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ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS
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ABSTRACT. After Bershadsky-Cecotti-Ooguri-Vafa, we introduce an invariant
of Calabi-Yau threefolds, which we call the BCOV invariant and which we ob-
tain using analytic torsion. We give an explicit formula for the BCOV invariant
as a function on the compactified moduli space, when it is isomorphic to a pro-
jective line. As a corollary, we prove the formula for the BCOV invariant of
quintic mirror threefolds conjectured by Bershadsky-Cecotti-Ooguri-Vafa.
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1. Introduction

In the outstanding papers [6], [7], Bershadsky-Cecotti-Ooguri-Vafa made a deep
study of the generating function Fj of genus-g Gromov-Witten invariants for Calabi-
Yau threefolds. One mathematical surprise, which they obtained from physical
arguments, is a system of holomorphic anomaly equations satisfied by the functions
F,, g > 1. From the holomorphic anomaly equations, they obtained a conjectural
explicit formula for F,, of a general quintic threefolds in P* and thus they extended
the mirror symmetry conjecture of Candelas-de la Ossa-Green-Parkes [14].

By focusing on the genus-one holomorphic anomaly equation, they conjectured
that F; of a Calabi-Yau threefold is expressed as a certain linear combination
of the Ray-Singer analytic torsions [11], [45] of its mirror Calabi-Yau threefolds.
After Bershadsky-Cecotti-Ooguri-Vafa, we call the linear combination of Ray-Singer
analytic torsions in [7] the BCOV torsion, which is the main subject of this paper.

The first-named author is partially supported by a grant from the New York University Re-
search Challenge Fund Program and by NSF through Institute for Advanced Study; the second-
named author is partially supported by NSF Career Award DMS-0347033 and the Alfred P. Sloan
Research Fellowship; the third-named author is partially supported by the Grants-in-Aid for Sci-
entific Research for young scientists (B) 16740030, JSPS.
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By making use of the curvature formula for Quillen metrics [11], Bershadsky-
Cecotti-Ooguri-Vafa obtained a variational formula for the BCOV torsion of Ricci-
flat Calabi-Yau manifolds [7]. Fang-Lu [17] expressed the variation of the BCOV
torsion of Ricci-flat Calabi-Yau manifolds as a linear combination of the Weil-
Petersson metric [52] and the generalized Hodge metrics [36], which led them to
some new results on the moduli space of polarized Calabi-Yau manifolds.

On the other hand, as a consequence of the duality in string theory, Harvey-
Moore [25] conjectured that the BCOV torsion of certain Ricci-flat Calabi-Yau
threefolds is expressed as the product of the norms of the Borcherds ®-function
[13] and the Dedekind n-function. Their conjecture was proved by Yoshikawa [58].
In his proof, an invariant of K3 surfaces with involution, which he obtained using
equivariant analytic torsion [8] and a Bott-Chern class [11], played a crucial role.

In this paper, we extend the constructions of Bershadsky-Cecotti-Ooguri-Vafa
and Yoshikawa to introduce a new invariant of Calabi-Yau threefolds, which we
call the BCOV invariant, and we get an explicit formula for the BCOV invariant
as a function on the compactified moduli space when it is isomorphic to P'. As
a corollary of our formula, we prove one part of the conjecture of Bershadsky-
Cecotti-Ooguri-Vafa concerning the BCOV torsion of quintic mirror threefolds. Let
us explain our results in more details.

Let X be a Calabi-Yau threefold. Let g be a Kahler metric on X with Kahler
form . We set X = (X,~). Let (X, Q%) be the Ray-Singer analytic torsion of
Q% = APT*X with respect to g. We define the BCOV torsion of X as

Tscov(X) = [] 7(X, Q%) D",
p=0
Let {e1, ..., ep,(x)} be an integral basis of H?(X,Z)/Torsion. By Hodge theory
and the Lefschetz decomposition theorem, H2(X,R) is equipped with the L?-metric
(*;*)12,[4], which depends only on the Kéhler class [y]. We define

VOle (}12()(7 Z), [’}/]) = det (<ei, ej>L2v['Y])1§i,j§b2(X) s

which is independent of the choice of an integral basis of H?(X,Z)/Torsion.

Let n be a nowhere vanishing holomorphic 3-form on X. Let ¢3(X, ) be the top
Chern form of (T'X,g). We set Vol(X,v) = (2m)~® [ +* and x(X) = [ c3(X,7).
We define

A(X) = Vol(X, 7)% exp |:—i/ log ( _;7] /'\ n. VOI(X; ’Y)) cs(X, ’y):| ,
x 73 /3! 717

which is independent of the choice of . We define the real number mpcov(X) as
macov(X) = Vol(X, 7)™ Volp: (H*(X, Z), 1)) A(X) Tscov (X).

In Sect.4.4, we show that Tpcov(X) is independent of the choice of v. Hence

mcov(X) is an invariant of X, which we call the BCOV invariant. The purpose of

this paper is to study 78cov as a function on the moduli of Calabi-Yau threefolds.
Let X be a (possibly singular) irreducible projective fourfold. Let 7: X — P! be

a surjective flat morphism with discriminant locus D. Let v be the inhomogeneous

coordinate of P!, and set X, := 771(¢)) for ¢» € P!. We assume the following:

(i) 0o € D and Xy is a Calabi-Yau threefold with h?(Q% ) =1 for ¢ € P!\ D;

(ii) Sing X consists of a unique ordinary double point (ODP) for ¢ € D\ {oo};

(iil) Sing(X) N X = 0 and X is a divisor of normal crossing.
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Under these assumptions, the relative dualizing sheaf Ky /p1 is locally free on X,
and its direct image sheaf m, Ky p1 is locally free on Pl

For ¢ € P!\ {oo}, let (Def(Xy),[Xy]) be the Kuranishi space of X,. Since
dim Def(X,) = 1, we identify (Def(Xy),[Xy]) with (C,0) by the smoothness of
the Kuranishi space. Let py: (P!, 1) — (Def(Xy),[Xy]) be the map of germs that
induces the family 7: X — P! near . The ramification index r(y) of 7: X — P!
at 1 € P! is defined as the vanishing order of p, at . Let {R;};cs be the set of
points of P! with ramification index > 1, and write D \ {co} = { Dy }rex. We set
r; =r(R;) for j € J and r, = r(Dy) for k € K.

Outside DU{R,}jes, TP is equipped with the Weil-Petersson metric. Let | - ||
be the singular Hermitian metric on (m. K /p1)®“8H0) @ (TP)®12 induced from
the L?-metric on m, Ky /p1 and from the Weil-Petersson metric on TP'.

Main Theorem 1.1. Let = be a meromorphic section of m K x p1 with
div(Z) =Y mi P+ meo Poo, Py # Py (i €1).
iel
Identify the points P;, R;, Dy with their coordinates ¥(P;),¥(R;),¢¥(Dy) € C, re-
spectively. Set x = x(Xy), ¥ € PL\ D. Then there exists C € Rsq such that

(¢ — Dy —48+ ( 9 )12
T Xy)=C Ee | =—
BCOV( 1/)) iejngkeK (q/} _ R)(48+X)mi (7/1 _ Rj)12(r]»71) P 31/,

As a corollary of the Main Theorem 1.1, we give a partial answer to the conjecture
of Bershadsky-Cecotti-Ooguri-Vafa, which we explain briefly (cf. Sect. 12).
Let p: X — P! be the pencil of quintic threefolds in P* defined by

X = {([2],9) € P* X PY; 20 + 27 + 25 + 23 + 2§ — 5 2021222324 = 0}, p = pry.
Let Zs be the set of fifth roots of unity and define

G :={(ao, a1, a2, a3,a4) € (Z5)°; apayazazas = 1}/Zs(1,1,1,1,1) = Z2.
We regard G as a group of projective transformations of P4. Since G preserves the
fibers of p, we have the induced family p: X/G — P!. Let D be the discriminant
locus of the family p: X — PL. By [4], [39], there exists a resolution ¢: W — X /G
such that Wy = ¢*(Xy) is a smooth Calabi-Yau threefold for ¢y € P!\ D and
such that Sing Wy, consists of a unique ODP if 1> = 1. The family of Calabi-Yau
threefolds 7m: W — P! is called a family of quintic mirror threefolds.

After Candelas-de la Ossa-Green-Parkes [14], 7, Ky p1 and TP' are trivialized
as follows near ¢ = co. For ¢ € P! \ D, we define a holomorphic 3-form on X, by

0 = 2my/—1 -3 5 zadzg Ndzy A dZQ.
5 OFy(2)/0z3

Since {2y is G-invariant, {2, induces a holomorphic 3-form on X,,/G in the sense
of orbifolds. We identify (2,, with the corresponding holomorphic 3-form on X, /G,
and we define a holomorphic 3-form =y, on Wy, as Zy = QZQw- We define

i) =3 oo, > 1

n=1

oo

Then 7, Kyypr is trivialized by the local section Zy /yo(¢) near ¢ = oo.
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Let ¢ be the coordinate of the unit disc in C. We identify the parameters
¥® and ¢ via the mirror map [14]. Then TP! is trivialized by the local section
qd/dq = q(dip/dq) d/di near 1p = oo. (See Sect. 12.)

We define a multi-valued analytic function Fffg(w) near oo € P! as

v \¥ dy
me}_( ) WP — 1) g =~
W= @) WYy
and a power series in g as Ffiff(q) = Fff}g(i/;(q)). The conjectures of Bershadsky-
Cecotti-Ooguri-Vafa [6], [7] can be formulated as follows:

Conjecture 1.2. (A) Let Ny(d) be the genus-g Gromov- Witten invariant of degree
d of a general quintic threefold in P*. Then

50

= E -
n,d=1

o0 oo

2nd ¢™? 2d ¢°
M) 75T = 37 Nold) 5
d=1

d o
logFfj(q) - a—g

Tdq

(B) The following identity holds near 1» = oo:

|F;°§1<w>3 (yifz))) ” (qdiq)

s

TBCOV (W¢) = Const.

In Sect. 12, we prove the following:
Theorem 1.3. The Conjecture 1.2 (B) holds.

For the remaining Conjecture 1.2 (A), see Li-Zinger [34]. In [18], we shall study
the BCOV invariant of Calabi-Yau threefolds with higher dimensional moduli and
the BCOV torsion of Calabi-Yau manifolds of dimension greater than 3.

Let us briefly explain our approach to prove the Main Theorem 1.1. We follow the
approach in [58]. Let Qwp be the Weil-Petersson form on P! \ D, and let Ric Qwp
be the Ricci-form of Qwp. By [36], [37], the (1,1)-forms Qwp and Ric Qwp have
Poincaré growth on P! \ D, so that they extend trivially to closed positive (1,1)-
currents on P! (cf. Sect.7.3). We identify Qwp and Ric Qwp with their trivial
extensions. For a divisor D on P!, let dp denote the Dirac é-current on P! associated
to D. Regard Tecov as a function on P\ D. By making use of the Poincaré-Lelong
formula, the Main Theorem 1.1 is deduced from the following:

Claim 1.4. Set D* = ZkeK rr Di. Then there exists a € R such that

1
(1.1)  dd°logTaooy = — ( X 4) Qwp — RicQup + 7 0p- + 0.

12

We shall establish Claim 1.4 as follows:

(a) By making use of the curvature formula for Quillen metrics of Bismut-Gillet-
Soulé [11], we prove the variational formula like (1.1) for an arbitrary family of
Calabi-Yau threefolds. As a result, we get Eq.(1.1) on the open part P!\ D.
More precisely, we introduce a Hermitian line, called the BCOV Hermitian line, for
an arbitrary Calabi-Yau manifold of arbitrary dimension, which we obtain using
determinants of cohomologies [28], Quillen metrics [11], [43], and a Bott-Chern
class like A(+). Then the BCOV Hermitian line of a Calabi-Yau manifold depends
only on the complex structure of the manifold. The Hodge diamond of Calabi-
Yau threefolds are so simple that the BCOV Hermitian line reduces to the scalar
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invariant 7gcov in the case of threefolds. Hence Eq. (1.1) on P!\ D is deduced from
the curvature formula for the BCOV Hermitian line bundles. (See Sect.4).

(b) To establish the formula for log T5cov near D, we fix a specific holomorphic
extension of the BCOV bundle from P!\ D to P!, which we call the Kéhler extension.
(See Sect.5.) Since Tpcov is the ratio of the Quillen metric and the L?-metric on
the BCOV bundle, it suffices to determine the singularities of the Quillen metric and
the L2-metric on the extended BCOV bundle. We determine the singularity of the
Quillen metric on the extended BCOV bundle with respect to the metric on TX /P!
induced from a Kahler metric on &. The anomaly formula for Quillen metrics of
Bismut-Gillet-Soulé [11] and a formula for the singularity of Quillen metrics [9],
[59] play the central role. (See Sect.5.).

(c) By the smoothness of Def(Xy) at ¢ € D* [26], [44], [53], the behavior of the
L?-metric on the extended BCOV bundle near D* is determined by the singularity of
Qwp near D*, which was computed by Tian [53]. (See Sects. 6, 7, 8.) To determine
the behavior of the L? metric on the extended BCOV bundle at ¢ = oo, one may
assume that 7: X — P! is semi-stable at ¢ = co by Mumford [27]. We consider
another holomorphic extension of the BCOV bundle, i.e., the canonical extension
in Hodge theory [47]. With respect to the canonical extension, the L2-metric has
at most an algebraic singularity at ©» = oo by Schmid [47]. Comparing the two
extensions, we show that the L2-metric has at most an algebraic singularity at
1 = oo with respect to the Kéhler extension. (See Sect.9.) By the residue theorem
and assumption (ii), the number a in Eq. (1.1) is determined by the degrees of the
divisors D, div(Z), > ;¢ ;(r; — 1) R;. (See Sect. 11.)

This paper is organized as follows. In Sect.2, we recall the deformation theory
of Calabi-Yau threefolds. In Sect. 3, we recall the definition of Quillen metrics and
the corresponding curvature formula. In Sect. 4, we introduce the BCOV invariant
and prove its variational formula. In Sect.5, we study the boundary behavior of
Quillen metrics. In Sect.6, we study the boundary behavior of Kodaira-Spencer
map. In Sect. 7, we study the boundary behavior of the Weil-Petersson metric and
the Hodge metric. In Sects. 8 and 9, we study the boundary behavior of the BCOV
invariant. In Sect. 10, we extend the variational formula for the BCOV invariant
to the boundary of moduli space. In Sect.11, we prove the Main Theorem. In
Sect. 12, we study a conjecture of Bershadsky-Cecotti-Ooguri-Vafa. In Sect. 13, we
study a conjecture of Harvey-Moore.

Acknowledgements The first-named author thanks Professors Jeff Cheeger
and Gang Tian for helpful discussions. The second-named author thanks Professors
Gang Tian and Duong H. Phong for helpful discussions. The third-named author
thanks Professors Shinobu Hosono, Shu Kawaguchi, Yoshinori Namikawa and Gang
Tian for helpful discussions, and his special thanks are due to Professor Jean-Michel
Bismut, who suggested him, together with many other ideas, one of the most crucial
constructions in this paper, the Bott-Chern term A(X).

2. Calabi-Yau varieties with at most one ordinary double point
2.1. Calabi-Yau varieties with at most one ODP and their deformations
2.1.1. Calabi-Yau varieties with at most one ODP. Recall that an n-dimensional

singularity is an ordinary double point (ODP for short) if it is isomorphic to the
hypersurface singularity at 0 € C" defined by the equation 23 + --- + 22 = 0.
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Definition 2.1. A complex projective variety X of dimension n > 3 satisfying the
following conditions is called a Calabi- Yau n-fold with at most one ODP:

(i) There exists a nowhere vanishing holomorphic n-form on X,.e = X \ Sing(X);
(ii) X is connected and H4(X,Ox) =0 for 0 < ¢ < n;

(iii) The singular locus Sing(X) consists of empty or at most one ODP.

Throughout this paper, we use the following notation: For a complex space Y,
let ©y be the tangent sheaf of Y, let Q3 be the sheaf of Kihler differentials on
Y, and let Ky be the dualizing sheaf of Y. The sheaf O, is defined as A? Q5.
On the regular part of Y, the sheaves Oy, O}, Ky are often identified with the
corresponding holomorphic vector bundles TY, A’ T*Y, det T*Y', respectively.

We set A(r) :={t € C; |t| < r} and A(r)* := A(r) \ {0} for r > 0. We write A
(resp. A*) for A(1) (resp. A(1)*).

Since an ODP is a hypersurface singularity, the dualizing sheaf of a Calabi-Yau
n-fold with at most one ODP is trivial by (i).

2.1.2. Deformations of Calabi-Yau varieties with at most one ODP. Let X be a
Calabi-Yau n-fold with at most one ODP.

Definition 2.2. Let (5,0) be a complex space with marked point and let X’ be a
complex space. A proper, surjective, flat holomorphic map 7: X — S is called a
deformation of X if 7=1(0) & X. If X and S are smooth and if a general fiber of
m: X — S is smooth, the deformation 7: (X, X) — (S5,0) is called a smoothing of
X. If there exists a smoothing of X, X is said to be smoothable.

We refer to [40, Example5.8] for an example of a non-smoothable Calabi-Yau
threefold with a unique ODP as its singular set.

Since H(X,0x) = 0 (cf. [40, pp.432, 1.23]), there exists a deformation germ
p: (X,X) — (Def(X),[X]) of X with the universal property: Every deformation
germ 7: (X, X) — (5,0) is induced from p: X — Def(X) by a unique holomorphic
map f: (S,0) — (Def(X),[X]). This local universal deformation of X is called the
Kuranishi family of X. The Kuranishi family is unique up to an isomorphism. The
base space (Def(X), [X]) is called the Kuranishi space of X. By [26], [44], [52], [53],
Def(X) is smooth. We denote by Tper(x),x] the tangent space of Def(X) at [X].
See [16], [22], [32] for more details about the Kuranishi family.

For a deformation m: (X,X) — (S5,0), the fiber X, (s € S) is a Calabi-Yau
n-fold with at most one ODP if s € S is sufficiently close to 0 (cf. [40, Prop.6.1],
[53, Prop. 4.2]).

In the rest of Subsection 2.1, we assume that X is a smoothable Calabi-Yau
n-fold with at most one ODP. Let 7: (X, X) — (5,0) be a smoothing. The critical
locus of 7 is defined by

Yri={r e X; dr, =0}
The discriminant locus of 7: X — S is the subvariety of S defined by
D :=n(X:) = {s € S; Sing(X,) # 0}.

Lemma 2.3. Let N +1 = dim S. For p € Sing(X), there exists a neighborhood
V, 2 At x AN of p in X such that

7T|Vp(zaw):(Zg+"'+z'r2uw17"'awN)7 22(207"'7271)’ w:(w17"'7wN)'

In particular, if Sing(X) # 0, D is a divisor of S smooth at 0.
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Proof. Let p € Sing(X). Let s = (so,...,sn) be a system of coordinates near
0€ S. By e.g. [33, pp.103, (6.7)], there exists f, € Og such that

OX,p = O(C"JrlXS,(O,O)/(Zg +e 4+ Z’?L + fP(S))v 7T(Z, 5) = S.

Since X is smooth, we get df,(0) # 0. Hence we can assume that f,(s) = so after
a suitable change of the coordinates of S. O

2.1.3. The Kodaira-Spencer map. For a smoothing 7: (X, X) — (S,0), the short
exact sequence of sheaves on X

0 — Q4| x — Q4|x — Q% — 0
induces the long exact sequence:
- — Hompy (W*Qé‘x, Ox) — Ext%gx (Q%(, Ox) — Extéx (QMX, Ox)— -

Definition 2.4. The Kodaira-Spencer map of w: (X, X) — (S, 0) is the coboundary
map
po: ToS = Homoy (7*Q%|x, Ox) — Ext%gx (%, Ox).

Proposition 2.5. The Kodaira-Spencer map pix): Tpes(x),[x] — ExtéX(Q}(, Ox)
for the Kuranishi family of X is an isomorphism.

Proof. See [26], [44], [52], [53]. O
Let

T:Extéx(ﬂ}(,ox)éa—»a ):Hl(chy@X)

1 1
Xreg € EXtOX (meg, OX

be the restriction map. Since n > 3, r: Extéx(ﬂ}(,OX) — H'(Xeq,Ox) is an
isomorphism by [46, Th. 2] and [53, Prop. 1.1].

Lemma 2.6. Under the natural identification HO(Xmg,W*@S
the composition rop: ToS — H'(Xyeg, ©x) is the coboundary map of the long exact
sequence of cohomologies associated with the short exact sequence of sheaves

(2.1) 0— Oy

Xeog) = ToS via 7,

Xieg — T Og

— Ox|x.., Xeeg — 0.

rog
Proof. The commutative diagram of the short exact sequences of sheaves
0 —— 7Qx —— QIx —— 9 —— 0

g g g

0 —— W*Qé«

1 1
Xeew — Qxlxey — Oxlxey —— 0
induces the commutative diagram of exact sequences
1 1 1
——  Homp, (7"Qg|x,0x) —— Exty (2%,0x) ——

g g

—— Home, (7*Q%

Xrogs OXreg) — EXtéX(Q}(mg,Oxmg) _—

where the first (resp. second) vertical arrow is isomorphic by the normality of
Sing(X) (resp. [53, Prop.1.2]). Since 7*Q%|x,... Q%|X.es Q}(mg are locally free,
the second line is the long exact sequence of cohomologies associated with (2.1). O

Lemma 2.7. The Kuranishi family of X is a smoothing of X.



8 HAO FANG, ZHIQIN LU, AND KEN-ICHI YOSHIKAWA

Proof. Since the assertion is obvious when X is smooth, we assume that X has a
unique ODP p. Since X is smoothable, a general fiber of the Kuranishi family of
X is smooth. We must prove the smoothness of the total space X of the Kuranishi
family of X. Since Sing(X) = {p}, it suffices to prove the smoothness of X at p.
Let Def(X,p) = (C,0) be the Kuranishi space of the ODP (X,p) (cf. [33,
Chap. 6 C]). The universal deformation of X induces a holomorphic map of germs
f: Def(X) — Def(X,p). The existence of a smoothing of X implies the surjectivity
of the differential of f at [X]. Hence f may be regarded as a part of a system of
coordinates of Def(X) at [X]. Since
(2.2) Oz = Ocnt1xpef(x),0,x]) /(20 + -+ 2 + [)

by e.g. [33, pp.103, (6.7)], this implies the smoothness of X at p. O

Let p: (X, X) — (Def(X),[X]) be the Kuranishi family of X.

Proposition 2.8. There exist a pointed projective variety (B,0), a projective va-
riety 3, and a surjective flat holomorphic map f: 3 — B such that the deformation
germ f: (3, f71(0)) — (B,0) is isomorphic to p: (X,X) — (Def(X),[X]). In
particular, the map p: X — Def(X) is projective.

Proof. See [40, pp. 441, 1.7-1.12]. O

2.1.4. The Serre duality for Calabi-Yau varieties with at most one ODP. Let
() H"HX, Q) ® Kx) x Exty, (0 ® Kx,Kx) — H"(X,Kx) = C

be the Yoneda product. Since X is compact, the Yoneda product is a perfect pairing
by [1, Th.4.1 and Th. 4.2]. Hence we get by Proposition 2.5

H" (X, Q) ® Kx) = Extp (% @ Kx, Kx)" = (Toet(x),(x])" = Qber(x),x]-

If X is smooth, then Extéx QY ®Kx,Kx)=H'(X,0x) and the Yoneda product
is given by the ordinary Serre duality pairing [1, Th.4.2].
Let H' (X eq, 2% @ Kx) be the cohomology with compact support.

Lemma 2.9. The natural map H' ™' (Xieq, Q% @ Kx) — H" 1 (Xyeg, U4 @ Kx) is
an isomorphism. Under this isomorphism, the Yoneda product {-,-) coincides with
the Serre duality pairing on the reqular part of X :

H' N Xyeg, By @ Kx) X H' (Xyeg, Ox) — H2 (Xreg, Kx) = C.

Proof. Since Exty, (Q,0x) = Extggchg (.., Ox..,) by [53, Prop. 1.1], the Serre
duality for open manifolds [1, Th.4.1 and Th.4.2] yields that

H" (X, Q% ®Kx) = Extp, (U, Ox)" = Extp, (.., 0x,.,) = H' ™' (Xreq, Uy K x)
and that the Yoneda product pairing
HI' 7 (Xpeg, O © Kx) x Exty, (2 ® Kx, Kx) = H'(Xyeq, Kx)

is perfect. Since X,eg is smooth, Extéx Q% . ® Kx,Kx) = H"(Xyeq,©x) and
rog re
the Yoneda product pairing (-, -) coincides with the Serre duality pairing. O
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2.2. The locally-freeness of the direct image sheaves: the case n =3
Let n > 3. Let X be a smoothable Calabi-Yau n-fold with at most one ODP.
Let 7: (X, X) — (5,0) be a smoothing of X. Set Q}, /¢ 1= Q /7" Q.

Lemma 2.10. The sheaf Q},(/S is a flat Og-module.

Proof. Since Qﬁ( /S s = O?@?x for x € X\ X, it suffices to prove the assertion for
x € g, Let (9,0) — (Def(A;),0) = (C,0) be the Kuranishi family of an ODP
o. There exists a map f: (S, 7(z)) — (Def(A;),0) such that (X,z) — (S, 7(z)) is
induced from (9),0) — (Def(A1),0) by f. Let p: X =9 Xpega,) S — 2 be the
projection. Since Qk/sw = p*Ql@/DCf(Al), the assertion follows from the fact that

Q%/Dcf(Al)ﬂ is a flat Opeg(a,),o-module (cf. [41, p.13, 1.28-p. 14, 1. 1]). O

Let p: (X, X) — (Def(X),[X]) be the Kuranishi family of X.

Theorem 2.11. Ifn = 3, the function Def(X) 3 s — h?(X,, Y ) € Z is constant
for all ¢ > 0. In particular, qu*Q;C/Dcf(X) is a locally free Opeg(x)-module on
Def(X) for all ¢ > 0.

The proof of this theorem is divided into the four lemmas below.

Lemma 2.12. If n > 3, the function Def(X) 5 s — h"~1(X,, Q% ) € Z is con-
stant. In particular, R”flp*Q%e/Dcf(X) is a locally free Oper(xy-module on Def(X).

Proof. Since Kx =2 Ox, we have
TDCf(X).’[X] = EXtéX (Q}(,Ox) = EXt%r)X (KX ® Qk,Kx) = Hnil(X, Kx ® Qﬁ()v,

where the first isomorphism follows from Proposition 2.5, the second equality follows
from the triviality of Kx, and the third equality follows from the Serre duality
[24, Chap.III Th.7.6 (b) (iii)]. Notice that we can apply the Serre duality to X,
because X has at most one ODP and hence X is Cohen-Macaulay [24, Chap.II
Th. 8.21, Prop. 8.23]. Since Kx = Ox, we get h" (X, Q%) = dim Tper(x),(x]- The
smoothness of Def(X) at [X] implies that the function on Def(X)
Def(X) 258 — dimTDcf(X)ys = dimTDcf(Xs),[Xs] = I’Lnil()(s7 Q%{S) S Z

is constant, for the Zariski tangent space coincides with the usual tangent space for
smooth varieties. Notice that the first equality dimTper(x),s = dim Tper(x,),[x.]
follows from [16, Sect. 8.2]. Since Q%Y/Dcf(X) is a flat Opeg(x)-module by Lemmas
2.7 and 2.10, R"™'p.Q% /pop(xy 18 locally free by [1, Chap. 3, Th. 4.12 (ii)]. O

Lemma 2.13. If n = 3, then h3(X,,Q% ) = 0 for all s € Def(X). In particular,
Rgﬂ-*le/DCf(X) =0.
Proof. See [40, p.432, 1.23]. O

Lemma 2.14. Ifn = 3, the function Def(X) 5> s — h'(X,, Q% ) € Z is constant.
In particular, Rlp*Q;/DCf(X) is a locally free Opep(x)-module.

Proof. Since le/Dcf(X) is a flat Oper(x)-module, the function Def(X) 5 s —
x(Xs, Q%) € Z is constant, where x(X,,Q% ) denotes the Euler characteristic
of Q% . Since h9(X,, Q) ) is independent of s € Def(X) for all ¢ # 1 by Lemmas
2.12 and 2.13, this implies that h'(X,, QY ) is independent of s € Def(X). O
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Lemma 2.15. Ifn = 3, then Rlp*Qk is locally free. Moreover, the restriction map
Rlp*Q%6 — Rlp*Q;/DCf(X) is an isomorphism of Ope(x)-modules.

Proof. Set N := dim Def(X). The short exact sequence of sheaves on X
0— OFN =p QDci xX) 0 — le/Dcf(X) —0
induces the long exact sequence of direct images
i Rlp*p*Qll)cf(X) — R'p.Qy — Rlp*le/Dcf(X) — R2p*p*Q]13cf(X) —

Since R'p.p* Qb ) = (R'p.0x)®N = 0 and R2p.p* Q¢ ) = (R2p.0x)®N =0
by Definition 2.1 (11), the second assertion follows from the above exact sequence.
By the same argument as above, we see that the restriction map H (X, Q% |x.) —
H'(X,, ) is an isomorphism for all s € Def(X). Hence h'(X,, Q% |x,) is inde-
pendent of s € Def(X) by Lemma 2.14. This, together with [1, Chap. 3, Th.4.12

(ii)] proves the first assertion. O

Theorem 2.11 follows from Lemmas 2.12, 2.13, 2.14, and 2.15. OJ

Let H?(X, Z)pet(x) be the constant sheaf on Def(X) with stalk H?*(X,Z). By
[40, Prop. 6.1], R?p,Z is isomorphic to the constant sheaf H*(X, Z)peg(x)-

Since R'p,Ox = R?p.Ox = 0 by Definition 2.1 (ii), the exponential sequence
on X induces the exact sequence of direct images

(2.3) 0= R'p.Ox — R'p.0% —— R2p,Z —> R%p,O0x = 0.

For a holomorphic line bundle £ € H'(X, 0%), the Dolbeault cohomology class
of the Chern form ¢; (£, h) € H'(X,Q%) is independent of the choice of a Hermitian
metric h on £, which we will denote by €;(L£). Since every element of H?(X,Z)
is represented uniquely as the Chern class of an element of H'(X,0%) by the
isomorphism (2.3), we define the map j: H*(X,Z) — H'(X,Q%) by

j(cr(L)|x) = €1 (L), Le HY(X,0%).

We regard €;(£) as an element of H°(Def(X), R'p.Q% pe(x)) after Lemma 2.15.

Since H%(X,Z) is finitely generated, the map j extends to a homomorphism of
Opef(x)-modules

J: H(X, Z)pet(x) @z Opet(x) = R'PaQ% /pes(x)-
Lemma 2.16. The homomorphism j is an isomorphism of Opet(x)-modules.
Proof. Since H?(X, Z)pet(x) ®z Opet(x) and Rlp*Q%E/DCf(X) are locally free by
Lemma 2.15, it suffices to prove that j|x: H*(X,C) — H'(X, Q%) is an isomor-
phism. Since h*(X,C) = h*(X,,C) by [40, Prop.6.1] and since h'(X,, QY ) =

R (X, Q%) by Lemma 2.14, we get h*(X,C) = h'(X,Q%). Since j|x is surjective
by [40, Lemma 2.2], this implies that j|x is an isomorphism. O

3. Quillen metrics

Throughout Section 3, we fix the following notation: Let X be a complex man-
ifold. Let (F,hr) be a holomorphic Hermitian vector bundle on X, which we also
write F' = (F, hp) for simplicity.
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3.1. Analytic torsion and BCOV torsion

In Subsection 3.1, assume that X is a compact Kéhler manifold with Kahler
metric gx and with Kéhler form yx. We set X = (X, gx). Define 0% to be the
holomorphic vector bundle Q% equipped with the Hermitian metric induced from

9x.-
Let ARY(F) be the vector space of F-valued smooth (p,q)-forms on X. Set

Sr=B,>0 AR(F). Let (-,-) be the Hermitian metric on (A 7% X)® F induced
from gx and hp. The volume form of X is defined by dvx = y§™ % /(dim X)!. The
L?-metric is the Hermitian metric on Sp defined by
1
(5,82 = (@m)dm X /X<5(1')75/(50)>m dvx (), 5,8 € Sp.

Let Op be the Dolbeault operator acting on Sy and let 5}‘, be the formal adjoint
of OF with respect to (-,-)r2. Then Op = (O + 95)? is the corresponding O-
Laplacian. Let o(0r) be the spectrum of Op and let Er(A) be the eigenspace of
Op with respect to the eigenvalue A.

Let N and € be the operators on Sg defined by N = g and € = (—1)9 on AYY(F).
Then N and € preserve Ep(A).

The zeta function

()= > ATTr[eN|g o)
Aeo(Op)\{0}

converges absolutely for s € C with Res > 1. By [11, II, Th.2.16, (2.98)], (&(s)
has a meromorphic continuation to the complex plane, which is holomorphic at
s=0.

Definition 3.1. (i) The analytic torsion of (X, F) is defined by
(X, F) 1= exp(—CL(0).

(ii) The BCOV torsion of X is defined by
Tscov(X) = [ 7(X, 250V = exp[= Y _(~1)"p (5 (0)):
p>0 p>0

We refer the reader to [11], [45] for more details about analytic torsion.
3.2.  Quillen metrics
Definition 3.2. (i) The determinant of the cohomologies of F is the complex line
defined by
A(F) = X)(det HI(X, F))V".
q=>0

(ii) The BCOV line is the complex line A(Q% ) defined by

M%) = QM) VP = (R) (det HI(X, Q%)) V"7,
p=>0 p,920
Set K9(X,F) = ker OpNA%Y(F). Then K9(X,F) inherits a metric from (-,-) 2.
By Hodge theory, we have an isomorphism H?(X,F) = K9(X,F). We define
hpa(x,p) to be the metric on H(X, F') induced from the L2-metric on K9(X, F)
by this isomorphism.
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Let || - [[z2,x(r) be the Hermitian metric on A(F') induced from {hga(x 7 }q>0-
Definition 3.3. (i) The Quillen metric on A(F) is defined by
i@y acry = 7(X, F) - lolfe ary, @ € A(F).

(ii) The Quillen metric on A\(2%) is defined by
1 1@ = @ 115 e = Tocov(X) - @1 15208
p>0 p>0
We refer the reader to [11], [12], [43], [49] for more details about Quillen metrics.
3.3. The Serre duality

Let n := dim X. By the Serre duality, the following pairing on the Dolbeault
cohomology groups is perfect:

HI(X,08) x H" (X, Q% ") 3 (o, B) — (g) / aNpeC.
p's

Let {¢;} be an arbitrary basis of H1(X,Q%), and let {¢} the dual basis of
H" (X, Q") with respect to the Serre duality pairing. Then the element of
det HP(X, Q%) ® det H" P(X, Q% ?) defined by

(31) ]-(pq ),(n—p,n—q) - /\¢z®/\¢

is independent of the choice of a basis {t¢;} and is called the canonical element.
Similarly, the following element of A(Q% )@A(Q% 7)(~1" is also called the canonical
element:

]_p,nfp == 1p7n p ®1(p q) (n p,n— q) 6 )\( ) ® A(Qn p)( 1)"
q=0

-1
Then 1(?74)7(71*1),77,7(1) == l(p,q),(nfp,nfq) by (31)
Let 1¢ be the trivial Hermitian structure on C, i.e., 1¢(a) = |a|? for a € C.

Proposition 3.4. The following identity holds:
(3.2) [1pn—pllrz = [1pn-plle = 1.

In particular, the canonical element 1, ,_, induces the following canonical isome-
tries of the Hermitian lines:

(3.3) (A(Q&)@A(Q’;{p)( RN B PV e— m) ~ (T, 1¢),
34 (MR @A) g agea@pry v+ ) = (C ).

Proof. Let {¢;} be a unitary basis of H?(X, Q% ) with respect to the L*-metric.
The dual basis of {¢;} with respect to the Serre duality pairing is given by {*¢;},
where x: AR? — A" is the Hodge *-operator with respect to the metric gx.
By setting 1; = ¢; in (3.1), we get the first equality

(35) ||1(p,q),(nfp,nfq)HL2 =1,
which yields the isometry (3.3).
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Let ¢, 4(s) be the spectral zeta function of the d-Laplacian acting on A%?. Since
¥ 10, % = On_p g, we have ¢, () = Ca—p.n—q(s), which yields that
(3.6) (X, @) = r(X, 2 )
The second isometry (3.4) follows from (3.3) and (3.6). O

For more details about the Serre duality for Quillen metrics, we refer to [21, (9)].

3.4. Characteristic classes
In Subsections 3.4 and 3.5, we do not assume that X is compact Kahler.

3.4.1. Chern forms. For a square matrix A, set Td(A4) := det (ﬁM) and

ch(A) := Tr[e4]. Let R(F) be the curvature of F' = (F,hy) with respect to the
holomorphic Hermitian connection. The real closed forms on X defined by

Td(F, hy) = Td (-#\/__IR(F)) , eh(F, hy) i= ch (-#__13@0

are called the Todd form and the Chern character form of F, respectively.
Let ¢;(F, hr) be the i-th Chern form of (F, hp).

3.4.2. Bott-Chern classes. Let £ : 0 - Ey — E; — --- — E,, — 0 be an exact
sequence of holomorphic vector bundles on X, equipped with Hermitian metrics
hi, i = 0,...,m. We set & := (&,{h;}7 0)- By [11, I, Th.1.29 and Egs. (0.5),
(1.124)], one has the Bott-Chern secondary class ch(€) € @D, >0 APP(X)/Im 0+Im 0
associated to the Chern character and & such that

dd® ch(€) = Zm:(_ni“ch(a, hi).

i=0

Consider the case where m = 1 and Ey = E; = E. Let i/ and h be Hermitian
metrics of Fy and Ep, respectively. By [11, I, Th. 1.27] or [20, Sect. 1.2.4], one has

the Bott-Chern secondary class ch(E; h, ') € D,>0 APP(X)/Tm O+TIm d such that
dd°ch(E; h,h') = ch(E, h) — ch(E, h').

When rk(E) = 1, we have the following explicit formula by [20, I, (1.2.5.1),
(1.3.1.2)]:

(3.7) h(E; h, 1) Z > (B h)%e(EN) log (%)
' a+b=m-—1

Similarly, Td(E; h, i) € D50 A7P(X)/Im 0 + Im 0 denotes the Bott-Chern sec-
ondary class associated to the Todd form such that

dd¢ Td(E; h, k') = Td(E, h) — TA(E, ).

For more details about Bott-Chern classes, we refer to [11], [20], [49].
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3.5. The curvature formulas
Let S be a complex manifold and let 7: X — S be a proper surjective holomor-
phic submersion. Then every fiber of 7 is a compact complex manifold. The map
m: X — S is said to be locally Kdhler if for every s € S there is an open subset
U > s such that 7=1(U) possesses a Kihler metric. We set X, = 7 1(s) for s € S.
Let TX/S := kerm. C TX be the relative holomorphic tangent bundle of the

family 7: X — 5. Set Q% ¢ == A\P(T'X/S)" and Ky/s = Kx ® (7" Kg)™' =
dim X —dim s
X/S :

A C°° Hermitian metric on TX/S is said to be fiberwise Kdhler if the induced
metric on X, is Kéhler for all s € S. By Kodaira-Spencer, there exists an fiberwise
Kéhler metric on TX/S if and only if every X, possesses a Kidhler metric.

Assume that every fiber X, possesses a Kéhler metric. Let gx,s be a fiberwise
Kéhler metric on TX/S. Set g, = gx/slx, and X, = (X,,g,) for s € 5. We

define ﬁf,’(s to be the holomorphic vector bundle ngs equipped with the Hermitian

metric induced from g;. When p = 0, ﬁg(s is defined as the trivial line bundle Ox,
equipped with the trivial Hermitian metric.

Since dim H?(X,, Q% ) is locally constant, the direct image sheaf wa*Q’)’(/S is
locally free for all p,q > 0 and is identified with the corresponding holomorphic
vector bundle over S. Set

S _1\pta
A( X/s) = ® (dethﬂ'*QI;(/S)( nFrap.
p,q20

Via the natural fiberwise identification /\(Q;(/S)\s = \Q%,) forall s € S, )\(Q;(/S)
is equipped with the Hermitian metric || - ||>\(Q;(/S)1Q defined by

I llea@s, () = I lloa@s,): s €S,

which is smooth by [11, III, Cor. 3.9]. We set /\(QB(/S)Q = ()\(QS(/S), II- ||Q7)\(52;(/S)).

Since dim K ‘1(7575?(5) is locally constant, there exists a C'™ vector bundle
KP4(X/S) over S such that KP1(X/S), = Kq(Ys,ﬁﬁ(s) for all s € S. Then
the fiberwise isomorphism H9(X,, Q% ) = K¢ (Ys,ﬁis) via Hodge theory induces
an isomorphism of C* vector bundles wa*Qi/S >~ KP9(X/S). Let hquQi/s be
the C> Hermitian metric on R%7,QF /5 induced from the L?-metric on KP4(X/95)
by this isomorphism. We define wa*Q’)’(/S = (wa*Qg(/S, hquQz;(/S).

Let Tpcov(X/S) be the function on S defined by

Tscov(X/S)(s) := Tecov(Xs) = H (X, Q% ) VP, s€S.
p=>0

For a differential form ¢, [¢]®% denotes the component of bidegree (p, q) of .

Theorem 3.5. Assume that the map 7: X — S is locally Kdhler and set n =
dim X — dim S. Then Tgcov(X/S) lies in C(S), and the following equation of
C™ (1,1)-forms on S holds:

c1(MQ%/5)q) = —dd°log Tacov (X/S) + > _(—1)"F9p 1 (RIm QY )
q=>0

1
=73 [c1(TX/S, gx/s) en(TX/S, gx/5)]

(1,1)
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Proof. See [7, pp.374] and [11, Th.0.1]. O

4. The BCOYV invariant of Calabi-Yau manifolds

Throughout Section 4, we fix the following notation: Let X be a smooth Calabi-
Yau n-fold. Let p: (X, X) — (Def(X), [X]) be the Kuranishi family of X.

Let g be a Kéhler metric on X with Kéhler form ~v. We define Vol(X,~) :=
(2m)~™ [ v™/n! = |[1]|72. Notice that our definition of Vol(X,~) is different from
the ordinary one because of the factor (2r)~". We set ¢;(X,7) := ¢;(TX,g) and
X(X) = [y cn(X,7). Let n € HY(X, Q%) \ {0}.

4.1. The BCOV Hermitian line

Recall that the L2-norm on H°(X, Q%) is independent of the choice of a Kihler

metric g because

—-n 712 —
Il = 2o/ [
After [58, Sect.5.1], we make the following:
Definition 4.1. (i) For X = (X,~), define A(X) = A(X,7) € R by

%) = Vo o 1 (VDA Vol(X )
A(X) := Vol(X, ) p[ 12/Xlg< Py e ) n(X,’y)].

(ii) The BCOV metric is the Hermitian structure | - [[x(qs) on A(Q2%) defined by

- ||§(sz;() = A(Y) - ||2Q,>\(Q;()'

(iii) The BCOV Hermitian line is defined by

A% ) == (AQ%), [+ l[aes))-
Remark 4.2. By Yau [56], every Kéhler class on X contains a unique Ricci-flat
Kahler form. If x is a Ricci-flat Kéhler form on X, then
K" /n! ~ Vol(X, k)
V=Dmnng iz

and hence log A(X, k) = % log Vol(X, k) in this case.

4.2. The Weil-Petersson metric and the Hodge metric

To compute the curvature of the BCOV Hermitian line bundles, let us recall the
definitions of the Weil-Petersson metric [52] and the Hodge metric [35], [36].

By Proposition 2.5, the homomorphism of Opef(x)-modules on Def(X') induced
by the Kodaira-Spencer map

PDef(X)* Opet(x) — R'P+Ox /per(x)
is an isomorphism, which is called the Kodaira-Spencer isomorphism in this paper.
Since H"1(X,,Q% ) € H"(X,,C) consists of primitive cohomology classes for
all s € Def(X), the L?-metric on Rlp*Q;ﬁl)Cf(X) is independent of the choice of a
fiberwise-Kéhler metric on TX/Def(X) by e.g. [55, Th.6.32]. We will often denote
the L?-metric hpi, gn-1 on R'p,.Q by (-,-)2. Then

n—1
X /Det(X) X /Def(X)

(&, C)pe = —(2m) (V=1 /XgAZ, £,¢Ce HY(X,Qu ).
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For s € Def(X), let ps: Tper(x),s — H'(Xs,0x,) be the Kodaira-Spencer map,
and let n, € HY(X,, % )\ {0}. Let ¢(-) be the interior product.

Definition 4.3. The Weil-Petersson metric gwp on Def(X) is defined by
S, Mps (@) A Ups (0D (upa())0s, (s ())ns) 12

T A, - Inel2.
for u,v € Tpef(x),s- Let wwp be the Kahler form of gwp.

gwp(u,v) =

Let nx/pef(x) be a local basis of p.Kx /per(x). By [52, Th. 2], we have
(4.1) wwp = —dd®1og ||nx pet(x) 172 = 1 (P Kx jpet(x): || - l22)-

Proposition 4.4. The Kodaira-Spencer map ppeg(x) induces an isometry of the
following holomorphic Hermitian vector bundles on Def(X):

(Opet(x), gwWr) @ (P xjper(x)s || - [[£2) = (R Do) Pripoant )

X /Def(X)
In particular, ppet(x) induces an isometry of the following holomorphic Hermitian
line bundles on Def(X):
1 n—1
(det R PS03 Dt x)» det thp*Q;;éCﬂX)
1,n—1

= (det Oper(x), det gwp) @ (P Kx /pet(x)s || - |22) " X,

Proof. The Kodaira-Spencer isomorphism is given by
Opet(x) @ P« Kx/Def(x) 2 U @1 — L(pper(x)(w))n € Rlp*QZ:?]%Cf(X)'

Hence (t(ppet(x) (1)) 1, t(ppet(x) (V) M) 22 = gwe (4, v) - In]|7 by Definition 4.3. O

Definition 4.5. The Ricci form of the Weil-Petersson metric is the Chern form of
the Hermitian line bundle (det ©pe¢(x), det gwp):

Ricwwp := 1 (det ®Dcf(X)7 det gwp).

Proposition 4.6. The following identities hold:

—WWP i (p=0)
. —Ric WWP — h-"— (X) Wwp (p = 1)
n—p D . —
c1(det B P Q% percxyy |- llz2) = Ricwwp +h"" M (X)wwp  (p=n-—1)
WwWP (p = n)

Proof. The assertion for p = 0,n follows from (4.1). The assertion for p = 1,n — 1
follows from Proposition 4.4 and the Serre duality. O

See [17, Sect. 2] for a generalization of Proposition 4.6. In the case n = 3, the
following positivity result for Ric wwp + (h*?(X)+3) wwp shall be crucial in Sect. 7.

Proposition 4.7. When n = 3, the (1,1)-form Ricwwp + (h1?(X) + 3) wwp is a
Kahler form on Def(X).

Proof. See [36, Th.1.1]. O

Definition 4.8. When n = 3, the Hodge form on Def(X) is the positive (1, 1)-form
on Def(X) defined as

wy = Ricwwp + (h1’2(X) + 3) WWP-

The corresponding Kéahler metric on the Kuranishi space Def(X) is called the Hodge
metric on Def(X).
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The Hodge metric is related to the invariant Hermitian metric on the period
domain for Calabi-Yau threefolds as follows. Let X be a polarized smooth Calabi-
Yau threefold. Let D be the classifying space for the polarized Hodge structures
of weight 3 on H3(X,Z)/Torsion defined by Griffiths e.g. [23, Sect.2]. Let F*
(1 =1,2,3) be the Hodge bundles on D. Let wp be the invariant Hermitian metric
of D. Let M be the universal covering space of the moduli space of X and let
f: M — D be the period map. Then we have
(a) wwp = f*(er(F%, || - l122) [55);

(b) Up to a constant, wy = f*(wp) [35]. In particular, wy is always Kéhlerian.

We refer to e.g. [23] for more details about the classifying space D.

4.3. The curvature formula for the BCOV Hermitian line bundles

Let m: (X, X) — (S,0) be a flat deformation of X. Set X, = 7=1(s) for s € S.
Let gx /s be a fiberwise-Kéhler metric on 77X’ /S. Then the line bundle )\(Q;(/S) on
S is equipped with the BCOV metric || - ||A(Q;(/S) with respect to gx /-

Let p: (S,0) — (Def(X),[X]) be the holomorphic map such that the family
m: (X, X) — (S5,0) is induced from the Kuranishi family by . Then we have

Cl(W*WX/& I llz2) = wwwe

near s = 0. Let ny,s be a local basis of m.wy,g and set

wwp, x/s = prwwp = —ddlog [nx/sll7> = c1(mways, || - [|r2)-
Theorem 4.9. The following identity of (1,1)-forms on (S,0) holds:
; x(X)
cr(A( X/S)) = 12 WWP,x/S-

Proof. We follow [58, Sect.5.2]. Since the assertion is of local nature, it suffices
to prove it when S = A4™S  Then mKx/s = Og. Let nyys € HY(S,m.Kx/s)
be a nowhere vanishing holomorphic section. For s € S, set n; = nx/s|x,. Then
ns € H(X,,Kx,) \ {0} and ny,s are identified with the family of holomorphic
n-forms {1, }scs varying holomorphically in s € S. Define |1y /s[|7. € C*(S) by

Inx/slZ2(s) = lInsllz=, s €S
Set gs = gx/s|x,. Then gx,g is identified with the family of Kéhler metrics
{9s}ses. Let v, be the Kahler form of h,. Let yx/s = {7Vs}ses be the family of

Kéhler forms associated to gx/s.
Define the C* functions Vol(X'/S) and A(X/S) on S by

Vol(X/S)(s) = Vol(Xs,7s), A(X/S)(s) = A(Xs,7s), seSs.

Let ¢;(X/S) be the i-th Chern form of the holomorphic Hermitian vector bundle
(TX/S, gx/s) Since

2 —
e (X/8) = —e1 (K s, det g ) = ddlog <(\/—_1)”nnx/s 'A nx/s> 7
VX/S/”'
the following identity of (1, 1)-forms on X holds:
c(X/S) = —7* {wwp x5 + ddlog Vol(X /S) }
(\/—_1)"2772(/3 Aix/s - (VOI(X/S)> } .

7}/5/”! 2532

(4.2)

+ dd®log {



18 HAO FANG, ZHIQIN LU, AND KEN-ICHI YOSHIKAWA

Then we get
(4.3)
1
1
=TT [—7* {wwp,x/s + dd®log Vol(X/S)} ¢, (X/S)]
s _iddclog (\/—1)71277X/S /\ﬁX/S ot (M) c (X/S)
12 VSL{/S/H' ”nX/S”%Z
X
= %WWP,X/S + ddclogA(X/S)7

where the first equality follows from (4.2), and the second one follows from the
projection formula and the commutativity of dd® and ..

Since the map 7: X — S is locally projective by Proposition 2.8, we may apply
Theorem 3.5 to the family 7: X — S. Then we deduce from (4.3) that

c1 (A% /5)) = (M Q% /5)@) — dd”log A(X/S)
_ _1_127T* [e1(X/S) en (X /S)] — dd®log A(X/S)
_x(X)
= "3 Wwp,a/s-

This completes the proof of Theorem 4.9. O

Theorem 4.10. Let X be a smooth Calabi-Yau n-fold. The Hermitian metric
- HA(Q;{) on M%) is independent of the choice of a Kdhler metric on X. In

particular, the BCOV Hermitian line N(Q%) is an invariant of X.

Proof. Let o € A\(Q%) \ {0}. Let X = X x P! — P! be the trivial family over P!.

Let 70, Yoo be arbitrary Kéhler forms on X. Let vx/p1 = {7 }+epr be a C*°-family

of Kahler forms on X connecting 7o and 7. Since wywp x/pt = 0, log ||a||§\(ﬂ. )
’ x/pl

is a harmonic function on P! by Theorem 4.9. Hence [|oxqe ) is a constant
X /P

function on P'. This proves Theorem 4.10. O

4.4. The BCOV invariant of Calabi-Yau threefolds

In Subsection 4.4, we fix n = 3. Hence X is a smooth Calabi-Yau threefold. Set
by(X) := dim H?(X,R). Let cx(-,-,-) be the cubic form on H?(X,R) induced from
the cup-product:

ex(@.0.) 1= gz [ anBAy.  afye R

4.4.1. The covolume of the cohomology lattice. Let x be a Kahler class on X.
Let (-,-)z2, be the L*inner product on H?*(X,R) with respect to x, and let
(*,)12 et~ be the induced L*-inner product on det H*(X,R). Set H*(X,Z)s =
H?(X,Z)/Torsion.

Definition 4.11. For a basis {ey,...,ey,(x)} of H?*(X,Z)g over Z, set

VOILZ(H2(X, Z),H) := det (<ei,ej>L2’,{) = <91/\' . -/\ebQ(X),el/M . -/\eb2(x)>L27dCt,{.
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Obviously, Vol (H?(X,Z), k) is independent of the choice of a Z-basis of H?(X, Z);
it is the volume of the real torus H*(X,R)/H?(X, Z)s with respect to (-,-)2 .. We
can write Volz:(H?(X,Z), k) in terms of the cubic form cy as follows:

Let L be the operator on H*(X,R) defined by L(¢) =k A p for ¢ € H*(X,R).

Lemma 4.12. The following identity holds

(o, Byn = Sexlmmlex(Bimr) 50 o€ HAX,R).
’ 2 ex (K, K, K)

In particular, Voly:(H*(X,Z),k) € Q if k € H*(X,Q).

Proof. Let ¢ € HYY(X,R) = H*(X,R). By [55, Lemma6.31], one has the orthog-
onal decomposition H''(X,R) = ker(L?) ® Rk with respect to (-,)2 .. Since

—ex (o, 0,5)  (L2(p) = 0)
4.4 L O)pe . =
(4.4) (e { sex(p.0,K) (v € Re)
by [55, Th.6.32], we get the decomposition
(4.5) o=p— ex(p, 1, ) K|+ ex (. k) r € ker(L?) @ Rk.
CX(K’a ‘%75) CX(K’aKﬂK)

By (4.4), (4.5), we get
= ¢ O{_CX(O@HV%)KI CX(ﬂv a’%>
(a,B) 12, = —cx ( —k, - 70{ ) >

Cx (K/a K, K’) Cx

+ch CX(O@K/a’%)K/,CX(ﬂaK/K)K’H
2 ex (K, koK) ex (K, K, K)
_ §CX(O[7HN%) CX(ﬂv'%a ‘%) (Ot,ﬂ, KZ)
2 ex (K, Kk, K)
This proves the lemma. O

4.4.2. The BCOYV invariant. Let us introduce the main object of this paper.

Definition 4.13. For a Kéhler form v on X, the BCOV invariant of (X,) is the
real number defined by

mBoov(X,7) : = Vol(X,~) % Vol 2 (H*(X, Z), [7]) " A(X,7) Tscov (X, 7)
= Vol(X,7) =" 3 Vol 2 (H(X, Z), []) "

1 V=InAi Vol(X,
X exp ——/ log gn n ., Yol 5 ) c3(X,7)| Tecov (X, 7).
X 73/3! 172

In the rest of Section 4, we derive a variational formula for the BCOV invariant.

4.4.3. The curvature formula for the BCOV invariant. Let w: (X, X) — (S5,0) be a
flat deformation of X which is induced from the Kuranishi family by a holomorphic
map p: (S5,0) — (Def(X),[X]). Let wy x/s be the (1,1)-form on S induced from
the Hodge form on Def(X) via p:

WH,x /S = [ WH.

Let gx /g be a fiberwise-Kéhler metric on TX'/S. Let v, be the Kahler form of
(X/S) be the function on S defined by

BCOV (X /S)(8) := TBCOV (X5, 7s), s€ 8.
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Theorem 4.14. The following identity of (1,1)-forms on (S,0) holds

X
ddlog Tcov(X/S) = —% WWP,X/5 — WH,X/S
X
=— (h1’2(X) + % + 3) wrwwp — p*Ricwwp.

Proof. We follow [58, Th. 5.6]. Let A(X/S) and Tpcov(X/S) be the C* functions
on S defined by

A(X/S)(s) = A(Xs,7s), Tscov(X/S)(s) == Tecov(Xs,7s)
for s € S. By Theorem 4.9, we get

— dd°log[A(X/S) Tocov (X/9)] + Y (=1)P"pei(det RUm Oy g, |1+ 12,6, )
p,q>0

_x(X) o
12 '

Since RQW*Q’;(/S # 0 if and only if p+ g = 3 or p = ¢, we deduce from Proposition
4.6 that

— dd°log[A(X /S) Tecov (X/8)]| + Y per(det RPm, g, |- 122 g )

p>0
(4.6)  — (p*Ricwwp + A" (X) p*wwp) — 3u*wwp
_x&X)
T g Mwwe

Define a function Volz2(H?(X/S,Z)) on S by
Vol (H?*(X /S, 7))(s) := Volp2 (H*(Xs, Z), [s]), s€S.

Since m: X — S is induced from the Kuranishi family, there exist holomorphic
line bundles L1, ..., Ly, (x) on X by Lemma 2.16 such that c1(£;)|x = e; for 1 <i <
b2(X), and such that €;(£1) A---A€1(Ly,(x)) is a nowhere vanishing holomorphic
section of Rlﬂ'*Qk‘/S. Then

(4.7) [€1(L1) A AC(Lpy(x)) = Volp»(H*(X/S,Z)).

2
HLQ,gX/S

By the Serre duality and (3.5), 1(1,1),2,2) ® (€1(L£1) A -+ A€ (Lpy(x))) L is a
nowhere vanishing holomorphic section of R*r,Q3, /s such that
(4.8) |11y, 22) @ €1(L1) A A& (Lyy )| 72 = Vol (H*(X/S,Z))"".

Let Vol(X'/S,vx,s) be the function on S defined by

gx /s

Vol(X/S)(s) := Vol(Xs,vs).

3

Then % is a nowhere vanishing holomorphic section of R*m, 3, /s such that
3 2

Tx/s

(49) 3IVol(X/S)

= Vol(x/S)™*.

L2,gx/s
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Substituting (4.7), (4.8), (4.9) into (4.6), we get the equation:
(4.10)
— dd®log[A(X/S) Tacov(X/S)] + dd®log Vol 2(H?*(X/S,Z)) + 3dd"log Vol(X/S)

X
= (h1’2(X) + % + 3) ,u*wwp + [L*Ricwwp.
The theorem follows from the definition of the BCOV invariant and (4.10). O

Remark 4.15. If we follow the mirror symmetry and if XV is the mirror Calabi-Yau
threefold of X, the coefficient of p*wwp in (4.10) is compatible with that of [6,
Eq. (14)] since hb1(XV) = h12(X) and x(XV) = —x(X).

For a higher dimensional analogue of Theorem 4.14, we refer to [17].

Theorem 4.16. The BCOV invariant Tscov (X, ) is independent of the choice of
a Kdhler metric on X. In particular, Tscov(X,7) is an invariant of X.

Proof. Let X = X x P! — P! be the trivial family over P*. Let 79, Yoo be arbitrary
Kéhler forms on X. Let yx/pt = {Vt}iepr be a C*°-family of Kahler forms on
X connecting 7o and vYs. Since p*wwp = p*Ric(wwp), log Bcov (X /P) is a
harmonic function on P! by Theorem 4.14. Hence Tcoy(X/P!) is a constant
function on P*. O

After Theorem 4.16, we shall write Tcov (X) for 7scov (X, ¥) in the rest of this
paper.

5. The singularity of the Quillen metric on the BCOV bundle

In Section 5, we fix the following notation: Let X be a compact Kéhler manifold
of dimension n + 1 and let S be a compact Riemann surface. Let m: X — S be
a surjective holomorphic map, and we do not assume that a general fiber of 7 is
Calabi-Yau.

Let 3, be the critical locus of m, and set

D :=n(3), S?:=S\D, X = X|go, w0 = 7| xo.

Then 7°: X° — S° is a holomorphic family of compact complex manifolds, and
Q%{o /80 is a holomorphic vector bundle of rank n over X°.
As in Sections 3 and 4, we have the holomorphic line bundles on S°:

Mo/ g0) = @p_g(det RIT Qb o)D", A Q%e/50) = ©p_ oA 50) T,

In this section, we construct holomorphic extensions of A\(Q%,, / o) and A(Q%, /g0)

from S° to S, and we study the singularity of the corresponding Quillen metrics.

5.1. The Kahler extension of the determinant line bundles
Since /s = Q. /m*Q, we have the following complex of coherent sheaves on

X, which is acyclic on X (cf. [33, p.94 1.12-1.16]):
0 — 7y — Q% —>Q£(/S — 0.

Definition 5.1. (i) For p > 0, let Sf(/s be the complex of holomorphic vector
bundles on X defined by

55,’(/5: (T QL)% — QL @ (7 QL)PPD L QP gk — QF,
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where the maps Q% ® (7*QL)®P~) — Q4! @ (7*QL)®P~=1 are given by
w® (T*)PP7) (W A T*E) @ (n*€)P—imD), we Ny, ey

For p = 0, set Eg(/s: 0— Ox — 0.

(ii) For p >0, let F%, /s be the complex of coherent sheaves on X defined by

]:P

X/s" ——

0 —— &P

xX/S Oa

X/S
where 7: QF, — QX/S is the quotient map for p > 0 and the identity map for p = 0.
Since rk(7*Qg) = 1, F}, 5 is acyclic on X'\ X for p > 1 and on X for p =0, 1.

Definition 5.2. (i) Let A(E%

X/ ) be the holomorphic line bundle on S defined by

p )
(&% /5) = QMO @ (7" Q) ®H 1
=0

(ii) Let A(22 be the holomorphic line bundle on S defined by

X/S ®/\ ( DPp.

p>0

%/s)

We call )\(Ef(/s) and A(Q% /) the Kdhler extensions of A(§2 XO/SD) and A(Q%./s.)
from S° to S, respectively.

Since F% X/ is acyclic on X'\ ¥, we have the canonical isomorphisms of holo-
morphic line bundles on S°:

M 0) ZMEL Qso AMQoys0) = ANQ)so-

Let gx be a Kahler metric on X. Let gx /g := gx|rx s be the Hermitian metric
on TX/S|x\x, induced from gx. Then gx,s (resp. gx) induces the Hermitian
metric 9oz, (resp. gqr ) on QZ;(/SL)(\ZW (resp. QF,) for all p > 0.

Following Bismut [9] and Yoshikawa [59], we determine the singularity of the
Quillen metric on A(92,, / g0) near D with respect to the Kéhler extension and with
respect to the metrics gx /g, gor,

5.2. Three Quillen metrics on the extended BCOV bundles

Let 0 € D. Let (U, t) be a coordinate neighborhood of 0 in S centered at 0 such
that Y 2 Aand U ND = {0}. Weset U°:=U\D =U\ {0}.

Let ks be a Hermitian metric on Qg such that kg(dt,dt) =1 on Y. Then 7*kg
is a Hermitian metric on 7*Qg. Let gr.q1 be the Hermitian metric on 7*Qg|x\x,

induced from go1 by the inclusion 7*Qg C Q. Since
W*ks (dﬂ', dﬂ') = ﬂ-*{kS(dta dt)} = 17 gw*ﬂé (dﬂ', dﬂ') = ngY (dﬂ', d?T) = ||d7TH2
on 7~ 1(U), the following identity holds on 7~1({f):
IreQl = ldm || 7 ks.

We define three Quillen metrics on the Kéhler extension A(E%, / g)|ue as follows.
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Definition 5.3. (i) Let ||- H)\(Q be the Quillen metric on )\(Q’)’(o/so)\uo

Xo,50):@:9x /5
with respect to gy, s and goz, o Let || - H)\ %@ s be the Quillen metric

on (&% /S)|U° induced from || - by the canonical isomorphism

)‘(QI;(o/so)|U° = /\(ggc/s”u(’:

2
||>‘(Szi}o/so)7Q7gX/S

2 2
I H)\(gi/s)qugx/s =l H)‘(Szljyo/so)vagX/S.

(ii) Let |- Hi(ﬂ’;{ié@(ﬂ*Qg)®i),Q,w*ks be the Quillen metric on A(Q5 " @ (7*Q5)®") |uo
with respect to gx,s and Gor-i @ m*kg. Set

[ - H)\(EX/S ).Qurks T ®|| H)\(Q” i@ (nQL)®1),Qm ks

R : : P—i o O \®i
(iii) Let || HA(Sliﬂ@(ﬂ*Qg)@),Q,hﬂmls be the Quillen metric on M(Q5 " Q(7*Qg)®") |y

with respect to gx,s and Jozi @ Greql - Set

hS]

_1)i
I H)‘(59\»/5 @9, ol @ )\(QP ‘® *le)@”)yng,,*Qg.

When p = 0, we have the following relations
_ 2 _ _ 2
T3, 1@ = I T3y 0mks = 1 IR 000001 = 1 02002005

We shall prove that log|| - has logarithmic singularities at 0 € D,

2
HA(gi/s)yngx/s
whose coefficients are determined by the resolution data of the Gauss map.

5.3. The Gauss maps and their resolutions

Let IT: P(Q}) — X be the projective bundle associated with the holomorphic
cotangent bundle Q%. Let IIV: P(TX) — X be the projective bundle associated
with the holomorphic tangent bundle TX. Then the fiber P(T,,.X)" is the set of all
hyperplanes of T, X containing 0, € T, X. We have P(Q}) 2 P(TX)".

We define the Gauss maps v: X\ X, — P(Q}) and p: X\ ¥, — P(TX)Y by

I/(I dTrm = [Z 8ZZ dzz] s ,U'(x) = [TIXTI'(I)}

Then v = p under the canonical isomorphism P(QY) = P(TX)V.
Let L := Opqu)(—1) C IT*Q% be the tautological line bundle over P(Q}), and

set Q := IT*QY /L. Then we have the following exact sequences S of holomorphic
vector bundles on P(Q2%):

S:0—L— "% — Q —0.
Let p < n. Since rk(L) = 1, this induces the following exact sequence of holomor-

phic vector bundles on P(Q2%):

P
KP:0— [P — T*QLeLP™! — . — IO 'L — 705, —>/\Q—>O,
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where IT*Q%, — AP Q is the quotient map and IT*Q%, ® [P~ — [T*Q4 ! @ Lp—i—!
is given by w ® 0®P~) — (WA ) ® o®P~I=Y for w € I1"QY and o € L. Then

FL g = UK.

Similarly, let H := Opq1 (1), and let U be the universal hyperplane bundle of
(ITV)*TX. Then the dual of S is given by

§:0—U— (IIY)'TX — H — 0.
Since T, X /S = {v € T, X; dr,(v) = 0}, we have
TX/S = p*U.

Let gy be the Hermitian metric on U induced from (ITY)*gx, and let gy be the
Hermitian metric on H induced from (I1V)*gy by the C*°-isomorphism H =2 U+.

Let gr be the Hermitian metric on L induced from IT 9o, by the inclusion
L c II*Q%. Let g be the Hermitian metric on @ induced from II*gg1, by the
C>-isomorphism @ = L. We consider the Hermitian metric gr+qi,gLe—i ON
II*Q% @ LP~" induced from H*gﬂk, g1, and we consider the Hermitian metric garg
on A’ Q induced from gg. We define K’ to be the exact sequence P equipped
with the Hermitian metrics {g7-q: grr-i} and garg. Then we have the following
isomorphisms of Hermitian vector bundles over X'\ ¥ :

(51) 7_'42](/3 = V*Epa (TX/Sv gX/S) = ,LL*(U, gU)

Since dr is a nowhere vanishing holomorphic section of v*L|x\5x, , we get the fol-
lowing equation on X'\ ¥

—dd®log |dr|)? = v*er(L, gs).

Since X, is a proper analytic subset of X, the Gauss maps v: X \ ¥, — P(Q})
and p: X\ ¥ — P(TX)Y extend to meromorphic maps v: X --» P(Q%) and
p: X --» P(TX)Y by e.g. [42, Th.4.5.3]. By Hironaka, there exist a projective
algebraic manifold X a divisor of normal crossing £ C X, a birational holomorphic
map ¢: X — X, and holomorphic maps 7: X — P(Ql) and fi: X — P(TX)Y
satisfying the followmg conditions:

(1) alzygrm: X\ ¢ Y(Z;) — X\ B, is an isomorphism;
(i) ¢ (Sx) = B
(iii) V=vogqgand i = pogon X\ E.

By (iii), we have 7 = i under the canonical isomorphism P! (Q}) = P(TX)".

We set 7™ := moq and Xt =7 1(t) for t € S. Similarly, we set Ej := EﬂXb for
b€ D. Then E = lyepEy, because E=q (%) c7 (D).

5.4. The singularity of Quillen metrics
After Barlet [3], we define a subspace of C°(U) by

BU) = e D @W’“ (log [t))" - C= ().

reQn(0,1] k=0

A function ¢(t) € B(U) has an asymptotic expansion at 0 € D, i.e., there exist
T, sTm € QN (0,1] and fo, fir € C*U), I = 1,...,m, k = 0,...,n, such
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that o(t) = fo(t) + D101 Dopeo 12 (log [t))* fik(t) as ¢ — 0. In what follows, if
f(t),g(t) € C°°(U°) satisfies f(t) — g(t) € B(U), we write

f=Bg
The purpose of Section 5 is to prove the following:

Theorem 5.4. Let o, be a nowhere vanishing C* section of the Kdhler extension
NER /s)lu- Then

log HUPH)\(gi,/S),Q’gX/S =5

LY

The proof of Theorem 5.4 is divided into the following three intermediary results,
whose proofs shall be given in the subsections below:

Td(Cl (H)) — ef(pfj)cl(H)
C1 (H)

1P~ p* {Td(U) }q*ch(Qg() log |t]>.

OJO

Proposition 5.5. The following identity of functions on U holds
log (]| - H)\ (€% )@, gx/S/H ||>\ (E%/5)Q:9nnarl ) =5 0.
Proposition 5.6. The following identity of functions on U holds

1 en 0
x/5) % dxqlk

log

L3

Proposition 5.7. The following identity of functions on U holds

2 =B
H ' H)‘('gi’/s)vaﬂ*kS

1 — e~ (pP—d)er(H)

I {Td(U) ()

}q*ch(ﬂg() log [¢]2.
0 5=0

log [|op(t )”)\(SX/S) Qm ks =B

LY

Proof of Theorem 5.4. By Propositions 5.5, 5.6, and 5.7, we get

Td(er(H)) -1

i {raw) G

} q*ch(Q%) | log |t%.
0 =0

2
logllopllxer )05 =

H H)\ Q, ” ’ Hi 4 Q
(g )s ' rxql
/s) 9x/s 1 ” . H2 x/s Qg

MEL,).Qm ks

log +10g||0p|\,\ %5 Qm ks

|| ||>‘(£p/s)Qg *Ql

- ( /| 2 {ra) 1= 25 e ) ol

p P TdeH) -1 *ch (O o |2

+ (/EOJZ_:O(—U I {Td(U) o2 () } g*ch(Q%) | log t]
_ p p—j Td(cy(H)) — e~ p=der(H) ) ; i
=5 (/Eo ;(—1) w {Td(U) o1 (H) } q*ch(Q%) | log |t|*.
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This proves the theorem. [J

5.5. Proof of Proposition 5.5

Let gqi @(r-L)ee-o be the Hermitian metric on Q% ® (m*Q%)®P= induced
from gx, g-q1. We define 7—"1;{ /s to be the complex of holomorphic vector bundles
Fr/s
and ger, ; on Qg(/S'

equipped with the Hermitian metrics 90, @ (x*QL)@m—i On QL ® (W*Q}g)®(pﬂ')

Let m, (resp. 7.) be the integration along the fibers of 7 (resp. 7). For a C*°
differential form v on X, one has 7, (1) € B() by [3, Th. 4bis].

Since F¥4, /s is acyclic on X°, the following identity of C*° functions on S° holds
by the anomaly formula [11, Th.0.3]:

2
(52)  log I et 00us

~ (0,0)
T = 7. (TA(TX/S, gx)s) h(Fhss)) -
)‘(Sgg/g)vag,(*le

By (5.1), the following identity of C'*° differential forms on X \ ¥, holds:
TA(TX/S, gx/s) h(Fixss)las, = pTdU, gu) v ch(K").
Since ¢. = (¢71)* on X \ ¢~1(X,), this yields the following identity on X \ ¥,:

TA(TX/S, g /s) (T s)l s, = (@) {7 T, gu) 7*h(K") }

Hence we get the following equation of C'*° functions on S°:
(5.3)

mo (TA(T/S.g2)6) BF s, ) = [7. {rTa(.gv) @) }]

Since {7Z*Td(U, gu) 7*ch(K")} (™) is a € (n,n)-form on X and since the projec-

tion 7: X — S is proper and holomorphic, the right hand side of (5.3) lies in B(l)
by [3, Th. 4bis|, which, together with (5.2), (5.3), yields the result. O

5.6. Proof of Proposition 5.6
For 0 < i < p, we deduce from the anomaly formula [11, Th. 0.3] that
(5.4)

2
IRt o e 01)26-9). 0.0,

log
|| ’ |‘§\(Qi¥®(ﬂ*g§)®(ri)),Q,ﬂ*ks

i T *OL\®(p—1i). . * ©.0
= Ty (Td(TX/Sv gX/S) Ch(QXagX) Ch((ﬂ' QS) P ; T kS7 gﬂ*ﬂé))

) ~ ) (0,0)
=, (Td(TX/S, 9x/5) ch(Q%, ga) ch((7* Q) 2P~ ks, ||d7T||27T*kS)>
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Since v*c1(L, gr)|x\x, = —dd®log||dr||* and ¢;(Qg, ks) = 0 on U, we deduce from
(3.7) that
(5.5)
(OB B | g (120 B ‘
c ((ﬂ' S) ;T S || 7TH u S ) ﬁ*l(b{)\Zﬂ

a b
c1 ((W*le)@,ﬂ'*k?l) c1 ((W*le)®l, ||d7TH217r*k?l) log Hdﬂ'”2l

I
[M]8
3|~

' a+b=m-—1

3
Il

lu*cl(L,gL) -1
log ||dr]|?.

( dd®log ||dr|[*")™ " log ||dn||* = ————
vei(L,gr)

I
NE
3|H

3

By substituting (5.5) and Td(T'X /S, gx/s) = p*Td(U, gv) into (5.4), we get

- ||)\(Q7- B Qg)®P9),Q,g, o1

log

|| : ||>\(Qz’x®(ﬂ*gls)®(p7i>),Q,ﬂ*ks o

*Td(U, gir) ch(Q 0TI 1 P o
= Tx {lu ( 7gU)C ( Xng) V*Cl(L7gL) Og” ﬂ-” }

e(p—i)v"e1(Lgr) _ q

(5.6)

(0,0)
7 {ﬁ*Td(U, 90) 4" ch(@y, gx) q*(logndwn?)} ,

v¥ei(L, gr)
which yields that
(5.7)
L2
|| HA(£§(/S),Q,Q7,*Q§
log 2 -
|| : HA(gi/s)va*ks uo
P ) H ’ Hi(ﬂ&@(ﬂ.*gzé)@@*j)),Q,g wgl
Z(_l)pij log H i ||2 ) : -
=0 AR @(7QL)®P=1),Q,m ks
P j)ei(Lygr) oo
(p—d)er(Lgr) _ 1
e
T« | q"(lo drl|? 1P~ JN*Td U, q*ch o ,

Lemma 5.8. Let ¢ be a & and 8-closed C™ differential form on X. Let (F,|| - |)
be a holomorphic Hermitian line bundle on X. Let s be a holomorphic section of
F with div(s) C Upep Xo. Then the following identity of functions on U holds

. ((log |1s11%) )l =5 (/ y @) log [¢]*.
div(s)NXo

%.(q" (1og |dr]12) ) s =5 ( /E w) log 2.
0
Proof. See [59, Lemma 4.4 and Cor. 4.6] O

In particular,

Since Y7_(=1)P I Td(U, gy ) 7 { =L g ch (@, gov) is a C° differ-

ential form on X and since *¢; (L) = —i*c1 (H) in H2(7~(U), Z), Proposition 5.6
follows from (5.7) and Lemma 5.8. O
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5.7. Proof of Proposition 5.7
We need the following result:

Theorem 5.9. Let £ — X be a holomorphic vector bundle on X equipped with a
Hermitian metric he. Let A(§) = det Rm.£ be the determinant of the cohomologies
of € equipped with the Quillen metric || - ”i(g),Q with respect to gx/s and §. Let s
be a nowhere vanishing holomorphic section of A(§)|u. Then

log 1812, ey =5 ( [ {Td(U) %} q*ch@)) log |1

Proof. See [59, Th.1.1]. O

Let 0(; ;) be a nowhere vanishing C* section of MO, @ (7*Q%)®P=)) |, Then
— P np=d
= = (p )
is a nowhere vanishing C* section of )\(Ef(/s)m. Since 7*Q} is trivial near Ey and
since

P

- 2
log || - ”)\(SP/S)QW ks — Z(—l)p log || - ”)\(QZ\, B(m QL) @—1)),Q 7 ks’
7=0

we deduce from Theorem 5.9 that

log ng“)\ (€% 5),Qm kg lU

Z )P I log ”U(p 7) ||)\(Q~7 Q(r*QL)®E=1),Q,m* ks lu

7=0
=5 Z ( / 7 {Td(U) &?})‘1} g eh(@, ® <7r*915>®<“>>) log |1

Cl(

S {rae) THOEDE e ) tog

Eo j=0

This completes the proof of Proposition 5.7. O

5.8. An extension of Theorem 5.4

Let hr—1(y) be a Kihler metric on 7= YU), and let hy /s be the Hermitian metric
on TX /S induced from h,-1@). We do not assume that h.-1¢) extends to a Kahler
metric on X.

Theorem 5.10. Let 0}, be a nowhere vanishing C* section of the Kdhler extension
NER /s)lu- Then

logHUp”)\ /S)th/shxl =B

LY

Td(Cl (H)) — ef(pfj)cl (H)
ci(H)

)P JN*{Td(U) }q*ch(Qg() log |#/2.

0 j=0
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Proof. By the anomaly formula [11, Ths. 0.2 and 0.3], we have on U°

2 2
1og (Il 13 (e, opunnse/l - et )00y )

— (0,0)
s = 2oV (TATE/S: gas, hoys) (@ hay, )
q

X

~ (0,0)
+ > (~1)tgm. (TATX/S, g/5) B 55 90, shay,, ) -
q

Let hy be the Hermitian metric on U induced from (IIV)*h-1¢. Let hoi
be the Hermitian metric on QMrl(u) induced from hr-1). Let hﬂfv/s be the
Hermitian metric on Q% /s induced from hQ}Y . Let haag be the Hermitian met-
ric on AYQ) induced from I *hﬂk . Then we have the following isomorphisms of
holomorphic Hermitian vector bundles over X \ X:

(5.9) (TX/S hxys) = p"(Uho), (g hag, ) = w5 (A1Q, haaq).
By (5.1), (5.8), (5.9), we get

2 2
log (” ez, 0@/l HA(si/st,gm)

~ ~%mq ~ (0,0)
(5.10) = ()% (u Td(U; gu, hy) Ch(/\qQ,h,\qQ)>
q

~ ~x% ~% 1 (070)
+ ) (~1)9q 7 (M Td(U, gu) v*ch(A1Q; g/\qQah/\qQ)> =50.
q

Here the right hand side of (5.10) lies in B(U) by [3, Th. 4bis], because

AT hy, gu) 7 h(N1Q, hag), AT TA(U, gu) 7 eh(A1Qs hsg. graq)
are C differential forms on 71 (). The result follows from Th. 5.4 and (5.10). O

5.9. The case of ODP

In Subsection 5.9, we assume that ¥, N Xy consists of non-degenerate critical
points. Hence Sing(X,) consists of ODP’s. For y € &, let m,, be the maximal
ideal of the local ring Oy ,,. Then there exists a neighborhood of X in A on which
Iy, = Byesing(xo)My- Let q: X — X be the blowing-up of the discrete set X, N X,
and set E, := ¢~ !(y) for y € Sing(Xy). Then Ey = II, cging(x,) By and E, = P".

Since X is discrete, we may identify P(Q2},) and P(TX) with the trivial projective
bundle on a neighborhood of ¥ N X by fixing a system of coordinates near ¥, N Xj.
Under this trivialization, we consider the Gauss maps v and p only on a small
neighborhood of ¥, N Xy. Then we have the following on a neighborhood of each
y € XN Xo:

on on
o) =112 = (o) 5 ).

Since 7 is non-degenerate at every y € ¥ N Xp, we may assume by Morse’s lemma
that 7(z) = 22 4 - - - + 22 near %, N Xg. Hence the composition voq: X\ Ey — P"
extends to a holomorphic map v := v o q: X — P" such that

;|E :ﬁ|E:idE.
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Forn e Nand 0 < p <n, set

- n+1\(p—j+1)"" - (p—j)"+?
Z ( ) (n+2)! ’

Jj=

For a formal power series f(z) € C[[z]], we define f(x)|zm to be the coefficient
of £ of f(x). Recall that the metric hy /g is defined only on TX /S| 1 @)\x, -

Theorem 5.11. Let 0}, be a nowhere vanishing C* section of the Kdhler extension
A( X/S)|z,{ Then the following identity of functions on U holds

(17108 10 (1) 3 05, @unny e =5 (~1)"3(n, p) #Sina(Xo) log 1>

Proof. In Theorem 5.10, we can identify U (resp. L) with the universal hyperplane
bundle (resp. tautological line bundle) on P*. Then H = L~!. Set z := ¢1(H).
Hence [,, " = 1. From the exact sequence 0 — U — C"*' — H — 0, we

get TA(U) = Td H(z) = (1 — e~ ®)/x. Since ¢(FE,) consists of a point, we get
q*Qf,AE0 =), By substituting this and the equation q*ch(Qg{)|E0 = (";1)
into the formula in Theorem 5.10, we get

¢ _1\p—J 7% Td(cl (H)) — ei(pij)CI(H) *o J
/| > {raw) - bareniey)

» o
1 Td(z) —e~ ==  (n 41
= #Sing(Xy) ; Td(z) . " . )
(5.11) P . e (=)
. L +1 e —1)e WPJ 1
= #Sing(Xo) Y (-1)P~ ( _ ) {( )2 + —}
; J x x
Jj=0 Zn
L In+1 ) .
— #sing(0) Y (-1p (") fertrmree iy
- J
7=0
= (=1)""7(n, p) #Sing(Xo).
The result follows from Theorem 5.4 and (5.11). O
Lemma 5.12. The following identities hold:
3
5(3,p)+06(3,3-p)=1 (0<p<3), > pi3p) =—
Proof. By the definition of §(n, p), we get
1 27 93 119
0(3,0) = —, 6(3,1)=—, 03,2)=—, 6(3,3)=-—
(3.0) 120’ (3:1) 120’ (3:2) 120’ (3:3) 120’
which yields the result. ]

Set
o= ®Zioo-(*1)17p.

Then o is a nowhere vanishing C°® section of A(€2% ) near D.
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Theorem 5.13. When n = 3,

19 ..
log H‘T(t)||§\(n;(/s),Q,hx/s =B vy #Sing(Xo) log ‘t|2-

Proof. By Theorem 5.11, we get

3

log ||U||§(Q:\,/S),Q,gx/s|u = Z(—l)pp log ||GP‘|§(5§/S),Q,gX/S|M
p=0
3

=5 (—1)* ) _ pd(3,p) #Sing(Xo) log [t|*.

p=0

This, together with the second identity of Lemma 5.12, yields the result. O

Remark 5.14. In our subsequent paper [18], we shall determine the behavior of
log ||U(t)||§(ﬂ./ ) Qhxys 38T —0 for arbitrary relative dimension n.
x/s)%

6. The cotangent sheaf of the Kuranishi space

Let X be a smoothable Calabi-Yau n-fold with only one ODP as its singular
set. Let p: (X, X) — (Def(X), [X]) be the Kuranishi family of X with discriminant
locus ©. Then X, Def(X), and ® are smooth by Lemmas 2.3 and 2.7.

Lemma 6.1. The dualizing sheaf Ky of X is trivial. In particular, the relative
dualizing sheaf Kx jper(x) = Kz ® (p*KDCf(X))’l is trivial.

Proof. By the same argument as in [58, p.68 1.25-1.28], we see that Kx|x, = Ox,
for all s € Def(X). Since Def(X) 22 AN*L we get the triviality of Ky by the same
argument as in [58, p.68 1.29-1.33]. O

Recall that the Kodaira-Spencer isomorphism

PDet(x)\® : Opet(x)\® — R'P+Ox /pet(x) IDet(x)\®

was defined in Subsection 4.2. By considering the dual of pper(x)\o, the relative
Serre duality induces an isomorphism of Op,¢(x)-modules on Def(X) \ D:

Phesxn o * B P (0 /per(x) © Kx/Det(x))IDet(x)\0 = bt (x) [Det(x)\0-

Theorem 6.2. The isomomorphism p]\:/)cf(x)\g extends to an isomorphism

PJ\Scf(X)5 Rnilp*(le/Dcf(X) ® Kx pef(x)) = Q%)cf(X)'
of Opeg(x)-modules over Def(X).

The isomorphism chf( X) is again called the Kodaira-Spencer isomorphism. Be-
fore proving Theorem 6.2, we first prove an intermediate result in the next subsec-
tion.
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6.1. Blowing-up and the regularity of differential forms
Set

Artt = {(z,[(]) € A" X P 2¢; — 2(; =0 0<i,j<n},  q:=pr.

Then q: An+1 — An*l s the blowing-up at the origin. Set E := ¢~1(0) and
U= {(s[() € A5 G £0}, 0= {z € A 2, 0},

Wit ={(Cos-+Gim1,2,Giv1s -, Gn) €CMH 2] <1, Gyl <1 (G #9)}
Then U; = W; C C™*! via the map

W53 (Corens Cimts 26y Cints ey Co)

— ((2:C0s - -+, 2iCi—1, Zis 2iCit1y - -+ 2iCn)s [Cot ot o1 2 L G 2 -+ 2 C)) € U
By construction, we have A"l = Ui, U; and

EnU; 2{(lo,--->Ci—1,%i,Cixts -5 Cn) € Wis 2 = 0}, q(U;) D 0.

Let w;; be the C*° (n,0)-form on O; defined by
|2;]? dzog N+ Ndzi—1 Ndzig1 N+ Ndzy

T TP A Tl

Wiy *
Lemma 6.3. For all0 < i,j <n, the C* (n,0)-form ¢*w;; on ¢ *(0;) =U; \ E
extends to a C* (n,0)-form on U; and satisfies ¢*w;;|pnu, = 0.

Proof. Since q|w; (Co, - - - Ci—15 2is Gt 15+ -+ Gn) = (2iC05 - - -5 2iCim15 20y 2iCit 15 - - -5 2iCn)
under the identification U; = W;, we get the following two formulas:

. s _ L IGPA+ICI) ™ (G #4)
! (IZol2 +o Iznl2) _{ (L+1¢I® (=1,

q (z;(nfl)dzo A Ndzi_1 Ndzigg A+ A dzn>
= 2 "V d(20) A Ad(2iGim1) A d(2iGier) A Ad(2iGa)
:ZidCo/\"-c/lEr~/\an+dzi/\Z(—l)jfldCo/\-~~d/C\j---cTC\i~--/\an

j<i

+dz A Y (~1)dG Ao dG -G NGy € AU,
§>i

which yields that ¢*w; € A™°(U;) and q*wi;|gru; = 0. Since ¢*w;; = Hﬂ—z—“g q*wi;

when j # i, the assertion for ¢*w;; (i # j) follows from the assertion for ¢*w;;. O

6.2. Proof of Theorem 6.2

For simplicity, we set

X=X, S:=Def(X), m:=p, 0:=[X], Xo:=X, N+1=dimS.

Hence (5,0) 22 (ANF10) and 7: (X, Xg) — (S,0) is the Kuranishi family of X.

Let s = (so,...,sn) be a system of coordinates of S such that © = div(sg). We
set s’ = (s1,...,8n). Then 9/9s, is a nowhere vanishing holomorphic vector field
on Sfor0<a<N.
(Step 1) The Kodaira-Spencer isomorphism pg\p: Og\p — R'm.Ox/s|s\o yields
holomorphic sections p(9/8sq) € H°(S\ D, R'm.Ox)s). Let (-,)s be the Yoneda
product between H" (X, Q% ® Kx,) and Exty (% ® Kx,, Kx,).
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Since A" 1(X, ) = N +1, there exist ¢o, ..., ¢n € H”fl(X,Q}/S @ Kx)s)
such that
(i) {¢g,...,on} is a basis of R”’lw*(ﬂk/s ® Ky/s) as a free Og-module;
(i) {dolx.,...,dn|x.} is a basis of H" (X, ® Kx,) for all s € S;
(ili) (¢alxo:p0(0/0sp))0 = bap for 0 < a, B < N.

Let py: H" 1 (X,,Q%, ® Kx,) — Qg be the dual of the Kodaira-Spencer map.
For s € S, set

9 () = (balx,, ps(0/05p))s = {{p] (balx.),0/05p)),

where ((-,-)): Qg x T'S; — C is the natural pairing. Then g, is a function on S,
which is holomorphic on S\ ® but which may not be continuous on S, such that

9a5(0) = dap-
It suffices to prove g,z € CO(S); if it is the case, (gag(s)) is a family of invertible
matrices depending holomorphically on s € S, so that R”’lw*(Qk/S ® Kx/g) is
the holomorphic dual bundle of ©g via the extension of pg\g.

(Step 2) Let Ax be the sheaf of germs of C* functions on X, and let A% be the
sheaf of germs of C* (p, q)-forms on X. Set

AP X, Q}WS ® Kx)s) i=T(X, A3 @0, Q;/S @ Kx)s).
Then AP9(X, Q;/S(X)KX/S) is the vector space of C*° (p, q)-forms on X with values

in Q%{/s ® Kx/s. By Malgrange [38, pp.88, Cor.1.12], Ox is a flat Ax-module.
Hence we have the Dolbeault isomorphism [1, Chap. VII, Prop. 4.5]

H" X, Q% s @ Kx)s)
ker{9: AP (X, QY 6 © Kxyg) — A™(X, Q) g ® Kx)s)}
- Im{9: AP 2(X, Q) ® Kyyg) = AP 1 (X, QY 6 © Kyys)}

Let ®, € AO"~1(x, Qi{/s ® Kx/s) be a d-closed differential form representing
bas 1€y P = [(I)oz]'

(Step 3) To study the behavior of go5(s) near ®, we compute a representative of
the Kodaira-Spencer classes p(9/9s,,) in the Dolbeault cohomology.

Near the critical locus ¥, C X, there is a neighborhood V =2 A"*! x AN of
Y. in X such that m(z0,...,2n,8") = (28 + -+ + 22,51,...,sn). Hence we have
YNV ={0} x AN, For i =0,1,...,n, we set

Vii= AL A x AU AN = {(2,8') € AT x AN 2 £ 0).
Then {V;}; is an open covering of V' \ 34, ie., V\ Er = U, Vi. Let {Va}aea
be an open covering of X \ V such that Vy & A" x AN*! and 7|y, = pry. Then
U = {V;}; U{Vi} is an open covering of X' \ X .

First let us construct a representative of the Kodaira-Spencer class p(9/0s,) in
the Cech cohomology with respect to the covering U.

On V;, set
(i) :Li (i)zﬂ -1 N
vy 27 07 vy Do (a=1,...,N).
Then véi),...v%) € H(V;,0x) and m,(v5)) = 5% (@ =0,...,N). We also fix a

holomorphic vector field v,(l)‘) such that U&A) = 0/0s4 on every V). We get in Cech
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cohomology

0
p (67) = {(¥ — v&”))\vumvy}v“,vyem € H' (X \ Z,0x/5:9).

Let {x:}: U {xx}x be a partition of unity of X \ ¥, subject to the covering U
such that on V;,

xi(z) = |20]2 + - - - + |2a|?
Then the following differential form &, € A% (X \ ¥, Ox/s) represents p(9/dsq):

_ y o
fol. = 39, 04 ol pe (=) ~llx] (se5\2)
In particular, we get on V' \ X
"L 1 9
Sohns, =D 0 ® 25 05 falns, =0 (a=1,...,N).
i=0

(Step 4) Let us study the behavior of gagls\o(s) as s — D. Let o(z) € C5°(A™?)
be a cut-off function with ¢ = 1 near 0 € A"!. Recall that ¢(-) denotes the interior
product. There exists hog(s) € C°°(S) such that for s € S\ D,

Gap(5) = (Balx. ps(8/035))s = /X WEs) Dy = /X o) U)o (o)

Since £ = 0 on V' \ X for 8 # 0, gapls\o(s) extends to a C> function on S if
B # 0. Let us prove that gao|s\o extends to a continuous function on S.

Since @, is a (0,n — 1)-form on X with values in Qi{/s ® Kx /5, we can write

q)oz‘V - Zﬂg(z,s) [dzl] &1,
1=0

with [dz;] = dz; mod (7*dso,...,m*dsy), 0, € A®"~1(V), and

7( 1)1-71 dZ()/\"'/\dZi,1 /\dZi+1/\"'/\dZn o Res dZQ/\/\dZn

Hence we have the following formula on V;

. 6
Q_9x;® Ze’“
7=0

& XJ/\G 1 n+i n—3pj A 5
= 520 j Vi = Z_L ;(—1) Zi 9& /\&uij,

Ui

Vi

(6.1)

where we used the followmg relations to get the second equality:

Zaxj ‘Z) *dsp =0, k=0,...,N.
J

Let q: X — X be the blowing-up along the submanifold ¥, C V with exceptional
divisor E := ¢"*(Xx) = P(Ns_/x). Then ¢|g: P(Ns_,v) — Zr is the standard
projection. Since n > 3 and since {U; x AN}, is an open covering of V=g HV),
we deduce from Lemma 6.3 and (6.1) that ¢* (u(&)®a) € A (X).
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Set T = m o ¢q. By King [30, Th. 3.3.2], we have T.q*(t(£4)®o) € CY(S). Since
Jaols\® = T (1(£0)Pa) = g™ (1(&0) Par),

Jaols\o extends to a continuous function on S.

(Step 5) Let sp € ©. We must prove limg\ 9555, Jasls\0(5) = gas(s0). Let
Y, be the proper transform of X,,. Since ¢~!(X,,) = Y, U E and since gag|s\o
extends to a continuous function on S, we get

lim goslsvo() = [ a06)®) = [ a0+ [ 070600,

qil(XsU) YS()
Since ¢*(1(£3)Pq)|E = 0 by Lemma 6.3 and (6.1), we get

T goslsro(9) = [ @062 = [ )P0 = (60

0
XsovPsO(a—%»sO = gaﬁ(so)v

o (Xsg)reg
where we used Lemma 2.9 to get the third equality. This proves gos(s) € C°(S).
This completes the proof of Theorem 6.2. 0

7. Behaviors of the Weil-Petersson metric and the Hodge metric

In this section, we study the boundary behavior of the Weil-Petersson metric and
the Hodge metric for one-parameter families of Calabi-Yau threefolds that shall be
used later. We first recall some basic notions about positive (1,1)-current and give
two lemmas on harmonic functions on A*.

7.1. Positive (1,1)-currents and their trivial extensions

Let u be a (1, 1)-current on A. Then w is positive if u is real and if the inequality
u(p) > 0 holds for all non-negative function ¢ € C§°(A). For real (1, 1)-currents
u, von A, u > v if u— v is a positive (1,1)-current on A. For a divisor H on A,
let 6 be the current of integration over H. A real-valued function f € L{ (A4) is
subharmonic if f is upper semi-continuous and if dd®f > 0 as currents on A.

Let wa+ be the Kéhler form of the Poincaré metric on A*:

/—1dt A dt

 JHP(=Tog[i?)2
A C® real (1,1)-form T on A* has Poincaré growth if there exists C' > 0 with

(7.1) —Cwp KT < Cwapsx.

In that case, the coefficient of T lies in Li (A). The (1, 1)-current on A defined by

loc

T(p) = /A BT, e CE(A)

is called the trivial extension of T from A* to A. We have wa~ = —dd° log(— log |t|?)
as currents on A.

WA = —dd° log(— log |t|?).

7.2. Two lemmas on harmonic functions on A*

Lemma 7.1. Let H(t) be a real-valued harmonic function on A*.

(1) There exist c € R and F(t) € O(A*) with H(t) = c log|t|*> + 2Re F(t).

(2) If there exist v € R such that |t|7e"®) € Ll (A), then F(t) € O(A).

(3) If H(t) = O(log(—1log[t])) ast — 0, then H(t) extends to a harmonic function
on A.
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Proof. (1) Since H(t) is harmonic on A*, there exists f(t) € O(A*) with 0H (t) =
f(t)dt. Let f(t) = Y ,czant™ be the Laurent expansion of f(t) and define the
meromorphic function F'(t) on A* by F(t) := >, | =2 t"*1. By the reality of
H(t), we get dH(t) = a_1% +a_1% + dF(t) + dF(t). Integrating the both hand
sides over the circle [t] = 1/2, we get a_; € R by the Stokes theorem, so that
dH(t) = a_1 dlog|t|* + 2d{Re F(t)}. This proves (1).
(2) By assumption, we get
(7.2) / t]7 P D2 /=1 dt A dE < +o0.

[t|<1/2
Since e ® is holomorphic on A*, we deduce from (7.2) that e ® is a meromorphic
function on A. There exist v € Z and a nowhere vanishing holomorphic function
e(t) € O(A) with eF'® =tV ¢(t). Then F'(t) = vt~ + € (t)e(t)~'. Since F(t) is a
meromorphic function on A*, the residue of F’(t) must vanish, i.e., v = 0. Thus
we have proved that F(t) = loge(t) is holomorphic on A.
(3) Since 1) € Ll (A), H(t) —c log |t|? is a harmonic function on A by (1), (2).
Since H(t) = O(log(—1log |t])) as t — 0, we get ¢ = 0. This completes the proof. O

Lemma 7.2. Let A(t) be a positive, locally L™-integrable function on A for some
m > 0. Let x(t) be a function on A* satisfying x(t) < C(—loglt| + 2), where
C € R is a constant. If log A(t) + x(t) is harmonic on A*, then there exists ¢ € R
such that

log A(t) = c log|t|* + O(|x(t)| +
Proof. Set H(t) :=log A(t) + x(¢). Since x(t) < C (—loglt| + 2), we get
(7.3) log \(t) = H(t) — x(t) > H(t) — C (—log |t| + 2).
Since A(t) € L™(A(1/2)), we get

(7.4) e*QCm/ [t|Cmem H(E) \/—1thdf§/ AB)™/=1dt AdE < +c0.
A(1/2) A(

1) (t —0).

1/2)
By (7.4) and Lemma 7.1 (1), (2), there exists ¢ € R and F(t) € O(A) with
(7.5) H(t) = clog|t]* + 2Re F(t).
Since log A\(t) = H(t) — x(t), the result follows from (7.5). O

7.3. The boundary behaviors

In Subsect. 7.3, we fix the following notation. Let X be a possibly singular
complex fourfold and let w: X — A be a proper surjective holomorphic function.
Assume that X; := 7~1(¢) is a smooth Calabi-Yau threefold for t € A*. We do not
assume that the central fiber Xy has only ODP’s as its singular set. Recall that
the Weil-Petersson form wwp x4 and the Hodge form wy x/a for m: X — A were
defined in Sects. 4.3 and 4.4.3, respectively.

Proposition 7.3. There exists a positive constant C such that
(7.6) 0 <wwp,x/a < Cwa-, 0 <wpax/a < Cwas.

In particular, the positive (1,1)-forms wwp x/a and wy x/a on A* extend trivially
to closed positive (1,1)-currents on A.
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Proof. We follow [37, Proof of Th.5.1]. Since (7.6) is obvious when wy x/4 = 0, we
assume that wy x4 does not vanish identically on A*. Shrinking A if necessary,
we may assume that wg x4 is strictly positive on A*. Let b € A*. Since wy x/ is
non-degenerate at b, the deformation germ 7: (X, X3) — (A, b) is induced from the
Kuranishi family by an immersion of germs (A, b) — (Def(X3), [X3]). Let wi be
the Hodge form on Def(Xj,). By [36, Th. 1.1.2], the holomorphic sectional curvature
of (Def(X3),wn) is bounded from above by a := —(5 + 2v/3)~!. Since b € A* is
an arbitrary point, the holomorphic sectional curvature of (A*, wy x/4) is bounded
from above by « (cf. e.g. [29, Prop.2.3.9]). The second inequality of (7.6) follows
from the Schwarz lemma [29, Th. 2.3.5]. The first inequality of (7.6) follows from
the second one because wwp x/a < 2wy x/a by [36, p.107, 1.17].

Since (A(r)*,wa~) has finite volume when r < 1, the positive (1,1)-forms
wwp,x/a and wy x4 extend trivially to closed positive (1,1)-currents on A. [

Definition 7.4. Define Qwp x4 and Qy x4 as the trivial extensions of wwp x/a
and wy x/a from A* to A, respectively.

Lemma 7.5. Let A,B € R. Let \(t) be a positive, locally L™ -integrable C'*°
function on A* for some m > 0 such that —dd®log A\ = Awy x/a + Bwwp x/a-
(1) There exists ¢ € R such that as t — 0,

log A(t) = ¢ log|t|* + O(log(—log [t])).

(2) With the same constant ¢ as above, the following equation of currents on A

holds:
—ddclog/\ = AQHﬁ‘)(/A +BQWP,X/A — 050.

Proof. We follow [58, Prop. 3.11]. By [48, Proof of Lemma 5.4], there exist subhar-
monic functions ¢ and 6 on A such that the following equations of currents on A
hold:

(7.7 Qwp,x/a = dd o, O x/a = dd°.
Since ¢ and 0 are subharmonic, there exists Cy € R with
(7.8) o) <Co,  B(1)<Co  teA1)2).
Since wax = —dd®log(—log |t]) as currents on A, we deduce from (7.6) that
dd® {—Clog(—logt|) — ¢} = Cwar — Qwp x/a > 0,
dd® {—Clog(—log|t|) — 0} = Cwa- — Qg x/a 2 0.

Hence —C'log(—log |t|) — ¢ and —C'log(—log |t|) — 6 are subharmonic functions on
A, so that there exists C; € R with

(7.9)

Clog(—loglt) — p(t) < C1, ~Clog(—logt]) —6(t) < Cy, Vi € AL/2).

By (7.8) and (7.9), there exists C2 € R such that for all t € A(1/2),

(7.10) —C log(—loglt])—C1 < ¢(t) < Co,  —C'log(—logt])—C1 < (t) < Co.
Set

(7.11) H(t) :=log A(t) + A6(t) + B o(t).
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Since dd°H = 0, H(t) is a harmonic function on A*. Since A(t) is locally L™-
integrable on A, the first assertion follows from (7.10) and Lemma 7.2 by setting
x(t) = AO(t) + B p(t). The second assertion follows from (7.5), (7.7), (7.11). O

Let gwp,x/a be the Kahler metric on A* whose Kéhler form is wwp x/a-

Proposition 7.6. Assume that h*?(X;) =1 for all t € A*.
(1) There exists o € R such that as t — 0:

0 0
g wr.x/a (31 5 ) = log e+ g~ log 1)

(2) With the same constant « as above, the following equation of currents on A
holds:

o 0
dd®log gwp,x /A (a, a) =ady— Qux/a +4Qwp x/A-

(3) If Xy is a Calabi- Yau threefold with at most one ODP and if m: X — A is the
Kuranishi family of Xo, then o = 0.

Proof. (1) Set A(t) := gwp,X/A(%, %) and A =1, B= —4in Lemma 7.5. By the
definition of Hodge form, we have —dd®log A = wy x/a —4wwp,x/a on A*. Since
A(t) € L, .(A) by Proposition 7.3, the result follows from Lemma 7.5 (1).

(2) The result follows from Lemma 7.5 (2).

(3) The result follows from [53, Cor.5.1]. This completes the proof. O

If X is smooth, m, Ky is locally free by [51, p.391, Th.V]. Since K, is trivial
and since h(Kx|X;) =1 for t € A%, . Kyjp = T (Kx @ 7K ') = 1, Ky is an
invertible sheaf on A in that case.

Lemma 7.7. Assume that X is Calabi-Yau for allt € A*. If X is smooth, there
exists £ € HO(X, Kx) such that div(§) C Xj.

Proof. Since m.Kx is an invertible sheaf on A, there exists ¢ € H(X,Ky) =
HO(A,7.Ky) that generates m,Kx as an Oa-module, i.e., m. Ky = Oa - €. Since
HY(X;, Ky|x,) = HY(X;,Kx,) 2 C for all t € A*, we get H*(X;, Kx|x,) = C¢|x,
in that case by [1, Chap. 3, Th.4.12 (ii)]. Since Ky|x, & Kx, = Ox, for t € A*,
€|x, is nowhere vanishing on X;, ¢t € A*. This proves the lemma. 0

If X is smooth, there exists £ € H°(X, Kx) by Lemma 7.7 such that div(¢) C Xj.
In that case, we define a section ny o € H(X, Kx/a) by naja = £ @ (n*dt) 1.
We identify 1y /4| x, with the Poincaré residue n; := Resx, /(7 —t) € HY(Xy, Kx,)
for t € A*. Then
(712) §|Xt =T ® dﬂ-a

and 1y, is regarded as a family of holomorphic 3-forms. We also regard ny 4 as
the corresponding element of H(A, . Kx /).

Proposition 7.8. Assume that X' is smooth. Let nx;a be a nowhere vanishing
holomorphic section of T Kx/a-
(1) There exists 3 € R such that ast — 0:

log || /4 (t)l|72 = 5 log [t[* + O(log(~ log [¢])).
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(2) With the same constant 3 as above, the following equation of currents on A
holds:

ddlog||nx a(t)||7: = 80 — Qwe,x/a-

(3) If Xo is a Calabi-Yau threefold with at most one ODP and if £ is nowhere
vanishing on X, then log||nx a(t)||72 extends to a continuous function on A. In
particular, 8 = 0.

Proof. (1) Set A(t) := ||nx/a(t)||7. and A =0, B =1 in Lemma 7.5. Since

/ )\(t)\/—ldt/\df:/ W*(\/—lnX/A/\nx/A)\/—ldt/\dt_
A(1/2)

A(1/2)

= / ENE < +oo
T1(A(1/2))

by (7.12), we get A(t) € L, (A). Since —dd®log A = wwp x/a by the definition of
the Weil-Petersson form, the result follows from Lemma 7.5 (1).

(2) The result follows from Lemma 7.5 (2).

(3) The result follows from e.g. [57, Proof of Th. 8.1]. This completes the proof. [

7.4. The boundary behavior of the anomaly term

In Subsection 7.4, we fix the following notation. Let 7: X — A be a proper
surjective holomorphic function on a smooth Kahler fourfold with critical locus X,
so that 7 has relative dimension 3. Assume that ¥, C Xg and that X; is a smooth
Calabi-Yau threefold for all ¢t € A*.

Let gx be a Kéhler metric on X. Let v be the Kahler form of gx and set
Y := Yx|x,. Recall that the anomaly term A(Xy, ;) was defined in Definition 4.1.
The following result is a generalization of [58, (6.17), (6.19)].

Proposition 7.9. (1) There ezists ¢ € R such that as t — 0:
log A(X¢, ) = ¢ log [t + O(log(— log [¢])).

(2) If ¥ consists of a unique ODP and if Xy is Calabi-Yau, then ast — 0
1
log A(X,, ) =~ Tog 1> + O(1).

Proof. (1) Let gx,a be the Hermitian metric on TX'/A induced from gx, and let
Yx/a be the corresponding (1,1)-form on TX /A. Then we may identify v, /4 with
the family of Kahler forms {v;}icna. Let N)*(t/x be the conormal bundle of X; in

X for t € A*. Then dr = n*dt € H°(X;, Ny, /) generates Ny, for t € A%, so

that N;Q /

from gy via the O identification Qf = (N}"(t/)()l and since (VE(/A/S!”Xt is the

v 18 trivial in that case. Since the Hermitian metric on Q}(t is induced

volume form on Q% , we get
4 3 .
Ty _ Txja dm dm
7.13 —_ = L= A 11— A— .
(v13) = (VT A

By Lemma 7.7, there exists £ € H°(X, Kv) such that div(¢) C Xo. As before,
define 7y, € HO(X,KX/A) by nx/a :=§® (m*dt)~!, and identify Nx/alx, with
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the Poincaré residue 7, := Resx,&/(m —t) € H°(Xy, Kx,) for t € A*. Then 7y
is regarded as a family of holomorphic 3-forms {»;}. By (7.12) and (7.13), we get

(g Y IMxaNTRE o (CDPVETEAE | €nE 1 g

Vaesa/3! (V3 a/3) Adr Adr Yaya/A lldrl? ldr]?

Let X denote a general fiber of 7: X — A. Let A(X/A) be the function on A*
defined by A(X/A)(t) := A(X¢, 7). Then

V—=1nx/a ANx/a
7§(/A/3!

log A(X/A) = —%w* [log <

X(X)
12

> CB(TX/AagX/A)]
(7.15)

+ 10g||77X/A||2L2'

We use the notation in Subsection 5.3. Hence ¢: X — X is the resolution of the
Gauss maps p and v. Substituting (7.14) into (7.15) and using (5.1), we get

(7.16)
1 €117 xX(X)
log A(X/A) = —13™ [log <||d7r2 c3(TX /A, gxyn)| + D 1og [[nx/all7

L I€I2 Y ~ x(X) 2
= ——7, |logq* *cs(U, 1 .
127T |:qu <||d7T2 :u’ 03( gU) + 12 OanX/AHLQ

Since div(g*¢) € 71(0) by the condition div(¢) C Xj, the assertion follows from
Lemma 5.8 and Proposition 7.8 (1) applied to the second line of (7.16).

(2) Assume that 3 consists of a unique ODP and that X is Calabi-Yau. We use
the notation in Subsect. 5.9. We may assume by Lemma 6.1 that £ is nowhere van-
ishing on X. Hence div(¢*¢) = 0, and 7. {q* log ||¢[|> i*cs(U, gu)} and log [[nx /|22
are bounded as t — 0 by the first equation of Lemma 5.8 and by Proposition 7.8
(3). We deduce from (7.16) that

(7.17) log A(X/A) = 1—127?*{61*(10% ldr[|*) i es (U, gu)} + O(1).

Since E = P3 and ¢ = (—1)3*c3(U) in the second equation of Lemma 5.8, we get

_1)3
(7.18) log A(X/A)(t) = (% /P 03(U)> log [t|* + O(1) = % log |t]* + O(1).

This proves (2). O

7.5. The Weil-Petersson and Hodge metrics on the Kuranishi space

In Subsect. 7.5, we fix the following notation. Let X be a smoothable Calabi-Yau
threefold with only one ODP as its singular set, and let p: (X, X) — (Def(X), [X])
be the Kuranishi family with discriminant locus ®. Assume that dim Def(X) =

h12(X) = 1.
By Lemma 6.1, there exists a nowhere vanishing holomorphic 4-form £ on X.
Then 7% /pef(x) = § ® 7*(ds)™! is a nowhere vanishing holomorphic section of

P« K x /Des(x)- Set 1 := Nx/per(x)|x,. We identify n, with the corresponding holo-
morphic n-form on (X;)reg such that s ® (ds) = £|x, under the canonical isomor-
phism Ky, ® p*Kpeg(x)lx, = Kx|x,. Then {ns}scs is regarded as a holomorphic
family of nowhere vanishing holomorphic 3-forms.
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For p = 0,1 and ¢ > 0, the direct image sheaves qu*Q’;/Dcf(X) are locally free
by Definition 2.1 (ii) and Theorem 2.11. For p = 0, 1, let o, be a nowhere vanishing
holomorphic section of (€25 /Dei( X)).

By Proposition 2.8, there exists a Kéhler metric gx on X. Let gx/per(x) be
the Hermitian metric on TX/Def(X)|x\x, induced from gx. Set gs := gx|x, for
s € Def(X).

Theorem 7.10. The following formula holds for p=0,1:

log Ho'p(s)||i(SZ;/DCf(X))7L2vg3$/Dcf(X) = O(log(—log|s])).

Proof. Let p = 0. Let 1 be the section of p,Ox such that 1, = 1 € H°(X,, Ox.).
Regard 7 /pef(x) as a nowhere vanishing holomorphic section of (R*p,Ox)" by the
relative Serre duality. Set oo := 1 ® Nz per(x)- Since

log [|oo(s)[|Z2 4, = log Vol(X, gs) +log [[ns]|72 = log [lns]|Z> + O(1),

the assertion for p = 0 follows from Proposition 7.8 (3).

Let p = 1. Let eq,...,ep,(x) be a Z-basis of H?*(X,Z)/Torsion. There exist
holomorphic line bundles L1, ..., Ly,(x) on X by Lemma 2.16 such that ¢;(£;)|x =
e; for 1 <14 < by(X), and such that the Dolbeault cohomology classes of their Chern
forms €1(L1),...,€1(Lp,(x)) form a local basis of Rlﬂ-*le/Dcf(X) as a Oper(x)-
module.

By Theorem 6.2, (py)~'(ds) ® n;" is a local basis of R*m.Q% p.x) as an
Opet(x)-module. For s € Def(X), set

o1(s) == (€1(L1) A ANEL(Lyyx)) @ ((p) " (ds) @ t).

Then oy is a nowhere vanishing holomorphic section of A(€2} /Def(X))-

Let -5 be the Kéhler form of gx|x,. Since gx is a Kahler metric on X, the section
Def(X) 2 s — [vs] € H?(X,,R) of R?p,R is constant. Let [y] € H*(X,R) be the
element corresponding to [v;s]. By Lemma 4.12,

I€1(L1) A~ ACL(Layx))IZ2 g, (5) = Volrz (H* (X, Z), [7]) # 0

is a constant function on Def(X). Hence we get

0 0
log [l (s)IIZz 4, = —log Volpz (H*(X, Z), [7]) = log gwe (52, 5-) = b (X)) log [Ins | 22
= O(log(—log s]))
by Propositions 4.4, 7.6 (3) and 7.8 (3). This proves the theorem. O

8. The singularity of the BCOV invariant I — the case of ODP

In Sect. 8, we fix the following notation. Let w: X — S be a proper, surjective,
flat holomorphic map from a compact, connected smooth Kahler fourfold to a
compact Riemann surface. Let D be the discriminant locus and let 0 € D. We
assume that X := X is a Calabi-Yau threefold with a unique ODP as its singular
set satisfying h?(Q%) = 1. The deformation germ 7: (X, X) — (S, 0) is a smoothing
of X, and a general fiber of 7 is a smooth Calabi-Yau threefold. We set o := Sing X.

Let p: (X,X) — (Def(X), [X]) be the Kuranishi family of X with discriminant
locus ® = [X]. Since h?(2%) = 1, we have dim Def(X) = 1. By Proposition 2.8, X
is Kéhler. Let gx be a Kéhler metric on X, and set gx/pef(x) := 9x|7x/Def(X)-
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Let p: (S,0) — (Def(X),[X]) be the holomorphic map that induces the family
m: (X, X) — (S,0) from the Kuranishi family. By the local description (2.2), we
have Oy, = C{z0,21,22,23}/(28 + -+ 25 — u(t)). Since X is smooth, ® = u(0)
is not a critical value of y, and the morphism of germs p: (S,0) — (Def(X), [X]) is
an isomorphism. Hence there exist a neighborhood U of 0 € S and an isomorphism
of families f: Xy = X|, -

Let gr—1() be the Kéhler metric on 7! (1) defined as

rr ) = fr9x.
Let gx/s be the Hermitian metric on TX /S| -1\ 5, induced from g.-1¢). Then
gx/s = f*g%/Dcf(X)-

Let [|- 13 be the L*-metric on the Kahler extension A(€5, /¢)[u with

5§'/S)7L219X/S
respect to gx,g. Since ff(/s is acyclic on X for p = 0,1, we have the following
isomorphisms for p = 0, 1:

(81) A(Eff/s)h/{ = /L*A(Q;/Dcf(x))’ || ! HL2ng/S = /.L*” ! HLzygx/Dcf(Xy

Let ¢ be a local coordinate of S centered at 0. Let o, be a nowhere vanishing
holomorphic section of the Kihler extension A(E%, / g) near 0 € D.

Theorem 8.1. The following formula holds ast — 0:

O(log(—log [t])) (p=0,1)
—_1)P 2 — )
( 1) log||Up(t)||A(£Q/S),L27gX/S = { —log|t|2+0(log(— 10g|t|)) (p: 273).

Proof. Let p =0,1. Since u: (S,0) — (Def(X),[X]) is an isomorphism, the asser-
tion follows from Theorem 7.10 and (8.1).

Let p = 2,3. Recall that the canonical element 1,3, (X;) € A(Q%,) ®)\(Q§{tp)v
was defined in Subsection 3.3. Let 1, 3_, so be the nowhere vanishing holomorphic
section of A(Qh, /g.) ® /\(Qigf/’so)v defined by

1p3-pse(t) = 1p3-5(X1) € A(Q%,) @ NQY,P)Y,  te s
Then

(8.2) ||1p73*p73°(t)||L2,gx/s = ||1p,37p,S° (t)HQ,QX/s =1 tese.

by Proposition 3.4.
By Theorem 5.11, we get

log [|op(t) @ 03710(15)71||i(g;/s)®x(5§(7;)v,Q,gX/s

(8:3) = (-1)*733,p)log [t|* + (—1)° - (=1)* ®7P§(3,3 — p) log [¢|* + O(1)
(—=1)*log|t]* + O(1),

where we used the first identity of Lemma 5.12 to get the last equality of (8.3).
Set

op(t) ® 03— p(t)
]-p,Sfp (t)

fp(t) == € O(5°).
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By (8.2), we get

—112
”Up(t) ®U3*P(t) ”A(5§/5)®A(527§)V,Q,QX/S

_ 2, 2
- |f;0(t)| ”117737?(” ‘|)\(5§/S)®)\(£§(7g)v-,Q»QX/S

(8.4)

_ 2, 2
- |f;0(t)| ||1p73*p(t) HA(5§{/S)®>\(5§J§)V-,L27QX/S

_ —12
- lOg ||Up(t) ® 0'3713(0 ||A(g;/s)®)\(gf;/s)v7L279X/Sa
which, together with (8.3), yields that

(35) 108 70(6) © 7250 I en Jonesyesogn, = ()7 gl +0(1).

By Theorem 8.1 for p = 0,1 and (8.4), we get

(—=1)Plog ||lop(t) ||§(5§,/S),L2,gx/s

= (=1)" logllop(t) @ ”3*P(t)71||§(£§(/s)®x(si7

+ (=1)Plog|los—p(t)

B)WViL%,gx/s

2
“A(527S)7L2’9x/s

= —log[t|* + O(log(—log|t])).
This proves the theorem for p = 2, 3. O
Let v, be the Kahler form of gy, s|x,-

Theorem 8.2. The following formula holds ast — 0:
1
log Tpcov (Xt) = G los [t]? + O(log(—log [t]))-
Proof. By the definition of the BCOV torsion of (X;,~:), we have

log Tecov (Xt, V) = Z(—l)pp log HUp(t)Hi(gg(/S),Q,gx/S
p=>0

_ Z(—l)pp log Ho-p(t)Hi(gi/S)sz’!]X/s'
p=>0

3
= logf? + . plog|e + Olog(~ logle)
1 2 2

= 7 logt]” + O(log(—log [t[%)),
where we used Theorems 5.13 and 8.1 to get the second equality. Since

log Vol(X¢,v) = O(1),  log Volrz(H?(Xy, Z), [v:]) = O(1),
we deduce from Proposition 7.9 (2) and (8.6) that
log TBcov (X:) = log A(X¢,v:) + log Tpcov (X, ve) + O(1)

= Lo + O(los(~ los 1)

This proves the theorem. O
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9. The singularity of the BCOV invariant II — general degenerations

In Section 9, we fix the following notation: Let X be an irreducible projective
algebraic fourfold and let S be a compact Riemann surface. Let m: X — S be a
surjective, flat holomorphic map. Let D C S be a reduced divisor and set X° :=
X\ 7 YD), S° := S\ D, 7° := 7|xo. Let 0 € D, and let (U,t) be a coordinate
neighborhood of S centered at 0 such that U \ {0} = A*.

In Section 9, we shall prove a generalization of Theorem 8.2.

Theorem 9.1. If 7°: X° — S° is a smooth morphism whose fibers are Calabi- Yau
threefolds, then there exists a € R such that ast — 0,

log T5cov (X1) = o log[t]* + O(log(—log [t]*)).

First, we shall prove Theorem 9.1 when 7: X — S is a semi-stable family. Then
we shall reduce the general case to this particular case by the semi-stable reduction
theorem of Mumford [27]. We set D := X in this section.

9.1. The singularity of L? metrics for semi-stable degenerations

In Subsections 9.1 and 9.2, we assume that X is smooth and that D = X
is a reduced divisor of normal crossing, i.e., for every x € D, there exist integers
€0, €1, €2, €3 € {0,1} and a coordinate neighborhood (U, (20, 21, 22, 23)) of X centered
at x such that

w(2) = 25027 252 257, zeU.

Let Q% / s(log D) be the sheaf of meromorphic 1-forms on X’ with logarithmic pole
along D. Then Q% (log D)|x\p = Q%|x\p, and Q% (log D)|y is a free Oy-module
generated by dzo/z°, dz1 /21", dzo/25%, dzg/z5°.

Let Q4 (log0) be the sheaf of meromorphic 1-forms on S with logarithmic pole
at 0. Then Qg5(log0)g = Og,odt/t. We set

Qk/s(log D) := Q% (log D)/7*Q%(log 0).

See e.g. [50, Sect. 2], [54, Chap. 3, Sect. 2] for more details about Q}/s(log D).

Let gx be a Kihler metric on X whose Kihler class is integral. Let x € H(X,Z)
be the Kéhler class of gx. We set gx/s := gx|ry/s-

9.1.1. The canonical extension of the Hodge bundles. For the proof of Theorem 9.1,
let us recall some results of Schmid [47] and Steenbrink [50]. Set U° := U \ {0}.
We fix b € U° and set W := H™(X;,C) and ! := dim W.

Let °“H™ := R"7,C ®c Opo and consider the Gauss-Manin connection on “H™.
The canonical extension H™ of °H™ from U? to U is defined as follows: Let
{v1,...,u} be a basis of W, and let v € GL(W) be the Picard-Lefschetz transfor-
mation. There exists a Nilpotent operator N € End(W) with v = exp(N).

Let ¢: U° 3 2 — exp(2my/—1z) € U° be the universal covering. Since °H™
is flat, the vectors v; extend to flat holomorphic sections v; € F((%,z/;* (°H™)),
which induce an isomorphism ¢*(°H™) = O, ®c W of flat bundles. Under this
trivialization of ¢*(°H™), we have v;(z + 1) = v v;(2) for all 4. After Schmid [47,
pp-234-236], we define holomorphic frame fields of ¢*(°H™) by
(9.1) si(exp2myv/—12) := exp (=2 N) v;(z) = Z l(—z N)*vi(z).

k!
k>0



ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 45

Since s1,...,8; € I‘(f]vo, ¥*(°H™)) are invariant under the translation z — 2z + 1,
they descend to single-valued holomorphic frame fields of “H™. Then H™ is a
locally free sheaf on U defined as H” := Oys; & --- @ Oy s;.-

By Hodge theory, °H™ carries the Hodge filtration 0 C °F™ C --- C °F! ¢ °H™
such that °F? is a holomorphic subbundle of °H™ with °FPT! /oFP =~ Rm’pﬂ'*Q’;{/Sbo.
For t € U°, we have the natural identification °Ff = @, H™ " (X;, Q% ).

By [47, p.235], [50, Th.2.11], [61, pp.130 Cor.], the filtration {°FP} extends to
a filtration {FP} of H™ such that FP/Fr+!l = Rm*pﬂ'*Q’)’(/s(log D)|y. Under this
isomorphism, we have an identification of holomorphic line bundles on U:

(9.2) ip : (det FP) @ (det FPT) ™! = det R™ P2y s(log D)y

Since °HY* = H™ (X, C) for t € U°, °H™ is equipped with the L?-metric hgm ¢
with respect to gx/s. Recall that the C*® vector bundles KP-¢(X°/U°) on U°® were
defined in Subsect. 3.5. Let hg» be the L2-metric on °F? induced from hpm,,c by
the C> isomorphism °F? = @, K™ ~*(X°/U°). By the definition of L*-metrics,
the isomorphism ip|¢» induces an isometry of Hermitian line bundles on U®:

(9.3)
((det °FP) @ (det "FPT1) ™! det hpr @ (det hpp+1) ") =2 (det Rmpr’)’(/S, Il llz2)-

Recall that the Kéhler operator L: H™(X,;,C) — H™"2(X;, C) with respect to
k|x, was defined in Subsect. 4.4.1. Then L induces a homomorphism of Oy -modules
L: H™ — H™*2, The primitive part of H™ is the holomorphic flat subbundle of
H™ defined as P™ := H™ N ker L*~™. The Picard-Lefschetz transformation -
preserves P™. If s; € T'(U,P™), there exists k € Z, C' € R by [47, p.252 Th.6.6’]
such that

(9.4) [si(t)]|22 < C (—1log|t)*, telU°.
9.1.2. Singularities of the L?-metrics: the case of canonical extension.

Lemma 9.2. Let m = 3. Let f, be a nowhere vanishing holomorphic section of
det F? defined on U. Then there exists ¢, € R such that ast — 0,

log ||£,(t)[|72 = ¢ log [t|* + O(log(— log|t])).

Proof. Since m = 3, we have H®> = P3| i.e., the groups H3(X;,C) are primitive.
By (9.4), there exists a constant C' > 0 and [ € Z such that

(9-5) Mp(t) = 6072 < C(=loglt))!,  teU”.
We set A\4(t) = 0. By Proposition 4.6 and (9.3), we get the following on U°:

—Wwp,xo/U° (p=0)
¢ _ ) —whxeve +3wwp xeue (p=1)

9.6 —dd(log A\, — log A =
(96) (log A gAp+1) WH, x°/U° — SWWP,x°/U° (p=2)
WWP,x°/U° (p = )

Since A, € L. (U) by (9.5), the result follows from Lemma 7.5 (1) and (9.6). O

loc
Let 0, be a nowhere vanishing holomorphic section of A(E%, / ) near 0.
Proposition 9.3. There exists 5y € R such that ast — 0:
10g |00 (t)[13(0.),22.gx,s = Bo log|t* + O(log(—log [t])).
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Proof. We may assume that og = fo @ f; * under the isomorphism (9.2). Since (9.2)
induces the isometry (9.3), the result follows from Lemma 9.2. O

By [50, Th.2.11], RIm,Q}, 5(log D) is locally free. Set r := rk Rim. Q% s(log D).
Let e1(t),...,er(t) be a basis of Rqﬂ*ﬂk/s (log D) as a free Oy-module.

Proposition 9.4. For 0 < g < 3, there exists §; € R such that ast — 0,
log [lex(t) A+ A er(t)||3es par. o L/ s(log D), L2 gx /s = §, log|t]* + O(log(—log [t])).

Proof. Since r = 0 when ¢ = 0, 3, it suffices to prove the cases ¢ = 1, 2.

(Case 1) Let ¢ = 2. There exists a nowhere vanishing holomorphic function
h(t) on U such that e;(t) A+ Ae,(t) = h(t) fi(t) ® f2(t) ™! under the isomorphism
(9.2). Since (9.2) induces the isometry (9.3), the result follows from Lemma 9.2.

(Case 2) Let ¢ = 1. When m = 2, we have H?> = F!. Hence r = [. Identify the
integral Kéhler class x on X with the corresponding flat section of H2. Then P™
and Oy k are holomorphic flat subbundles of H™ preserved by the Picard-Lefschetz
transformation . Hence we have a decomposition H?> = P2 @ Oy k of v-invariant
flat bundles on U. By choosing vy = kp and vy,...,v; € Pf in Subsect. 9.1.1, we
may assume that s; =k and P™ =0pysa @ --- @ Opysy.

Recall that the cubic form cx, (+,+,-) on H?(X;,C) was defined in Subsect. 4.4.
By the flatness of v; and (4.4), we have for i,j > 2 and z € U°:

(9.7

(5:(e27Y70), 8527 7)) 12 = —ex, (exp(—2 N) vil2), exp(—= N) v; (2), )
=— Z o2 ch (N*v;, NV 75, Kp).

Since the left hand side of (9.7) is invariant under the translation z — z + 1, the
right hand side must be a polynomial in z — Z. Hence there exist A € Z>( and
cijk € C, 1<4,j <1,0<k <A, such that for all t € U°,

A

(9-8) (s6(t),85() L2 = Y cijr (— log [t)".
k=0

Since the decomposition H? = P2 @ Oy & is orthogonal with respect to the L2-
metric hpz, ¢ by [55, Lemma 6.31] or by Lemma 4.12, we deduce from (9.8) the
existence of B € Zx>( and real numbers cp, - - - ,cp such that

B

(9:9) [ls1() A+~ Asi()l72 = [|sl72-det (s:(1), (1)) 22), ;50 = Y i (~log [t*)".

k=0

Since the left hand side of (9.9) is positive, we may assume that c¢g > 0. The result
follows from (9.9). This completes the proof. O

9.1.3. Comparison of the Kahler extension and the canonical extension.
Proposition 9.5. There exists $1 € R such that

log Hal(t)”i(Q}\»/S)»LQﬂX/S = B3 log [t|* + O(log(—log|t])) (t — 0).
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Proof. Consider the natural injection 0 — Qi{/s — Q}/s(log D), and set Q :=
Q) /g(log D)/} /5. Then @ is a torsion sheaf on X' whose support is contained in

Sing(D). Counsider the long exact sequence of direct image sheaves induced by the
short exact sequence of sheaves 0 — Q}, ¢ — Q3 (log D) — Q@ — 0 on X

qulﬂ'*Q},(/S(logD) — R r.Q — RQW*Q}/S — Rqﬂ'*Q;/S(log D) — Ri7,.Q.

Since RI7,.(Q) is a torsion sheaf on U supported at {0} for all ¢, there exist torsion
sheaves My, Ny on U supported at {0} and an exact sequence of coherent sheaves
on U:

(9.10) 0 — M, — Rim, QY s —2— Rim.Q g(log D) — N, — 0.

Since U = A and hence Oy is a discrete valuation ring for all t € U, the image
j(RIm.Q ) is alocally free submodule of R, Q7% /¢ (log D). Hence (RIm.Q% /g )tor,
the torsion part of RIm.Q} g, is contained in kerj. Since M, C (RIm.Q} /g )tor;
we have

(911) Mq = (Rqﬂ'*Qk‘/s)tor-

Since Ny = RIm. Q% 5(log D)/j(RIm. Q% /g) is a torsion sheaf, there exist inte-
gers vy, ..., v, > 0such that N, = C{t}/(t") ®- - -® C{t}/(t"") andj(Rqﬂ'*Q}/S) =
Outei(t)® - - @ Oy t'rer(t). Hence

(9.12) det j(RIm.Qh/g) = Ou -t er(t) A= Atme(t).

By [1, p.110 3. Proof of the theorem], there exists a complex of locally free
sheaves of finite rank on U

V-1 o Vk—1

Ee:0— E_; E,—0

Eq

such that RQW*Q}/S is the ¢-th cohomology sheaf of F,, i.e., RQW*Q}/S =~ HY(E,)
for all ¢ > 0. Since U = A, kerv, C E4 and Imv, C E44q are locally free
sheaves on U for all ¢ > —1. Let £, be the inverse image of (RQW*Q},(/S)tor by
the natural surjection ker vy — RQW*Q}/S, and set 77 := Imvg_1. There exists an
exact sequence of coherent sheaves on U

0— 1, RN & — (Rqﬁ*gk/s)mr —0

such that 74, & are locally free with equal rank. Under the canonical isomor-
phism det(RIm. Q% g)tor = det& ® (detny) !, the canonical section detp, €
HO(U,det &, ® (detn,)~") induces the trivialization det(Rm.Q} /g)ior = Oy on
U° by [49, pp.118, Proof of Lemma 1, First Case]:

(9.13) det(RIm.Qy /g)tor 2 det o, — 1 € Op.

Since det R, QY /g = det j(RIT, Q) 5)@det(RIT. QY ¢)tor by (9.10) and (9.11),
we deduce from (9.12), (9.13) that the following expression s; 4 is a holomorphic
section of det Rqﬂ'*Q;/S:

51,4(t) == (t"er(t) A= At"en(t)) ® det g (t).
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Since s1,4(t)|vo is identified with the section t*eq(t) A --- A t""er(t)|y- under the
identification det RIm, Q) glve = det j(RIm.Qy /g)|ve induced by (9.13), we de-
duce from Proposition 9.4 that for ¢t € U°,
log ls.q(t) 22, o = 1og [#72ex(t) A+ At er(B)22 -
(9.14) — dime Ny log [f2 +10g lex(8) A+ A ey ()3
= (dimc N, + 6,) log [t|* + O(log(— log [¢])).

Since det ¢, vanishes at ¢ = 0 with multiplicity dimc My, o1 4(¢) := ¢t~ dime Ma gy (1)
is a nowhere vanishing holomorphic section of det R4, Q) /s- By (9.14), we get

(9.15) log|lo1,4(t) = (dim¢ N, + 6, — dime M,) log [t|> + O(log(— log |¢])).

”%2-,9x/s
The result follows from (9.15). This completes the proof of Proposition 9.5. O

Proposition 9.6. Let p = 2,3. There exists 3, € R such that ast — 0,
log ||Gp(t)||§\(£i/s)vL2ng/s = B, log [t|* + O(log(— log |t])).

Proof. We keep the notation in Section 8, Proof of Theorem 8.1. By Theorem 5.4,
there exists a, € Q such that

—12 _ 2
916)  loglloy(0) @ 02 g, oniesnyv quanye = G108 11 +O().

By the same argument as in the proof of Theorem 8.1 (8.4) using (9.16) in stead of
(8.3), we get

log [lo (1) @ 03-p (1) 35, yorieszyv.in.ga,s = @ 1081 +O(D),

which, together with Propositions 9.3 and 9.5, yields the existence of 3, € R such
that

log ||0P(t)||§(5i/s)vL279X/s = B, log |t|* + O(log(—log |t])).
This proves the proposition. O

9.2. Proof of Theorem 9.1: the case of semi-stable degenerations
Let ¢ be the Kéhler form of gy ,s|x,. By the definition of the BCOV torsion of
(Xta’yt)a we have

log Tscov (Xe, 1) = Y _(=1"p{log lop()R ez, ) 0.gx)s 10810003 er ) 12,0,

x/s

P
By Theorem 5.4 and Propositions 9.3, 9.5, 9.6, there exists a € R such that
(9.17) log Tacov (X1, 7¢) = a log ] + O(log(— log |¢]%)).

Since the Kéahler class of gy is integral, there exist positive constants A, B € Q by
Lemma 4.12 such that for all t € U?,

(9.18) log Vol( X, v¢) = A, log Voly» (H*(Xy,Z), [v4]) = B.
By Proposition 7.9 (1), there exists € € R such that
(9.19) log A(X;,v:) = € log |t|2 + O(log(—log |t|2))

By (9.17), (9.18), (9.19), we get
log Tecov (X)) = log A(Xy,v¢) + log Tecov(Xe, ve) + O(1)
= (a+ ¢) log |t|* + O(log(—log [t|*)).
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This proves the theorem. O

9.3. Proof of Theorem 9.1: general cases

In Subsection 9.3, we only assume that 7°: X° — S° is a smooth morphism
whose fibers are Calabi-Yau threefolds.

By the semi-stable reduction theorem [27, Chap.II], there exist a pointed pro-
jective curve (B, 0), a finite surjective holomorphic map f: (B,0) — (S,0), and a
holomorphic surjection p: Y — B from a projective fourfold Y to B satisfying the
following conditions:

(i) Let V be the component of f~1(U) containing o. Then f: V' \ {o} — U \ {0}
is an isomorphism;

(ii) Set U* =U\ {0} and V* =V \ {o}. Then p
7T|U*: XU* — U™ byfv*7

(iii) Y is smooth, and Y, is a reduced divisor of normal crossing.

Let b be the coordinate on V centered at o. By condition (i), we may assume
that there exists ¥ € N such that f*t = 0”. Let 17y~ and 7y« be the functions on
U* and V* defined by

ver Y

v+ — V* is induced from

Tu+(t) == TBoov(Xt),  Tv+ (D) := TBCOV (YD)
for t € U* and b € V*, respectively. By condition (ii) and Theorem 4.16, we get
(920) TV* = f*’TU*

We can apply Theorem 9.1 to the family p|y: Y|y — V by condition (iii), so that
there exists o € R such that as b — 0,

(9.21) log 7y« (b) = a log |b|*> + O(log(— log |b])).
Since b = t¥, the desired formula follows from (9.20) and (9.21). This completes
the proof of Theorem 9.1. O

10. The curvature current of the BCOV invariant

Following [58, Sect. 7], we extend Theorem 4.14 to the Kuranishi space of Calabi-
Yau threefold with a unique ODP as its singular set.

10.1. The curvature current of Tgcoyv: general cases

In Subsection 10.1, we fix the following notation. Let X be an irreducible pro-
jective algebraic fourfold and let S be a compact Riemann surface. Let 7: X — S
be a surjective, flat holomorphic map. Let D C S be a reduced divisor and set
X° = X\ 7 YD), S° :== S\ D, 7° := 7|xo.. We assume that the fibers of
7°: X° — S5° are Calabi-Yau threefolds with h?(Q% ) = 1 for s € S°. Let x(X)
denote the topological Euler number of X, s € 5°.

Let Qwp x/s and Qg x5 be the trivial extensions of the Weil-Petersson form
and the Hodge form from S° to S (cf. Proposition 7.3 and Definition 7.4). Then
the (1, 1)-currents Qwp, x/s and Qg x /g are positive.

Let 0 € D and let (U, t) be a coordinate neighborhood of S centered at 0. By [48,
Proof of Lemma 5.4], there exist subharmonic functions ¢ and 6 on U satisfying
the following equations of currents on U:

(10.1) dd®p = Qwp x/slus dd°0 = Qu x/slu-

As in Subsection 4.4.2, we define a function on S by

TBcov (X /S)(t) := TBCOV(XY), tes.
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By Theorems 4.14 and 9.1, log Tscov (X /S) € C*(S°) N L1(9).

Theorem 10.1. Set
log Tgcov (X /9)|v ()

=i R.
R log [t|? <

Then the following equation of currents on U holds:

X
dd®log Tecov (X /S) = —% Qwp,x/s — Qu,x/s + ado.

Proof. Identify U with A in what follows. By Theorem 9.1, there exists a positive
constant K such that

(102)  Jlogmcov(X/S)() — a loglt?| < K log(—loglt), ¢ € A(1/2)".
For t € A(1/2)*, set

X

P(t) = (10g TBcov(X/S)(t) —a log |t‘2) + % (p(t) + e(t)
Then P(t) € C*(A(1/2)*). By (7.10) and (10.2), there exists a positive constant
L such that

(10.3) |P(t)| < L log(—log|t|*),  te A(1/2)".

Since P is harmonic on A(1/2)* by Theorem 4.14 and (10.1), we deduce from
Lemma 7.1 (3) that P extends to a harmonic function on A(1/2). Since P is
harmonic on A(1/2), it follows from (7.10) that

(X)

(10.4) log TBcov(X/S) = a log |t|* — XT @0 —0+Pc L (A(1/2)).

Since dd°P = 0 on A, Eq. (10.4), together with (10.1), yields the assertion. O

10.2. The curvature current of Tgcov: the case of Kuranishi families

In Subsection 10.2, we fix the following notation: Let X be a smoothable Calabi-
Yau threefold with only one ODP as its singular set. Let Def(X) be the Kuranishi
space of X with discriminant locus ®, and let p: (X,X) — (Def(X), [X]) be the
Kuranishi family of X. Assume that dimDef(X) = h?(2%) = 1. Let s be a
coordinate on Def(X) such that © = div(s). We identify Def(X) with the disc A
equipped with the coordinate s. Then Def(X) \ © = A*.

Let Qwp and Qg be the trivial extensions of the Weil-Petersson form and the
Hodge form from Def(X)\® to Def(X). Let x(Xgen) denote the topological Euler
number of a general fiber of the Kuranishi family.

Theorem 10.2. The function log tgcov is locally integrable on Def(X), and the
following equation of currents on Def(X) holds:

X(Xgen)
12 @
Proof. By Proposition 2.8, there exist a pointed projective curve (B, 0), a projective
fourfold 3, and a surjective, proper, flat holomorphic map f: 3 — B such that the
deformation germ f: (3, f71(0)) — (B,0) is isomorphic to the Kuranishi family
p: (X,X) — (Def(X), [X]). Since Def(X) is smooth at [X], so is B at 0. By Theo-
rem 9.1, we get log Tscov € Li . (Def(X)). Let v := limy_ log Tecov (X:)/ log [¢]?.

Since v = % by Theorem 8.2, the result follows from Theorem 10.1. 0

1
dd®log Tecov = — we = Qu + ¢ do.
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10.3. The curvature current of Tgcov: the case of induced families

We keep the notation in Subsection 10.2. Let u: (4,0) — (Def(X),[X]) be
a holomorphic map and let m: X — A be the family of Calabi-Yau threefolds
induced from the Kuranishi family p: (X, X) — (Def(X), [X]) by p. Notice that X
is singular if 0 is a critical point of pu.

Theorem 10.3. The function log Tecov (X /A) lies in L
equation of currents on A holds:

(4Q), and the following

X(Xgen)
12
Proof. Let f € Opet(x),1x] be such that ® = div(f). Let Qwp and Qg be the trivial
extensions of the Weil-Petersson and the Hodge forms on Def(X), respectively. As
in the proof of Theorem 10.1, let ¢ and 6 be the subharmonic functions on Def(X)
with Qwp = dd°p and Qy = dd°6. Then p*p and p*6 are subharmonic functions

on A with

(10.5) dd° (")
After shrinking Def(X) if necessary, we may assume by (7.10) the existence of

constants Cp, C7 > 0 with

(10.6)

—C log(—1log | f*) < @lper(x)o < Ch, —Co log(—1og | fI*) < Olperx o < Ci.

Since p~1(D) N A = {0}, there exist a positive integer ¥ and a nowhere vanishing

holomorphic function £(s) € O(A) with

1
ddclogTBCOV(X/A):— QWP,X/A_QH,X/A_FE(S#*@'

A* = WWP,X/A> dd®(p*0)|a+ = WH,x/A-

(10.7) p*f(s) = s*e(s).
After shrinking A if necessary, the following inequality holds by (10.6)
(10.8)
—Cy log(—log|s*) < p*pla- < C1,  —Cy log(—log|s|?) < p*6|a- < Ci,

where Cy > 0 is a constant. By (10.5), (10.8) and Lemma 7.5 (2), we get the
following equations of currents on A:

(10.9) Qwp,x/a = dd“(1"p), Qnxja = dd(p*0).

By (10.4) and Theorem 10.2, there exists a harmonic function P on Def(X) such
that ) (x)

log Tecov = 5 10g|f|2—%80—9+13~
Since TBCO\/(X/A) = ﬂ*TBCOV; we get
1 X

(10.10) log Tecov (¥/A) = ¢ p” log |F1? = % pro =+ ptP.
By (10.8), (10.10), we get log Tcov(X/A) € Li (A). By (10.9), (10.10), we get
the desired equation of currents. This complete the proof. O

11. The BCOV invariant of Calabi-Yau threefolds with A'? =1

In Section 11, we fix the following notation. Let X be a possibly singular
irreducible projective fourfold and let S be a compact Riemann surface. Let
m: X — S be a proper, surjective, flat morphism with discriminant locus D :=
{s € S; Sing X, # 0}. We set

S°:=S\D, X :=n"1(8°),
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D* :={s € D; Sing X, consists of a unique ODP},
and
S* = S°uU D", X* = 1(9%).

In Section 11, we make the following:

Assumption (i) X, is a Calabi-Yau threefold with h%(QY ) =1 for all s € S*;
(ii) D\ D* consists of a unique point co € S;
(iii) Sing(X) N X = 0 and X, is a divisor of normal crossing.

The ramification divisor of the family 7: & — S is defined as follows. For s € S*,
let ps: (S, s) — (Def(Xs), [Xs]) be the map of germs of analytic sets defined by

ws(t) == [X¢] € Def(Xs).

Since dim Def(X,) = 1, we may identify (Def(Xj), [X;]) with (C,0). Let z be the
coordinate of C, so that z o us(t) € Oss. We define the ramification index of
m: X —SatseS by

rx;s(s) :=ordy—sz o pus(t) € N.

Let {R;};es be the set of points of P! whose ramification index is > 1. The
ramification divisor is then defined as

RSZ Z(’I"j—l)Rj Tj = TX/S(Rj)-
jeJ
Let p € D* and Sing(X,) = {o}. By the local description (2.2), we have an
isomorphism of local rings

(11.1) Ox.o = Cla,y, 2,0, t}/ (2% + 2 + 22 + w2 + t72/5()),
Write D* = {Dg }rer. As a divisor of S, we define

D* = Z 71 D, Tk = Tx/s(Dr).
keK

Since Sing X C Ugep+Sing X, X has at most isolated hypersurface singularities
as its singular points by (11.1). Hence Ky and Ky /g := Kx ®m*Kg' are invertible
sheaves on X.

Lemma 11.1. The sheaf m. K x5 is an invertible sheaf on S.

Proof. Since 7~(S \ D*) is smooth, m, Ky g is an invertible sheaf on S\ D* by
Assumption (i) and [51, p.391, Th.V]. Let s € D*. Since the conormal bundle of
(Xs)reg In Xrog is trivial, we have Ky /gl(x,).0s = K(x.)ey Since Kyg|x, and
Kx, are invertible sheaves on X, we get Ky, g|x, = Kx, by the normality of X.
Since X is Calabi-Yau, we have h’(Ky,s|x,) = h°(Kx,) = 1. By [1, Th.4.12 (ii)],
m«K x5 is an invertible sheaf near s € D*. This proves the lemma. O

Let x be the topological Euler number of a general fiber X, s € S°. Let || - || be
the Hermitian metric on (1, K x/s)®48X) @ (T'9)®12| g0 induced from the L2-metric
on m,Ky,s and from the Weil-Petersson metric gwp x/s on S°. The following is
the main result of this paper.
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Main Theorem 11.2. Let = be a meromorphic section of m«Ky,s on S with

div(Z) =Y mi P4+ meoPoo,  Pi# P (i €1),
icl
and let V' be a meromorphic vector field on S. Then the following hold:
(1) There ezists a locally integrable function Fz v on S with

dd°Fz v = {(24+ g) degm K x5 +6x(S) +6 degR — degD*} 0o

+ 0 — (244 3) daiv(z) — 6dan(v) — 60r

such that )
mBCOV(X/S) = HBFE’V E8x g Vqu .

(2) When S = P!, let ¢ be the inhomogeneous coordinate of P! with 1(c0) = oco.
Identify the points P;, Rj, Dy with their coordinates ¥ (P;), ¥(R;),¥(Dy), respec-
tively. Then there exists a constant C # 0 such that

(& = D" _ AN
mBeov (Xy) = C H (¢ — Py)d8+x)m: (2 — R;)12(r5-1) :igﬂ (%)

iel,jeJ keK

In the rest of this section, we shall prove Theorem 11.2. For p € D, let (U,,t) be
a coordinate neighborhood of S centered at p with U,ND = {p} and U, \ {p} = A*.

By Proposition 7.3, the positive (1,1)-forms wwp x/s and wy x/s on S¢ extend
trivially to closed positive (1, 1)-currents on S.

Definition 11.3. Let Qwp /s and Qg x /g be the trivial extensions of wwp x /s
and wy x /s from S? to S, respectively.

Proposition 11.4. (1) There exists a(p) € R such that the following equation of
currents on U, holds:

0 0

ddlog Qwp x/slu, (av 8_t_> =a(p) 6p — Q. x/s +4Qwp x/s-

(2) For Dy € D*, one has a(Dy) =1, — 1.

Proof. We get (1) by Proposition 7.6 (2). Let p = Dj. Under the identification of
the Kuranishi space (Def(X,), [X,]) with (C,0), we may assume by the definition of
the ramification index ry,g that «|y, : X|y, — U, is induced from the Kuranishi
family of X, by the map p(t) = t"*. Let wwp be the Weil-Petersson form on
Def(X,). Since Qwp x/slv,\{py = 1 wwp, We deduce from Proposition 7.6 (1), (3)
that as t — 0,

log Qwp x/slu (2, ﬁ_) = logwwp (M*gau*g—>
(11.2) ’ P\ 0t ot o’ ot
= (r, = 1) log [t|* + O(log(~ log [¢])).
By (11.2), we get a(p) = r, — 1. This completes the proof. O

Proposition 11.5. There exists b(co) € R such that the following equation of
currents on S holds:

(113) ddc lOg ||E||i2 = b(OO) 500 + 5div(5) — QWP,X/S'
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Proof. Let s € S be an arbitrary point. It suffices to prove Eq. (11.3) on a neigh-
borhood of s. By Proposition 7.8 (2), Eq. (11.3) holds on a neighborhood of co.
Assume that s € S*. Let p: (X, X;) — (Def(X5), [Xs]) be the Kuranishi family

of X,. Since m: (X, X;) — (S,s) is induced from the Kuranishi family by the
map ps: (S,s) — (Def(X5), [Xs]), there exists a morphism of deformation germs
fu.: (X, Xs) — (%, X,) satisfying the commutative diagram:
(XaXS) & (x7Xs)

| d

(Sa S) A (Def(XS)7 [Xs])

Let Us = A be a neighborhood of s in S such that ps (resp. f,,) is defined on
Us (resp. 7 1(Us)) and such that ps has no critical points on U? := Uy \ {s}. Since

(11.4) [ Kx/pet(x,) = Kx s

on 7~ 1(Uy) \ Sing X, the normality of X implies that (11.4) holds on 7= 1(Us).
By Lemma 6.1, Ky per(x,) is trivial. Let nx/per(x,) be a nowhere vanishing
holomorphic section of Kx /per(x,) defined on Def(X). We regard nx/pef(x,) as a
family of holomorphic 3-forms {nx /per(x.,)|x, foeDef(x,)- Since X has at most one
ODP as its singular set, log |[nx/pet(x.) |2 € C°(Def(X)) by Proposition 7.8 (3).
Since fr nx/pet(x,) € H(m7'(Us), Kx)s) = H°(Us,m.Kx/s) is nowhere van-
ishing, f; nx/pef(x,) generates . Ky s on Us as an Oy, -module. Since

L2 (ps(t),  teUy

by (11.4) and since log||77%/Dcf(X5)HL2 S CO(Def(Xs))’ log ||f*s771£/Dcf(Xs)
continuous function on U,. Since —dd®log||f; nx/pet(x,)llz2 = Qwp,x/s on UZ,
we get the following equation of currents on Uy by Lemma 7.5 (1), (2):

(11.5) —dd®log |[f;;, m /pef(x.)

Since f; nx/pef(x.) € HO(U,,m.Kx/s) is nowhere vanishing, there exists h(t) €
O(Us) such that = = h - f; nx/pet(x,) on Us. By (11.5), we get

I £, m2% et (x)ll22 () = [mx /Der(x)

12 is a

2 = Qwp,x/s-

(11.6) —ddlog||Z (|72 = Qwp,x/s — aiv(n)
as currents on Us. Eq. (11.3) on U follows from (11.6). O

Theorem 11.6. There exists ¢c(0o) € Q such that the following equation of currents
on S holds:

1
(117) dd° IOgTBCOV(X/S) = —% pr7)(/s — QH,X/S + 6 5D* + C(OO) 500
Proof. The result follows from Theorems 10.1 and 10.3. 0

Proof of Theorem 11.2 (1) By Proposition 11.4 and (4.1), we get the following
equation of currents on S:

(11.8) ddlog ||V||* = a(00) 6so + 0r + daiv(v) — Qm,x/s + 4 Qwe x5
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By (11.3), (11.7), (11.8), we get
(11.9)
ddlog |[V'? @ E*¥4X||? = 12(a(00) des + Or + daiv(v)) — 12Qu x5 + 48 Qwp x/s
+ (48 + x) (b(00) boo + Saiv(z)) — (48 + X) Qwp,x/s
= 12dd° log TBCO\/(X/S)
+ {12 a(o0) + (48 + x) b(00) — 12 ¢(0)} dso
-2 5@* + 12 (573 + 12 5div(V) + (48 + X) 5div(5)~
Integrating the both hand sides of (11.9) over S, we get

(11.10)
{12 a(00)+(48+x) b(00)—12 ¢(00) } =2 deg D*+12 deg R+12 x(S)+(48+x) deg = =

By (11.9) and (11.10),
Fzy :=log mscov(X/S)° —log ||V @ 248X

is a harmonic function on S\ (DUR) satisfying Theorem 11.2 (1). This proves (1).
(2) We set V(¢) := 0/0¢ € H°(P', TP'). Then div(V) = 200, so that Fzy
satisfies the following equation of currents on P* by (11.9), (11.10):

dd°F=y = {(24 +X) degm K/ + 6 deg R — degD*} S

(11.11) 2
+0p- — (24 + %) 6div(E) —60R.

Up to a constant, the solution of Eq. (11.11) is given by the following formula:

(1)[} _ Dk)Qrk
(¥ = P)E PO (g — R;) 05D |

(11.12) Fzy(y)=log| []

iel,jeJkeK

The second assertion of Theorem 11.2 follows from (11.12). This completes the
proof of Theorem 11.2. O

12. The BCOYV invariant of quintic mirror threefolds

12.1. Quintic mirror threefolds
Let p: X — P! be the pencil of quintic threefolds in P* defined by

= {([2],9) € P* x Pl Fy(2) =0}, p=pry,

Fy(2) = 25 + 20 + 25 + 25 + 25 — 5¢ 2021222324

The parameter 1 is regarded as the inhomogeneous coordinate of P!. Identify Zs
with the set of fifth roots of unity: Zs = {¢ € C; (> = 1}. We define

{(ag, a1, a2, a3,a4) € (Z5)°; apayasagay = 1}
Zg,(l, 1,1,1, 1)

The group G x Zs acts on X and P! by
(a,b) - ([2], ) == ([bilaoZo ta1z1taz2a :azzs i aszal, ), (a,b) -1 :==bp.

Then the projection p: X — P! is G x Zs-equivariant. Since G preserves the fibers
of p, we have the induced family

p: X/G — P

G = — Zg.
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equipped with the induced Zs-action. We set

. { 2my/—1m
D* := Jexp —

Then D is the discriminant locus of the family p: X — P! by [14, p.27].

ePl;ogm§4}cP1, D :=D*U{cc} C P.

Proposition 12.1. There exists a resolution f: W — X /G satisfying the following
conditions:

(1) Set fy := flw,. Then fy,: Wy, — X,,/G is a crepant resolution for ¢ € P*\D.
In particular, Wy, is a smooth Calabi-Yau threefold for 1 € P\ D;

(2) Sing Wy, consists of a unique ODP if 95 = 1;

(3) W is a divisor of normal crossing.

Proof. See [39, Appendix BJ, [4], [15, Sects.2.2 and 2.4] for (1) and [14, p.27] for
(2). The last assertion follows from Hironaka’s theorem. O

Notice that the choice of a resolution f: W — X' /G as above is not unique.

Definition 12.2. Set 7 := po f. Any family 7: W — P! satisfying the conditions
(1), (2), (3) as above is called a family of quintic mirror threefolds. The induced
family 7: W/Zs — P! /Zs is also called a family of quintic mirror threefolds.

Lemma 12.3. If¢ € P\ D, then
b2 (W) =1, rb (W) = 101, X (W) = 200.

Proof. Since h*1(Xy) =1, h1?(Xy) = 101, and x(Xy) = —200, the result follows
from [4], [15, Th.4.1.5], [54, Th. 4.30]. 0

We refer to [14], [15], [39], [54] for more details about quintic mirror threefolds.

12.2. The mirror map

Definition 12.4. The mirror map is the holomorphic map from a neighborhood
of 0o € P! to a neighborhood of 0 € A defined by the following formula:

(515 ox b (Bn)! ) &1 1
I VP P E Al R
where
> (5n)!
Yo(¥) == D —n5renEmn lv| > 1.
° ;W(W

The inverse of the mirror map is denoted by ¥(q).

For ¢ € P!\ D, we define a holomorphic 3-form on X, by

2w/ —1 -3 zadzg Ndz1 N dzo
_Qw = T 51/)
5 OFy(2)/0z3
Since {2y is G-invariant, {2, induces a holomorphic 3-form on X, /G in the sense

of orbifolds. We identify (2, with the corresponding holomorphic 3-form on X, /G.
Then f7€Qy is a holomorphic 3-form on Wy,. Set

51/1 = f;zgw S HO(Ww7KWw).
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By Lemma 12.3, we know rk H3(Wy,Z) = 4. There exists a symplectic basis
{A', A%, By, By} of H3(Wy.,Q), ¢ ¢ D, such that A* N B, = §,,, A* N A" =
B, N B, =0. By [14], [39, p.245 1.13], the mirror map ¢(v) is expressed as follows:

q = exp (271'\/—_1 M) , yo(v) = /,42 Zy-

A2 =Y

We refer to [14], [15, Sect. 2.3, Sect. 6.3], [39], [54, Chap. 3] for more details about

the mirror map.

12.3. Conjectures of Bershadsky-Cecotti-Ooguri-Vafa

Definition 12.5. Under the identification of the local parameters ¢®> and ¢ via the
mirror map, define a multi-valued analytic function near oo € P! as

¥ . d
Fpw) = () w0y

Set
n(g) == JJ(1—aM.
n=1
In [6, Eq.(16), (23), (24)] and [7, 1.34], Bershadsky-Cecotti-Ooguri-Vafa conjectured
the following:

Conjecture 12.6. (A) Let Ny(d) be the genus-g Gromov- Witten invariant of de-
gree d of a general quintic threefold in P* (cf. [34]). Then the following identity
holds:

d . 2nd g? 2d q*
—log F¥P(q) = == — Ni(d) ——— — E No(d) —=+—x
973q 08 1.4(0) 2 2 1(d) (I o(d) 12(1 — ¢%)’

or equivalently
o 2
F{%}(q) = Const. {q25/12 I @™ @ - qd)N“(d)“Q} :
' d=1

(B) Let ||-|| be the Hermitian metric on the line bundle (7, Ky jp1 ) ¥9?@(TP')®3|p1\ p
induced from the L%-metric on Ky p1 and from the Weil-Petersson metric on
TPY. Then the following identity holds:

Wt

TBCOV (Ww) = Const.

Wl

= Const.

’Ffj’,slw (f(fz))) ? (qdiq>
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Remark 12.7. Under Conjecture 12.6, the Gromov-Witten invariants {Ny(d)}¢<1,den
of a general quintic threefold in P* and the BCOV invariant of the mirror quintic
threefolds satisfy the following relation:

) 6 - 62 3|3
25 No(d) = d
macov(Wy) = Const. {qu [T na)™ 00— a) ™ } ( (j’p)) ®(qd—)
e Yo q

In the rest of this section, we prove Conjecture 12.6 (B) as an application of
Theorem 11.2.

12.4. Proof of Conjecture 12.6 (B)

Let m: W — P! be a family of quintic mirror threefolds. Let K (¢)) be the Kéhler
potential of the Weil-Petersson form Qwp defined as

K(¢) := —log <\/—_1 5y /\Ew) .
Wy

Define a function G(¢) by G(¢) = gwp(%, 6%), so that
_ o VE1PK(Y) "
Qwe (v) = V=1GW) dy Adip = 5— ooy N4
Proposition 12.8. The following estimates hold
log|y[* +0(1) (¥ — 0)
(12.1) K()=4{ 0Q1) (¥°—1)
O(loglog|¢]) (¢ — o0),
o(1) (¥ —0)
(12.2) log G(¥) = § O(log(—log > — 1)) (¥°—1)

—log 4> + O(loglog |¢]) (¢ — o).

In particular, R N D* =0 for any family of quintic mirror threefolds.
Proof. See [14, p.50 Table 2]. O

Proposition 12.9. The family of quintic mirror threefolds has trivial ramification
divisor, i.e., R = 0 for the family 7: W — P

Proof. By (11.2) and Proposition 12.8, if suffices to prove that G(¢)) > 0 on P!\ D.

Since
I

Qwe (1) coincides with the Weil-Petersson form for X, by (4.1). Thus G(¢) > 0 if
and only if the Kodaira-Spencer map py: TyP' — H'(Xy,0x,) for p: X — P! is
non-degenerate at ¢ € P!\ D. By [54, p.53 1.18-1.27], p, is non-degenerate for all
¢ € P\ D. This proves the proposition. O

Theorem 12.10. Conjecture 12.6 (B) holds.
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Proof. For a point z = (1 : z) € P!, let [2] = [(1 : 2)] denote the corresponding
divisor. By Proposition 12.1, we get

(12.3) div(D*) = 3" [¢),
(=1

which is a reduced divisor. By (12.1), we have

(12.4) div(Z) = [0].

Substituting (12.3), (12.4) and R = 0 into the formula for 7pcov in Theorem 11.2
(2) and using x(Wy) = 200, we get

1/6
[ (¥ =€) _ o\
TBCOV(WWJJ) = Const. CJT :$8+X [ (%>
1/6
5_1)2 o\ 12
(12.5) — Const. (¢¢248 ) 53148 ® (@)
2/3
— Const w762(1/}5 _ 1)1/2 =62 ® <£)3
= ) =8 50
This proves Conjecture 12.6 (B). 0

Remark 12.11. It seems that the families of Calabi-Yau threefolds over P* studied
in [31, Egs. (2.1), (2.2)] satisfy Assumption (i), (ii), (iii) of Sect. 11. (See [31, p.157,
last five lines].) By the explicit formula for the Yukawa coupling [31, Eq. (4.6)], we
get RN (PL\ D) = ) for these examples. If R N D* = (), the conjectured formulas
for the BCOV invariants of these families [6, p.294] follow from Theorem 11.2 (2).

13. The BCOYV invariant of FHSV threefolds

13.1. The threefolds of Ferrara-Harvey-Strominger-Vafa

A compact connected complex surface S is an FEnriques surface if it satisfies
HY(S,05) =0, Kg % Og, and K% =~ Og. An Enriques surface S is an algebraic
surface with m1(S) = Z; whose universal covering S is a K3 surface. For an
Enriques surface S, let ¢tg: S — S be the non-trivial covering transformation that
generates m1(S). Then (S, ts) is a 2-clementray K3 surface. (See [58, Sect. 8.1].)

Let H C C be the complex upper-half plane. For 7 € H, let E, denote the
elliptic curve C/Z 4 7Z. For an elliptic curve T = E,, let —17 be the involution
on T defined as —17(z) = —z for z € C/Z + 7Z.

Let Zs be a group of order 2 with generator . Then Z, acts on the spaces S ,
T,and S x T by identifying 6 with ¢g, —17 and tg x (—17), respectively.

Definition 13.1. For an Enriques surface S and an elliptic curve T, define
X(S,T) = § X T/Zg

Since 15 x (—17) has no fixed points, X (s 1) is a smooth Calabi-Yau threefold. Let
pr: X — S = S/Zy and let po: X(s,r) — P'/Zy be the natural projections.
Then p; is an elliptic fibration with constant fiber 7', and p, is a K3 fibration
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with constant fiber S. After Ferrara-Harvey-Strominger-Vafa [19], the Calabi-Yau
threefold X (s 1) is called the FHSV threefold associated with (S,T’). We have

(13,1 (X)) = 5 X5 % T) = 5 X(B)x(T) =0.

13.2. The moduli space of FHSV threefolds

The period of an Enriques surface S is defined as the period of (§ ,ts) and lies
in the quotient space Q/T", where 2 is a symmetric bounded domain of type IV
of dimension 10 and where I' is an arithmetic subgroup of Aut(€2). The period
of S is denoted by [S] € Q/T". There exists a I'-invariant divisor D C €, called
the discriminant locus, such that (€ \ D)/I" is a coarse moduli space of Enriques
surfaces via the period map. We refer to e.g. [2, Chap.8, Sects. 19-21] for more
details about the moduli space of Enriques surfaces.

In [13], Borcherds constructed an automorphic form ® on € for I" of weight 4
with div(®) = D. The automorphic form ® is called the Borcherds ®-function. Let
Bq be the Bergman kernel function of 2. The Petersson norm of the Borcherds
®-function is the I'-invariant C'*° function on () defined as

@] == Bg|®/*.

By the I-invariance of |®||?, it descends to a function on Q/I", denoted again by
|®[|2. Then ||®([S])||* is the value of the Petersson norm of the Borcherds ®-
function at the period point of an Enriques surface S. We refer to [13], [58] for
more details about the Borcherds ®-function.

For an elliptic curve T' = E,, the period of T is defined as the SLy(Z)-orbit
of 7 € H and is denoted by [T] € H/SLs(Z). The quotient space H/SLs(Z) is a
coarse moduli space of elliptic curves via the period map. Let

A(r):=¢q H (1—q™*, q := exp(2mV/—17)
n=1
be the Jacobi A-function, which is a unique cusp form of weight 12. The Petersson
norm of the Jacobi A-function is a SLy(Z)-invariant C* function on H defined as

I|A(T)]|? := (det Im 7)"2|A(T)]2.

By the SLy(Z)-invariance of ||A||?, it descends to a function on H/SLs(Z). Then
|A([T])||? is the value of the Petersson norm of the Jacobi A-function at the period
point of an elliptic curve 7.

Theorem 13.2. The analytic space [(Q2\ D)/T] x [H/SLy(Z)] is a coarse moduli
space of FHSV threefolds.

Proof. Since (2 \ D)/T' is a coarse moduli space of Enriques surfaces [2, Chap. 8,
Ths. 21.2 and 21.4] and since H/SLy(Z) is a coarse moduli space of elliptic curves
via the elliptic j-function, it suffices to prove that X 7y = X (s 7+ if and only if
S >S5 and T = T'. This statement follows from [5, Sect. 3]. O

13.3. A Conjecture of Harvey-Moore

Following [25, Sect.V] and [58, Sect.8.1], we interpret a result of the third-
named author [58, Th. 8.3] in terms of the BCOV torsion of FHSV threefolds. The
following formula was conjectured by Harvey-Moore [25, Eq. (4.9)].
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Theorem 13.3. There exists a constant C' such that for every Enriques surface S
and for every elliptic curve T,

TBcov(X(s,r)) = C | @(SDI* 1A

For the proof of Theorem 13.3, we need some intermediary results. Let Hi(g ,Z)
be the invariant subspace of H 2(§, 7Z) with respect to the tg-action. Let H €
H2(S,Z) be an 1g-invariant Kéhler class on S, and let v € H2(T,Z) be the gener-
ator with fT v=1 Let m: Sx T — X(s,1) be the natural projection. We define
k € H*(X(s,1),Z) to be the Kéhler class on X (g 1) such that 7*x = H+v. By [56],
there exists a unique Ricci-flat Kéahler form v = «, on X(g ) with Kahler class x.

By [56] again, there exist a unique Ricci-flat Kéhler form vy on S and a unique
Ricci-flat Kahler form vz on T such that

T =" +or,  [yal=H,  [r]=v.
Let (-,-) denote the cup-product pairing on H2(S, Z). Since Jrv =1and (a,b) =
Jzanbfora,be H2(S,7), we get

V3
(13.2) Vol(X(s.197) = = / HAV' 1 gy,

2 Jsur @rp3 20
By the Ricci-flatness of v, Remark 4.2, and (13.1), we get
(13.3) A(X(s.1),7) = Vol(X 5,1y, y)XXsm)/12 1,
Lemma 13.4. The following identity holds:

(H,H)

Volp2 (H* (X (s1), Z), ) = 935,33 "

Proof. Let H2(S x T,Z) be the invariant subspace of H?(S x T, Z) with respect to
the g X (—17)-action. Similarly, let H3 (T, Z) be the invariant subspace of H?(T, Z)
with respect to the —1p-action. We have
(13.4)

T H*(X(s1), L)t = H2(S x T,Z) = H2(S,Z) ® H2(T,Z) = H2(S,Z) & Zv.

By [2, Chap.8, Lemma 15.1 (iii)], there exists an integral basis {ey,...,eiq} of
H?(S,Z) such that

(135) det(<ei,ej>)1§i,j§10 = —210.
By (13.4), we fix the basis {&1,...,&19,V} of H*(X(g 1), Z)s such that
7*(e;) =e; (1<i<10), (V) = v.

Recall that the cubic form ¢ = cx 4, on HQ(X(S7T)7Z)fr was defined in Sect. 4.4.
Then we get

1 1 1

€;,V, k)= iANVAT K = iANVA(CH = (e, H),
c(€;,V,K) e /gXTe VAT K e /gXTe VA(HA+V) 32y (e )

o 1 1
c(&;,€5,Kk) = 3(2n)? /SXTel/\e]/\ﬂ' K= 32n)? /SXTel/\ej/\(H—l-v) = 2@ (e, €5),

_ 1 9 1 9 1

1y vy = 7 * == 7 H - ’LaH7
c(€;, K, K) e /SXTe A(T*K) 2@ éXTe A(H+v) B )3<e )
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5 ) 5 )
=— VAVAT 'K = ——= VAVAH+vV)=0,
2(2m)° Jaxr 2(27)° Jaxr

_ 1 * 2 2 _ 1
c(v,m,n)—WAXTv/\(ﬂ' k)" = 32n) /§xTVA(H+V) = 2(27r)3<H’H>’

1 s 1 3
i) = 5 [ = g [ 9 = g (D)

By Lemma 4.12 and these formulae, we get

o 3 c(&;, K, k)c(€), kK, K) o
(27T)3<e7;7 ej>L2,l-€ = 5 C(K/, K, Ij) _C(eia ej? K’) =

(ei H) (e;. H) 1
(H,H) 2

(e, ej>,

(2m)3 (v, V) 1 = %C(V’ZZ)?Z“’ 5 (%%, k) = %%_o _ i (H, H),

which yields that
Vo2 (H*(X(s,1,Z), )
€;

= (e i)

— — <H5H> <ei7H> <e'7H>
= (27) 7332710 X0 ot ( (e;, ) — 2 LAE T .
(2m) 4 t(< e~ >1<”<10

(13.6)

(H, H)

Define a 10 x 10 symmetric matrix A by A = ((e;,e;)). Write H = Y.,°, hi e
and define a column vector h € Z° by h = (h;). We set
(Ah) - (*hA)

thAh °
Since A is invertible and since thAh = (H, H) > 0, we get the decomposition
R = Rh@® (Ah)*. Since Bh = —Ah and Bx = Ax for x € (Ah)t, we get
det B = —det A = 2!° by (13.5), which, together with (13.6), yields that
(H,H)
935,33

B:=A-2

H,
Voly2(H*(X(s,1), Z), k) = (2m) 232710 (H.H) 1 H) det B =
This completes the proof of Lemma 13.4. O

Let Qg (resp. Or) be the d-Laplacain of (S,vg) (resp. (T,~r)) acting on
C>=(S) (resp. C=(T)). We define
AR(O) = {f €CX(S) s =£f},  AXT) = {f € C(T); (~1r)"f = £[}.
Since tg (resp. —17) preserves vy (resp. yr), Oy commutes with the tg-action on
C*(S) and Op commutes with the (—1)p-action on C*°(T'). Hence Oy preserves
A%(S), and Or preserves A*(T). We set
O = Onlysz,  Or = Orlaz)

Let (& (s) (resp. (E(s)) be the spectral zeta function of 0% (resp. 0%). Then
(i (s) and (3 (s) converges absolutely for Res > 0, they extend meromorphically
to the complex plane C, and they are holomorphic at s = 0.

Lemma 13.5. The following identity holds
log Tscov (X (s, 7) = =24 (¢7)'(0) = 8 {(¢)'(0) — (¢z)'(0) } -
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Proof. See [25, Sect. V], in particular [25, Egs. (5.3), (5.9), (5.10)]. d

Remark 13.6. The signs in [25, Egs. (5.10), (5.11)] are not correct. In [25, Egs. (5.10),
(5.11)], the formula log det’ (0% = (¢£)/(0) was used, while the correct formula is
log det’ 0% = —(¢E)/(0).

Lemma 13.7. There exists a constant Co such that for every Enriques surface S
and for every Kahler class H on S, the following identity holds

${(Ch)/(0) = (CrY'(0)} + 4 log{H, H) = — log |&([S])||? + Co.
Proof. The result follows from [58, Eq. (8.3)] and [60, Lemma 4.3, Eq. (4.4)]. O
Lemma 13.8. There exists a constant C1 such that for every elliptic curve T,
24 (¢7)'(0) = = log [A([T])|* + C1.

Proof. Since (} (s) = (7 (s) by [45, p.166 1.8 and 1.10] and since (- (s)+ (7 (s) is the
spectral zeta function of Uy, the result follows from the Kronecker limit formula.
See e.g. [45, Th.4.1] or [10, Th.13.1]. O

13.4. Proof of Theorem 13.3
By Lemmas 13.5, 13.7, 13.8, we get

(13.7) log Tocov(X(s,r),7) = log(|@([SII* [A(TD?) + 4 log(H, H) — Co — C1.
By (13.2), (13.3), (13.7) and Lemma 13.4, we get
mBeov (X(s,1):7)

= Vol(X(s,7), %)73 Volp2 (H*(X (s, Z), 1)) " A(X(s,19,7) Tecov (X(s,1),7)
_ (<H7H>)3. ((H,H>>1 1. [e(SDI* IA(T)I?(H, H)*

25773 2357'('33 eCo+C1
= Clle(snI* 1AdInI?,

250742 ¢=Co—=C1 " This completes the proof of Theorem 13.3. [

where we set C' =

REFERENCES

[1] Banica, C., Stanasila, O. Algebraic methods in the global theory of complex spaces, John
Wiley&Sons, New York (1976)
[2] Barth, W., Peters, C., Van de Ven, A. Compact Complex Surfaces, Springer, Berlin (1984)
[3] Barlet, D. Développement asymptotique des fonctions obtenues par intégration sur les fibres,
Invent. Math. 68 (1982), 129-174
[4] Batyrev, V.V. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric
varieties, Jour. Algebr. Geom. 3 (1994), 493-535
[5] Beauville, A. Some remarks on Kdhler manifolds with ¢; = 0, Classification of algebraic and
analytic manifolds, (ed. K. Ueno) Progress in Math. 39 (1983), 1-26
[6] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C. Holomorphic anomalies in topological field
theories, Nuclear Phys. B 405 (1993), 279-304
Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes,
Commun. Math. Phys. 165 (1994), 311-427
[8] Bismut, J.-M. Equivariant immersions and Quillen metrics, Jour. Differ. Geom. 41 (1995),
53-157
9] — Quillen metrics and singular fibers in arbitrary relative dimension, Jour. Algebr.
Geom. 6 (1997), 19-149
[10] Bismut, J.-M., Bost, J.-B. Fibrés déterminants, métriques de Quillen et dégénérescence des
courbes, Acta Math. 165 (1990), 1-103

7]




64

(11]
(12]
(13]
14]
(15]
(16]
(17)

(18]
(19]

20]

(21]
(22]

23]
[24]
[25]
[26]
27)
28]
29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
37)

(38]
(39]

[40]

[41]
42]

HAO FANG, ZHIQIN LU, AND KEN-ICHI YOSHIKAWA

Bismut, J.-M., Gillet, H., Soulé, C. Analytic torsion and holomorphic determinant bundles
LILIII, Commun. Math. Phys. 115 (1988), 49-78, 79-126, 301-351

Bismut, J.-M., Lebeau, G. Complex immersions and Quillen metrics, Publ. Math. IHES 74
(1991), 1-297

Borcherds, R.E. The moduli space of Enriques surfaces and the fake monster Lie superalgebra,
Topology 35 (1996), 699-710

Candelas, P., de la Ossa, X., Green, P., Parkes, L. A pair of Calabi-Yau manifolds as an
exactly solvable superconformal field theory, Nuclear Physics B407 (1993), 115-154

Cox, D.A., Katz S. Mirror Symmetry and Algebraic Geometry, Amer. Math. Soc. Providence
(1999)

Douady, A. Le problémes des modules locauz pour les espaces C-analytiques compacts, Ann.
Sci. Ec. Norm. Sup. 4 (1974), 569-602

Fang, H., Lu, Z. Generalized Hodge metrics and BCOYV torsion on Calabi- Yau moduli, Jour.
reine angew. Math. (to appear)

Fang, H., Lu, Z, Yoshikawa, K.-I. in preparation

Ferrara, S., Harvey, J., Strominger, A., Vafa, C. Second-quantized mirror symmetry Phys.
Lett. B 361 (1995), 59-65

Gillet, H., Soulé, C. Characteristic classes for algebraic vector bundles with hermitian metric,
I, II, Ann. of Math. 131 (1990), 163-203, 205-238

Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), 21-54
Grauert, H. Der Satz von Kuranishi fir Kompakte Komplexe Ratime, Invent. Math. 25
(1974), 107-142

Griffiths, P. Variation of Hodge structure, Ann. of Math. Studies 106 (1984), 3-28
Hartshorne, R. Algebraic Geometry, Springer, Berlin (1977)

Harvey, J., Moore, G. Ezact gravitational threshold correction in the Ferrara-Harvey-
Strominger-Vafa model, Phys. Rev. D 57 (1998), 2329-2336

Kawamata, Y. Unobstructed deformations, a remark on a paper of Z. Ran, Jour. Algebr.
Geom. 1 (1992), 183-190

Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B. Toroidal Embeddings I, Lecture
Notes Math. 339 (1973)

Knudsen, F.F., Mumford, D. The projectivity of the moduli space of stable curves, I., Math.
Scand. 39 (1976), 19-55

Kobayashi, S. Hyperbolic Complex Spaces, Springer, Berline (1998)

King, J. The currents defined by analytic varieties, Acta Math. 127 (1971), 185-220
Klemm, A., Theisen, S. Considerations of one-modulus Calabi-Yau compactifications:
Picard-Fuchs equations, Kdhler potentials and mirror maps, Nuclear Phys. B 389 (1993),
153-180

Kuranishi, M. On the locally complete families of complex analytic structures, Ann. of Math.
75 (1962), 536-577

Looijenga, E.J.N. Isolated Singular Points on Complete Intersections, Cambridge Univ.
Press, Cambridge (1984)

Li, J., Zinger, A. On the genus-one Gromov- Witten invariants of complete intersection three-
folds, math.AG /0406105 (2004)

Lu, Z. On the geometry of classifying spaces and horizontal slices, Amer. Jour. Math. 121
(1999), 177-198

On the Hodge metric of the universal deformation space of Calabi-Yau threefolds,
Jour. Geom. Anal. 11 (2001), 103-118

Lu, Z., Sun, X. Weil-Petersson geometry on moduli space of polarized Calabi-Yau manifolds,
Jour. Inst. Math. Jussieu 3 (2004), 185-229

Malgrange, B. Ideals of Differentiable Functions, Oxford University Press (1966)

Morrison, D. Mirror symmetry and rational curves on quintic threefolds: A quick guide for
mathematicians, Jour. Amer. Math. Soc. 6 (1993), 223-247

Namikawa, Y. On deformations of Calabi-Yau 3-folds with terminal singularities, Topology
33 (1994), 429-446

Calabi- Yau threefolds and deformation theory, Sugaku Exposition 15 (2002), 1-29
Noguchi, J., Ochiai, T. Geometric Function Theory in Several Complexr Variables, Amer.
Math. Soc., (1990)




ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 65

[43] Quillen, D. Determinants of Cauchy-Riemann operators over a Riemann surface, Funct.
Anal. Appl. 14 (1985), 31-34

[44] Ran, Z. Deformations of Calabi- Yau Kleinfolds, Essays in Mirror Symmetry (ed. S.-T. Yau)
International Press (1992), 451-457

[45] Ray, D.B., Singer, .M. Analytic torsion for complex manifolds, Ann. of Math. 98 (1973),
154-177

[46] Schlessinger, M. Rigidity of quotient singularities, Invent. Math. 14 (1971), 17-26

[47] Schmid, W. Variation of Hodge structure: The singularities of the period mapping, Invent.
Math. 22 (1973), 211-319

[48] Siu, Y.-T. Analyticity of sets associated to Lelong numbers and the extension of closed positive
currents, Invent. Math. 27 (1974), 53-156

[49] Soulé, C. et al. Lectures on Arakelov Geometry, Cambridge University Press, Cambridge
(1992)

[50] Steenbrink, J.H.M. Mized Hodge structure on vanishing cohomology, Real and Complex Sin-
gularities, Sijthoff-Noordhoff, Alphen aan den Rijn (1977), 525-563

[61] Takegoshi, K. Higher direct images of canonical sheaves tensorized with semi-positive vector
bundles by proper Kdhler morphisms, Math. Ann. 303 (1995), 389-416

[62] Tian, G. Smoothness of the universal deformation space of Compact Calabi- Yau manifolds
and its Peterson- Weil metric, Mathematical Aspects of String Theory (ed. S.-T. Yau), World
Scientific (1987), 629-646

[63] — Smoothing 3-folds with trivial canonical bundle and ordinary double points, Essays in
Mirror Symmetry (ed. S.-T. Yau), International Press (1992), 458-479

[54] Voisin, C. Mirror Symmetry, Amer. Math. Soc., Providence (1999)

[55] Hodge Theory and Complex Algebraic Geometry, I, Cambridge University Press, Cam-
bridge (2002)

[66] Yau, S.-T. On the Ricci curvature of a compact Kihler manifold and the complex Monge-
Ampére Equation, I, Commun. Pure Appl. Math. 31 (1978), 339-411

[67] Yoshikawa, K.-I. Smoothing of isolated hypersurface singularities and Quillen metrics, Asian
J. Math. 2 (1998), 325-344

K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on

the moduli space, Invent. Math. 156 (2004), 53-117

On the singularity of Quillen metrics, preprint (2005)

Real K3 surfaces without real points, equivariant determinant of the Laplacian, and
the Borcherds ®-function, preprint (2005)

[61] Zucker, S. Degenerations of Hodge bundles (after Steenbrink), Ann. of Math. Studies 106
(1984), 121-141

(58]

[59]
(60]

(Hao Fang) INSTITUTE FOR ADVANCED STUDY, PRINCETON, NJ 08540, USA
E-mail address, Hao Fang: haofang@math.ias.edu

(Zhigin Lu) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA IRVINE, IRVINE, CA
92697, USA
E-mail address, Zhiqin Lu: zlu@math.uci.edu

(Ken-Ichi Yoshikawa) GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO,
3-8-1 KomaBa, Tokyo 153-8914, JAPAN
E-mail address, Ken-Ichi Yoshikawa: yosikawa®@ms.u-tokyo.ac. jp



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2005-20 Kenichi Ito: Propagation of singularities for Schrodinger equations on the
FEuclidean space with a scattering metric.

200521 Teruhisa Tsuda: Universal character and q-difference Painlevé equations with
affine Weyl groups.

200522 Yuji Umezawa: The minimal risk of hedging with a convex risk measure.

2005-23 J. Noguchi, and J. Winkelmann and K. Yamanoi: Degeneracy of holomorphic
curves into algebraic varieties.

200524 Hirotaka Fushiya: Limit theorem of a one dimensional Marokov process to
sticky reflected Brownian motion.

2005-25 Jin Cheng, Li Peng, and Masahiro Yamamoto: The conditional stability in line
unique continuation for a wave equation and an inverse wave source problem.

2005-26 M. Choulli and M. Yamamoto: Some stability estimates in determining sources
and coefficients.

200527 Cecilia Cavaterra, Alfredo Lorenzi and Masahiro Yamamoto: A stability result
Via Carleman estimates for an inverse problem related to a hyperbolic integro-
differential equation.

200528 Fumio Kikuchi and Hironobu Saito: Remarks on a posteriori error estimation
for finite element solutions.

2005-29 Yuuki Tadokoro: A nontrivial algebraic cycle in the Jacobian variety of the
Klein quartic.

2005-30 Hao Fang, Zhiqin Lu and Ken-ichi Yoshikawa: Analytic Torsion for Calabi- Yau
threefolds.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:

Graduate School of Mathematical Sciences, The University of Tokyo
3-8-1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN

TEL +81-3-5465-7001 FAX 481-3-5465-7012



