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ON THE SINGULARITY OF QUILLEN METRICS

KEN-ICHI YOSHIKAWA

ABSTRACT. Let w: X — S be a holomorphic map from a compact Kéahler
manifold (X,gx) to a compact Riemann surface S. Let ¥, be the critical
locus of 7w and let A = 7m(X5) be the discriminant locus. Let (§,h¢) be a
holomorphic Hermitian vector bundle on X. We determine the singularity of
the Quillen metric on det Rm«& near A with respect to QX‘TX/S and hg.

1. Introduction

Let X be a compact Kahler manifold of dimension n 4 1 with Kahler metric gx,
and let S be a compact Riemann surface. Let 7: X — S be a surjective holomorphic
map such that every connected component of X is mapped surjectively to S. Let
Y. :={x € X; dn(z) = 0} be the critical locus of w. For t € S, set X; := 7w~ 1(¢).
The relative tangent bundle of m: X — S is the subbundle of 7X|x\5, defined as
TX/S :=kerm|x\x,. Set

A =m(3), S =S\ A, X := X|so, 70 1= T|xo.

Then 7°: X° — S§° is a holomorphic family of compact Kahler manifolds. Let
9x/s = 9x|rx/s be the Hermitian metric on 7X/S induced from gx.

Let £ — X be a holomorphic vector bundle on X equipped with a Hermitian
metric he. Let A(§) = det Rm.& be the determinant of the cohomologies of £. By
[5], [14], [15], A(€)]s- is equipped with the Quillen metric [ -[|3 4 o With respect to
the metrics gx,s and he.

Let 0 € A be an arbitrary critical value of 7, and let (U,t) be a coordinate
neighborhood of S centered at 0 with &/ N A = {0}. Set U° :=U \ {0}.

Let o be a nowhere vanishing holomorphic section of A(§) on . Then log ||o||3 ©).0
is a C° function on Y° by [5]. The purpose of this article is to study the behavior
of log [lo(t)[|3¢).q as t — 0.

For a holomorphic vector bundle F' over a complex manifold with zero-section
Z, define the projective-space bundle P(F) as P(F) := (F'\ Z)/C*. The dual
projective-space bundle P(F)V is defined as P(F)" := P(F"), where F" is the dual
vector bundle of F.

Following Bismut [3], we consider the Gauss map p: X \ ¥, — P(TX)V that
assigns ¢ € X \ X, the hyperplane ker(m.), € P(T,X)Y. Since u extends to a
meromorphic map p: X --» P(TX)Y, there exists a resolution ¢: (X, E) — (X, ;)
of the indeterminacy of p such that i := p o ¢ extends to a holomorphic map from
X to P(TX)V and such that E is a normal crossing divisor of X. (For the scheme
structure of E, see Sect.3.) Let U be the universal hyperplane bundle of rank
n = dim X/S over P(TX)Y, and let H := Op(rx)v(1).
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After Barlet [1], we define a subspace of C°(U) by

BU) = o D @It\” (log [t))" - C=(@).

reQn(0,1] k=0

A function ¢(t) € B(U) has an asymptotic expansion at 0 € A, i.e., there exist
T,...,’m € QN(0,1] and fo, fixr € C®U),l=1,... ,m, k=0,...,n, such that

+ZZ| 2t (log [t)* fi,k(2)-
=1

1=1 k=0
In what follows, if f(t), g(t) € C°>°(U°) satisfies f(t) — g(t) € B(U), we write

f=8g
For a complex vector bundle F' over a complex manifold, ¢;(F), Td(F), and
ch(F) denote the i-th Chern class, the Todd genus, and the Chern character of F,
respectively.
We can state the main result of this article, which generalizes [3, §5] and [16]:

Theorem 1.1. The following identity holds:

tog 1% ¢) =1 ( Lo {0 = ch@)) log

By Theorem 1.1, || - HQ Ae) €xtends to a singular Hermitian metric on A(§). Let
7, denote the integration along the fibers of . As a consequence of Theorem 1.1
and the curvature formula for Quillen metrics [5], we get the following:

Corollary 1.2. The (1,1)-form 7. (Td(TX/S, gx/s) ch(&, he)) Y lies in LE, (S)
for some p > 1, and the curvature current of (M), | - llg.xe)) is given by the
following formula on U :

1t (M), - llg.ace) = m(TATX/S, gx/s) ch(€, he)) Y

) </Eﬂql(Xo)ﬁ* {Td(U) %} q*Ch(§)> do,

where dy denotes the Dirac d-current supported at 0.

The proof of Theorem 1.1 is quite similar to that of Bismut in [3, §5], and we
just follow his argument. There are essentially no new ideas except a systematic
use of the Gauss maps for the family 7: X — S; in fact, the Gauss maps were
already used by Bismut in [3].

The existence of an asymptotic expansion of the Quillen norm log ||a||2Q A(g) Was
first shown by Bismut-Bost[4, Sect.13.(b)] when 7: X — S is a family of curves
and by the author [16] when 3 is isolated. In [9], Theorem 1.1 shall play an crucial
role in the study of analytic torsion of Calabi-Yau threefolds.

Let sa be a section of Og(A) defining the reduced divisor A. Let || - || be a C*
Hermitian metric on Og(A). By Theorem 1.1,

log ||0'(t>H2Q,)\(§) - </Eﬂq1(xo) i {Td(U) %} q*ch(§)> log [lsa (2)|?

has a finite limit as t — 0. In Section 6, we shall compute this limit in terms of
various secondary objects, which extends some results in [3, §5].
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This article is organized as follows. In Sections 2 and 3, we explain the Gauss
maps associated to the family 7: X — S and their resolutions. In Sections 5 and
6, we prove the main theorem. In Sections 7 and 8, we verify the compatibility of
Theorem 1.1 with the corresponding earlier results of Bismut [3] and the author
[16]. In Sections 4 and 9, we prove some technical results. The problem treated in
Section 9 seems to be related with the regularity problem of the star products of
Green currents [8].

For a complex manifold, we set d® = -+ (9 — ). Hence dd® = ﬁéa. We keep

4mi
the notation in Sect. 1 throughout this article.

2. The Gauss maps

Let Q% be the holomorphic cotangent bundle of X. Let IT: P(Q4 @ n*T'S) — X
be the projective-space bundle associated with Q% @ 7*T'S. Since dim S = 1, we
have P(Q4 @ m*T'S) = P(Q%). Let IIV: P(TX)Y — X be the dual projective-space
bundle of P(T'X), whose fiber P(7,,X)" is the set of hyperplanes of T, X passing
through the zero vector of T, X. We have the canonical isomorphisms

P(QY @ 7*TS) = P(QY) = P(TX)V.

Let © € X\ 3. Let t be a holomorphic local coordinate of S near 7(z) € S. We
define the Gauss maps v: X \ X, — P(Q} @ 7*TS) and p: X \ ¥, — P(TX)Y by

v(z) = [dry] = Za(g:'ﬂ)(z)dzi@)% o () = [T X )
i=0 v

Under the canonical isomorphism P(Q} @ 7*T'S) 2 P(TX)V, one has

V=

Let

L := Opi gners)(—1) C IT* (2 @ 7°TS)
be the tautological line bundle over P(Q} ® 7*T'S), and set
Q= IT"(Q% @ 7*TS)/L.
We have the exact sequence of holomorphic vector bundles on P(Q} @ 7*T'S):
S:0— L — II*(Q% @ 7*TS) — Q — 0.
Let H = Op(ryyv (1), and let U be the universal hyperplane bundle of (I1V)*TX.
Then the dual of S is given by
§:0—U— (IV)'TX — H — 0.
Since Ty Xy (o) = {v € T X; dm,(v) = 0}, we have on X \ ¥
TX/S =p*U.

Let gy be the Hermitian metric on U induced from (I7V)*gx, and let gg be the
Hermitian metric on H induced from (I1V)*gx by the C*-isomorphism H = U+,
On X \ ¥, we have

(rX/s, gX/S) = (U, gv)-
Let gg be a Hermitian metric on S. Let 9ol be the Hermitian metric on Q%

induced from gx. Let gr be the Hermitian metric on L induced from the metric
T+ (gﬂé{ ® m*gg) by the inclusion L C IT*(QY @ n*T'S). Let g be the Hermitian

metric on @ induced from IT*(gg1 ® 7*gg) by the C*°-isomorphism @ = L+
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Let ¢1(L,gr) be the Chern form of (L, gr). Since dr is a nowhere vanishing
holomorphic section of v*L|x\x_, we get the following equation on X \ X

—dd®log ||dr||* = v*ei(L, gr).
3. Resolution of the Gauss maps

Since X, is a proper analytic subset of X, the maps v: X \ X, — P(Q, @ 7*TS)
and p: X \ X — P(TX)" extend to meromorphic maps v: X --» P(Q} ® 7*T9)
and p: X --» P(TX)Y by [13, Th.4.5.3]. By Hironaka, there exists a compact
Kihler manifold X , anormal crossing divisor £ C X , a birational holomorphic map
¢: X — X, and holomorphic maps 7: X — P(QY @ 7*T'S) and p: X - P(TX)V
satisfying the following conditions:

(i) q|§\q*1(2.,,): X\ ¢ YZ,) — X\ I, is an isomorphism;

(i) 4~ (2x) = B

(iii) (7 0 ¢)~1(b) is a normal crossing divisor of X for all b € A;

(iv) 7 =vogand i=poqgon X \ E.

Then 7 = 1 under the canonical isomorphism P(Q} @ 7*T'S) 2 P(TX)V. We set
T:=mogq

and X, = 7 1(s) for s € S. Similarly, we set E, := EN X, for b € A. Sinec

E=q1(2;) c71A), we have E = Ilyca Ep.

Let Zx,_ be the ideal sheaf of ¥,. For every p € ¥, the sheaf 7y, has the
following expression on a neighborhood of p:

Ty, = Ox (8(””) @),... 2tem) (z)> .

820 azn
Define the ideal sheaf Zr of F as
I = qilzg .

™

Denote by g the (1,1)-current on X defined as the integration over F, i.e.,
oY) == [ ¢|p for all C* (n,n)-form on X. Since v*L = ¢*v*L, ¢*dr extends
to a holomorphic section of v* L with zero divisor E by the definition of the ideal

sheaf 7. By the Poincaré-Lelong formula, the following identity of currents on X
holds
—dd*(g" log ||dn|*) = 7*c1 (L, 1) — .

4. Regularity of the direct image of differential forms

Recall that (U, t) is a coordinate neighborhood of S centered at the critical value
0€ A. Set D:={(s,t) € SxU;s =t} Then D is a divisor of S x U. Let [D]
be the line bundle on S x U defined by the divisor D. Let sp be a section of [D]
with zero divisor D. Let B C S be a finite subset with 0 € B. By shrinking U/ if

necessary, we may assume that & N B = {0}. Let || - ||p be a C*° Hermitian metric
on [D] such that

(4.1) lsp(@,t)lp =1, V(bt) € (B\{0}) xU.

We set s; :=spl|gxqiy and || - ||¢ := || - [|D|sxqey for t € U. Then div(s;) = {t} and

se||? € C>°(S x U).
Let V be a compact connected complex manifold with dimV = n 4+ 1. Let
f:V — S be a proper surjective holomorphic map. We set V; := f~1(¢) for t € S.
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Let F':= (F,|| - ||r) be a holomorphic Hermitian line bundle on V', and let o be
a holomorphic section of F' with

div(a) C Z Vp.
beB

Denote by f. the integration along the fibers of f. In Section 4, we assume that
¢ is a O-closed and 0-closed C*° (n,n)-form on V.

Lemma 4.1. There exists a Horder continuous function n on U such that

Fe{(log lal| ) ¢} — (/ @) log ||sol[§ = -
div(a)NVp

Proof. Since log ||a||% ¢ is a locally integrable differential form on V, we have
fe{(og [laf?) ¢} @0 € LL (S)NC>(S°). Since dd® commutes with f, and since ¢

loc
is d and d°-closed, we get the following equation of currents on U:

(4.2)
dd* f.{(log||al|7) o} = [f.{dd"((log ||| F) A @)}V
= —[fs {(Cl(F) — ddiv(a)) N 80}](1’1)

= (/ <P> 8o = [feler(F) A} 0.
div(a)NVp

By Lemma 9.2 below, there exists 1) € B(U) such that

L@ A0 v CEE v =0

Since (0) = 0, there exists v € QN(0, 1] such that ¢ (t) € 3, o, [t[*” (log [t)E-BU).
Hence |t|724(t) € LY _(U) for some p > 1. By the ellipticity of the Laplacian and

loc
the Sobolev embedding theorem, there exists a Holder continuous function x on U

satisfying the following equation of currents on U

[fufer(F) Al WD = ddex.

This, together with (4.2) and the equation of currents dd®log |t|?> = §p on U, implies
the assertion, because log ||so||3 — log |¢|*> € C°°(U). O

Lemma 4.2. The following identity holds for allt € U°:

/ (log o3 ¢ = ( / w) log |15, (0) 2 — / (F* log [1s:]2) 1 (F) A
Vi div(a)NVy \%
+ /V (log lall2) Frei (81l - ) A .
Proof. Since V; N div(a) = 0 for t € U, V; meets div(a) properly. Since ¢ is

0 and O-closed, we deduce from [11, Th.2.2.2] the following identity by setting
X =W =V,Y =V, Z = div(a), and gy = — f*log [}s1}?, g = — log |}af}3 in 11,
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Sect. 2.2.2]:
(4.3)
a 2 — . ?_ * . ? c T
/Vt (log la]3) ZB< / . <P> log [ls.(b)] /V (*og 1s:]12) ex (F) A 0

+ /V (log la]2) 71 (8 | - 1) A o,

where we used the assumption div(a) C Y, g Vb (See also [15, p.59, 1.3-1.7].) Since
Ist(b)||e =1 for (b,t) € (B\ {0}) x U by (4.1), the result follows from (4.3). O

Lemma 4.3. The following identity holds

lim / (log la]3) o — / 2| log [so(®)]2 b =
t—0 Vi div(a)NVy

/ (log [la3) Fer (0], ]| - o) A o — / (* 1o 1s0]12) 1 (F) A .
A% 1%

Proof. By Lemma 4.2, we have
(4.4)

/ (log [a]3) o = ( / w) log [Iso(t)]13 — / (* og ls:]12) ex (F) A 0
Vi div(a)NVy \4

. s
+ /V (log lall3) f7er (2], | ||t>W*</div<a>mvo*">1g||sO<t>|3'

Since lims_o log(||s¢(0)||7/]Is0(t)]|3) = 0, the assertion follows from (4.4). O

Lemma 4.4. The following identity of functions on U° hold:

fo{(og lall3) 0} ©0) = ( / so) log [Isoll2.
div(a)NVy
Proof. For t € U°, set

L(t) = / (Floglsl?) (B o, Io(t) = /V (log llal2) Fex (111 - 1) .

By (4.4), it suffices to prove that Iy € B(U) and Iy € B(U).

Let {(W, zx)} xea be a system of local coordinates on V. Since V' is compact, we
may assume #A < +oo. For every A € A, there exist Fy, € O(W)), G, € O(W)),
Ay € C®(Wy), and By € C*(Wy x U) such that

7 log [Is]|7 lw, (2) = log [Fa(2x) — t|* + Ba(2x, 1),
log [le]| Bl (23) = log [Ga(22) 7 + Ax(22)-

Let {or}rea be a partition of unity of V' subject to the covering {Wy}rea. We
set xx := 0x ¢1(F) ¢. Then
(4.5)

Z/ log [Fa(za) =t - xalza) + 3 [ Balza,t) xal2n).
A€A PETALEN

Since the first term of the right hand side of (4.5) lies in B(U) by Theorem 9.1
below, we get I; € B(U).
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We set 0y := ox 7 c1([t], || - ||:) - Then 0x(2x,t) is a C* (n +1,n + 1)-form on
Wy x U. Since

Z/ log |Ga(z2)| - Oa(2a, t) + Z AA (2x) Ox(2a, 1),

AEA XA
we get Iz € C°°(U). This completes the proof. O

Corollary 4.5. The following identity holds

tig { [ g oglanl?)o— ([ o) tog a1} =
- X Eo
/,)Z<q* log [ldx|2) 7 a (0], | - lo) A — /)z(%* log [1soll2) 7 c1 (L, 91) A .

Proof. SettingV =X, f =%, F = *(L, g1.) and a = ¢*(dr) in Lemma 4.3, we get
the result. O

Corollary 4.6. The following identity of functions on U° hold:

%, (q" (log | dx|2) )@ =5 ( /E w) log [lso]12.
0

Proof. SettingV =X, f=7, F = v*(L,gr) and a = ¢*(dr) in Lemma 4.4, we get
the result. O

5. Behavior of the Quillen norm of the Knudsen-Mumford section

Let I' € X x S be the graph of 7, which is a smooth divisor on X x S. Let [I]
be the holomorphic line bundle on X x S associated to I'. Let sp € H°(X x S, [['])
be the canonical section of [I'], so that div(sp) =T'. We identify X with T.

Let i: I' — X x S be the inclusion. Let p;: X xS — X and ps: X xS — S be
the projections. On X x S, we have the exact sequence of coherent sheaves,

(5.1)
0 — Oxxs([[] 71 @ pte) 225 Ox s (p}E) — 1.0p(pt€) — 0.

Let A(p;€), AM([T] "1 @p;€), A(€) be the determinants of the direct images R(p2).p;ié,
R(p2)«([0]7 @ pi€), Rm.&, respectively. By definition [5], [12], [15],
A(€) = R)(det Rm, &) =D".
920
Under the isomorphism pié|r = € induced from the identification p;: I' — X, the
holomorphic line bundle on S
A=A (07 @ pig) @ Apie) ™ @ A(€)
carries the canonical nowhere vanishing holomorphic section oxpr by [7], [12].

Let V C U be a relatively compact neighborhood of 0 € A, and set V° := V\ {0}.
On 7=Y(U), we identify 7 (resp. dr) with tor (resp. d(tor)). Hence m € O(r~1(U))
and dr € H(m=1(U), %) in what follows.

Let hiry be a C°° Hermitian metric on [I'] with
(5.2)
|m(w) —t* if (w,t) € 77H(V) x

h[r](srvsr)(w:t)—{ 1 if (w,t)e (X\ﬂfl(u)) V
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Let hjpj-1 be the metric on [I]~! induced from hjp.

Let || - [[g,x¢) be the Quillen metric on A(§) with respect to gx,g, he. Let
I llgaqr-—1epre) (xesp. |- [lga@pre)) be the Quillen metric on A([T]~! @ pi€) (resp.
A(pi€)) with respect to gx, hyrj-1 ® he (vesp. gx, he). Let || - [|g,n be the Quillen
metric on A defined as the tensor product of those on A([[]~! ® pi&), A(pi¢)~t,
AE)-

For a complex manifold Y, AP¢(Y") denotes the vector space of C*° (p, q)-forms
onY. We set A(Y) 1= @, APP(Y)/Imd + Im d.

For a Hermitian vector bundle (F, hp) over Y, ¢;(F, hp), Td(F, hp),ch(F, hF) €
@D,>0 AP (Y) denote the i-th Chern form, the Todd form, and the Chern character
form of (F, hr) with respect to the holomorphic Hermitian connection, respectively.
Let R(F') denote the R-genus of Gillet-Soulé [7, (0.4)], [15, p. 160].

Theorem 5.1. The following identity of functions on U° holds

g oo 2o ( [ 7 {rae) T ) vl

Proof. We follow Bismut [3, Sect.5]. (See also [17, Th.6.3].)

(Step 1) Let [X}] be the holomorphic line bundle on X associated to the divisor Xj.
Then [X;] = [[']|x,. We define the canonical section s; of [X¢] by s; := sr|xx s €
H°(X,[X:]). Then div(s;) = X;. Let i;: X; — X be the embedding, and set
& = €&|x,. By (5.1), we get the exact sequence of coherent sheaves on X,

(53) 0 — Ox([X.] 7' ®€) = Ox (&) — (i1)+0x,(€) — 0.

Let M\([X¢] 7! ® €) and A(&) be the determinants of the cohomology groups of
[X;]7! ® & and &, respectively. Then A\ = M([X;] 7! ® &) @ M(€)7 @ M(&).

Set hix,] = hirj|xx ey for t € V. Then hix,) is a Hermitian metric on [X;]. Let
hf)(lt] be the Hermitian metric on [X,;]~! induced from hy,].

Let Ny = Nx,/x (resp. Ni = N¥,  x) be the normal (resp. conormal) bundle
of X; in X. Then dr|x, € H°(X;, N;j) generates N; for t € U°. Let hy; be the
Hermitian metric on N} defined by
(5.4) hn; (drlx,, dr|x,) = 1.

Let hn, be the Hermitian metric on Ny induced from hN{" Then we have the

identity ¢1 (N, hn,) = 0 for t € V°.
For (w,t) € 7~ Y(U) x U, set

~ SF(w7t)
t) = ———.
ST (U), ) 7T(’LU) —t
Since m(w) — t is a holomorphic function on 7=*(U) x U with divisor T, 5r is a
nowhere vanishing holomorphic section of [I'][z-1@yxu- Set Sx, = Sr|x,x{1} €

HO(X, [X¢]|x,) and
ds|x, == dn ®5x, € H*(X;, N @ [X{]|x,)-
By (5.2), (5.4), the isomorphism
®dsi|x,: [Xi) P @€|x, 2 v — dsy|x,(v) € Nf @ &
gives an isometry of holomorphic Hermitian vector bundles

(X)) " @& hx, -1 @ he)lx, = (N @ &, hy;y © helx,)
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for all + € V°. Hence the metrics hx,]-1 @ he and he verify assumption (A) of
Bismut [2, Def.1.5] with respect to hy, and h¢|x,.
(Step 2) Associated to the exact sequence of holomorphic vector bundles on X;,

E:0—TXy — TX|x, — N, — 0,

one can define the Bott-Chern class ﬁl(é‘t;gxt,gx, hn,) € A(X,) by [5, 1, £)], [10,
I, Sect. 1], [15, Chap.IV, Sect. 3] such that

ddcﬁ(gtv 9X¢,9X hNt) = Td(TXta gXt) Td(Ntv hNt) - Td(TX, gX)|Xt'

Notice that our 'fa(é’t; 9x,,9x,hn,) and Bismut-Lebeau’s rI“vd(TXt,TX|Xt,hNt)
are related as follows:

T\a(gt’ 9X:,9X, hNt) = _ﬁ(TXta TX|X“hNt).

Let Z be a general fiber of 7: X — S. By applying the embedding formula of
Bismut-Lebeau [7, Th. 0.1] (see also [3, Th. 5.6]) to the embedding i;: X; — X and
to the exact sequence (5.3), we get for all ¢ € V°:

(5.5)

oglosa (O, = [ T b

log h[F] (51‘75F)|X><{t}

xxqy TA(T], hyry)
3 / Td (& gx,.9x.: hn,) ch(§ he)
X Td(Nta hNt)

- / TA(TX) R(TX) ch(€) + / TA(TZ) R(TZ) ch(€] ).
X Z

Here we used the explicit formula for the Bott-Chern current [6, Rem. 3.5, especially
(3.23), Th. 3.15, Th. 3.17] to get the first term of the right hand side of (5.5). Notice
that the dual of our A(§) was defined as A(€) in [7].

By Theorem 9.1 below, the first term of the right hand side of (5.5) lies in B(U).
Substituting ¢ (Ny, hn,) = 0 into (5.5), we get

(5.6) log loxen (D[ =5 / “TAEs gx, g, I chi(€, he).
Xy

(Step 3) Let gy, be the Hermitian metric on N; induced from gx by the C'*°
isomorphism N; & (TX,)*. Let Td(Ny; hy,, gn,) € A(X;) be the Bott-Chern class
[5, I, e)], [10, Sect. 1.2.4], [15, Chap.IV, Sect. 3] such that

dd“Td(Ny; hiy,, gn,) = Td(Ny, hy,) — Td(Ny, g, )-
By [10, I, Prop. 1.3.2 and Prop. 1.3.4] (see also Lemma 5.3 below),
(5.7)
Td(&s; gx,, 9%, hw,) = Td(Ess gx,,9x, 9n,) + TA(T Xy, 9x,) Td(Ne; by, gwv,)-

Since ¢1(Ng, hy,) = 0 and gy, = ||dr|| =2 hy,, we deduce from [10, I, Prop.1.3.1
and (1.2.5.1)] the identity

— 1 — Td(dd* log ||dr|?)

TN hovey 03) = — ey e ogldrl®
(5.8)
1 —Td(—ci(L
—V*{ _( Cl( ’gL))}IOg”d?T”Z
ci(L,gr) X,
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Substituting (5.8) and (T'Xy, 9x,) = p#*(U, gv)|x, into (5.7), we get
(5.9)
Td(&s; gx,. 9x, hw,) =
1 —Td(—c1 (L, g1))
—c1(L,gz)

TA(Es g g gn) + 17 TA(U, g0) v { } log |Jdr|”

Xy
Since

E=wS|x,, gx, =W ovlx,, gx=p"II")gx|x,, 9n, =p'gnlx,,
we deduce from [10, I, Th.1.2.2 (ii)] that

(5.10) TA(Es; gx., 95, 9n,) = pTA(SY; gu, (1Y) g, 91| x.
Comparing (5.9) and (5.10), we get
(5.11)

TA(E; gx,» 9x, hw,) = £ TASY; gu, (1Y) gx, 1) x,

sy {1 )

} log [ldr |x..

Substituting (5.11) into (5.6), we get
(5.12)
log lok |G

— (0,0)
=5 —. [ TA(S": gu, (1Y) 9x, g11) (€, he)]

— T M*Td(Ua gU) v {

1—Td(-c1(L,g1))
_Cl(L’ gL)

=B —Tx {ﬁ*Tvd(Sv; gu, (IIV)*gx, 9m) q*ch(&, hs)}

(0,0)
} ch(€, he) log dwn?]
(0,0)

+7 |F T, gaﬁ*{

Td(—c1(L,91)) — 1
_Cl(L’ gL)

Recall that for a € differential form ¢ on X, one has 7,(¢)®0 € BU) by
Barlet [1, Th. 4bis]. Since ¢*ch(&, he) and

(0,0)
} ¢ (€. he) (¢" log ||dw|2>} |

Td(_cl(L7gL)) -1
—c1(L, gL)

are C* differential forms on X, we deduce from (5.12), [1, Th. 4bis], and Corollary

4.6 that

(5.13)

FTA(SY; gy, (1Y) gx,gm),  W*TA(U,gv), ¥*{

}

g oo 2o ( [ 7 {rae) TG} ) sl

Here we used the identity ¢;(H) = —cy (L) + (IIV)*r*¢, (S) in H?*(P(TX)Y,Z) and
the triviality of the line bundle p* (IIV)*7*(T'S) |F*1(u) to get (5.13). This completes
the proof of Theorem 5.1. O
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For simplicity, we set L := (L, gz), U := (U, gu), & := (&, he) in what follows.
Let Td(SY; gu, (ITY)*gx, gu) be the Bott-Chern secondary class associated with
the Todd genus and the exact sequence of holomorphic vector bundles

SY:0-U— (II")'TX - H—0
equipped with the Hermitian metrics gy, (IIV)*gx, gu, such that
dd°TA(S"; gu. (1) 9x. gn) = TA(U, gu) TA(H, gn) — (I1") TA(TX, gx).
Recall that Z is a general fiber of 7: X — S.
Theorem 5.2. The following identity holds

i [logHUKM Ol - ( /E - {wa) %} q*ch(@) 1og||sO<t>||3} _

Td(TX, gx) ch(?) 2
- log ||sr
/XX{O} Td([F],h[F]) ” H ‘Xx{()}

—/N *TA(SY; gu, (ITY)*gx, gm) ¢*ch(€)
Xo

+ [ g anl) e (01,1 o) [7Ta@)7 {Td( a(l) - ]

—le
)

»—A/—\

- [ sl v (7 [ ma@yo { A

- / TA(TX) R(TX) ch(€) + / TA(TZ)R(TZ) ch(€]z).
X Z

Proof. Define topological constants Cy and C; by

o= [ b {Td(U) %} £ eh(©),

Oy = — / TA(TX) R(TX) ch(€) + / TA(TZ)R(TZ) ch(€|z).
X Z

Substituting (5.11) and ¢ (N¢, hy,) = 0 into (5.5), we get for t € U°

(5.14)

log o xar(B)]35 = — / log |15t
@A xxqey  Td([L], hyry) s

u*rfa(s\/’ qu, (H\/)*ng gH)|Xt Ch(g)

W TA() v {%}m“”} eh(@) log [dr” + Co

—C

J,
J,
_ _/ Td(TX, gx) ch(§)
X
I8
J;

log [|srl?|
«(ty  Td([L], hyrp) o
TS gu, (1Y) gx, 9m)lx, a*ch(E)

Td(—es () — 1

= @ ot osanl?) + 61
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which yields that
(5.15)
log lloxar (£)13,5 — Co log [lso(t)]15 =

- Td(TX, gx) ch(¢) 2 [ ey, Vs s
Jewy iy ol = o TS s (01 g

" /g [ﬁ*Td(U) 7 {Td(‘—@”‘l} q*ch@} 4" (10g [d[12) — Co log lso()3

—c1(L)
+ C].
By Corollary 4.5,
(5.16)
~x% T\ ~% Td(—Cl(Z)) -1 * = * 2 2
/. #TaO)7 {_—@)} ()| 4" Cog [dx1?) ~ Ci og [so() I
— * 2y ~ox i [Td(=cr (D) =1\, , ~
= [ toglar) a0} - o) [3Ta@) 7 {ﬁ} @)
- J @ ozl 7 (D) | ra@)e {EED o)+ o)
From (5.15) and (5.16), we get
(5.17)
tlij(l) [log HUKM(t)HQQ,A — Cy log|lso(t)[I5] =
ooy DE tog e
xxqoy  TA([T], hyry) o
- [ TS 0 (1) gx.am) "o E)
+ [ o am®) 7 e (011 oy [ 1a@) 77 { FHEEH R )
~x 2\ ~* T ~x% TT\ % Td(_cl(f)) -1 *
- [ oelsoliy e (@) [ ra@)s { S g + o
This completes the proof of Theorem 5.2. 0

Lemma 5.3. Let £:0 — E' — E — E” — 0 be an ezact sequence of
holomorphic vector bundles over a complex manifold Y. Let h' and h be Hermitian
metrics on E' and E, respectively. Let h" and g"” be Hermitian metrics on E".
Then

Td(E; I, h,h") — TA(E; k' h,g") = TA(E', 1) TA(E"; b, g").

Proof. Setting Ly = (£, h,h""), Ly = (£, ,h,g"), Ly = 0 in [10, I, Prop. 1.3.4],
we get

TA(E; W b, 1) — TA(E; W, h,g") = TAE @ E"; W & k' W & g").

Since Td(E'®E"; Wb, W' dg") = TA(E', k') Td(E"; b, ¢") by [10, I, Prop. 1.3.2],
we get the result. 0
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6. The divergent term and the constant term

Let a be a nowhere vanishing holomorphic section of A([[']7! @ p1&)~! @ A(p;€)
defined on U.

Theorem 6.1. Let o be a nowhere vanishing holomorphic section of A(§) defined
onU. Then

g o0 = ([ 7 { 1) TE0 et ) o

Proof. There exists a nowhere vanishing holomorphic function f(¢) on U such that

o(t) = f(t) orm(t) ® a(t).
Since log |f(t)|* and log ”O‘H?Q,A([I‘]*l@p’{&)*l®A(p{£) are C'™ functions on U, we de-
duce from Theorem 5.1 that

log [lo(t)1G,x¢) = log | F(1)* +1log loxar (1155 +log [la(t) [ x(r-1epre) -1 orgpre)
~x% Td(H) -1 * 2
=5 m TdUi}qch§>logt.
(7 {maen =5 (©) 1oz 1
This completes the proof of Theorem 6.1. 0

Theorem 6.2. The following identity holds:

) - Td(H) -1

lim |1 2 t) — *{TA(U) ———=— ¢*ch 1 |12
tiny g s @ all i) = ([ {a(0) LG | arente)) v so13]

Td(TX, gx) ch(§)
= log ||a(0)||? —/ ’ log ||sr|I?
o)} - [ SIS g e Pl

— /~ ﬁ*ﬁl(SV; gu, (ITV)*gx, gm) ¢*ch()
Xo

+/§(q* log [[dx|[2) 7 ([0, [ - llo) [u TA(T) 7" {Td( a(L)) — 1} q ch(ﬁ):|

—C1

»—AA

L)
- [ ottty @) [7ma@) 7 {FELDL Y g

—/ Td(TX)R(TX)ch(§)+/Td(TZ) R(TZ)ch(&|z).
X z
Proof. Since

log lorm @ QHQQ,)\(g) = log[loxa g\ + log ‘|a”QQ,)\([I‘]*1®pIE)*1®)\(pTE)’

the result follows from Theorem 5.2. O

7. Critical points defined by a quadric polynomial of rank 2

In this section, we assume that for every x € ¥, N X, there exists a system of
coordinates (2o, ... ,zn) centered at x such that

w(z) = 2921-

Hence ¥, C X is a complex submanifold of codimension 2 defined locally by the
equation zgp = 21 = 0. Let Ny _,x be the normal bundle of ¥ in X. In [3, Def. 5.1,
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Prop. 5.2], Bismut introduced the additive genus E(+) associated with the generating
function

B(z) = Td(z) Td(—x) (Td () -1 Td (-z)— 1) 7

2x T —x

where Td™(z) := (1 — e~ %) /.
The following result was proved by Bismut [3, Th.5.9].

Theorem 7.1. The following equation of functions on U° holds:

1
s o0 0 =0 g ([ ~TaTE) B, x)cle)) gl
>.NXo

Remark 7.2. As mentioned before, the dual of our A(§) was defined as A(€) in [3,
Th.5.9], which explains the difference of the sign of the coefficient of log|t|? in
Theorem 7.1 with that of [3, Th.5.9].

Proof. Let q: X — X be the blowing-up along ¥, with exceptional divisor
E =P(Ny_/x).

Then ¥ = v o ¢ extends to a holomorphic map from X to P(QL).

Since the Hessian of 7 is a non-degenerate symmetric bilinear form on Ny, _/x, we
have Ny,_,x = N5 . Under the identification P(Nx,_,x) = P(Ny, ) induced
from the Hessian of w, v is identified with the natural inclusion ]P’(Nir /X
P(Q% s, ), which yields that

) —

(7.1) V'ilg = Opwvy  )(=1), A H[z = Oy, ) (1):

/x)

Set F = OP(NE,\./X)(l)'
By the exact sequence SV, we get

TA((ITV)*TX)
Td(H)

(7.2) Td(U) =

Since ITY o i = ¢, we deduce from the exact sequence of vector bundles on X
0 —TY: — TX|g, — Ny /x —0

the identity

(7.3) A1) TX)|p = ¢ {Td(TS,) Td(Ns_/x)} -

Substituting (7.3) into (7.2), we get

(7.4)
¢ {TA(TE,) Td(Nsy/x)} ¢ {Td(TS,) Td(Ns, /x)}
= I Td(H)|p a Td(F) ’

prTdU) e

where we used (7.1) to get the second equality.
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Let p. be the integration along the fibers of the projection p: P(Ny,_/x) — 2.
Since q|g = p, we deduce from (7.1), (7.4) and the projection formula that

/E L {Td(U) 7Tdc(f(%)_ 1} q*ch(¢)
1 TdF) -1
-/ AT TA(Ns, ) eh(€) {T R & }
1 —Td '(F)
a(F)

(7.5)

= [ rasmas, ). §
>.NXo
Since Ny, /x = Ny, _,y, we have
Cl(NE.,r/X) = 07
which, together with rk(Ny_,x) = 2, yields that

O = Cl(F)2 _p*cl(NE,,/X) Cl(F) +p*CQ(NE,r/X) = Cl(F)2 +p*C2(NEﬂ_/X).

Since p,c1(F) = 1, this implies that for m > 0

m (—1)k 02(NEW/X)IC (m:2k+1)
(7.6) pecr(F)™ = { 0 (m = 2k).
For a formal power series f(z) = Z;io ajx? € C[[z]], set
fto) = T IED o

By (7.6), we get

pefler(F)) = Za2k+1 pec1(F)?FH = Z(_l)ka2k+l Cz(Nzw/X)k~
% %

Let f_(Nx,/x) be the additive genus associated with f_(x) € C[[z]]. Let x1, 2
be the Chern roots of Ny._,x. Since ¢1(Nx, /x) = 1 + 22 = 0, we get

flz1) = f(=m1) n flz2) — f(—z2)

21’1 2I2

o0
= agpsr (237 + 235)
k=0

[-(Ns,/x) =

=2 Z k41 (—w122)"

k=0

=2 (—DFagrs1 c2(Ng/x)* = 2p. f(er(F)).
k=0
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Setting f(x) = (Td~*(z) — 1)/, we get
(7.7)

E(Nsx,/x) = Td(z1)Td(zz) {f(:l:l) Q—I
=2Td(Ns_/x) p«f(ci(F))

= —2Td(Nx, /x) p« (%F)(FO

f(=z1) n flxa) — f(—mz)}

1 2%y

By comparing (7.5) and (7.7), the desired formula follows from Theorem 6.1. O

8. Isolated critical points

In this section, we assume that Sing(Xy) = X, N X consists of isolated points.
Since X is discrete, we may identify P(Q% ) and P(TX) with the trivial projective-
space bundle on a neighborhood of ¥, N X by fixing a system of coordinates near
> N Xy. Under this trivialization, we consider the Gauss maps v and p only on
a small neighborhood of ¥; N Xy. Then we have the following expression on a
neighborhood of each p € ¥, N Xo:

) =) = ()5 570).

0z O

For a formal power series f(x) € C[[z]], let f(z)|sm denote the coefficient of z™.
Let u(m,p) € N be the Milnor number of the isolated critical point p of 7. The
following result was proved by the author [16, Main Th.].

Theorem 8.1. The following identity of functions on U° holds:

_1 n
tog 0120 =5 2 vk(@) [ S wlmp) | togltP.
7 (n+2)! pESing(Xo)

Proof. In Theorem 6.1, we can identify U (resp. L) with the universal hyperplane
bundle (resp. tautological line bundle) on P*. Then H = L~!. Set x := c1(H).
Hence [p, 2" = 1. From the exact sequence 0 — U — C"*! — H — 0, we get

l—e"

xT

Td(U) = Td ()

By substituting this and the equation q*ch(§)|Em?0 = rk(¢) into the formula of
Theorem 6.1, we get

~x% ~x% Td(cl (H)) -1 *
G {THal=t rae
1 Td(z) -1

G /E ey (HY
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Since
T A1 (=e1(L, g1))" ¢ (log [|dn[|*) } = m. {q" (log ||dr[|*) (dd” log [|d|[*)" }
= Y ulmp) loglt]? +0(1)
peSing(Xo)
by [16, Th.4.1], we get

(32) | maty = ur)

p€ESing(Xo)

by Corollary 4.6. The result follows from Theorem 6.1 and (8.1), (8.2). O

9. Some results on asymptotic expansion

Let Ac (resp. Cc) be the sheaf of germs of C* (resp. C) functions on C. The
stalk of A¢ (resp. Cc¢) at the origin is denoted by Ag (resp. Cy). We define

Bo:=A® P PRI loglth - Ay C Co.

reQn(0,1] k=0

In this section, we prove the following

Theorem 9.1. Let 2 C C" be a relatively compact domain. Let F(z) be a holo-
morphic function on 2 with critical locus Xp := {z € 2; dF(z) = 0}. Let x(z) be
a C* (n,n)-form with compact support in 2. Define a germ ¢ € Cqy by

(1) = /Q log [F(2) — 12 x(2).

If ¥p C Fﬁl(O), then ’g/}(t) € By.

The continuity of similar integrals was studied by Bost-Gillet-Soulé [8, Sect. 1.5]
in relation with the regularity of the star products of Green currents.
For the proof of Theorem 9.1, we prove some intermediary results.

Lemma 9.2. Let ® be a C*° (n,n)-form with compact support in 2. Let Fi(P)
be the locally integrable (1,1)-form on C defined as the integration of ® along the
fibers of F: 2 — C. If Xp C F71(0), then there exists a germ A(t) € By such that

dt A dt
>’

F.(®)(t) = A(t) A(0) =0

near 0 € C.

Proof. By Hironaka, there exists a proper holomorphic modification w: 02— 0
such that
(i) w: 2\ @ HTp) — 2\ Tp is an isomorphism;
(i) (F o @)~ 1(SF) is a normal crossing divisor of 2.

Set F := Fow. For any z € F~1(0), there exist a system of coordinates
(U, (wy,... ,wy)) and integers ki,... ,k; > 1,1 < n, such that ﬁ'(w) = wlfl wlk’
Define a holomorphic (n — 1)-form on U by

l
i=1

| =

T = (=1 rwi dwy A A dwi g Adwigy A A dw,.

7

~| —
>
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Let gy be a U function with compact supported in U. Since @w*® is a C*
(n,n)-form on 2, there exists h(w) € C§°(U) such that

ovw@*® = h(w)dwy A -+ Adwy, ANdwy A -+ A diy,.
We define a germ B(t) € Cy by

B(t) := /~ h(w) T AT.
F-1(t)nU
Then B(t) € By by [1, p.166, Th.4bis]. Since
~. [dt
F* <?) AT =dwy A -+ Adw,y,,

we get by the projection formula

(9.1)
F.(oy @*®)(t) = F.(h(w) dwy A -+ Adwy Adiwy A -+ A diy,)(t)
dt A dt ~ dt A dt
= —F* h T :B t —a -
mE (h(w) T AT) = B(1) mE

For an € > 0 small enough, set A(e) := {t € C; |t| < €}. Since

/V oy w* P
F=1(A(e)

the (1,1)-form B(t) dtAdt/|t|? is locally integrable near the origin. Hence B(0) = 0.

Let {Ug}gen be alocally finite open covering of {2 and let {og}gcp be a partition
of unity subject to {Us}gep. By (9.1), there exists Bg(t) € By for each 3 € B such
that

F,(oy @*®)
A(e)

< 00,

P (05 @"(®)) = Bs(t) W Bs(0) = 0.

There exist finitely many # € B with Bg(t) # 0 by the compactness of the support
of w*®. Since

~ . dt A dt
Fi(®) =) Fiopw ®) = () Bs(t)) i
BeB BEB
we get A(t) =3 5.5 Bs(t) € By and A(0) = 0. O
We regard (2 as a domain in (P1)". Hence x is a C* (n,n)-form on (P)". Let
z = (21,...,2) be the inhomogeneous coordinates of (P1)". For 1 <i < n, set

W; ‘= 727[_(1 T ‘ZZ-|2)2 .

Lemma 9.3. Assume that F(z) = z{* -+ 2&m, v1,... ,vp > 0 and set

= /(Pl)nx(z).

Then there exists n(t) € By such that

1/1(t):o¢/ log |24 -+ 2 — 2wy A Awy + ().
(
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Proof. Let ((¢1:&1),---,(Ca ¢ €n)) be the homogeneous coordinates of (P*)™ such
that z; = Cz/§2 For t € (C, set
Y= {((C1:61);--- (Gu 1 &n)) € (PN (7o G — £E -+ £ = 0},

D = {((Cl :51)7”' a(gn : fn)) € (]Pl)n; ?1 Zn = O}

Since
VL, . (Vn _ tEVL ... EVn
(92) Z?l"'Z:;n—t: 1 C’nl./1 €V1n fn’
€

we get the following equation of currents on (P*)" by the Poincaré-Lelong formula:
(93) ddclog|zi’1 ZZ" —t‘Q :5yt —5D.

Since x(z) is cohomologous to avwq A+« - Awy, there exists a C* (n—1,n—1)-form
v on (P1)™ by the dd°-Poincaré lemma, such that

X(z) —awi A Aw, = ddy.
Hence we get by (9.3)
(9.4)

1/)(15):@/ log|zfl~-~zr’;"—t|2w1/\~-~/\wn—|—/ log |24* -+ 2 — t]|* dd°y
(1) @)

:a/ log|z’1’1~-~zr’;"—t|2w1/\--~/\wn+/ dd“(log |2¥" -+ 22 —t[*) Ay
(B)n (B1)n

:a/ log|zfl~-~zr’;"—t|2w1/\--~/\wn+/7—/7.
e Y D

For t € C, set

(9.5) n(t) = /th—/Dv-

Define a divisor of (P})" x C by

V= {((C1:6)s - (Gut n)st) € (P X C; G- G — 887 -+ 7 = 0}
Let pry: (P)" x C — (P')" and pry: (PY)™ x C — C be the projections. Then
Y; =Y Npry*(t). Let P: Y — Y be the resolution of the singularities of Y. Then
pryly o P is a proper holomorphic function on the complex manifold Y. Since

P*(pr;)*yis a C® (n—1,n — 1)-form on Y, we get

(9.6 o = | Prory) - [ e By
(pralyoP) =1 () D
by [1, Th. 4bis]. The result follows from (9.4), (9.5), (9.6). O

Define a germ f € Cy by
f@) ::/ log|zi’1-~zZ"—t|2w1/\~~-/\wn.
()"

Lemma 9.4. There exists a germ g(t) € By such that

V-1 dt A dt
t =0.
90 i 9(0) =0

dde f(t) =
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Proof. We keep the notation in the proof of Lemma 9.3. Since the assertion is
obvious when vy = --- = v, = 0, we assume that v; > 0 for some i. Since
2yt -+ 28—t is a meromorphic function on (P1)" x C, we deduce from (9.2) and
the Poincaré-Lelong formula the following equation of currents on (P!)™ x C:

(9.7) ddlog |2y* -+ - 2k — t> = 0y — dpxc = Oy — S(pr,) -
Since

§ = (org). {loglat - 22—t (pry)*(wr A+ Awn)}
we get on C\ {0}
(9.8)

dd°f = (pry)s {dd®log |z}* -+ 2km —t]* A (pry)*(wi A+ Awn)}
= (pr2)s {(Oy = G(pry)~D) A (Pry)* (Wi A=+ Awn)}

= (pra)« {(pry)* (w1 A+ Awn)ly} = (pra)« {(pry) (w1 A+~ Awnlp)}
Praly )« {(pry) (w1 A - Awn)ly }
= (praly o P)« {P*(pry)" (w1 A+ -+ Awn)},

where the first equality follows from the commutativity dd®(pry). = (pry).dd®, the
second equality follows from (9.7), and the fourth equality follows from the trivial
identity w1 A -+ Awp|p = 0. Since P*(pry)* (w1 A+ Awy) is a C*° (n,n)-form on

o~ o~ o~ o~

Y and since pry|y o P: Y — C is a proper holomorphic map, the assertion follows
from (9.8) and Lemma 9.2. O

Lemma 9.5. The germ f(t) is S*-invariant, i.e., f(t) = f(|t]).

Proof. Without loss of generality, we may assume that v, > 0. Since
/]P’l log |Az¥" + B|? w, = log(|A[*/"» + |B|*>/")

when (A, B) # (0,0), we get by Fubini’s theorem

(9.9)

f(t):/ log |2 - 24 —t2wi A Awy
Pty

_/(1) 1(/llog|z’1’1~-~zZ"—t|2wn>w1/\--~/\wn1
plyn— P

= /(Pl) B log (‘Zl”l ... z:;":ll|2/l/n + |t|2/un> Wi A Awpy_1.

The assertion follows from (9.9). O

Let (r,0) be the polar coordinates of C. Hence t = re.

Lemma 9.6. Let A(t) € C*°(A*). Assume that \(t) is St-invariant, i.e., \(t) =
A(r). If rO:\(t) € By, then A(t) € By.

Proof. By the definition of By, there exist a finite set A C Q N (0,1] and germs
Mo k(1) € Ag, v € A, 0 < k < n such that

(9.10) roAr) =Y (logr)* prak(t).

acA k=0



ON THE SINGULARITY OF QUILLEN METRICS 21

We may assume that piq 1 (t) € C*°(A(2¢)) for some € > 0. Since the left hand side
of (9.10) is Sl-invariant, we may assume that jiq k() = ptak(r) for all a and k after

replacing jiq x(t) by fo% pok(€9t) df/2m. By (9.10), we get

(9.11) ZZ/ 221 log u)* pro1 (1) du.

a€A k=0

By (9.11), we see that A(t) € Cp by setting

A0 =30 = 53 [ 2 o510 )

a€A k=0

Since A(t) € Co, we get by (9.11)

—|—ZZ/ 2O‘llogu V¥ oo (w) du

a€A k=0
)+ Z Z 20‘/ 22~ (logr + log )" pia 1. (vr) dv
a€A k=0
1
) + Z ZZ ( ) (logr) / 02 1 (log v)* gk (vt) dv,
a€A k=0 1=0 0
which implies that A(t) € By. O

Lemma 9.7. If F(z) = 2] -2l v1, ... vy > 0, then ¢(t) € By.

n

Proof. By Lemma 9.3, it suffices to prove that f € By. Since f(t) = f(r) by Lemma
9.5, we deduce from Lemma 9.4 the equation
g(t)

00T (0) = L)+ () = 2

Hence ¢(t) is invariant under the rotation, i.e., g(t) = g(r), and the following
equation holds

(9.12) (rd:)?f(r) = g(r).
Since g(t) € By, we deduce from Lemma 9.6 and (9.12) that 79, f(r) € By. By
Lemma 9.6 again, we get f(t) € Bo. O

Proof of Theorem 9.1

We keep the notation in the proof of Lemma 9.2. There exists a system of coordinate
neighborhoods {(Us, wg = (w1 3,... ,wn g))}sep of 2 and integers kigy.o knpg>
0 for each 8 € B such that F lus (wp) = wf}[f . wa"B . Without loss of generality,
we may assume that the covering {Ug}gep of (2 is locally finite. Let {03} sen be
a partition of unity subject to the covering {Ug}gep. Then xs := ogw*x is a C™
(n,n)-form with compact support in Ug. Since w*x has a compact support in Q,
X3 = 0 except finitely many 3 € B. By Lemma 9.7,

(9.13) walt) = [ toglully’ -l = xp(up) € B,
B
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Since

(4

~ 2
(t):/ﬁw*log|F—t|2w*X: Z/U log | Flu, (ws) ~ 1| 0pm"x = > ¥alh),
B

BeB pBeB

we get ¥(t) € By by (9.13). This completes the proof of Theorem 9.1. O

8
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