
UTMS 2005–31 August 5, 2005

On the singularity of Quillen metrics

by

Ken-ichi Yoshikawa

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



ON THE SINGULARITY OF QUILLEN METRICS

KEN-ICHI YOSHIKAWA

Abstract. Let π : X → S be a holomorphic map from a compact Kähler
manifold (X, gX) to a compact Riemann surface S. Let Σπ be the critical
locus of π and let ∆ = π(Σπ) be the discriminant locus. Let (ξ, hξ) be a
holomorphic Hermitian vector bundle on X. We determine the singularity of
the Quillen metric on det Rπ§ξ near ∆ with respect to gX |TX/S and hξ.

1. Introduction

Let X be a compact Kähler manifold of dimension n+1 with Kähler metric gX ,
and let S be a compact Riemann surface. Let π : X → S be a surjective holomorphic
map such that every connected component of X is mapped surjectively to S. Let
Σπ := {x ∈ X; dπ(x) = 0} be the critical locus of π. For t ∈ S, set Xt := π−1(t).
The relative tangent bundle of π : X → S is the subbundle of TX|X\Σπ

defined as
TX/S := ker π§|X\Σπ

. Set

∆ := π(Σπ), So := S \ ∆, Xo := X|So , πo := π|Xo .

Then πo : Xo → So is a holomorphic family of compact Kähler manifolds. Let
gX/S := gX |TX/S be the Hermitian metric on TX/S induced from gX .

Let ξ → X be a holomorphic vector bundle on X equipped with a Hermitian
metric hξ. Let ∏(ξ) = det Rπ§ξ be the determinant of the cohomologies of ξ. By
[5], [14], [15], ∏(ξ)|So is equipped with the Quillen metric k · k2∏(ξ),Q with respect to
the metrics gX/S and hξ.

Let 0 ∈ ∆ be an arbitrary critical value of π, and let (U , t) be a coordinate
neighborhood of S centered at 0 with U ∩∆ = {0}. Set Uo := U \ {0}.

Let σ be a nowhere vanishing holomorphic section of ∏(ξ) on U . Then log kσk2∏(ξ),Q

is a C1 function on Uo by [5]. The purpose of this article is to study the behavior
of log kσ(t)k2∏(ξ),Q as t → 0.

For a holomorphic vector bundle F over a complex manifold with zero-section
Z, define the projective-space bundle P(F ) as P(F ) := (F \ Z)/C§. The dual
projective-space bundle P(F )∨ is defined as P(F )∨ := P(F∨), where F∨ is the dual
vector bundle of F .

Following Bismut [3], we consider the Gauss map µ : X \ Σπ → P(TX)∨ that
assigns x ∈ X \ Σπ the hyperplane ker(π§)x ∈ P(TxX)∨. Since µ extends to a
meromorphic map µ : X 99K P(TX)∨, there exists a resolution q : ( eX,E) → (X, Σπ)
of the indeterminacy of µ such that eµ := µ ◦ q extends to a holomorphic map fromeX to P(TX)∨ and such that E is a normal crossing divisor of eX. (For the scheme
structure of E, see Sect. 3.) Let U be the universal hyperplane bundle of rank
n = dimX/S over P(TX)∨, and let H := OP(TX)∨(1).

The author is partially supported by the Grants-in-Aid for Scientific Research for young sci-
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After Barlet [1], we define a subspace of C0(U) by

B(U) := C1(U)©
M

r∈Q∩(0,1]

nM
k=0

|t|2r(log |t|)k · C1(U).

A function '(t) ∈ B(U) has an asymptotic expansion at 0 ∈ ∆, i.e., there exist
r1, . . . , rm ∈ Q ∩ (0, 1] and f0, fl,k ∈ C1(U), l = 1, . . . ,m, k = 0, . . . , n, such that

'(t) = f0(t) +
mX

l=1

nX
k=0

|t|2rl(log |t|)k fl,k(t).

In what follows, if f(t), g(t) ∈ C1(Uo) satisfies f(t)− g(t) ∈ B(U), we write

f ≡B g.

For a complex vector bundle F over a complex manifold, ci(F ), Td(F ), and
ch(F ) denote the i-th Chern class, the Todd genus, and the Chern character of F ,
respectively.

We can state the main result of this article, which generalizes [3, §5] and [16]:

Theorem 1.1. The following identity holds:

log kσk2Q,∏(ξ) ≡B

√Z
E∩q−1(X0)

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ)

!
log |t|2.

By Theorem 1.1, k · k2Q,∏(ξ) extends to a singular Hermitian metric on ∏(ξ). Let
π§ denote the integration along the fibers of π. As a consequence of Theorem 1.1
and the curvature formula for Quillen metrics [5], we get the following:

Corollary 1.2. The (1, 1)-form π§(Td(TX/S, gX/S) ch(ξ, hξ))(1,1) lies in Lp
loc(S)

for some p > 1, and the curvature current of (∏(ξ), k · kQ,∏(ξ)) is given by the
following formula on U :

c1(∏(ξ), k · kQ,∏(ξ)) = π§(Td(TX/S, gX/S) ch(ξ, hξ))(1,1)

−
√Z

E∩q−1(X0)
eµ§Ω

Td(U)
Td(H)− 1

c1(H)

æ
q§ch(ξ)

!
δ0,

where δ0 denotes the Dirac δ-current supported at 0.

The proof of Theorem 1.1 is quite similar to that of Bismut in [3, §5], and we
just follow his argument. There are essentially no new ideas except a systematic
use of the Gauss maps for the family π : X → S; in fact, the Gauss maps were
already used by Bismut in [3].

The existence of an asymptotic expansion of the Quillen norm log kσk2Q,∏(ξ) was
first shown by Bismut-Bost[4, Sect. 13.(b)] when π : X → S is a family of curves
and by the author [16] when Σπ is isolated. In [9], Theorem 1.1 shall play an crucial
role in the study of analytic torsion of Calabi-Yau threefolds.

Let s∆ be a section of OS(∆) defining the reduced divisor ∆. Let k · k be a C1
Hermitian metric on OS(∆). By Theorem 1.1,

log kσ(t)k2Q,∏(ξ) −
√Z

E∩q−1(X0)
eµ§Ω

Td(U)
Td(H)− 1

c1(H)

æ
q§ch(ξ)

!
log ks∆(t)k2

has a finite limit as t → 0. In Section 6, we shall compute this limit in terms of
various secondary objects, which extends some results in [3, §5].
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This article is organized as follows. In Sections 2 and 3, we explain the Gauss
maps associated to the family π : X → S and their resolutions. In Sections 5 and
6, we prove the main theorem. In Sections 7 and 8, we verify the compatibility of
Theorem 1.1 with the corresponding earlier results of Bismut [3] and the author
[16]. In Sections 4 and 9, we prove some technical results. The problem treated in
Section 9 seems to be related with the regularity problem of the star products of
Green currents [8].

For a complex manifold, we set dc = 1
4πi (@ − @̄). Hence ddc = 1

2πi @̄@. We keep
the notation in Sect. 1 throughout this article.

2. The Gauss maps

Let ≠1
X be the holomorphic cotangent bundle of X. Let Π : P(≠1

X≠π§TS) → X
be the projective-space bundle associated with ≠1

X ≠ π§TS. Since dimS = 1, we
have P(≠1

X≠π§TS) = P(≠1
X). Let Π∨ : P(TX)∨ → X be the dual projective-space

bundle of P(TX), whose fiber P(TxX)∨ is the set of hyperplanes of TxX passing
through the zero vector of TxX. We have the canonical isomorphisms

P(≠1
X ≠ π§TS) = P(≠1

X) ª= P(TX)∨.

Let x ∈ X \Σπ. Let t be a holomorphic local coordinate of S near π(x) ∈ S. We
define the Gauss maps ∫ : X \ Σπ → P(≠1

X ≠ π§TS) and µ : X \ Σπ → P(TX)∨ by

∫(x) := [dπx] =

"
nX

i=0

@(t ◦ π)
@zi

(x) dzi ≠ @

@t

#
, µ(x) := [TxXπ(x)].

Under the canonical isomorphism P(≠1
X ≠ π§TS) ª= P(TX)∨, one has

∫ = µ.

Let
L := OP(≠1

X≠π§TS)(−1) Ω Π§(≠1
X ≠ π§TS)

be the tautological line bundle over P(≠1
X ≠ π§TS), and set

Q := Π§(≠1
X ≠ π§TS)/L.

We have the exact sequence of holomorphic vector bundles on P(≠1
X ≠ π§TS):

S : 0 −→ L −→ Π§(≠1
X ≠ π§TS) −→ Q −→ 0.

Let H = OP(TX)∨(1), and let U be the universal hyperplane bundle of (Π∨)§TX.
Then the dual of S is given by

S∨ : 0 −→ U −→ (Π∨)§TX −→ H −→ 0.

Since TxXπ(x) = {v ∈ TxX; dπx(v) = 0}, we have on X \ Σπ

TX/S = µ§U.

Let gU be the Hermitian metric on U induced from (Π∨)§gX , and let gH be the
Hermitian metric on H induced from (Π∨)§gX by the C1-isomorphism H ª= U?.
On X \ Σπ, we have

(TX/S, gX/S) = µ§(U, gU ).
Let gS be a Hermitian metric on S. Let g≠1

X
be the Hermitian metric on ≠1

X

induced from gX . Let gL be the Hermitian metric on L induced from the metric
Π§(g≠1

X
≠ π§gS) by the inclusion L Ω Π§(≠1

X ≠ π§TS). Let gQ be the Hermitian
metric on Q induced from Π§(g≠1

X
≠ π§gS) by the C1-isomorphism Q ª= L?.



4 KEN-ICHI YOSHIKAWA

Let c1(L, gL) be the Chern form of (L, gL). Since dπ is a nowhere vanishing
holomorphic section of ∫§L|X\Σπ

, we get the following equation on X \ Σπ

−ddc log kdπk2 = ∫§c1(L, gL).

3. Resolution of the Gauss maps

Since Σπ is a proper analytic subset of X, the maps ∫ : X \Σπ → P(≠1
X ≠π§TS)

and µ : X \ Σπ → P(TX)∨ extend to meromorphic maps ∫ : X 99K P(≠1
X ≠ π§TS)

and µ : X 99K P(TX)∨ by [13, Th. 4.5.3]. By Hironaka, there exists a compact
Kähler manifold eX, a normal crossing divisor E Ω eX, a birational holomorphic map
q : eX → X, and holomorphic maps e∫ : eX → P(≠1

X ≠ π§TS) and eµ : eX → P(TX)∨
satisfying the following conditions:
(i) q|eX\q−1(Σπ)

: eX \ q−1(Σπ) → X \ Σπ is an isomorphism;
(ii) q−1(Σπ) = E;
(iii) (π ◦ q)−1(b) is a normal crossing divisor of eX for all b ∈ ∆;
(iv) e∫ = ∫ ◦ q and eµ = µ ◦ q on eX \ E.
Then e∫ = eµ under the canonical isomorphism P(≠1

X ≠ π§TS) ª= P(TX)∨. We seteπ := π ◦ q

and eXs := eπ−1(s) for s ∈ S. Similarly, we set Eb := E ∩ eXb for b ∈ ∆. Sinec
E = q−1(Σπ) Ω eπ−1(∆), we have E = qb∈∆Eb.

Let IΣπ be the ideal sheaf of Σπ. For every p ∈ Σπ, the sheaf IΣπ has the
following expression on a neighborhood of p:

IΣπ = OX

µ
@(t ◦ π)

@z0
(z), · · · ,

@(t ◦ π)
@zn

(z)
∂

.

Define the ideal sheaf IE of E as

IE = q−1IΣπ .

Denote by δE the (1, 1)-current on eX defined as the integration over E, i.e.,
δE(√) :=

R
E √|E for all C1 (n, n)-form on eX. Since e∫§L = q§∫§L, q§dπ extends

to a holomorphic section of e∫§L with zero divisor E by the definition of the ideal
sheaf IE . By the Poincaré-Lelong formula, the following identity of currents on eX
holds

−ddc(q§ log kdπk2) = e∫§c1(L, gL)− δE .

4. Regularity of the direct image of differential forms

Recall that (U , t) is a coordinate neighborhood of S centered at the critical value
0 ∈ ∆. Set D := {(s, t) ∈ S × U ; s = t}. Then D is a divisor of S × U . Let [D]
be the line bundle on S × U defined by the divisor D. Let sD be a section of [D]
with zero divisor D. Let B Ω S be a finite subset with 0 ∈ B. By shrinking U if
necessary, we may assume that U ∩B = {0}. Let k · kD be a C1 Hermitian metric
on [D] such that

ksD(b, t)kD = 1, 8 (b, t) ∈ (B \ {0})× U .(4.1)

We set st := sD|S×{t} and k · kt := k · kD|S×{t} for t ∈ U . Then div(st) = {t} and
kstk2t ∈ C1(S × U).

Let V be a compact connected complex manifold with dimV = n + 1. Let
f : V → S be a proper surjective holomorphic map. We set Vt := f−1(t) for t ∈ S.
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Let F := (F, k · kF ) be a holomorphic Hermitian line bundle on V , and let α be
a holomorphic section of F with

div(α) Ω
X
b∈B

Vb.

Denote by f§ the integration along the fibers of f . In Section 4, we assume that
' is a @-closed and @̄-closed C1 (n, n)-form on V .

Lemma 4.1. There exists a Hörder continuous function η on U such that

f§{(log kαk2F ) '}(0,0) −
√Z

div(α)∩V0

'

!
log ks0k20 = η.

Proof. Since log kαk2F ' is a locally integrable differential form on V , we have
f§{(log kαk2) '}(0,0) ∈ L1

loc(S)∩C1(So). Since ddc commutes with f§ and since '
is d and dc-closed, we get the following equation of currents on U :

ddcf§{(log kαk2F ) '}(0,0) = [f§{ddc((log kαk2F ) ∧ ')}](1,1)

= −[f§
©
(c1(F )− δdiv(α)) ∧ '

™
](1,1)

=

√Z
div(α)∩V0

'

!
δ0 − [f§{c1(F ) ∧ '}](1,1).

(4.2)

By Lemma 9.2 below, there exists √ ∈ B(U) such that

[f§{c1(F ) ∧ '}](1,1)(t) = √(t)
dt ∧ dt̄

|t|2 , √(0) = 0.

Since √(0) = 0, there exists ∫ ∈ Q∩(0, 1] such that √(t) ∈ P
k∑n |t|2∫(log |t|)k ·B(U).

Hence |t|−2√(t) ∈ Lp
loc(U) for some p > 1. By the ellipticity of the Laplacian and

the Sobolev embedding theorem, there exists a Hölder continuous function χ on U
satisfying the following equation of currents on U

[f§{c1(F ) ∧ '}](1,1) = ddcχ.

This, together with (4.2) and the equation of currents ddc log |t|2 = δ0 on U , implies
the assertion, because log ks0k20 − log |t|2 ∈ C1(U). §

Lemma 4.2. The following identity holds for all t ∈ Uo:Z
Vt

(log kαk2F ) ' =

√Z
div(α)∩V0

'

!
log kst(0)k2t −

Z
V

(f§ log kstk2t ) c1(F ) ∧ '

+
Z

V
(log kαk2F ) f§c1([t], k · kt) ∧ '.

Proof. Since Vt ∩ div(α) = ; for t ∈ Uo, Vt meets div(α) properly. Since ' is
@ and @̄-closed, we deduce from [11, Th. 2.2.2] the following identity by setting
X = W = V , Y = Vt, Z = div(α), and gY = −f§ log kstk2t , gZ = − log kαk2F in [11,
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Sect. 2.2.2]:

Z
Vt

(log kαk2F ) ' =
X
b∈B

√Z
div(α)∩Vb

'

!
log kst(b)k2t −

Z
V

(f§ log kstk2t ) c1(F ) ∧ '

+
Z

V
(log kαk2F ) f§c1([t], k · kt) ∧ ',

(4.3)

where we used the assumption div(α) Ω P
b∈B Vb. (See also [15, p.59, l.3-l.7].) Since

kst(b)kt = 1 for (b, t) ∈ (B \ {0})× U by (4.1), the result follows from (4.3). §
Lemma 4.3. The following identity holds

lim
t→0

(Z
Vt

(log kαk2F ) '−
√Z

div(α)∩V0

'

!
log ks0(t)k20

)
=Z

V
(log kαk2F ) f§c1([0], k · k0) ∧ '−

Z
V

(f§ log ks0k20) c1(F ) ∧ '.

Proof. By Lemma 4.2, we have

Z
Vt

(log kαk2F ) ' =

√Z
div(α)∩V0

'

!
log ks0(t)k20 −

Z
V

(f§ log kstk2t ) c1(F ) ∧ '

+
Z

V
(log kαk2F ) f§c1([t], k · kt) ∧ ' +

√Z
div(α)∩V0

'

!
log

kst(0)k2t
ks0(t)k20

.

(4.4)

Since lims→0 log(kst(0)k2t /ks0(t)k20) = 0, the assertion follows from (4.4). §
Lemma 4.4. The following identity of functions on Uo hold:

f§{(log kαk2F ) '}(0,0) ≡B

√Z
div(α)∩V0

'

!
log ks0k20.

Proof. For t ∈ Uo, set

I1(t) :=
Z

V
(f§ log kstk2t ) c1(F ) ', I2(t) :=

Z
V

(log kαk2F ) f§c1([t], k · kt)'.

By (4.4), it suffices to prove that I1 ∈ B(U) and I2 ∈ B(U).
Let {(W∏, z∏)}∏∈Λ be a system of local coordinates on V . Since V is compact, we

may assume #Λ < +1. For every ∏ ∈ Λ, there exist F∏ ∈ O(W∏), G∏ ∈ O(W∏),
A∏ ∈ C1(W∏), and B∏ ∈ C1(W∏ × U) such thateπ§ log kstk2t |W∏(z∏) = log |F∏(z∏)− t|2 + B∏(z∏, t),

log kαk2F |W∏(z∏) = log |G∏(z∏)|2 + A∏(z∏).
Let {%∏}∏∈Λ be a partition of unity of V subject to the covering {W∏}∏∈Λ. We

set χ∏ := %∏ c1(F ) '. Then

I1(t) =
X
∏∈Λ

Z
W∏

log |F∏(z∏)− t|2 · χ∏(z∏) +
X
∏∈Λ

Z
W∏

B∏(z∏, t)χ∏(z∏).

(4.5)

Since the first term of the right hand side of (4.5) lies in B(U) by Theorem 9.1
below, we get I1 ∈ B(U).
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We set θ∏ := %∏ eπ§c1([t], k · kt) '. Then θ∏(z∏, t) is a C1 (n + 1, n + 1)-form on
W∏ × U . Since

I2(t) =
X
∏∈Λ

Z
W∏

log |G∏(z∏)|2 · θ∏(z∏, t) +
X
∏∈Λ

Z
W∏

A∏(z∏) θ∏(z∏, t),

we get I2 ∈ C1(U). This completes the proof. §
Corollary 4.5. The following identity holds

lim
t→0

ΩZ
eXt

q§(log kdπk2) '−
µZ

E0

'

∂
log ks0(t)k20

æ
=Z

eX(q§ log kdπk2) eπ§c1([0], k · k0) ∧ '−
Z

eX(eπ§ log ks0k20) e∫§c1(L, gL) ∧ '.

Proof. Setting V = eX, f = eπ, F = e∫§(L, gL) and α = q§(dπ) in Lemma 4.3, we get
the result. §
Corollary 4.6. The following identity of functions on Uo hold:

eπ§(q§(log kdπk2) ')(0,0) ≡B
µZ

E0

'

∂
log ks0k20.

Proof. Setting V = eX, f = eπ, F = e∫§(L, gL) and α = q§(dπ) in Lemma 4.4, we get
the result. §

5. Behavior of the Quillen norm of the Knudsen-Mumford section

Let Γ Ω X × S be the graph of π, which is a smooth divisor on X × S. Let [Γ]
be the holomorphic line bundle on X ×S associated to Γ. Let sΓ ∈ H0(X ×S, [Γ])
be the canonical section of [Γ], so that div(sΓ) = Γ. We identify X with Γ.

Let i : Γ ↪→ X × S be the inclusion. Let p1 : X × S → X and p2 : X × S → S be
the projections. On X × S, we have the exact sequence of coherent sheaves,

0 −→ OX×S([Γ]−1 ≠ p§1ξ)
≠sΓ−−→ OX×S(p§1ξ) −→ i§OΓ(p§1ξ) −→ 0.

(5.1)

Let ∏(p§1ξ), ∏([Γ]−1≠p§1ξ), ∏(ξ) be the determinants of the direct images R(p2)§p§1ξ,
R(p2)§([Γ]−1 ≠ p§1ξ), Rπ§ξ, respectively. By definition [5], [12], [15],

∏(ξ) =
O
q≥0

(detRqπ§ξ)(−1)q

.

Under the isomorphism p§1ξ|Γ ª= ξ induced from the identification p1 : Γ → X, the
holomorphic line bundle on S

∏ := ∏
°
[Γ]−1 ≠ p§1ξ

¢≠ ∏(p§1ξ)
−1 ≠ ∏(ξ)

carries the canonical nowhere vanishing holomorphic section σKM by [7], [12].
Let V Ω U be a relatively compact neighborhood of 0 ∈ ∆, and set Vo := V \{0}.

On π−1(U), we identify π (resp. dπ) with t◦π (resp. d(t◦π)). Hence π ∈ O(π−1(U))
and dπ ∈ H0(π−1(U),≠1

X) in what follows.
Let h[Γ] be a C1 Hermitian metric on [Γ] with

h[Γ](sΓ, sΓ)(w, t) =

(
|π(w)− t|2 if (w, t) ∈ π−1(V)× V,

1 if (w, t) ∈ (X \ π−1(U))× V.

(5.2)
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Let h[Γ]−1 be the metric on [Γ]−1 induced from h[Γ].
Let k · kQ,∏(ξ) be the Quillen metric on ∏(ξ) with respect to gX/S , hξ. Let

k · kQ,∏([Γ]−1≠p§1ξ) (resp. k · kQ,∏(p§1ξ)) be the Quillen metric on ∏([Γ]−1≠ p§1ξ) (resp.
∏(p§1ξ)) with respect to gX , h[Γ]−1 ≠ hξ (resp. gX , hξ). Let k · kQ,∏ be the Quillen
metric on ∏ defined as the tensor product of those on ∏([Γ]−1 ≠ p§1ξ), ∏(p§1ξ)−1,
∏(ξ).

For a complex manifold Y , Ap,q(Y ) denotes the vector space of C1 (p, q)-forms
on Y . We set eA(Y ) :=

L
p≥0 Ap,p(Y )/Im @ + Im @̄.

For a Hermitian vector bundle (F, hF ) over Y , ci(F, hF ), Td(F, hF ), ch(F, hF ) ∈L
p≥0 Ap,p(Y ) denote the i-th Chern form, the Todd form, and the Chern character

form of (F, hF ) with respect to the holomorphic Hermitian connection, respectively.
Let R(F ) denote the R-genus of Gillet-Soulé [7, (0.4)], [15, p. 160].

Theorem 5.1. The following identity of functions on Uo holds

log kσKMk2Q,∏ ≡B
µZ

E0

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ)

∂
log |t|2.

Proof. We follow Bismut [3, Sect. 5]. (See also [17, Th. 6.3].)
(Step 1) Let [Xt] be the holomorphic line bundle on X associated to the divisor Xt.
Then [Xt] = [Γ]|Xt . We define the canonical section st of [Xt] by st := sΓ|X×{t} ∈
H0(X, [Xt]). Then div(st) = Xt. Let it : Xt ↪→ X be the embedding, and set
ξt := ξ|Xt . By (5.1), we get the exact sequence of coherent sheaves on X,

0 −→ OX([Xt]−1 ≠ ξ) ≠st−−→ OX(ξ) −→ (it)§OXt(ξ) −→ 0.(5.3)

Let ∏([Xt]−1 ≠ ξ) and ∏(ξt) be the determinants of the cohomology groups of
[Xt]−1 ≠ ξ and ξt, respectively. Then ∏t = ∏([Xt]−1 ≠ ξ)≠ ∏(ξ)−1 ≠ ∏(ξt).

Set h[Xt] = h[Γ]|X×{t} for t ∈ V. Then h[Xt] is a Hermitian metric on [Xt]. Let
h−1

[Xt]
be the Hermitian metric on [Xt]−1 induced from h[Xt].

Let Nt = NXt/X (resp. N§
t = N§

Xt/X) be the normal (resp. conormal) bundle
of Xt in X. Then dπ|Xt ∈ H0(Xt, N§

t ) generates N§
t for t ∈ Uo. Let hN§

t
be the

Hermitian metric on N§
t defined by

hN§
t
(dπ|Xt , dπ|Xt) = 1.(5.4)

Let hNt be the Hermitian metric on Nt induced from hN§
t
. Then we have the

identity c1(Nt, hNt) = 0 for t ∈ Vo.
For (w, t) ∈ π−1(U)× U , set

esΓ(w, t) =
sΓ(w, t)
π(w)− t

.

Since π(w) − t is a holomorphic function on π−1(U) × U with divisor Γ, esΓ is a
nowhere vanishing holomorphic section of [Γ]|π−1(U)×U . Set esXt = esΓ|Xt×{t} ∈
H0(Xt, [Xt]|Xt) and

dst|Xt := dπ ≠ esXt ∈ H0(Xt, N
§
t ≠ [Xt]|Xt).

By (5.2), (5.4), the isomorphism

≠dst|Xt : [Xt]−1 ≠ ξ|Xt 3 v → dst|Xt(v) ∈ N§
t ≠ ξt

gives an isometry of holomorphic Hermitian vector bundles

([Xt]−1 ≠ ξ, h[Xt]−1 ≠ hξ)|Xt
ª= (N§

t ≠ ξt, hN§
t
≠ hξ|Xt)
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for all t ∈ Vo. Hence the metrics h[Xt]−1 ≠ hξ and hξ verify assumption (A) of
Bismut [2, Def.1.5] with respect to hNt and hξ|Xt .
(Step 2) Associated to the exact sequence of holomorphic vector bundles on Xt,

Et : 0 −→ TXt −→ TX|Xt −→ Nt −→ 0,

one can define the Bott-Chern class fTd(Et; gXt , gX , hNt) ∈ eA(Xt) by [5, I, f)], [10,
I, Sect. 1], [15, Chap. IV, Sect. 3] such that

ddc fTd(Et; gXt , gX , hNt) = Td(TXt, gXt) Td(Nt, hNt)− Td(TX, gX)|Xt .

Notice that our fTd(Et; gXt , gX , hNt) and Bismut-Lebeau’s fTd(TXt, TX|Xt , hNt)
are related as follows:fTd(Et; gXt , gX , hNt) = −fTd(TXt, TX|Xt , hNt).

Let Z be a general fiber of π : X → S. By applying the embedding formula of
Bismut-Lebeau [7, Th. 0.1] (see also [3, Th. 5.6]) to the embedding it : Xt ↪→ X and
to the exact sequence (5.3), we get for all t ∈ Vo:

log kσKM (t)k2Q,∏ =
Z

X×{t}
−Td(TX, gX) ch(ξ, hξ)

Td([Γ], h[Γ])
log h[Γ](sΓ, sΓ)|X×{t}

−
Z

Xt

fTd(Et; gXt , gX , hNt) ch(ξ, hξ)
Td(Nt, hNt)

−
Z

X
Td(TX)R(TX) ch(ξ) +

Z
Z

Td(TZ) R(TZ) ch(ξ|Z).

(5.5)

Here we used the explicit formula for the Bott-Chern current [6, Rem. 3.5, especially
(3.23), Th. 3.15, Th. 3.17] to get the first term of the right hand side of (5.5). Notice
that the dual of our ∏(ξ) was defined as ∏(ξ) in [7].

By Theorem 9.1 below, the first term of the right hand side of (5.5) lies in B(U).
Substituting c1(Nt, hNt) = 0 into (5.5), we get

log kσKM (t)k2Q,∏ ≡B
Z

Xt

−fTd(Et; gXt , gX , hNt) ch(ξ, hξ).(5.6)

(Step 3) Let gNt be the Hermitian metric on Nt induced from gX by the C1

isomorphism Nt
ª= (TXt)?. Let fTd(Nt; hNt , gNt) ∈ eA(Xt) be the Bott-Chern class

[5, I, e)], [10, Sect. 1.2.4], [15, Chap. IV, Sect. 3] such that

ddc fTd(Nt;hNt , gNt) = Td(Nt, hNt)− Td(Nt, gNt).

By [10, I, Prop. 1.3.2 and Prop. 1.3.4] (see also Lemma 5.3 below),

fTd(Et; gXt , gX , hNt) = fTd(Et; gXt , gX , gNt) + Td(TXt, gXt) fTd(Nt; hNt , gNt).
(5.7)

Since c1(Nt, hNt) = 0 and gNt = kdπk−2 hNt , we deduce from [10, I, Prop. 1.3.1
and (1.2.5.1)] the identity

fTd(Nt; hNt , gNt) =
1− Td(ddc log kdπk2)

ddc log kdπk2 log kdπk2

= ∫§
Ω

1− Td(−c1(L, gL))
−c1(L, gL)

æ
log kdπk2

ØØØØ
Xt

.

(5.8)
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Substituting (5.8) and (TXt, gXt) = µ§(U, gU )|Xt into (5.7), we get

fTd(Et; gXt , gX , hNt) =

fTd(Et; gXt , gX , gNt) + µ§Td(U, gU ) ∫§
Ω

1− Td(−c1(L, gL))
−c1(L, gL)

æ
log kdπk2

ØØØØ
Xt

.

(5.9)

Since

Et = µ§S∨|Xt , gXt = µ§gU |Xt , gX = µ§(Π∨)§gX |Xt , gNt = µ§gH |Xt ,

we deduce from [10, I, Th. 1.2.2 (ii)] thatfTd(Et; gXt , gX , gNt) = µ§fTd(S∨; gU , (Π∨)§gX , gH)|Xt .(5.10)

Comparing (5.9) and (5.10), we get

fTd(Et; gXt , gX , hNt) = µ§fTd(S∨; gU , (Π∨)§gX , gH)|Xt

+ µ§Td(U, gU ) ∫§
Ω

1− Td(−c1(L, gL))
−c1(L, gL)

æ
log kdπk2|Xt .

(5.11)

Substituting (5.11) into (5.6), we get

log kσKMk2Q,∏

≡B −π§
h
µ§fTd(S∨; gU , (Π∨)§gX , gH) ch(ξ, hξ)

i(0,0)

− π§
∑
µ§Td(U, gU ) ∫§

Ω
1− Td(−c1(L, gL))

−c1(L, gL)

æ
ch(ξ, hξ) log kdπk2

∏(0,0)

≡B −eπ§ heµ§fTd(S∨; gU , (Π∨)§gX , gH) q§ch(ξ, hξ)
i(0,0)

+ eπ§ ∑eµ§Td(U, gU ) e∫§Ω
Td(−c1(L, gL))− 1

−c1(L, gL)

æ
q§ch(ξ, hξ) (q§ log kdπk2)

∏(0,0)

.

(5.12)

Recall that for a C1 differential form ' on eX, one has eπ§(')(0,0) ∈ B(U) by
Barlet [1, Th. 4bis]. Since q§ch(ξ, hξ) and

eµ§fTd(S∨; gU , (Π∨)§gX , gH), eµ§Td(U, gU ), e∫§{Td(−c1(L, gL))− 1
−c1(L, gL)

}

are C1 differential forms on eX, we deduce from (5.12), [1, Th. 4bis], and Corollary
4.6 that

log kσKMk2Q,∏ ≡B
µZ

E0

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ)

∂
log |t|2.

(5.13)

Here we used the identity c1(H) = −c1(L) + (Π∨)§π§c1(S) in H2(P(TX)∨, Z) and
the triviality of the line bundle eµ§(Π∨)§π§(TS)|eπ−1(U)

to get (5.13). This completes
the proof of Theorem 5.1. §
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For simplicity, we set L := (L, gL), U := (U, gU ), ξ := (ξ, hξ) in what follows.
Let fTd(S∨; gU , (Π∨)§gX , gH) be the Bott-Chern secondary class associated with

the Todd genus and the exact sequence of holomorphic vector bundles

S∨ : 0 → U → (Π∨)§TX → H → 0

equipped with the Hermitian metrics gU , (Π∨)§gX , gH , such that

ddc fTd(S∨; gU , (Π∨)§gX , gH) = Td(U, gU ) Td(H, gH)− (Π∨)§Td(TX, gX).

Recall that Z is a general fiber of π : X → S.

Theorem 5.2. The following identity holds

lim
t→0

∑
log kσKM (t)k2Q,∏ −

µZ
E0

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ)

∂
log ks0(t)k20

∏
=

−
Z

X×{0}

Td(TX, gX) ch(ξ)
Td([Γ], h[Γ])

log ksΓk2|X×{0}

−
Z

eX0

eµ§fTd(S∨; gU , (Π∨)§gX , gH) q§ch(ξ)

+
Z

eX(q§ log kdπk2) eπ§c1([0], k · k0)
∑eµ§Td(U) e∫§Ω

Td(−c1(L))− 1
−c1(L)

æ
q§ch(ξ)

∏
−

Z
eX(eπ§ log ks0k20) e∫§c1(L)

∑eµ§Td(U) e∫§Ω
Td(−c1(L))− 1

−c1(L)

æ
q§ch(ξ)

∏
−

Z
X

Td(TX) R(TX) ch(ξ) +
Z

Z
Td(TZ)R(TZ) ch(ξ|Z).

Proof. Define topological constants C0 and C1 by

C0 :=
Z

E0

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ),

C1 := −
Z

X
Td(TX)R(TX) ch(ξ) +

Z
Z

Td(TZ) R(TZ) ch(ξ|Z).

Substituting (5.11) and c1(Nt, hNt) = 0 into (5.5), we get for t ∈ Uo

log kσKM (t)k2Q,∏ = −
Z

X×{t}

Td(TX, gX) ch(ξ)
Td([Γ], h[Γ])

log ksΓk2|X×{t}

−
Z

Xt

µ§fTd(S∨; gU , (Π∨)§gX , gH)|Xt ch(ξ)

−
Z

Xt

µ§Td(U) ∫§
Ω

1− Td(−c1(L))
−c1(L)

æ
ch(ξ) log kdπk2 + C1

= −
Z

X×{t}

Td(TX, gX) ch(ξ)
Td([Γ], h[Γ])

log ksΓk2|X×{t}

−
Z

eXt

eµ§fTd(S∨; gU , (Π∨)§gX , gH)|Xt q§ch(ξ)

+
Z

eXt

eµ§Td(U) e∫§Ω
Td(−c1(L))− 1

−c1(L)

æ
q§ch(ξ) q§(log kdπk2) + C1,

(5.14)
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which yields that

log kσKM (t)k2Q,∏ − C0 log ks0(t)k20 =

−
Z

X×{t}

Td(TX, gX) ch(ξ)
Td([Γ], h[Γ])

log ksΓk2 −
Z

eXt

eµ§fTd(S∨; gU , (Π∨)§gX , gH) q§ch(ξ)

+
Z

eXt

∑eµ§Td(U) e∫§Ω
Td(−c1(L))− 1

−c1(L)

æ
q§ch(ξ)

∏
q§(log kdπk2)− C0 log ks0(t)k20

+ C1.

(5.15)

By Corollary 4.5,

Z
eXt

∑eµ§Td(U) e∫§Ω
Td(−c1(L))− 1

−c1(L)

æ
q§ch(ξ)

∏
q§(log kdπk2)− C0 log ks0(t)k20

=
Z

eX(q§ log kdπk2) eπ§c1([0], k · k0)
∑eµ§Td(U) e∫§Ω

Td(−c1(L))− 1
−c1(L)

æ
q§ch(ξ)

∏
−

Z
eX(eπ§ log ks0k20) e∫§c1(L)

∑eµ§Td(U) e∫§Ω
Td(−c1(L))− 1

−c1(L)

æ
q§ch(ξ)

∏
+ o(1).

(5.16)

From (5.15) and (5.16), we get

lim
t→0

£
log kσKM (t)k2Q,∏ − C0 log ks0(t)k20

§
=

−
Z

X×{0}

Td(TX, gX) ch(ξ)
Td([Γ], h[Γ])

log ksΓk2|X×{0}

−
Z

eX0

eµ§fTd(S∨; gU , (Π∨)§gX , gH) q§ch(ξ)

+
Z

eX(q§ log kdπk2) eπ§c1([0], k · k0)
∑eµ§Td(U) e∫§Ω

Td(−c1(L))− 1
−c1(L)

æ
q§ch(ξ)

∏
−

Z
eX(eπ§ log ks0k20) e∫§c1(L)

∑eµ§Td(U) e∫§Ω
Td(−c1(L))− 1

−c1(L)

æ
q§ch(ξ)

∏
+ C1.

(5.17)

This completes the proof of Theorem 5.2. §

Lemma 5.3. Let E : 0 −→ E0 −→ E −→ E00 −→ 0 be an exact sequence of
holomorphic vector bundles over a complex manifold Y . Let h0 and h be Hermitian
metrics on E0 and E, respectively. Let h00 and g00 be Hermitian metrics on E00.
Then fTd(E ; h0, h, h00)− fTd(E ; h0, h, g00) = Td(E0, h0) fTd(E00; h00, g00).

Proof. Setting L1 = (E , h0, h, h00), L2 = (E , h0, h, g00), L3 = 0 in [10, I, Prop. 1.3.4],
we get fTd(E ; h0, h, h00)− fTd(E ; h0, h, g00) = fTd(E0 © E00; h0 © h00, h0 © g00).

Since fTd(E0©E00; h0©h00, h0©g00) = Td(E0, h0) fTd(E00; h00, g00) by [10, I, Prop. 1.3.2],
we get the result. §
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6. The divergent term and the constant term

Let α be a nowhere vanishing holomorphic section of ∏([Γ]−1 ≠ p§1ξ)−1 ≠ ∏(p§1ξ)
defined on U .

Theorem 6.1. Let σ be a nowhere vanishing holomorphic section of ∏(ξ) defined
on U . Then

log kσk2Q,∏(ξ) ≡B
µZ

E0

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ)

∂
log |t|2.

Proof. There exists a nowhere vanishing holomorphic function f(t) on U such that

σ(t) = f(t) σKM (t)≠ α(t).

Since log |f(t)|2 and log kαk2Q,∏([Γ]−1≠p§1ξ)−1≠∏(p§1ξ) are C1 functions on U , we de-
duce from Theorem 5.1 that
log kσ(t)k2Q,∏(ξ) = log |f(t)|2 + log kσKM (t)k2Q,∏ + log kα(t)k2Q,∏([Γ]−1≠p§1ξ)−1≠∏(p§1ξ)

≡B
µZ

E0

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ)

∂
log |t|2.

This completes the proof of Theorem 6.1. §

Theorem 6.2. The following identity holds:

lim
t→0

∑
log kσKM ≠ αk2Q,∏(ξ)(t)−

µZ
E0

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ)

∂
log ks0(t)k20

∏
= log kα(0)k2Q −

Z
X×{0}

Td(TX, gX) ch(ξ)
Td([Γ], h[Γ])

log ksΓk2|X×{0}

−
Z

eX0

eµ§fTd(S∨; gU , (Π∨)§gX , gH) q§ch(ξ)

+
Z

eX(q§ log kdπk2) eπ§c1([0], k · k0)
∑eµ§Td(U) e∫§Ω

Td(−c1(L))− 1
−c1(L)

æ
q§ch(ξ)

∏
−

Z
eX(π§ log ks0k20) e∫§c1(L)

∑eµ§Td(U) e∫§Ω
Td(−c1(L))− 1

−c1(L)

æ
q§ch(ξ)

∏
−

Z
X

Td(TX) R(TX) ch(ξ) +
Z

Z
Td(TZ) R(TZ) ch(ξ|Z).

Proof. Since

log kσKM ≠ αk2Q,∏(ξ) = log kσKMk2Q,∏ + log kαk2Q,∏([Γ]−1≠p§1ξ)−1≠∏(p§1ξ),

the result follows from Theorem 5.2. §

7. Critical points defined by a quadric polynomial of rank 2

In this section, we assume that for every x ∈ Σπ ∩X0, there exists a system of
coordinates (z0, . . . , zn) centered at x such that

π(z) = z0z1.

Hence Σπ Ω X is a complex submanifold of codimension 2 defined locally by the
equation z0 = z1 = 0. Let NΣπ/X be the normal bundle of Σπ in X. In [3, Def. 5.1,
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Prop. 5.2], Bismut introduced the additive genus E(·) associated with the generating
function

E(x) :=
Td(x) Td(−x)

2x

µ
Td−1(x)− 1

x
− Td−1(−x)− 1

−x

∂
,

where Td−1(x) := (1− e−x)/x.
The following result was proved by Bismut [3, Th. 5.9].

Theorem 7.1. The following equation of functions on Uo holds:

log kσ(t)k2∏(ξ),Q ≡B
1
2

µZ
Σπ∩X0

−Td(TΣπ) E(NΣπ/X) ch(ξ)
∂

log |t|2.

Remark 7.2. As mentioned before, the dual of our ∏(ξ) was defined as ∏(ξ) in [3,
Th. 5.9], which explains the difference of the sign of the coefficient of log |t|2 in
Theorem 7.1 with that of [3, Th. 5.9].

Proof. Let q : eX → X be the blowing-up along Σπ with exceptional divisor

E = P(NΣπ/X).

Then e∫ = ∫ ◦ q extends to a holomorphic map from eX to P(≠1
X).

Since the Hessian of π is a non-degenerate symmetric bilinear form on NΣπ/X , we
have NΣπ/X

ª= N§
Σπ/X . Under the identification P(NΣπ/X) = P(N§

Σπ/X) induced
from the Hessian of π, e∫ is identified with the natural inclusion P(N§

Σπ/X) ↪→
P(≠1

X |Σπ ), which yields that

e∫§L|E = OP(N§
Σπ/X

)(−1), eµ§H|E = OP(NΣπ/X)(1).(7.1)

Set F := OP(NΣπ/X)(1).
By the exact sequence S∨, we get

Td(U) =
Td((Π∨)§TX)

Td(H)
.(7.2)

Since Π∨ ◦ eµ = q, we deduce from the exact sequence of vector bundles on Σπ

0 −→ TΣπ −→ TX|Σπ −→ NΣπ/X −→ 0

the identity

eµ§Td((Π∨)§TX)|E = q§
©
Td(TΣπ) Td(NΣπ/X)

™
.(7.3)

Substituting (7.3) into (7.2), we get

eµ§Td(U)|E =
q§

©
Td(TΣπ)Td(NΣπ/X)

™
eµ§Td(H)|E =

q§
©
Td(TΣπ)Td(NΣπ/X)

™
Td(F )

,

(7.4)

where we used (7.1) to get the second equality.
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Let p§ be the integration along the fibers of the projection p : P(NΣπ/X) → Σπ.
Since q|E = p, we deduce from (7.1), (7.4) and the projection formula that

Z
E∩X0

eµ§Ω
Td(U)

Td(H)− 1
c1(H)

æ
q§ch(ξ)

=
Z

Σπ∩X0

Td(TΣπ) Td(NΣπ/X) ch(ξ) p§
Ω

1
Td(F )

· Td(F )− 1
c1(F )

æ
=

Z
Σπ∩X0

Td(TΣπ) Td(NΣπ/X) ch(ξ) p§
Ω

1− Td−1(F )
c1(F )

æ
.

(7.5)

Since NΣπ/X
ª= N§

Σπ/X , we have

c1(NΣπ/X) = 0,

which, together with rk(NΣπ/X) = 2, yields that

0 = c1(F )2 − p§c1(NΣπ/X) c1(F ) + p§c2(NΣπ/X) = c1(F )2 + p§c2(NΣπ/X).

Since p§c1(F ) = 1, this implies that for m ≥ 0

p§c1(F )m =

(
(−1)k c2(NΣπ/X)k (m = 2k + 1)
0 (m = 2k).

(7.6)

For a formal power series f(x) =
P1

j=0 aj xj ∈ C[[x]], set

f−(x) :=
f(x)− f(−x)

2x
∈ C[[x]].

By (7.6), we get

p§f(c1(F )) =
X

k

a2k+1 p§c1(F )2k+1 =
X

k

(−1)ka2k+1 c2(NΣπ/X)k.

Let f−(NΣπ/X) be the additive genus associated with f−(x) ∈ C[[x]]. Let x1, x2

be the Chern roots of NΣπ/X . Since c1(NΣπ/X) = x1 + x2 = 0, we get

f−(NΣπ/X) =
f(x1)− f(−x1)

2x1
+

f(x2)− f(−x2)
2x2

=
1X

k=0

a2k+1 (x2k
1 + x2k

2 )

= 2
1X

k=0

a2k+1(−x1x2)k

= 2
1X

k=0

(−1)ka2k+1 c2(NΣπ/X)k = 2 p§f(c1(F )).
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Setting f(x) = (Td−1(x)− 1)/x, we get

E(NΣπ/X) = Td(x1)Td(x2)
Ω

f(x1)− f(−x1)
2x1

+
f(x2)− f(−x2)

2x2

æ
= 2 Td(NΣπ/X) p§f(c1(F ))

= −2 Td(NΣπ/X) p§
µ

1− Td−1(F )
c1(F )

∂
.

(7.7)

By comparing (7.5) and (7.7), the desired formula follows from Theorem 6.1. §

8. Isolated critical points

In this section, we assume that Sing(X0) = Σπ ∩X0 consists of isolated points.
Since Σπ is discrete, we may identify P(≠1

X) and P(TX) with the trivial projective-
space bundle on a neighborhood of Σπ ∩X0 by fixing a system of coordinates near
Σπ ∩ X0. Under this trivialization, we consider the Gauss maps ∫ and µ only on
a small neighborhood of Σπ ∩ X0. Then we have the following expression on a
neighborhood of each p ∈ Σπ ∩X0:

µ(z) = ∫(z) =
µ

@π

@z0
(z) : · · · :

@π

@zn
(z)

∂
.

For a formal power series f(x) ∈ C[[x]], let f(x)|xm denote the coefficient of xm.
Let µ(π, p) ∈ N be the Milnor number of the isolated critical point p of π. The
following result was proved by the author [16, Main Th.].

Theorem 8.1. The following identity of functions on Uo holds:

log kσk2∏(ξ),Q ≡B
(−1)n

(n + 2)!
rk(ξ)

0@ X
p∈Sing(X0)

µ(π, p)

1A log |t|2.

Proof. In Theorem 6.1, we can identify U (resp. L) with the universal hyperplane
bundle (resp. tautological line bundle) on Pn. Then H = L−1. Set x := c1(H).
Hence

R
Pn xn = 1. From the exact sequence 0 → U → Cn+1 → H → 0, we get

Td(U) = Td−1(x) =
1− e−x

x
.

By substituting this and the equation q§ch(ξ)|
E∩eX0

= rk(ξ) into the formula of
Theorem 6.1, we getZ

E0

eµ§Td(U) e∫§Ω
Td(c1(H))− 1

c1(H)

æ
q§ch(ξ)

=
1

Td(x)
· Td(x)− 1

x

ØØØØ
xn

· rk(ξ)
Z

E0

eµ§c1(H)n

=
Ω

1
x
− 1− e−x

x2

æØØØØ
xn

· rk(ξ)
Z

E0

eµ§c1(H)n

=
(−1)n

(n + 2)!
rk(ξ)

Z
E0

eµ§c1(H)n.

(8.1)
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Sinceeπ§ ©eµ§(−c1(L, gL))n q§(log kdπk2)™ = π§
©
q§(log kdπk2) (ddc log kdπk2)n

™
=

X
p∈Sing(X0)

µ(π, p) log |t|2 + O(1)

by [16, Th. 4.1], we get Z
E0

eµ§c1(H)n =
X

p∈Sing(X0)

µ(π, p)(8.2)

by Corollary 4.6. The result follows from Theorem 6.1 and (8.1), (8.2). §

9. Some results on asymptotic expansion

Let AC (resp. CC) be the sheaf of germs of C1 (resp. C0) functions on C. The
stalk of AC (resp. CC) at the origin is denoted by A0 (resp. C0). We define

B0 := A0 ©
M

r∈Q∩(0,1]

nM
k=0

|t|2r(log |t|)k · A0 Ω C0.

In this section, we prove the following

Theorem 9.1. Let ≠ Ω Cn be a relatively compact domain. Let F (z) be a holo-
morphic function on ≠ with critical locus ΣF := {z ∈ ≠; dF (z) = 0}. Let χ(z) be
a C1 (n, n)-form with compact support in ≠. Define a germ √ ∈ C0 by

√(t) :=
Z

≠
log |F (z)− t|2 χ(z).

If ΣF Ω F−1(0), then √(t) ∈ B0.

The continuity of similar integrals was studied by Bost-Gillet-Soulé [8, Sect. 1.5]
in relation with the regularity of the star products of Green currents.

For the proof of Theorem 9.1, we prove some intermediary results.

Lemma 9.2. Let Φ be a C1 (n, n)-form with compact support in ≠. Let F§(Φ)
be the locally integrable (1, 1)-form on C defined as the integration of Φ along the
fibers of F : ≠ → C. If ΣF Ω F−1(0), then there exists a germ A(t) ∈ B0 such that

F§(Φ)(t) = A(t)
dt ∧ dt̄

|t|2 , A(0) = 0

near 0 ∈ C.

Proof. By Hironaka, there exists a proper holomorphic modification $ : e≠ → ≠
such that
(i) $ : e≠ \ $−1(ΣF ) → ≠ \ ΣF is an isomorphism;
(ii) (F ◦$)−1(ΣF ) is a normal crossing divisor of e≠.

Set eF := F ◦ $. For any z ∈ F−1(0), there exist a system of coordinates
(U, (w1, . . . , wn)) and integers k1, . . . , kl ≥ 1, l ∑ n, such that eF (w) = wk1

1 · · ·wkl
l .

Define a holomorphic (n− 1)-form on U by

τ :=
1
l

lX
i=1

1
ki

(−1)i−1wi dw1 ∧ · · · ∧ dwi−1 ∧ dwi+1 ∧ · · · ∧ dwn.
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Let %U be a C1 function with compact supported in U . Since $§Φ is a C1

(n, n)-form on e≠, there exists h(w) ∈ C10 (U) such that

%U$§Φ = h(w) dw1 ∧ · · · ∧ dwn ∧ dw̄1 ∧ · · · ∧ dw̄n.

We define a germ B(t) ∈ C0 by

B(t) :=
Z
eF−1(t)∩U

h(w) τ ∧ τ̄ .

Then B(t) ∈ B0 by [1, p.166, Th. 4bis]. Since

eF §µ
dt

t

∂
∧ τ = dw1 ∧ · · · ∧ dwn,

we get by the projection formula

eF§(%U $§Φ)(t) = eF§(h(w) dw1 ∧ · · · ∧ dwn ∧ dw̄1 ∧ · · · ∧ dw̄n)(t)

=
dt ∧ dt̄

|t|2
eF§ (h(w) τ ∧ τ̄) = B(t)

dt ∧ dt̄

|t|2 .

(9.1)

For an ≤ > 0 small enough, set ∆(≤) := {t ∈ C; |t| < ≤}. SinceØØØØØ
Z

∆(≤)

eF§(%U $§Φ)

ØØØØØ =

ØØØØØ
Z
eF−1(∆(≤))

%U $§Φ

ØØØØØ < 1,

the (1, 1)-form B(t) dt∧dt̄/|t|2 is locally integrable near the origin. Hence B(0) = 0.
Let {Uβ}β∈B be a locally finite open covering of e≠ and let {%β}β∈B be a partition

of unity subject to {Uβ}β∈B . By (9.1), there exists Bβ(t) ∈ B0 for each β ∈ B such
that eF§(%β $§(Φ)) = Bβ(t)

dt ∧ dt̄

|t|2 , Bβ(0) = 0.

There exist finitely many β ∈ B with Bβ(t) 6= 0 by the compactness of the support
of $§Φ. Since

F§(Φ) =
X
β∈B

eF§(%β $§Φ) = (
X
β∈B

Bβ(t))
dt ∧ dt̄

|t|2 ,

we get A(t) =
P

β∈B Bβ(t) ∈ B0 and A(0) = 0. §

We regard ≠ as a domain in (P1)n. Hence χ is a C1 (n, n)-form on (P1)n. Let
z = (z1, . . . , zn) be the inhomogeneous coordinates of (P1)n. For 1 ∑ i ∑ n, set

ωi :=
√−1 dzi ∧ dz̄i

2π(1 + |zi|2)2 .

Lemma 9.3. Assume that F (z) = z∫1
1 · · · z∫n

n , ∫1, . . . , ∫n ≥ 0 and set

α :=
Z

(P1)n

χ(z).

Then there exists η(t) ∈ B0 such that

√(t) = α

Z
(P1)n

log |z∫1
1 · · · z∫n

n − t|2 ω1 ∧ · · · ∧ ωn + η(t).
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Proof. Let ((≥1 : ξ1), . . . , (≥n : ξn)) be the homogeneous coordinates of (P1)n such
that zi = ≥i/ξi. For t ∈ C, set

Yt := {((≥1 : ξ1), . . . , (≥n : ξn)) ∈ (P1)n; ≥∫1
1 · · · ≥∫n

n − t ξ∫1
1 · · · ξ∫n

n = 0},
D := {((≥1 : ξ1), . . . , (≥n : ξn)) ∈ (P1)n; ξ∫1

1 · · · ξ∫n
n = 0}.

Since

z∫1
1 · · · z∫n

n − t =
≥∫1
1 · · · ≥∫n

n − t ξ∫1
1 · · · ξ∫n

n

ξ∫1
1 · · · ξ∫n

n
,(9.2)

we get the following equation of currents on (P1)n by the Poincaré-Lelong formula:

ddc log |z∫1
1 · · · z∫n

n − t|2 = δYt − δD.(9.3)

Since χ(z) is cohomologous to α ω1∧· · ·∧ωn, there exists a C1 (n−1, n−1)-form
∞ on (P1)n by the ddc-Poincaré lemma, such that

χ(z)− α ω1 ∧ · · · ∧ ωn = ddc∞.

Hence we get by (9.3)

√(t) = α

Z
(P1)n

log |z∫1
1 · · · z∫n

n − t|2 ω1 ∧ · · · ∧ ωn +
Z

(P1)n

log |z∫1
1 · · · z∫n

n − t|2 ddc∞

= α

Z
(P1)n

log |z∫1
1 · · · z∫n

n − t|2 ω1 ∧ · · · ∧ ωn +
Z

(P1)n

ddc(log |z∫1
1 · · · z∫n

n − t|2) ∧ ∞

= α

Z
(P1)n

log |z∫1
1 · · · z∫n

n − t|2 ω1 ∧ · · · ∧ ωn +
Z

Yt

∞ −
Z

D
∞.

(9.4)

For t ∈ C, set

η(t) :=
Z

Yt

∞ −
Z

D
∞.(9.5)

Define a divisor of (P1)n × C by

Y := {((≥1 : ξ1), . . . , (≥n : ξn), t) ∈ (P1)n × C; ≥∫1
1 · · · ≥∫n

n − tξ∫1
1 · · · ξ∫n

n = 0}.
Let pr1 : (P1)n × C → (P1)n and pr2 : (P1)n × C → C be the projections. Then
Yt = Y ∩ pr−1

2 (t). Let P : eY → Y be the resolution of the singularities of Y . Then
pr2|Y ◦ P is a proper holomorphic function on the complex manifold eY . Since
P §(pr1)§∞ is a C1 (n− 1, n− 1)-form on eY , we get

η(t) =
Z

(pr2|Y ◦P )−1(t)
P §(pr1)

§∞ −
Z

D
∞ ∈ B0(9.6)

by [1, Th. 4bis]. The result follows from (9.4), (9.5), (9.6). §

Define a germ f ∈ C0 by

f(t) :=
Z

(P1)n

log |z∫1
1 · · · z∫n

n − t|2 ω1 ∧ · · · ∧ ωn.

Lemma 9.4. There exists a germ g(t) ∈ B0 such that

ddcf(t) =
√−1
4π

g(t)
dt ∧ dt̄

|t|2 , g(0) = 0.
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Proof. We keep the notation in the proof of Lemma 9.3. Since the assertion is
obvious when ∫1 = · · · = ∫n = 0, we assume that ∫i > 0 for some i. Since
z∫1
1 · · · z∫n

n − t is a meromorphic function on (P1)n × C, we deduce from (9.2) and
the Poincaré-Lelong formula the following equation of currents on (P1)n × C:

ddc log |z∫1
1 · · · z∫n

n − t|2 = δY − δD×C = δY − δ(pr1)
§D.(9.7)

Since
f = (pr2)§

©
log |z∫1

1 · · · z∫n
n − t|2 (pr1)

§(ω1 ∧ · · · ∧ ωn)
™

,

we get on C \ {0}

ddcf = (pr2)§
©
ddc log |z∫1

1 · · · z∫n
n − t|2 ∧ (pr1)

§(ω1 ∧ · · · ∧ ωn)
™

= (pr2)§
©
(δY − δ(pr1)

§D) ∧ (pr1)
§(ω1 ∧ · · · ∧ ωn)

™
= (pr2)§ {(pr1)

§(ω1 ∧ · · · ∧ ωn)|Y } − (pr2)§ {(pr1)
§(ω1 ∧ · · · ∧ ωn|D)}

= (pr2|Y )§ {(pr1)
§(ω1 ∧ · · · ∧ ωn)|Y }

= (pr2|Y ◦ P )§ {P §(pr1)
§(ω1 ∧ · · · ∧ ωn)} ,

(9.8)

where the first equality follows from the commutativity ddc(pr2)§ = (pr2)§ddc, the
second equality follows from (9.7), and the fourth equality follows from the trivial
identity ω1 ∧ · · · ∧ ωn|D = 0. Since P §(pr1)§(ω1 ∧ · · · ∧ ωn) is a C1 (n, n)-form oneY and since pr2|Y ◦ P : eY → C is a proper holomorphic map, the assertion follows
from (9.8) and Lemma 9.2. §
Lemma 9.5. The germ f(t) is S1-invariant, i.e., f(t) = f(|t|).
Proof. Without loss of generality, we may assume that ∫n > 0. SinceZ

P1
log |Az∫n

n + B|2 ωn = log(|A|2/∫n + |B|2/∫n)

when (A,B) 6= (0, 0), we get by Fubini’s theorem

f(t) =
Z

(P1)n

log |z∫1
1 · · · z∫n

n − t|2 ω1 ∧ · · · ∧ ωn

=
Z

(P1)n−1

µZ
P1

log |z∫1
1 · · · z∫n

n − t|2 ωn

∂
ω1 ∧ · · · ∧ ωn−1

=
Z

(P1)n−1
log

≥
|z∫1

1 · · · z∫n−1
n−1 |2/∫n + |t|2/∫n

¥
ω1 ∧ · · · ∧ ωn−1.

(9.9)

The assertion follows from (9.9). §
Let (r, θ) be the polar coordinates of C. Hence t = r eiθ.

Lemma 9.6. Let ∏(t) ∈ C1(∆§). Assume that ∏(t) is S1-invariant, i.e., ∏(t) =
∏(r). If r @r∏(t) ∈ B0, then ∏(t) ∈ B0.

Proof. By the definition of B0, there exist a finite set A Ω Q ∩ (0, 1] and germs
µα,k(t) ∈ A0, α ∈ A, 0 ∑ k ∑ n such that

r @r∏(r) =
X
α∈A

nX
k=0

r2α(log r)k µα,k(t).(9.10)
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We may assume that µα,k(t) ∈ C1(∆(2≤)) for some ≤ > 0. Since the left hand side
of (9.10) is S1-invariant, we may assume that µα,k(t) = µα,k(r) for all α and k after
replacing µα,k(t) by

R 2π
0 µα,k(eiθt) dθ/2π. By (9.10), we get

∏(≤)− ∏(r) =
X
α∈A

nX
k=0

Z ≤

r
u2α−1(log u)k µα,k(u) du.(9.11)

By (9.11), we see that ∏(t) ∈ C0 by setting

∏(0) := ∏(≤)−
X
α∈A

nX
k=0

Z ≤

0
u2α−1(log u)k µα,k(u) du.

Since ∏(t) ∈ C0, we get by (9.11)

∏(r) = ∏(0) +
X
α∈A

nX
k=0

Z r

0
u2α−1(log u)kµα,k(u) du

= ∏(0) +
X
α∈A

nX
k=0

r2α

Z 1

0
v2α−1(log r + log v)kµα,k(vr) dv

= ∏(0) +
X
α∈A

nX
k=0

kX
l=0

µ
k

l

∂
r2α(log r)l

Z 1

0
v2α−1(log v)k−lµα,k(vt) dv,

which implies that ∏(t) ∈ B0. §

Lemma 9.7. If F (z) = z∫1
1 · · · z∫n

n , ∫1, . . . , ∫n ≥ 0, then √(t) ∈ B0.

Proof. By Lemma 9.3, it suffices to prove that f ∈ B0. Since f(t) = f(r) by Lemma
9.5, we deduce from Lemma 9.4 the equation

1
2π

@t@t̄f(t) =
1
4π

{f 00(r) + r−1f 0(r)} =
g(t)
4πr2

.

Hence g(t) is invariant under the rotation, i.e., g(t) = g(r), and the following
equation holds

(r @r)2f(r) = g(r).(9.12)

Since g(t) ∈ B0, we deduce from Lemma 9.6 and (9.12) that r @rf(r) ∈ B0. By
Lemma 9.6 again, we get f(t) ∈ B0. §

Proof of Theorem 9.1
We keep the notation in the proof of Lemma 9.2. There exists a system of coordinate
neighborhoods {(Uβ , wβ = (w1,β , . . . , wn,β))}β∈B of e≠ and integers k1,β , . . . , kn,β ≥
0 for each β ∈ B such that eF |Uβ (wβ) = wk1,β

1,β · · ·wkn,β

n,β . Without loss of generality,
we may assume that the covering {Uβ}β∈B of e≠ is locally finite. Let {%β}β∈B be
a partition of unity subject to the covering {Uβ}β∈B . Then χβ := %β $§χ is a C1

(n, n)-form with compact support in Uβ . Since $§χ has a compact support in e≠,
χβ = 0 except finitely many β ∈ B. By Lemma 9.7,

√β(t) :=
Z

Uβ

log |wk1,β

1,β · · ·wkn,β

n,β − t|2 χβ(wβ) ∈ B0.(9.13)
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Since

√(t) =
Z
e≠ $§ log |F − t|2 $§χ =

X
β∈B

Z
Uβ

log
ØØØ eF |Uβ (wβ)− t

ØØØ2 %β$§χ =
X
β∈B

√β(t),

we get √(t) ∈ B0 by (9.13). This completes the proof of Theorem 9.1. ✷
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[15] Soulé, C. et al. Lectures on Arakelov Geometry, Cambridge University Press, Cambridge

(1992)
[16] Yoshikawa, K.-I. Smoothing of isolated hypersurface singularities and Quillen metrics, Asian

J. Math. 2 (1998), 325-344
[17] K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on

the moduli space, Invent. Math. 156 (2004), 53-117

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,
Tokyo 153-8914, JAPAN

E-mail address: yosikawa@ms.u-tokyo.ac.jp



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2005–21 Teruhisa Tsuda: Universal character and q-difference Painlevé equations with
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