0; — Dv;i0;Dv;;' — dDv; Dyt € 1)y, (Uij; End(Q(F)). Let p
be an element of H'(M;©r) represented by an element ({c;}, {si;}) of EX(Q(F)).

Proof. We adopt as a local trivialization of Q(F). Choose a family

Recall that each o; and s;; can be written as a; = o, for some C%-valued 1-

62’1‘

0
form aj, and s;; = ~—si; for some C%valued function s;;. The families {o}} and

8zz
{sgj} satisfy daj + 0; A o € I1y(Us), (D’yji aj — o) — (ds + 0;s, ) € I1y(Usj)

and s;; — s}y, + Dv;is};, = 0. Note that these conditions are consistent even though
the connection is not necessarily globally well-defined. Let p be an element of
HEL(M; Kz ® Q(F)*) represented by an element 1 of C-(U; Kr @ Q(F)*).
Claim 1. (n](a,s)) is a Cech-de Rham cocycle.

First, d(n;,...i, | ci,) = 0 because doj € I(1)(U;) and that 7 is foliated. Second,

(0| a))ig-iyr = (1)U Nig..i, | dSiyi,y ), Where ds;j = %dsgj. Since 7 is foliated,
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the right hand side is equal to (—1)7™'D" (1;y...i,| Si i, ). Finally, 6(n|s) = 0
because 617 = 0 and ds = 0. This completes the proof of the claim 1 and the first
part of the lemma.
Claim 2. The cohomology class represented by (n|(«,s)) depends only on the
cohomology class of («, s) once 7 is fixed.

Assume that there is an element {3;} of E%(Q(F)) = A%OU) such that of —
(dpB; + 0,0;) € I(ll)(Ui) and that s}; — (D’yﬁlﬁ; -0 € I?l)(Uij) = {0}, where

0 0 o
Bi = azlﬂ;. Then, D" (5| 8;) = <n 97 dﬁ;> = <77 o7 (dp; +0iﬁg)> = (n| ),

where the index of 1 is omitted for simplicity. On the other hand, D'(n | 5)y...i,., =

(—1)q<777;0-~z'q |ﬁiq+1 —ﬁiq> = (—1)‘1(7],-0..‘2-(1 | siqiq+1>. Thus (n](«, s)) is null-cohomol-
ogous.

Claim 3. The cohomology class represented by (7|(a,s)) depends only on the
cohomology class of 1 once («, s) is fixed.

Suppose that n = dp for some ¢ € é}‘l(u; Ky ® Q(F)*). By repeating similar
arguments as above, we see that D" (p|a) = 0, D'{¢|a) = (n|a)+(=1)7" Y| ds),
D" (¢ |s) = (¢|ds) and D’{¢|s) = 0, where indices are omitted for simplicity. Hence
Mml(a,s)) =D({¢|a)® (—1)%{¢]|s)). This completes the proof. [

The Cech-de Rham (g, ¢)-cocycle (dlog.J)? determines a class in HE(M; Kr).
This class is independent of the choice of a foliation chart and denoted by [dlog J9].
Note that dlog.J determines a class [dlogJ] in H}_-(M;Q(}")*), and [dlog J1| =
[dlog J]9.

Definition 4.13. Denote by L the cochain S(dlogJ)?. The cohomology class
in HE(M; Kr ® Q(F)*) represented by £ is denoted by L£(F), that is, £(F) =
S([dlog J]?).

Corollary 4.14. Under the assumption of Theorem 4.3, the cocycle o((dlog J)?)
is equal to (L|o). Hence D, By(F) is represented by (L(F)| p).

From the viewpoint of calculations, Lemma 4.10 is the principal reason for which
D, B4(F) can be expressed in terms of the projective Schwarzian. It is naturally
understood by a classical understanding of the Schwarzian derivative in terms of
difference of Affine connections [16], [8] (cf. [18], [5], [20]). Indeed, the difference

of the derivatives of (dlogJ)? is calculated in defining £. Here is an example of

calculation of £ = S(dlog J)? when ¢ = 1. Note that J;; = Nij _ ;; and that

azj - ’YZ

" "
legJij = %dzj = —7—31

1] 7t

dz;. Then, we have the following equations as promised
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by Theorem 4.3, namely,

= — —deZ & dZZ + ——,Jde & de
0z; Vji 8zj Yij
111 1! 2 111 1! 2
= — ’Y#— 7—‘31 dz; @ dz; + ,L,]— Py—ij dz; @ dz;
Yji Vji ij ij
12 12 2
Vji 2 Yji

Corollary 4.14, Lemmas 4.11 and 4.12 justify the following

Definition 4.15. Let u € HY(M;—Kz) = H'(M;Of), then the infinitesimal
derivative of the Bott class D, B, (F) is by definition the Cech-de Rham cohomology
class (L(F)| u), where L(F) = S([dlog J]?).

By Lemma 4.10, £(F) is the obstruction for F admitting a transverse projective
structure if ¢ = 1. If ¢ > 1, it remains true that £(F) is closely related with the
existence of transverse projective structures, however, it will be an obstruction for
certain reduced structures. Indeed, the tensor A appears in the formulae instead
of the Schwarzian derivative . It is clear that A = 0 if ¥ = 0 (¢ > 1) but the
converse is not true. Such a property of L(F) is reflected in infinitesimal derivatives

as follows.

Definition 4.16. The Bott class of a transversely holomorphic foliation F is said
to be infinitesimally rigid if (£(F)|u) =0 for any u € H'(M;O ).

Definition 4.17. A transversely holomorphic foliation F is said to be transversely
complex projective on U if F admits a structure of a (PSL(¢+1; C), C P?)-foliation
on U. If U = M, then U is omitted. Here we always assume that the underlying
transverse holomorphic structure coincides with the original one. A transverse
complex projective structure is also called a transverse projective structure for
short. If a transverse complex projective structure P is given on an open subset U,

then a foliation atlas is said to be adapted to P if the atlas gives the structure P
on U.

Corollary 4.18. The Bott class of transversely projective foliations are infinites-
imally rigid. Indeed, the Bott class of transversely holomorphic foliations are in-

finitesimally rigid if the tensor A is equal to zero.
38



Note that there are transversely projective foliations with non-trivial Bott classes.
In fact, there are transversely projective foliations with non-trivial Godbillon-Vey

classes [4]. We will cite an example as Example 7.2.

Remark 4.19. The constructions are also valid for the Godbillon-Vey class of real
foliations with obvious replacements. Especially, a formula of the same kind as
Theorem 4.3 holds and a definition of the same kind as Definition 4.15 makes a sense.
The codimension-one case is exactly the Maszczyk formula [17]. Theorem 4.3 and
Definition 4.15 for real foliations are highly non-trivial, because it is well-known
that the Godbillon-Vey class admits continuous deformations (due to Thurston,
cf. [14]). However, it is known that the infinitesimal derivative of the Godbillon-
Vey class always vanishes when restricted to transversely holomorphic foliations
[4]. So these real versions make sense for foliations which do not admit transverse

holomorphic structures.

5. LOCALIZATION

We have obtained two expressions of the infinitesimal derivative as D, By (F)
and (L(F)|p). These expressions lead to two kinds of localizations. We begin with

some relevant definitions.

Definition 5.1. Let w = {wj,,... ;,} be a Cech-de Rham (p, g)-cochain. Let I be
the index set of the open covering U = {U;} and set

I, = {Z S I|E|(’Ll, NN ;ip) c IP s.t. Wiiy o iy % O} .

The open set
suppw = U U;.
iel,
is called the support of w. If suppw is relatively compact, then w is said to be of

compact support.

Let w be a globally defined differential form and denote by s(w) the support of
w in the usual sense. If V' is an open set containing s(w), then taking refinements
of coverings, we may assume that s(w) C suppw C V.

We denote by H} the cohomology of compactly supported cocycles. If U; and
U, are open subsets of M such that U C V, then there is a natural mapping
H!(Uy; R) — HZ(Uy; R), where R is an arbitrary coefficient.

The localization of D, B,(F) is defined by means of I'-vector fields. The notion
of I'-vector fields and basic X-connections below is originally due to Heitsch [14].

In what follows, we take refinements of open coverings if necessary.
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Definition 5.2 [2]. A vector field X defined on an open set Ox of M is said to
be a I'-vector field for F if [E, X]| C E on Ox. Set Zx = {X € E}U (M \ Ox),
then F and X form a transversely holomorphic foliation on the open set M \ Zx.
This foliation is denoted by Fx.

Note that Zx is saturated by leaves of F if Ox is saturated. Note also that if
X is a I'-vector field on Ox, then X is locally leafwise constant and transversely

holomorphic as a section of Q(F) on Ox.

Notation 5.3. Given a I'-vector field X defined on Ox, denote by X the foliated
section of Q(F) on Ox induced by X.

In what follows, for a I'-vector field X, we denote by Ux an open neighborhood
(which is not necessarily saturated) of Zx and by Vx an open neighborhood of
M \ Ux. The neighborhood Ux will be arbitrary small.

Definition 5.4. Let X be a I'-vector field for F and let Ux and Vx be as above.
A Bott connection V = {V;} of —K is said to be a basic X-connection for F
supported off Vx if (V;)xs = Lxs if U; C U, where Lx denotes the Lie derivative

with respect to X. Basic X-connections are usually denoted by V.

Note that basic X-connections depends only on X¢ but not on X itself. In other
words, if X and X' are lifts to TeM of the same foliated section of Q(F), then
VX =vX,

Let V = {V;} be a basic X-connection, then it is easy to see the following

properties:

1) The curvature form of V; belongs to 1(21) (Fx) on Vx, where I(Ql) (Fx) is the
ideal I(1) appeared in Notation 1.3 but F is replaced with Fx.
2) If V! = {V/} be another basic X-connection, then V; —V, € I(ll)(}'x) on
Vx.
It follows that the Bott vanishing for Fx can be applied on Vx when basic X-
connections are used. If one admits to use a partition of unity, VX may be assumed
to be globally defined. Then it is a basic X-connection for F supported off Vx in
the sense of Heitsch. Remark finally that once fixed an isomorphism Q(F) =
CXg & Q(Fx), a basic X-connection induces a Bott connection for Fx on V.
If W is an open subset of M, then elements of H!(W;© £|y) can be regarded as

infinitesimal deformations of F whose support is compact and is contained in W.

Definition 5.5. Let X be a I'-vector field for F, and let Ux and Vx be as

above. Let W be an open subset of M and let u € H!(W;Ox|w). Assume
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that ;v admits a representative o € I (qq_l "

Then, denote by res D, B,(F,X) the element of H2?t!(Ux N W;C) represented
by D,B,(VX,(VX)), where V¥ is a basic X-connection supported off Vy, and

(VX) is the infinitesimal derivative of VX with respect to o.

(W; —Kx) which is of compact support.

It is clear that res D,By(F,X) depends on X¢ but not on X itself so that
res D, B, (F,X) is also denoted by res D, B(F, Xgq).

Theorem 5.6. res D, By(F, X) is well-defined and v,res D, By(F, X) = D, By(F),
where 1 : UxNW — M is the inclusion and 1, : H241(UxNW;C) — H?*(M;C)
18 the natural mapping. Moreover, if Zx is decomposed into connected components
Zy,-++ , 2y, then the residue is naturally decomposed into elements of H?4T1(U; N

W, C) as well, where U;, i = 1,...,r, are mutually disjoint open neighborhoods of
Z;.

Proof. By the assumption, p is represented by a cocycle compactly supported in W.
It follows from (2.11.a) and (2.11.b) that the support of the infinitesimal derivative
of any Bott connection is compact and contained in W when taken the wedge
product with elements of I(;)(M). On the other hand, if basic-X connections are
used in calculation, cochains such as (df 4+ 3)¢ vanish on Vx thanks to the Bott
vanishing for Fx. It follows that the supports of the coboundaries constructed in
Claims 3 and 4 in the proof of Theorem 2.15 are compact and contained in Ux NW.

The last claim also follows from similar arguments. This complete the proof. [

Let X be a I'-vector field for F and let Uy and Vx be as above. Suppose that
there is a trivialization ey, of —K z|y, exists, then it is shown in [2] that the Bott
class is naturally an element of H29"Y(Ux; C/Z), which is called the residue of the
Bott class. When residues are considered, a version of Theorem 2.18 holds under
some additional conditions. Since the residue is defined as above, it is natural to

consider a family of triples {(Fs, X, es)} with the following properties:

1) {Fs} is a smooth family of transversely holomorphic foliations with Fy = F.

2) {X;} is a smooth family of I'-vector fields with Xy = X, that is, each X
is a I'-vector field for F,;. We assume moreover that Zx_ is independent of
s, and denote Zx_ by Zx.

3) There is an open neighborhood Ux of Zx and an open neighborhood Vx of
M\ Ux such that e, restricted to Vx forms a smooth family of trivializations
of —Kr,
assuming that s is small. We denote ey simply by e.

Note that res B,(Fs, Xs, €5) is well-defined as an element of H24T(Uy;C/Z).
41
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Theorem 5.7. Let {(Fs, Xs,es5)} be a smooth family of triples as above. Assume
that e is foliated and that Lxe = 0, where Lx denotes the Lie derivative with

respect to X. Let p € HY(M;—Kgz) be the infinitesimal derivative induced from

{Fs}, thenres D, By(F, X) = %res B,(Fs, Xs, €5)
s=0

Remark 5.8.
1) The assumption on e can be rephrased as ‘e is foliated with respect to Fx’ .
2) As Example 7.3 shows, Theorem 5.7 fails if the assumption on e is dropped.
Notice however that the left hand side is independent of e. The assumption
is needed in order that Proposition 1.10 works in a compactly supported

way.

3) If ¢ = 1, then it is natural to choose X as eg.

Proof of Theorem 5.7. The proof is basically a repetition of the proof of Theorem
2.18. Under the assumptions, one can proceed in a parallel way and a cocycle of
the same kind as the one given in the beginning of the proof of Proposition 1.10
can be obtained. Since there is a trivialization of —Kz on Vx, the cocycle © is zero
on Vx. Moreover, since e is foliated with respect to Fx, the cochain u; as well as
vy belong to I(1)(Fx). Hence the cochains py is equal to zero on Vx. Therefore,
the both hand sides in the statement coincide as an element of H241(M;C). O

Another localization can be defined in terms of the cocycle £ as follows. Recall
that we do not need the assumption on representatives of p (cf. Definition 4.15)

and that the cocycle L strongly depends on the choice of foliation charts.

Theorem 5.9. Let F be a transversely holomorphic foliation of M. Suppose that
F admits on an open set V of M a transversal complex projective structure and fix
such a structure P. It is possible that V = &. Let U be an open neighborhood of
M\V. Finally let u € H:(W;Ox|w), where W is an open subset of M, and let o
be a representative of . Then (L| o) represents an element of H2TH(U N W;C)
which is independent of the choice of representatives, where foliation charts are

always chosen to be adapted to P on V.

Proof. By the choice of foliation charts, the support of £ is contained in U. Hence
the support of (L |o) is contained in U N W. If we choose another foliation chart
adapted to P and denote by L’ the resulting cocycle, it is clear that £ and £’ are
cohomologous as cocycles supported on U. On the other hand, by Claim 2 in the
proof of Lemma 4.12, (£ |o) and (L] o’) represent the same cohomology class if o

and o’ are representatives of u. [J
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Definition 5.10. We denote by res (£(F, P)| u) the resulting element of H29(UN
W, C).

If a compactly supported infinitesimal derivative is given, then they coincide as

follows.

Proposition 5.11. Let W be an open subset of M and let p € H:(W; —Kz|w).
Then res D, B,(F, X) and res (L(F,P)|u) coincides as elements of H21T(W; C)

for any I'-vector field X and any transverse projective structure P.

Proof. Under the assumptions, the support of the coboundaries constructed in Lem-

mas 4.7 and 4.9 are compact and contained in W. [J

6. RELATION TO THE FATOU-JULIA DECOMPOSITION

If the complex codimension is equal to one, the localization in terms of res (L(F, P)| u)
and the Fatou-Julia decomposition by Ghys, Gomez-Mont and Saludes [11] are re-
lated as follows. Note that in this case £ is the classical Schwarzian (Definition
3.3). Let Bx be the sheaf of germs of locally L foliated sections of Q(F)* ® Q(F),
where Q(F) denotes the complex conjugate of Q(F), then H°(M; Bx) is the space
of locally L> foliated sections of Q(F)* ® Q(F). The space H°(M;Bx) is a Ba-
nach space with the essential supremum norm and there is a natural mapping
§ : HY(M;Br) — H'(M;©z). Tt is natural to regard the image of § as infini-
tesimal deformations preserving Fr, where Fr denotes the real foliation obtained

from F by forgetting the transverse holomorphic structure.

Lemma 6.1. Let M be a closed manifold and let o € H°(M;Bg). Set u = (o),
then (L|o) is well-defined as an integrable 3-form which is equal to (L(F)| u) as
an element of Homg (HY™M=3(M; C),C) = H3(M;C).

Proof. After extending o as a section of E* ® Q(F) by requiring o|rx = 0, the
lemma follows by approximating o by differential forms of class C'>° and by Lebesgue

convergence theorem. [

More detailed information on H®(M;Br) was obtained in [11]. Let F be the
Fatou set and F; be its connected components, and let J be the Julia set and
Jo be the recurrent component and .Jp,--- ,J,. be the ergodic components. Since

measurable sections are considered, there is a decomposition

(6.2) H°(M;Br) =H"(J; Br) @ H(F; Br)

=P H(Ji: Br) & €D H(Fi; BF).
k=0 =1
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It is known that the mapping § restricted to H°(J;Br) is injective [11, p.307].
Moreover 0|y, is by definition equal to zero and the image of 6|, , k # 0 is one-
dimensional. Recalling that H°(M; Bz) is a Banach space, choose a basis o}, of unit
length of H°(Jy; BF) for each k > 0. By choosing a section, we fix an isomorphism
HY(M;0f) = H(J; Br) ® Hy ® Ho, where H(J; Br) ® H = Imd, and Ho &

coker .

Remark 6.3. Elements of H'. correspond to infinitesimal deformations preserving
Fr but which cannot be induced by infinitesimal deformations supported on J.
Elements of Ho correspond to infinitesimal deformations which cannot arise from
deformations preserving Fg.

We normalize the volume of M to be 1 and denote by |J| the volume of Jj.
Note that |J;| > 0 for £ > 0. We propose the following

Definition 6.4. Let 07, B1(F), k > 0, be an element of H3(M; C) determined by
|Ji| (£ |0ok), and call it the infinitesimal derivative of the Bott class with respect to

the ergodic component Jj.
It is easy to see that 0, B1(F) is independent of the choice of oy.

Corollary 6.5. Let € HY(M;Ox) and let i = pj+ s +po be the decomposition
given by the isomorphism (6.2). Decompose further py as > ax(|Jg| oK), then there
k=1

18 a measurable decomposition

(L(F) ) = ards Bi(F) + (L(F)| W) + (L(F)| no)-
k=1

Although each Fatou component admits a transversal projective structure [11],
(L(F)| p'r) need not vanish. Indeed, the transition functions from the Fatou set to
the Julia set are not necessarily transversely projective. However, it is possible to
assume that such phenomena occur only in an arbitrary small neighborhood of the

Julia set. Recalling Theorem 5.9, we introduce the following

Definition 6.6. Let U be an arbitrary small neighborhood of the Julia set J. Fix
a transverse projective structure on the union of Fatou components and denote it
by P. Let u € HY(M;Ox) and let o be a representative of p, then denote by
res (L(F,P)| u) the element of H3(U; C) represented by (L | o).

The class res (L(F, P)| ) is independent of the choice of a foliation chart adapted
to P and the representative o. If J can be decomposed into connected components,

then the residue admits a natural decomposition.
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Remark 6.7. As Example 7.1 shows, the image of res (L(F, P)| u) in H3(M; C) and

T

> a0y, B1(F) are distinct in general.
k=1

There are foliated sections (hence trivializations) of Q(F) on most of the Fatou
components. Indeed, the wandering Fatou components are locally trivial fibrations
of which base spaces (or equivalently leaf spaces) are finite Riemann surfaces, while
semi-wandering and dense components are G-Lie foliations [11], where G consists of
projective transformations. The only exceptional case is that the Fatou component
is a wandering component of which the base space is closed surface of genus g # 1.
Let F’ be the union of such wandering Fatou components and let U be an arbitrary
small neighborhood of JUF’. Then one can always find a foliated trivialization X¢
of Q(F) on a neighborhood of M \ U. Thus there is an element res D, B (F, Xq)
of H3(U;C), where the residue is defined by choosing a lift of X¢ as a I'-vector
field.

This residue and the residue given in Definition 6.6 can be related as follows.
Let X be a I'-vector field defined on O, then a transverse projective structure on O
is naturally chosen because TcO = E|p @ CX. More precisely, let {O;} be an open

covering of O by foliation charts, then there are projections 7; : O; — C which give

the transverse holomorphic structure. Let X; be the (1,0)-part of ;. X|o,, then
X; is well-defined and holomorphic because X is a I'-vector field. By integrating

2Re X, one obtains a foliation atlas {V;} with the following properties:
1) {V;} is a refinement of {O;}.

2) The transversal direction of transition functions from V; to Vj is the restric-
tion of a translation in C.

3) X; = on V;, where z; denotes the transverse coordinate on V.

0z;
Hence the atlas {V;} gives a transverse projective structure on O such that the
connection form of the basic X-connection (note that it is unique because Te M =
E & CX) is equal to zero with respect to the local trivializations {a%i} of Q(F).
Note that this family of local trivializations of Q(F) is used in Section 4. It is clear

that this transverse projective structure depends only on Xg.

Definition 6.8. The transverse projective structure obtained as above is called

the transverse projective structure associated with X and denoted by Px.
Recalling the previous definitions, we have then the following

Corollary 6.9. res D, B1(F,X) = res (L(F,Px)|u) as elements of H3(Ux; C).
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The above Corollary 6.9 corresponds to the following version of Corollary 5.4 in
2], where a version of residues res j;, B (F, e) is defined by using transverse invariant
Hermitian metric and trivialization of Q(F) (Definition 5.1 in [2]). We give a proof

because it is slightly stronger than the original one.

Proposition 6.10. Let F', W and X as above. Then, there is a well-defined
elementres B1(F, X, e) of H3(W; C), where e = e; is a family of local trivializations
of Q(F) such that e; = X if Uy € M\ (JUF'). Moreover res B;(F,X,e) =
res j, B1(F, e).

Proof. In [2], the claim is stated for JU Fy, where Fj is the union of the wandering
Fatou components. Since there is foliated trivializations of Q(F)(= —Kx) on

Fy \ F', the arguments in [2] remain valid even if Fj is replaced with F/. [

7. EXAMPLES
We begin with a fundamental example.

Example 7.1. Let X = )\on% + )\121% be a holomorphic vector field on
C?, where (2%, 21) is the natural coordinate. Assume that AgA; # 0 and that
A =X/ &€ Rog. Then, X naturally induces a transversely holomorphic foliation
of S$3, which is denoted by Fy. If A = 1, then F; is formed by the orbits of the Hopf
fibration, in particular F; is transversely projective. The family {F)} is a smooth
family of transversely holomorphic foliations and it is well-known that Bj(F)y) is

the natural image of (A + A71)[S3], where [S?] is the generator of H3(S3; Z). Let
0

Y = yzlﬁ, then it induces a I'-vector field for Fy. We denote the ['-vector field
z

again by Y. Let u € HY(M;F,) be the infinitesimal deformation induced by the

family {Fy}, where F, is considered as the base point. Then Zy consists of two
circles Cy and C;. Let U; be a tubular neighborhood of C; and identify H2(U;; C)
with H*(C;; C) by integration along the fiber. The residue res D, By (F,,Y) is
naturally decomposed into the sum of elements of H'(C;; C), i = 0,1. We denote
these elements by res ¢, D, B1(F,,Y), ¢ = 0,1, then by Theorem 5.7,

res CODuBl(fOMY) = [Co] € Hl(Cg;C),

1
res ClDuBl(JTomY) = —E[Cl] € Hl(Cl;C).

On the other hand, one has by Theorem 4.3 that

el = (1- 55 ) 18° € B C)
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Hence (L(Fq)| 1) = res o, D B1(Fa,Y) +res o, D, B1(F,,Y) in H3(S3;C). If one
adopts on a neighborhood of S3\ (Uy U U;) the projective structure Py associated
with Y, then res (L(F,, Py )| ) is naturally decomposed into elements of H*(C;; C),
i = 0,1. We denote these elements by res;(L(Fu,Py)|p), i = 0,1, then

res i(L(Fao, Py)|p) = res ¢, D, B1(Fa,Y)

by Corollary 6.9.

If a =1, then res ¢, D, B1(Fo,Y) + res ¢, D, B1(Fo,Y) = 0 in H3(S3;C). The
foliation F; is indeed the Hopf fibration so that £(F;) = 0 in H'(S%; Q*(F1) ®
Q*(F1)) and the infinitesimal derivative is always equal to zero. However, res ;(L(Fy, Py )| i)
can be non-trivial because the projective structure Py cannot be extended to the
whole S3.

If @« # 1, then L(F,) is non-trivial so that F, cannot admit any transverse

projective structures. Similar foliations can be constructed on S2?It! from the

q )
vector field AizZT on C%t! where \; # 0 for all i. Assuming that none of
i=0 2

Ai/Aj is a negative real number, this vector field induces a foliation Fy of S2a+l,

. q
(o ;\I— _I):)\q) [S29+1]. Tt follows from Theorem
0 Ag

2.18 that most of F) does not admit any transverse projective structures.

and it is known that B,(Fy) =

Coming back to complex codimension-one foliations, the localization given in
Section 6 for foliations F, is as follows. If a = 1, then the Julia set is empty. If
a # 1, then J = Cy U Cy. In the both cases, J is of Lebesgue measure zero so
that 0y B1(F,) = 0. This implies that (L(F)| pz) + (L(F)| po) # 0 in general. An
example of uo is given in [3].

Example 7.2. Let F be a foliation given as follows. Let H be the subgroup
of SL(q + 1;C) defined by H = {(a§)0<i,j<q ab=0ifi>0p. Let I' be a dis-
crete subgroup of SL(¢ + 1;C) such that M = I'\SL(q + 1;C)/U(q) is a closed
manifold, where U(q) is considered as a subgroup of SL(q + 1;C) by the map-
ping A € U(q) — (det A)"' & A € SL(q + 1;C). Note that U(q) C H. The

cosets {gH }gesL(g+1;c) naturally induce a transversely holomorphic foliation F

of M, of complex codimension ¢, and it is known that the Godbillon-Vey class
GVg4(F) is non-trivial [4]. In this sense the dynamics of the foliation F is com-
plicated. On the other hand, F is transversely projective since the transversal
geometry of F is locally modeled on CP? = SL(q+ 1;C)/H. It follows that L(F)
is equal to zero and the Bott class is infinitesimally rigid. Thus the rigidity of the

Godbillon-Vey class of F is also derived from the rigidity of the Bott class, because
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GVo(F) = (ImBy(F)) c1(Q(F))? up to multiplication of a constant determined
by the codimension.
Example 7.3 [15]. Consider S! as R/Z and let Fy be the foliation of S! x

0 3
C? induced by the vector field — 5% + Z A;jz7 5. , there (t,2%,---,29) denotes the

a -0
standard coordinate. Let Y5 = ) 6,27 9.7 then Ys naturally induces a I'-vector
j=1 o

field for each A\. We adopt e = 88 ARRRWA 8i as a trivialization of Q(Fy), then
21 24
1 q
By(Fx, Ys,¢e) = ﬁ(/\l + Ay (61 ;1 — .j;qéq) [S1], where [S!] denotes the

natural generator of H!(S'; Z). This implies that even if F) remains the same,
the residue D, B,(Fa,Ys) can vary if I'-vector fields are deformed. On the other
hand, e is foliated with respect to Fy, if \y +---+ X, =1 + -+ -+, = 0. If these
conditions are fulfilled, then the derivative of B,(Fy,Ys,e) is certainly well-defined

and in fact equal to zero.
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