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ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS
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Abstract. After Bershadsky-Cecotti-Ooguri-Vafa, we introduce an invariant
of Calabi-Yau threefolds, which we call the BCOV invariant and which we ob-
tain using analytic torsion. We give an explicit formula for the BCOV invariant
as a function on the compactified moduli space, when it is isomorphic to a pro-
jective line. As a corollary, we prove the formula for the BCOV invariant of
quintic mirror threefolds conjectured by Bershadsky-Cecotti-Ooguri-Vafa.
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1. Introduction

In the outstanding papers [6], [7], Bershadsky-Cecotti-Ooguri-Vafa made a deep
study of the generating function Fg of genus-g Gromov-Witten invariants for Calabi-
Yau threefolds. One mathematical surprise, which they obtained from physical
arguments, is a system of holomorphic anomaly equations satisfied by the functions
Fg, g ≥ 1. From the holomorphic anomaly equations, they obtained a conjectural
explicit formula for Fg of a general quintic threefolds in P4 and thus they extended
the mirror symmetry conjecture of Candelas-de la Ossa-Green-Parkes [14].

By focusing on the genus-one holomorphic anomaly equation, they conjectured
that F1 of a Calabi-Yau threefold is expressed as a certain linear combination
of the Ray-Singer analytic torsions [11], [45] of its mirror Calabi-Yau threefolds.
After Bershadsky-Cecotti-Ooguri-Vafa, we call the linear combination of Ray-Singer
analytic torsions in [7] the BCOV torsion, which is the main subject of this paper.

The first-named author is partially supported by a grant from the New York University Re-
search Challenge Fund Program and by NSF through Institute for Advanced Study; the second-
named author is partially supported by NSF Career Award DMS-0347033 and the Alfred P. Sloan
Research Fellowship; the third-named author is partially supported by the Grants-in-Aid for Sci-
entific Research for young scientists (B) 16740030, JSPS.
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By making use of the curvature formula for Quillen metrics [11], Bershadsky-
Cecotti-Ooguri-Vafa obtained a variational formula for the BCOV torsion of Ricci-
flat Calabi-Yau manifolds [7]. Fang-Lu [17] expressed the variation of the BCOV
torsion of Ricci-flat Calabi-Yau manifolds as a linear combination of the Weil-
Petersson metric [52] and the generalized Hodge metrics [36], which led them to
some new results on the moduli space of polarized Calabi-Yau manifolds.

On the other hand, as a consequence of the duality in string theory, Harvey-
Moore [25] conjectured that the BCOV torsion of certain Ricci-flat Calabi-Yau
threefolds is expressed as the product of the norms of the Borcherds Φ-function
[13] and the Dedekind η-function. Their conjecture was proved by Yoshikawa [58].
In his proof, an invariant of K3 surfaces with involution, which he obtained using
equivariant analytic torsion [8] and a Bott-Chern class [11], played a crucial role.

In this paper, we extend the constructions of Bershadsky-Cecotti-Ooguri-Vafa
and Yoshikawa to introduce a new invariant of Calabi-Yau threefolds, which we
call the BCOV invariant, and we get an explicit formula for the BCOV invariant
as a function on the compactified moduli space when it is isomorphic to P1. As
a corollary of our formula, we prove one part of the conjecture of Bershadsky-
Cecotti-Ooguri-Vafa concerning the BCOV torsion of quintic mirror threefolds. Let
us explain our results in more details.

Let X be a Calabi-Yau threefold. Let g be a Kähler metric on X with Kähler
form ∞. We set X = (X, ∞). Let τ(X,≠

p
X) be the Ray-Singer analytic torsion of

≠p
X = ∧pT §X with respect to g. We define the BCOV torsion of X as

TBCOV(X) =
Y
p≥0

τ(X,≠p
X)(−1)pp.

Let {e1, . . . , eb2(X)} be an integral basis of H2(X, Z)/Torsion. By Hodge theory
and the Lefschetz decomposition theorem, H2(X, R) is equipped with the L2-metric
h·, ·iL2,[∞], which depends only on the Kähler class [∞]. We define

VolL2(H2(X, Z), [∞]) = det
°hei, ejiL2,[∞]

¢
1∑i,j∑b2(X)

,

which is independent of the choice of an integral basis of H2(X, Z)/Torsion.
Let η be a nowhere vanishing holomorphic 3-form on X. Let c3(X, ∞) be the top

Chern form of (TX, g). We set Vol(X, ∞) = (2π)−3
R

X ∞3 and χ(X) =
R

X c3(X, ∞).
We define

A(X) = Vol(X, ∞)
χ(X)
12 exp

∑
− 1

12

Z
X

log
µ√−1η ∧ η̄

∞3/3!
· Vol(X, ∞)
kηk2L2

∂
c3(X, ∞)

∏
,

which is independent of the choice of η. We define the real number τBCOV(X) as

τBCOV(X) = Vol(X, ∞)−3 VolL2(H2(X, Z), [∞])−1A(X) TBCOV(X).

In Sect. 4.4, we show that τBCOV(X) is independent of the choice of ∞. Hence
τBCOV(X) is an invariant of X, which we call the BCOV invariant. The purpose of
this paper is to study τBCOV as a function on the moduli of Calabi-Yau threefolds.

Let X be a (possibly singular) irreducible projective fourfold. Let π : X → P1 be
a surjective flat morphism with discriminant locus D. Let √ be the inhomogeneous
coordinate of P1, and set X√ := π−1(√) for √ ∈ P1. We assume the following:
(i) 1 ∈ D and X√ is a Calabi-Yau threefold with h2(≠1

X√
) = 1 for √ ∈ P1 \ D;

(ii) Sing X√ consists of a unique ordinary double point (ODP) for √ ∈ D \ {1};
(iii) Sing(X ) ∩X1 = ; and X1 is a divisor of normal crossing.
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Under these assumptions, the relative dualizing sheaf KX/P1 is locally free on X ,
and its direct image sheaf π§KX/P1 is locally free on P1.

For √ ∈ P1 \ {1}, let (Def(X√), [X√]) be the Kuranishi space of X√. Since
dimDef(X√) = 1, we identify (Def(X√), [X√]) with (C, 0) by the smoothness of
the Kuranishi space. Let µ√ : (P1, √) → (Def(X√), [X√]) be the map of germs that
induces the family π : X → P1 near √. The ramification index r(√) of π : X → P1

at √ ∈ P1 is defined as the vanishing order of µ√ at √. Let {Rj}j∈J be the set of
points of P1 with ramification index > 1, and write D \ {1} = {Dk}k∈K . We set
rj = r(Rj) for j ∈ J and rk = r(Dk) for k ∈ K.

Outside D ∪ {Rj}j∈J , TP1 is equipped with the Weil-Petersson metric. Let k · k
be the singular Hermitian metric on (π§KX/P1)≠(48+χ) ≠ (TP1)≠12 induced from
the L2-metric on π§KX/P1 and from the Weil-Petersson metric on TP1.

Main Theorem 1.1. Let • be a meromorphic section of π§KX/P1 with

div(•) =
X
i∈I

mi Pi + m1 P1, Pi 6= P1 (i ∈ I).

Identify the points Pi, Rj , Dk with their coordinates √(Pi),√(Rj),√(Dk) ∈ C, re-
spectively. Set χ = χ(X√), √ ∈ P1 \ D. Then there exists C ∈ R>0 such that

τBCOV(X√) = C

∞∞∞∞∞∞
Y

i∈I,j∈J,k∈K

(√ −Dk)2rk

(√ − Pi)(48+χ)mi(√ −Rj)12(rj−1)
•48+χ

√ ≠
µ

@

@√

∂12
∞∞∞∞∞∞

1
6

.

As a corollary of the Main Theorem 1.1, we give a partial answer to the conjecture
of Bershadsky-Cecotti-Ooguri-Vafa, which we explain briefly (cf. Sect. 12).

Let p : X → P1 be the pencil of quintic threefolds in P4 defined by

X := {([z],√) ∈ P4 × P1; z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5√ z0z1z2z3z4 = 0}, p = pr2.

Let Z5 be the set of fifth roots of unity and define

G := {(a0, a1, a2, a3, a4) ∈ (Z5)5; a0a1a2a3a4 = 1}/Z5(1, 1, 1, 1, 1) ª= Z3
5.

We regard G as a group of projective transformations of P4. Since G preserves the
fibers of p, we have the induced family p : X/G → P1. Let D be the discriminant
locus of the family p : X → P1. By [4], [39], there exists a resolution q : W → X/G
such that W√ = q1(X√) is a smooth Calabi-Yau threefold for √ ∈ P1 \ D and
such that Sing W√ consists of a unique ODP if √5 = 1. The family of Calabi-Yau
threefolds π : W → P1 is called a family of quintic mirror threefolds.

After Candelas-de la Ossa-Green-Parkes [14], π§KW/P1 and TP1 are trivialized
as follows near √ = 1. For √ ∈ P1 \ D, we define a holomorphic 3-form on X√ by

≠√ =
µ

2π
√−1
5

∂−3

5√
z4 dz0 ∧ dz1 ∧ dz2

@F√(z)/@z3
.

Since ≠√ is G-invariant, ≠√ induces a holomorphic 3-form on X√/G in the sense
of orbifolds. We identify ≠√ with the corresponding holomorphic 3-form on X√/G,
and we define a holomorphic 3-form •√ on W√ as •√ = q§√≠√. We define

y0(√) =
1X

n=1

(5n)!
(n!)5(5√)5n

, |√| > 1.

Then π§KW/P1 is trivialized by the local section •√/y0(√) near √ = 1.
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Let q be the coordinate of the unit disc in C. We identify the parameters
√5 and q via the mirror map [14]. Then TP1 is trivialized by the local section
q d/dq = q (d√/dq) d/d√ near √ = 1. (See Sect. 12.)

We define a multi-valued analytic function F top
1,B(√) near 1 ∈ P1 as

F top
1,B(√) =

µ
√

y0(√)

∂ 62
3

(√5 − 1)−
1
6 q

d√

dq

and a power series in q as F top
1,A(q) = F top

1,B(√(q)). The conjectures of Bershadsky-
Cecotti-Ooguri-Vafa [6], [7] can be formulated as follows:

Conjecture 1.2. (A) Let Ng(d) be the genus-g Gromov-Witten invariant of degree
d of a general quintic threefold in P4. Then

q
d

dq
log F top

1,A(q) =
50
12
−

1X
n,d=1

N1(d)
2nd qnd

1− qnd
−

1X
d=1

N0(d)
2d qd

12(1− qd)
.

(B) The following identity holds near √ = 1:

τBCOV(W√) = Const.

∞∞∞∞∞ 1
F top

1,B(√)3

µ
•√

y0(√)

∂62

≠
µ

q
d

dq

∂3
∞∞∞∞∞

2
3

.

In Sect. 12, we prove the following:

Theorem 1.3. The Conjecture 1.2 (B) holds.

For the remaining Conjecture 1.2 (A), see Li-Zinger [34]. In [18], we shall study
the BCOV invariant of Calabi-Yau threefolds with higher dimensional moduli and
the BCOV torsion of Calabi-Yau manifolds of dimension greater than 3.

Let us briefly explain our approach to prove the Main Theorem 1.1. We follow the
approach in [58]. Let ≠WP be the Weil-Petersson form on P1 \ D, and let Ric ≠WP

be the Ricci-form of ≠WP. By [36], [37], the (1, 1)-forms ≠WP and Ric ≠WP have
Poincaré growth on P1 \ D, so that they extend trivially to closed positive (1, 1)-
currents on P1 (cf. Sect. 7.3). We identify ≠WP and Ric ≠WP with their trivial
extensions. For a divisor D on P1, let δD denote the Dirac δ-current on P1 associated
to D. Regard τBCOV as a function on P1 \D. By making use of the Poincaré-Lelong
formula, the Main Theorem 1.1 is deduced from the following:

Claim 1.4. Set D§ =
P

k∈K rk Dk. Then there exists a ∈ R such that

(1.1) ddc log τBCOV = −
≥ χ

12
+ 4

¥
≠WP − Ric ≠WP +

1
6

δD§ + a δ1.

We shall establish Claim 1.4 as follows:
(a) By making use of the curvature formula for Quillen metrics of Bismut-Gillet-

Soulé [11], we prove the variational formula like (1.1) for an arbitrary family of
Calabi-Yau threefolds. As a result, we get Eq. (1.1) on the open part P1 \ D.
More precisely, we introduce a Hermitian line, called the BCOV Hermitian line, for
an arbitrary Calabi-Yau manifold of arbitrary dimension, which we obtain using
determinants of cohomologies [28], Quillen metrics [11], [43], and a Bott-Chern
class like A(·). Then the BCOV Hermitian line of a Calabi-Yau manifold depends
only on the complex structure of the manifold. The Hodge diamond of Calabi-
Yau threefolds are so simple that the BCOV Hermitian line reduces to the scalar
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invariant τBCOV in the case of threefolds. Hence Eq. (1.1) on P1 \D is deduced from
the curvature formula for the BCOV Hermitian line bundles. (See Sect. 4).

(b) To establish the formula for log τBCOV near D, we fix a specific holomorphic
extension of the BCOV bundle from P1\D to P1, which we call the Kähler extension.
(See Sect. 5.) Since τBCOV is the ratio of the Quillen metric and the L2-metric on
the BCOV bundle, it suffices to determine the singularities of the Quillen metric and
the L2-metric on the extended BCOV bundle. We determine the singularity of the
Quillen metric on the extended BCOV bundle with respect to the metric on TX/P1

induced from a Kähler metric on X . The anomaly formula for Quillen metrics of
Bismut-Gillet-Soulé [11] and a formula for the singularity of Quillen metrics [9],
[59] play the central role. (See Sect. 5.).

(c) By the smoothness of Def(X√) at √ ∈ D§ [26], [44], [53], the behavior of the
L2-metric on the extended BCOV bundle nearD§ is determined by the singularity of
≠WP near D§, which was computed by Tian [53]. (See Sects. 6, 7, 8.) To determine
the behavior of the L2 metric on the extended BCOV bundle at √ = 1, one may
assume that π : X → P1 is semi-stable at √ = 1 by Mumford [27]. We consider
another holomorphic extension of the BCOV bundle, i.e., the canonical extension
in Hodge theory [47]. With respect to the canonical extension, the L2-metric has
at most an algebraic singularity at √ = 1 by Schmid [47]. Comparing the two
extensions, we show that the L2-metric has at most an algebraic singularity at
√ = 1 with respect to the Kähler extension. (See Sect. 9.) By the residue theorem
and assumption (ii), the number a in Eq. (1.1) is determined by the degrees of the
divisors D§, div(•),

P
j∈J(rj − 1) Rj . (See Sect. 11.)

This paper is organized as follows. In Sect. 2, we recall the deformation theory
of Calabi-Yau threefolds. In Sect. 3, we recall the definition of Quillen metrics and
the corresponding curvature formula. In Sect. 4, we introduce the BCOV invariant
and prove its variational formula. In Sect. 5, we study the boundary behavior of
Quillen metrics. In Sect. 6, we study the boundary behavior of Kodaira-Spencer
map. In Sect. 7, we study the boundary behavior of the Weil-Petersson metric and
the Hodge metric. In Sects. 8 and 9, we study the boundary behavior of the BCOV
invariant. In Sect. 10, we extend the variational formula for the BCOV invariant
to the boundary of moduli space. In Sect. 11, we prove the Main Theorem. In
Sect. 12, we study a conjecture of Bershadsky-Cecotti-Ooguri-Vafa. In Sect. 13, we
study a conjecture of Harvey-Moore.

Acknowledgements The first-named author thanks Professors Jeff Cheeger
and Gang Tian for helpful discussions. The second-named author thanks Professors
Gang Tian and Duong H. Phong for helpful discussions. The third-named author
thanks Professors Shinobu Hosono, Shu Kawaguchi, Yoshinori Namikawa and Gang
Tian for helpful discussions, and his special thanks are due to Professor Jean-Michel
Bismut, who suggested him, together with many other ideas, one of the most crucial
constructions in this paper, the Bott-Chern term A(X).

2. Calabi-Yau varieties with at most one ordinary double point

2.1. Calabi-Yau varieties with at most one ODP and their deformations

2.1.1. Calabi-Yau varieties with at most one ODP. Recall that an n-dimensional
singularity is an ordinary double point (ODP for short) if it is isomorphic to the
hypersurface singularity at 0 ∈ Cn defined by the equation z2

0 + · · ·+ z2
n = 0.
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Definition 2.1. A complex projective variety X of dimension n ≥ 3 satisfying the
following conditions is called a Calabi-Yau n-fold with at most one ODP:
(i) There exists a nowhere vanishing holomorphic n-form on Xreg = X \ Sing(X);
(ii) X is connected and Hq(X,OX) = 0 for 0 < q < n;
(iii) The singular locus Sing(X) consists of empty or at most one ODP.

Throughout this paper, we use the following notation: For a complex space Y ,
let ΘY be the tangent sheaf of Y , let ≠1

Y be the sheaf of Kähler differentials on
Y , and let KY be the dualizing sheaf of Y . The sheaf ≠p

Y is defined as
Vp ≠1

Y .
On the regular part of Y , the sheaves ΘY , ≠p

Y , KY are often identified with the
corresponding holomorphic vector bundles TY ,

Vp T §Y , det T §Y , respectively.
We set ∆(r) := {t ∈ C; |t| < r} and ∆(r)§ := ∆(r) \ {0} for r > 0. We write ∆

(resp. ∆§) for ∆(1) (resp. ∆(1)§).
Since an ODP is a hypersurface singularity, the dualizing sheaf of a Calabi-Yau

n-fold with at most one ODP is trivial by (i).

2.1.2. Deformations of Calabi-Yau varieties with at most one ODP. Let X be a
Calabi-Yau n-fold with at most one ODP.

Definition 2.2. Let (S, 0) be a complex space with marked point and let X be a
complex space. A proper, surjective, flat holomorphic map π : X → S is called a
deformation of X if π−1(0) ª= X. If X and S are smooth and if a general fiber of
π : X → S is smooth, the deformation π : (X , X) → (S, 0) is called a smoothing of
X. If there exists a smoothing of X, X is said to be smoothable.

We refer to [40, Example 5.8] for an example of a non-smoothable Calabi-Yau
threefold with a unique ODP as its singular set.

Since H0(X,ΘX) = 0 (cf. [40, pp.432, l.23]), there exists a deformation germ
p : (X, X) → (Def(X), [X]) of X with the universal property: Every deformation
germ π : (X , X) → (S, 0) is induced from p : X → Def(X) by a unique holomorphic
map f : (S, 0) → (Def(X), [X]). This local universal deformation of X is called the
Kuranishi family of X. The Kuranishi family is unique up to an isomorphism. The
base space (Def(X), [X]) is called the Kuranishi space of X. By [26], [44], [52], [53],
Def(X) is smooth. We denote by TDef(X),[X] the tangent space of Def(X) at [X].
See [16], [22], [32] for more details about the Kuranishi family.

For a deformation π : (X , X) → (S, 0), the fiber Xs (s ∈ S) is a Calabi-Yau
n-fold with at most one ODP if s ∈ S is sufficiently close to 0 (cf. [40, Prop. 6.1],
[53, Prop. 4.2]).

In the rest of Subsection 2.1, we assume that X is a smoothable Calabi-Yau
n-fold with at most one ODP. Let π : (X , X) → (S, 0) be a smoothing. The critical
locus of π is defined by

Σπ := {x ∈ X ; dπx = 0}.
The discriminant locus of π : X → S is the subvariety of S defined by

D := π(Σπ) = {s ∈ S; Sing(Xs) 6= ;}.
Lemma 2.3. Let N + 1 = dimS. For p ∈ Sing(X), there exists a neighborhood
Vp
ª= ∆n+1 ×∆N of p in X such that

π|Vp(z, w) = (z2
0 + · · ·+ z2

n, w1, . . . , wN ), z = (z0, . . . , zn), w = (w1, . . . , wN ).

In particular, if Sing(X) 6= ;, D is a divisor of S smooth at 0.
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Proof. Let p ∈ Sing(X). Let s = (s0, . . . , sN ) be a system of coordinates near
0 ∈ S. By e.g. [33, pp.103, (6.7)], there exists fp ∈ OS,0 such that

OX ,p
ª= OCn+1×S,(0,0)/(z2

0 + · · ·+ z2
n + fp(s)), π(z, s) = s.

Since X is smooth, we get dfp(0) 6= 0. Hence we can assume that fp(s) = s0 after
a suitable change of the coordinates of S. §
2.1.3. The Kodaira-Spencer map. For a smoothing π : (X , X) → (S, 0), the short
exact sequence of sheaves on X

0 −→ π§≠1
S |X −→ ≠1

X |X −→ ≠1
X −→ 0

induces the long exact sequence:

· · · −→ HomOX(π§≠1
S|X,OX) −→ Ext1OX

(≠1
X,OX) −→ Ext1OX

(≠1
X |X,OX) −→ · · ·

Definition 2.4. The Kodaira-Spencer map of π : (X , X) → (S, 0) is the coboundary
map

ρ0 : T0S = HomOX(π§≠1
S|X,OX) → Ext1OX

(≠1
X,OX).

Proposition 2.5. The Kodaira-Spencer map ρ[X] : TDef(X),[X] → Ext1OX
(≠1

X ,OX)
for the Kuranishi family of X is an isomorphism.

Proof. See [26], [44], [52], [53]. §
Let

r : Ext1OX
(≠1

X ,OX) 3 α → α|Xreg ∈ Ext1OX
(≠1

Xreg
,OXreg) = H1(Xreg, ΘX)

be the restriction map. Since n ≥ 3, r : Ext1OX
(≠1

X ,OX) → H1(Xreg, ΘX) is an
isomorphism by [46, Th. 2] and [53, Prop. 1.1].

Lemma 2.6. Under the natural identification H0(Xreg,π§ΘS |Xreg) ª= T0S via π,
the composition r◦ρ : T0S → H1(Xreg,ΘX) is the coboundary map of the long exact
sequence of cohomologies associated with the short exact sequence of sheaves

(2.1) 0 −→ ΘXreg −→ ΘX |Xreg −→ π§ΘS |Xreg −→ 0.

Proof. The commutative diagram of the short exact sequences of sheaves
0 −−−−→ π§≠1

S |X −−−−→ ≠1
X |X −−−−→ ≠1

X −−−−→ 0

r

??y r

??y r

??y
0 −−−−→ π§≠1

S |Xreg −−−−→ ≠1
X |Xreg −−−−→ ≠1

X |Xreg −−−−→ 0

induces the commutative diagram of exact sequences

−−−−→ HomOX (π§≠1
S |X ,OX) −−−−→ Ext1OX

(≠1
X ,OX) −−−−→

r

??y r

??y
−−−−→ HomOX (π§≠1

S |Xreg ,OXreg) −−−−→ Ext1OX
(≠1

Xreg
,OXreg) −−−−→

where the first (resp. second) vertical arrow is isomorphic by the normality of
Sing(X) (resp. [53, Prop. 1.2]). Since π§≠1

S |Xreg , ≠1X |Xreg , ≠1
Xreg

are locally free,
the second line is the long exact sequence of cohomologies associated with (2.1). §
Lemma 2.7. The Kuranishi family of X is a smoothing of X.
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Proof. Since the assertion is obvious when X is smooth, we assume that X has a
unique ODP p. Since X is smoothable, a general fiber of the Kuranishi family of
X is smooth. We must prove the smoothness of the total space X of the Kuranishi
family of X. Since Sing(X) = {p}, it suffices to prove the smoothness of X at p.

Let Def(X, p) ª= (C, 0) be the Kuranishi space of the ODP (X, p) (cf. [33,
Chap. 6 C]). The universal deformation of X induces a holomorphic map of germs
f : Def(X) → Def(X, p). The existence of a smoothing of X implies the surjectivity
of the differential of f at [X]. Hence f may be regarded as a part of a system of
coordinates of Def(X) at [X]. Since

(2.2) OX,p
ª= OCn+1×Def(X),(0,[X])/(z2

0 + · · ·+ z2
n + f)

by e.g. [33, pp.103, (6.7)], this implies the smoothness of X at p. §

Let p : (X, X) → (Def(X), [X]) be the Kuranishi family of X.

Proposition 2.8. There exist a pointed projective variety (B, 0), a projective va-
riety Z, and a surjective flat holomorphic map f : Z → B such that the deformation
germ f : (Z, f−1(0)) → (B, 0) is isomorphic to p : (X, X) → (Def(X), [X]). In
particular, the map p : X → Def(X) is projective.

Proof. See [40, pp. 441, l.7-l.12]. §

2.1.4. The Serre duality for Calabi-Yau varieties with at most one ODP. Let

h·, ·i : Hn−1(X,≠1
X ≠KX)× Ext1OX

(≠1
X ≠KX ,KX) → Hn(X,KX) ª= C

be the Yoneda product. Since X is compact, the Yoneda product is a perfect pairing
by [1, Th. 4.1 and Th. 4.2]. Hence we get by Proposition 2.5

Hn−1(X,≠1
X ≠KX) = Ext1OX

(≠1
X ≠KX , KX)∨ = (TDef(X),[X])∨ = ≠1

Def(X),[X].

If X is smooth, then Ext1OX
(≠1

X≠KX ,KX) = H1(X,ΘX) and the Yoneda product
is given by the ordinary Serre duality pairing [1, Th. 4.2].

Let Hn−1
c (Xreg,≠1

X ≠KX) be the cohomology with compact support.

Lemma 2.9. The natural map Hn−1
c (Xreg,≠1

X ≠KX) → Hn−1(Xreg,≠1
X ≠KX) is

an isomorphism. Under this isomorphism, the Yoneda product h·, ·i coincides with
the Serre duality pairing on the regular part of X:

Hn−1
c (Xreg,≠1

X ≠KX)×H1(Xreg, ΘX) → Hn
c (Xreg, KX) ª= C.

Proof. Since Ext1OX
(≠1

X ,OX) = Ext1OXreg
(≠1

Xreg
,OXreg) by [53, Prop. 1.1], the Serre

duality for open manifolds [1, Th. 4.1 and Th. 4.2] yields that

Hn−1(X,≠1
X≠KX) = Ext1OX

(≠1
X ,OX)∨ = Ext1OXreg

(≠1
Xreg

,OXreg) = Hn−1
c (Xreg,≠1

X≠KX)

and that the Yoneda product pairing

Hn−1
c (Xreg,≠1

X ≠KX)× Ext1OXreg
(≠1

Xreg
≠KX ,KX) → Hn

c (Xreg, KX)

is perfect. Since Xreg is smooth, Ext1OXreg
(≠1

Xreg
≠KX ,KX) = H1(Xreg,ΘX) and

the Yoneda product pairing h·, ·i coincides with the Serre duality pairing. §



ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 9

2.2. The locally-freeness of the direct image sheaves: the case n = 3
Let n ≥ 3. Let X be a smoothable Calabi-Yau n-fold with at most one ODP.

Let π : (X , X) → (S, 0) be a smoothing of X. Set ≠1
X/S := ≠1X /π§≠1

S .

Lemma 2.10. The sheaf ≠1
X/S is a flat OS-module.

Proof. Since ≠1
X/S, x

ª= O©n
X , x for x ∈ X \ Σπ, it suffices to prove the assertion for

x ∈ Σπ. Let (Y, o) → (Def(A1), 0) ª= (C, 0) be the Kuranishi family of an ODP
o. There exists a map f : (S,π(x)) → (Def(A1), 0) such that (X , x) → (S, π(x)) is
induced from (Y, o) → (Def(A1), 0) by f . Let p : X = Y ×Def(A1) S → Y be the
projection. Since ≠1

X/S, x = p§≠1
Y/Def(A1)

, the assertion follows from the fact that
≠1

Y/Def(A1),o
is a flat ODef(A1),0-module (cf. [41, p. 13, l. 28–p. 14, l. 1]). §

Let p : (X, X) → (Def(X), [X]) be the Kuranishi family of X.

Theorem 2.11. If n = 3, the function Def(X) 3 s → hq(Xs, ≠1
Xs

) ∈ Z is constant
for all q ≥ 0. In particular, Rqp§≠1

X/Def(X) is a locally free ODef(X)-module on
Def(X) for all q ≥ 0.

The proof of this theorem is divided into the four lemmas below.

Lemma 2.12. If n ≥ 3, the function Def(X) 3 s → hn−1(Xs,≠1
Xs

) ∈ Z is con-
stant. In particular, Rn−1p§≠1

X/Def(X) is a locally free ODef(X)-module on Def(X).

Proof. Since KX
ª= OX , we have

TDef(X),[X]
ª= Ext1OX

(≠1
X ,OX) = Ext1OX

(KX ≠ ≠1
X ,KX) = Hn−1(X, KX ≠ ≠1

X)∨,

where the first isomorphism follows from Proposition 2.5, the second equality follows
from the triviality of KX , and the third equality follows from the Serre duality
[24, Chap. III Th. 7.6 (b) (iii)]. Notice that we can apply the Serre duality to X,
because X has at most one ODP and hence X is Cohen-Macaulay [24, Chap. II
Th. 8.21, Prop. 8.23]. Since KX

ª= OX , we get hn−1(X, ≠1
X) = dimTDef(X),[X]. The

smoothness of Def(X) at [X] implies that the function on Def(X)

Def(X) 3 s → dimTDef(X),s = dimTDef(Xs),[Xs] = hn−1(Xs,≠1
Xs

) ∈ Z
is constant, for the Zariski tangent space coincides with the usual tangent space for
smooth varieties. Notice that the first equality dimTDef(X),s = dimTDef(Xs),[Xs]

follows from [16, Sect. 8.2]. Since ≠1
X/Def(X) is a flat ODef(X)-module by Lemmas

2.7 and 2.10, Rn−1p§≠1
X/Def(X) is locally free by [1, Chap. 3, Th. 4.12 (ii)]. §

Lemma 2.13. If n = 3, then h3(Xs,≠1
Xs

) = 0 for all s ∈ Def(X). In particular,
R3π§≠1

X/Def(X) = 0.

Proof. See [40, p. 432, l.23]. §
Lemma 2.14. If n = 3, the function Def(X) 3 s → h1(Xs,≠1

Xs
) ∈ Z is constant.

In particular, R1p§≠1
X/Def(X) is a locally free ODef(X)-module.

Proof. Since ≠1
X/Def(X) is a flat ODef(X)-module, the function Def(X) 3 s →

χ(Xs,≠1
Xs

) ∈ Z is constant, where χ(Xs,≠1
Xs

) denotes the Euler characteristic
of ≠1

Xs
. Since hq(Xs,≠1

Xs
) is independent of s ∈ Def(X) for all q 6= 1 by Lemmas

2.12 and 2.13, this implies that h1(Xs,≠1
Xs

) is independent of s ∈ Def(X). §
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Lemma 2.15. If n = 3, then R1p§≠1
X is locally free. Moreover, the restriction map

R1p§≠1
X → R1p§≠1

X/Def(X) is an isomorphism of ODef(X)-modules.

Proof. Set N := dimDef(X). The short exact sequence of sheaves on X

0 → O©N
X

ª= p§≠1
Def(X) → ≠1

X → ≠1
X/Def(X) → 0

induces the long exact sequence of direct images

· · · −→ R1p§p§≠1
Def(X) −→ R1p§≠1

X −→ R1p§≠1
X/Def(X) −→ R2p§p§≠1

Def(X) −→ · · ·
Since R1p§p§≠1

Def(X) = (R1p§OX)©N = 0 and R2p§p§≠1
Def(X) = (R2p§OX)©N = 0

by Definition 2.1 (ii), the second assertion follows from the above exact sequence.
By the same argument as above, we see that the restriction map H1(Xs,≠1X |Xs) →

H1(Xs,≠1
Xs

) is an isomorphism for all s ∈ Def(X). Hence h1(Xs,≠1X |Xs) is inde-
pendent of s ∈ Def(X) by Lemma 2.14. This, together with [1, Chap. 3, Th. 4.12
(ii)] proves the first assertion. §

Theorem 2.11 follows from Lemmas 2.12, 2.13, 2.14, and 2.15. §

Let H2(X, Z)Def(X) be the constant sheaf on Def(X) with stalk H2(X, Z). By
[40, Prop. 6.1], R2p§Z is isomorphic to the constant sheaf H2(X, Z)Def(X).

Since R1p§OX = R2p§OX = 0 by Definition 2.1 (ii), the exponential sequence
on X induces the exact sequence of direct images

(2.3) 0 = R1p§OX −→ R1p§O§X
ª=−−−−→ R2p§Z −→ R2p§OX = 0.

For a holomorphic line bundle L ∈ H1(X,O§X), the Dolbeault cohomology class
of the Chern form c1(L, h) ∈ H1(X,≠1

X) is independent of the choice of a Hermitian
metric h on L, which we will denote by C1(L). Since every element of H2(X, Z)
is represented uniquely as the Chern class of an element of H1(X,O§X) by the
isomorphism (2.3), we define the map j : H2(X, Z) → H1(X,≠1

X) by

j (c1(L)|X) := C1(L), L ∈ H1(X,O§X).

We regard C1(L) as an element of H0(Def(X), R1p§≠1
X/Def(X)) after Lemma 2.15.

Since H2(X, Z) is finitely generated, the map j extends to a homomorphism of
ODef(X)-modules

j : H2(X, Z)Def(X) ≠Z ODef(X) → R1p§≠1
X/Def(X).

Lemma 2.16. The homomorphism j is an isomorphism of ODef(X)-modules.

Proof. Since H2(X, Z)Def(X) ≠Z ODef(X) and R1p§≠1
X/Def(X) are locally free by

Lemma 2.15, it suffices to prove that j|X : H2(X, C) → H1(X,≠1
X) is an isomor-

phism. Since h2(X, C) = h2(Xs, C) by [40, Prop. 6.1] and since h1(Xs,≠1
Xs

) =
h1(X,≠1

X) by Lemma 2.14, we get h2(X, C) = h1(X,≠1
X). Since j|X is surjective

by [40, Lemma 2.2], this implies that j|X is an isomorphism. §

3. Quillen metrics

Throughout Section 3, we fix the following notation: Let X be a complex man-
ifold. Let (F, hF ) be a holomorphic Hermitian vector bundle on X, which we also
write F = (F, hF ) for simplicity.
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3.1. Analytic torsion and BCOV torsion
In Subsection 3.1, assume that X is a compact Kähler manifold with Kähler

metric gX and with Kähler form ∞X . We set X = (X, gX). Define ≠p
X to be the

holomorphic vector bundle ≠p
X equipped with the Hermitian metric induced from

gX .
Let Ap,q

X (F ) be the vector space of F -valued smooth (p, q)-forms on X. Set
SF =

L
q≥0 A0,q

X (F ). Let h·, ·i be the Hermitian metric on (
V

T §(0,1)X)≠F induced
from gX and hF . The volume form of X is defined by dvX = ∞dim X

X /(dimX)!. The
L2-metric is the Hermitian metric on SF defined by

(s, s0)L2 :=
1

(2π)dim X

Z
X
hs(x), s0(x)ix dvX(x), s, s0 ∈ SF .

Let @̄F be the Dolbeault operator acting on SF and let @̄§F be the formal adjoint
of @̄F with respect to (·, ·)L2 . Then §F = (@̄F + @̄§F )2 is the corresponding @̄-
Laplacian. Let σ(§F ) be the spectrum of §F and let EF (∏) be the eigenspace of
§F with respect to the eigenvalue ∏.

Let N and ≤ be the operators on SF defined by N = q and ≤ = (−1)q on A0,q
X (F ).

Then N and ≤ preserve EF (∏).
The zeta function

≥F (s) :=
X

∏∈σ(§F )\{0}
∏−s Tr [≤N |EF (∏)].

converges absolutely for s ∈ C with Re s ¿ 1. By [11, II, Th. 2.16, (2.98)], ≥F (s)
has a meromorphic continuation to the complex plane, which is holomorphic at
s = 0.

Definition 3.1. (i) The analytic torsion of (X,F ) is defined by

τ(X,F ) := exp(−≥ 0
F
(0)).

(ii) The BCOV torsion of X is defined by

TBCOV(X) :=
Y
p≥0

τ(X,≠
p
X)(−1)pp = exp[−

X
p≥0

(−1)pp ≥ 0
≠

p
X

(0)].

We refer the reader to [11], [45] for more details about analytic torsion.

3.2. Quillen metrics

Definition 3.2. (i) The determinant of the cohomologies of F is the complex line
defined by

∏(F ) :=
O
q≥0

(detHq(X,F ))(−1)q

.

(ii) The BCOV line is the complex line ∏(≠•X) defined by

∏(≠•X) :=
O
p≥0

∏(≠p
X)(−1)pp =

O
p,q≥0

(detHq(X,≠p
X))(−1)p+qp.

Set Kq(X,F ) = ker §F ∩A0,q
X (F ). Then Kq(X,F ) inherits a metric from (·, ·)L2 .

By Hodge theory, we have an isomorphism Hq(X,F ) ª= Kq(X, F ). We define
hHq(X,F ) to be the metric on Hq(X,F ) induced from the L2-metric on Kq(X,F )
by this isomorphism.
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Let k · kL2,∏(F ) be the Hermitian metric on ∏(F ) induced from {hHq(X,F )}q≥0.

Definition 3.3. (i) The Quillen metric on ∏(F ) is defined by

kαk2Q,∏(F ) := τ(X,F ) · kαk2L2,∏(F ), α ∈ ∏(F ).

(ii) The Quillen metric on ∏(≠•X) is defined by

k · k2Q,∏(≠•X) :=
O
p≥0

k · k(−1)p2p
Q,∏(≠p

X)
= TBCOV(X) ·

O
p≥0

k · k(−1)p2p
L2,∏(≠p

X)
.

We refer the reader to [11], [12], [43], [49] for more details about Quillen metrics.

3.3. The Serre duality
Let n := dimX. By the Serre duality, the following pairing on the Dolbeault

cohomology groups is perfect:

Hq(X,≠p
X)×Hn−q(X,≠n−p

X ) 3 (α,β) →
µ√−1

2π

∂n Z
X

α ∧ β ∈ C.

Let {√i} be an arbitrary basis of Hq(X,≠p
X), and let {√∨i } the dual basis of

Hn−q(X,≠n−p
X ) with respect to the Serre duality pairing. Then the element of

det Hp(X,≠q
X)≠ det Hn−p(X,≠n−q

X ) defined by

(3.1) 1(p,q),(n−p,n−q) :=
^
i

√i ≠
^
i

√∨i

is independent of the choice of a basis {√i} and is called the canonical element.
Similarly, the following element of ∏(≠p

X)≠∏(≠n−p
X )(−1)n

is also called the canonical
element:

1p,n−p = 1p,n−p(X) :=
nO

q=0

1(p,q),(n−p,n−q) ∈ ∏(≠p
X)≠ ∏(≠n−p

X )(−1)n

.

Then 1(p,q),(n−p,n−q) = 1−1
(p,q),(n−p,n−q) by (3.1).

Let 1C be the trivial Hermitian structure on C, i.e., 1C(a) = |a|2 for a ∈ C.

Proposition 3.4. The following identity holds:

(3.2) k1p,n−pkL2 = k1p,n−pkQ = 1.

In particular, the canonical element 1p,n−p induces the following canonical isome-
tries of the Hermitian lines:≥

∏(≠p
X)≠ ∏(≠n−p

X )(−1)n

, k · kL2,∏(≠p
X)≠∏(≠n−p

X )(−1)n

¥ ª= (C, 1C),(3.3) ≥
∏(≠p

X)≠ ∏(≠n−p
X )(−1)n

, k · kQ,∏(≠p
X)≠∏(≠n−p

X )(−1)n

¥ ª= (C, 1C).(3.4)

Proof. Let {φi} be a unitary basis of Hq(X,≠p
X) with respect to the L2-metric.

The dual basis of {φi} with respect to the Serre duality pairing is given by {§̄φi},
where § : Ap,q

X → An−q,n−p
X is the Hodge §-operator with respect to the metric gX .

By setting √i = φi in (3.1), we get the first equality

(3.5) k1(p,q),(n−p,n−q)kL2 = 1,

which yields the isometry (3.3).
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Let ≥p,q(s) be the spectral zeta function of the @̄-Laplacian acting on Ap,q
X . Since

§̄−1§p,q§̄ = §n−p,n−q, we have ≥p,q(s) = ≥n−p,n−q(s), which yields that

(3.6) τ(X,≠p
X) = τ(X,≠n−p

X )(−1)n+1
.

The second isometry (3.4) follows from (3.3) and (3.6). §

For more details about the Serre duality for Quillen metrics, we refer to [21, (9)].

3.4. Characteristic classes
In Subsections 3.4 and 3.5, we do not assume that X is compact Kähler.

3.4.1. Chern forms. For a square matrix A, set Td(A) := det
≥

A
I−exp(−A)

¥
and

ch(A) := Tr[eA]. Let R(F ) be the curvature of F = (F, hF ) with respect to the
holomorphic Hermitian connection. The real closed forms on X defined by

Td(F, hF ) := Td
µ
− 1

2π
√−1

R(F )
∂

, ch(F, hF ) := ch
µ
− 1

2π
√−1

R(F )
∂

are called the Todd form and the Chern character form of F , respectively.
Let ci(F, hF ) be the i-th Chern form of (F, hF ).

3.4.2. Bott-Chern classes. Let E : 0 → E0 → E1 → · · · → Em → 0 be an exact
sequence of holomorphic vector bundles on X, equipped with Hermitian metrics
hi, i = 0, . . . ,m. We set E := (E , {hi}m

i=0). By [11, I, Th. 1.29 and Eqs. (0.5),
(1.124)], one has the Bott-Chern secondary class ech(E) ∈ L

p≥0 Ap,p(X)/Im @+Im @̄

associated to the Chern character and E such that

ddc ech(E) =
mX

i=0

(−1)i+1ch(Ei, hi).

Consider the case where m = 1 and E0 = E1 = E. Let h0 and h be Hermitian
metrics of E0 and E1, respectively. By [11, I, Th. 1.27] or [20, Sect. 1.2.4], one has
the Bott-Chern secondary class ech(E; h, h0) ∈ L

p≥0 Ap,p(X)/Im @+Im @̄ such that

ddc ech(E; h, h0) = ch(E, h)− ch(E, h0).

When rk(E) = 1, we have the following explicit formula by [20, I, (1.2.5.1),
(1.3.1.2)]:

(3.7) ech(E; h, h0) =
1X

m=1

1
m!

X
a+b=m−1

c1(E, h)ac1(E, h0)b log
µ

h0

h

∂
.

Similarly, fTd(E;h, h0) ∈ L
p≥0 Ap,p(X)/Im @ + Im @̄ denotes the Bott-Chern sec-

ondary class associated to the Todd form such that

ddc fTd(E;h, h0) = Td(E, h)− Td(E, h0).

For more details about Bott-Chern classes, we refer to [11], [20], [49].
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3.5. The curvature formulas
Let S be a complex manifold and let π : X → S be a proper surjective holomor-

phic submersion. Then every fiber of π is a compact complex manifold. The map
π : X → S is said to be locally Kähler if for every s ∈ S there is an open subset
U 3 s such that π−1(U) possesses a Kähler metric. We set Xs = π−1(s) for s ∈ S.

Let TX/S := ker π§ Ω TX be the relative holomorphic tangent bundle of the
family π : X → S. Set ≠p

X/S :=
Vp(TX/S)∨ and KX/S := KX ≠ (π§KS)−1 =

≠dim X−dim S
X/S .
A C1 Hermitian metric on TX/S is said to be fiberwise Kähler if the induced

metric on Xs is Kähler for all s ∈ S. By Kodaira-Spencer, there exists an fiberwise
Kähler metric on TX/S if and only if every Xs possesses a Kähler metric.

Assume that every fiber Xs possesses a Kähler metric. Let gX/S be a fiberwise
Kähler metric on TX/S. Set gs = gX/S |Xs and Xs = (Xs, gs) for s ∈ S. We
define ≠p

Xs
to be the holomorphic vector bundle ≠p

Xs
equipped with the Hermitian

metric induced from gs. When p = 0, ≠
0
Xs

is defined as the trivial line bundle OXs

equipped with the trivial Hermitian metric.
Since dimHq(Xs,≠

p
Xs

) is locally constant, the direct image sheaf Rqπ§≠
p
X/S is

locally free for all p, q ≥ 0 and is identified with the corresponding holomorphic
vector bundle over S. Set

∏(≠•X/S) :=
O

p,q≥0

(detRqπ§≠p
X/S)(−1)p+qp.

Via the natural fiberwise identification ∏(≠•X/S)|s = ∏(≠•Xs
) for all s ∈ S, ∏(≠•X/S)

is equipped with the Hermitian metric k · k∏(≠•X/S),Q defined by

k · kQ,∏(≠•X/S)(s) := k · kQ,∏(≠•Xs
), s ∈ S,

which is smooth by [11, III, Cor. 3.9]. We set ∏(≠•X/S)Q := (∏(≠•X/S), k·kQ,∏(≠•X/S)).

Since dimKq(Xs,≠
p
Xs

) is locally constant, there exists a C1 vector bundle
Kp,q(X/S) over S such that Kp,q(X/S)s = Kq(Xs,≠

p
Xs

) for all s ∈ S. Then
the fiberwise isomorphism Hq(Xs,≠

p
Xs

) ª= Kq(Xs,≠
p
Xs

) via Hodge theory induces
an isomorphism of C1 vector bundles Rqπ§≠

p
X/S

ª= Kp,q(X/S). Let hRqπ§≠p
X/S

be
the C1 Hermitian metric on Rqπ§≠

p
X/S induced from the L2-metric on Kp,q(X/S)

by this isomorphism. We define Rqπ§≠p
X/S := (Rqπ§≠p

X/S , hRqπ§≠
p
X/S

).
Let TBCOV(X/S) be the function on S defined by

TBCOV(X/S)(s) := TBCOV(Xs) =
Y
p≥0

τ(Xs,≠
p
Xs

)(−1)pp, s ∈ S.

For a differential form ', ['](p,q) denotes the component of bidegree (p, q) of '.

Theorem 3.5. Assume that the map π : X → S is locally Kähler and set n =
dimX − dimS. Then TBCOV(X/S) lies in C1(S), and the following equation of
C1 (1, 1)-forms on S holds:

c1(∏(≠•X/S)Q) = −ddc log TBCOV(X/S) +
X
q≥0

(−1)p+qp c1(Rqπ§≠p
X/S)

= − 1
12

π§
£
c1(TX/S, gX/S) cn(TX/S, gX/S)

§(1,1)
.
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Proof. See [7, pp. 374] and [11, Th. 0.1]. §

4. The BCOV invariant of Calabi-Yau manifolds

Throughout Section 4, we fix the following notation: Let X be a smooth Calabi-
Yau n-fold. Let p : (X, X) → (Def(X), [X]) be the Kuranishi family of X.

Let g be a Kähler metric on X with Kähler form ∞. We define Vol(X, ∞) :=
(2π)−n

R
X ∞n/n! = k1k2L2 . Notice that our definition of Vol(X, ∞) is different from

the ordinary one because of the factor (2π)−n. We set ci(X, ∞) := ci(TX, g) and
χ(X) :=

R
X cn(X, ∞). Let η ∈ H0(X,≠n

X) \ {0}.
4.1. The BCOV Hermitian line

Recall that the L2-norm on H0(X,≠n
X) is independent of the choice of a Kähler

metric g because

kηk2L2 = (2π)−n(
√−1)n2

Z
X

η ∧ η̄.

After [58, Sect. 5.1], we make the following:

Definition 4.1. (i) For X = (X, ∞), define A(X) = A(X, ∞) ∈ R by

A(X) := Vol(X, ∞)
χ(X)
12 exp

"
− 1

12

Z
X

log

√
(
√−1)n2

η ∧ η̄

∞n/n!
· Vol(X, ∞)
kηk2L2

!
cn(X, ∞)

#
.

(ii) The BCOV metric is the Hermitian structure k · k∏(≠•X) on ∏(≠•X) defined by

k · k2∏(≠•X) := A(X) · k · k2Q,∏(≠•X).

(iii) The BCOV Hermitian line is defined by

∏(≠•X) := (∏(≠•X), k · k∏(≠•X)).

Remark 4.2. By Yau [56], every Kähler class on X contains a unique Ricci-flat
Kähler form. If ∑ is a Ricci-flat Kähler form on X, then

∑n/n!
(
√−1)n2η ∧ η̄

=
Vol(X, ∑)
kηk2L2

,

and hence logA(X,∑) = χ(X)
12 log Vol(X, ∑) in this case.

4.2. The Weil-Petersson metric and the Hodge metric
To compute the curvature of the BCOV Hermitian line bundles, let us recall the

definitions of the Weil-Petersson metric [52] and the Hodge metric [35], [36].
By Proposition 2.5, the homomorphism of ODef(X)-modules on Def(X) induced

by the Kodaira-Spencer map

ρDef(X) : ΘDef(X) → R1p§ΘX/Def(X)

is an isomorphism, which is called the Kodaira-Spencer isomorphism in this paper.
Since Hn−1(Xs,≠1

Xs
) Ω Hn(Xs, C) consists of primitive cohomology classes for

all s ∈ Def(X), the L2-metric on R1p§≠n−1
X/Def(X) is independent of the choice of a

fiberwise-Kähler metric on TX/Def(X) by e.g. [55, Th. 6.32]. We will often denote
the L2-metric hR1p§≠n−1

X/Def(X)
on R1p§≠n−1

X/Def(X) by (·, ·)L2 . Then

(ξ, ≥)L2 = −(2π)−n(
√−1)n2

Z
X

ξ ∧ ≥, ξ, ≥ ∈ H1(X,≠n−1
X ).
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For s ∈ Def(X), let ρs : TDef(X),s → H1(Xs,ΘXs) be the Kodaira-Spencer map,
and let ηs ∈ H0(Xs,≠n

Xs
) \ {0}. Let ∂(·) be the interior product.

Definition 4.3. The Weil-Petersson metric gWP on Def(X) is defined by

gWP(u, v) := −
R

Xs
∂(ρs(u))ηs ∧ ∂(ρs(v))ηsR

Xs
ηs ∧ ηs

=
(∂(ρs(u))ηs, ∂(ρs(u))ηs)L2

kηsk2L2

for u, v ∈ TDef(X),s. Let ωWP be the Kähler form of gWP.

Let ηX/Def(X) be a local basis of p§KX/Def(X). By [52, Th. 2], we have

(4.1) ωWP = −ddc log kηX/Def(X)k2L2 = c1(p§KX/Def(X), k · kL2).

Proposition 4.4. The Kodaira-Spencer map ρDef(X) induces an isometry of the
following holomorphic Hermitian vector bundles on Def(X):

(ΘDef(X), gWP)≠ (p§KX/Def(X), k · kL2) ª= (R1p§≠n−1
X/Def(X), hR1p§≠n−1

X/Def(X)
).

In particular, ρDef(X) induces an isometry of the following holomorphic Hermitian
line bundles on Def(X):

(detR1p§≠n−1
X/Def(X),dethR1p§≠n−1

X/Def(X)
)

ª= (detΘDef(X),det gWP)≠ (p§KX/Def(X), k · kL2)≠h1,n−1(X).

Proof. The Kodaira-Spencer isomorphism is given by

ΘDef(X) ≠ p§KX/Def(X) 3 u≠ η → ∂(ρDef(X)(u))η ∈ R1p§≠n−1
X/Def(X).

Hence (∂(ρDef(X)(u)) η, ∂(ρDef(X)(v)) η)L2 = gWP(u, v) ·kηk2L2 by Definition 4.3. §
Definition 4.5. The Ricci form of the Weil-Petersson metric is the Chern form of
the Hermitian line bundle (detΘDef(X),det gWP):

Ric ωWP := c1(detΘDef(X),det gWP).

Proposition 4.6. The following identities hold:

c1(detRn−pπ§≠p
X/Def(X), k · kL2) =

8>><>>:
−ωWP (p = 0)
−Ric ωWP − h1,n−1(X) ωWP (p = 1)
Ric ωWP + h1,n−1(X)ωWP (p = n− 1)
ωWP (p = n).

Proof. The assertion for p = 0, n follows from (4.1). The assertion for p = 1, n− 1
follows from Proposition 4.4 and the Serre duality. §

See [17, Sect. 2] for a generalization of Proposition 4.6. In the case n = 3, the
following positivity result for Ric ωWP+(h1,2(X)+3) ωWP shall be crucial in Sect. 7.

Proposition 4.7. When n = 3, the (1, 1)-form Ric ωWP + (h1,2(X) + 3) ωWP is a
Kähler form on Def(X).

Proof. See [36, Th. 1.1]. §
Definition 4.8. When n = 3, the Hodge form on Def(X) is the positive (1, 1)-form
on Def(X) defined as

ωH := Ric ωWP + (h1,2(X) + 3) ωWP.

The corresponding Kähler metric on the Kuranishi space Def(X) is called the Hodge
metric on Def(X).
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The Hodge metric is related to the invariant Hermitian metric on the period
domain for Calabi-Yau threefolds as follows. Let X be a polarized smooth Calabi-
Yau threefold. Let D be the classifying space for the polarized Hodge structures
of weight 3 on H3(X, Z)/Torsion defined by Griffiths e.g. [23, Sect. 2]. Let F i

(i = 1, 2, 3) be the Hodge bundles on D. Let ωD be the invariant Hermitian metric
of D. Let fM be the universal covering space of the moduli space of X and let
f : fM→ D be the period map. Then we have
(a) ωWP = f§(c1(F 3, k · kL2)) [55];
(b) Up to a constant, ωH = f§(ωD) [35]. In particular, ωH is always Kählerian.

We refer to e.g. [23] for more details about the classifying space D.

4.3. The curvature formula for the BCOV Hermitian line bundles
Let π : (X , X) → (S, 0) be a flat deformation of X. Set Xs = π−1(s) for s ∈ S.

Let gX/S be a fiberwise-Kähler metric on TX/S. Then the line bundle ∏(≠•X/S) on
S is equipped with the BCOV metric k · k∏(≠•X/S) with respect to gX/S .

Let µ : (S, 0) → (Def(X), [X]) be the holomorphic map such that the family
π : (X , X) → (S, 0) is induced from the Kuranishi family by µ. Then we have

c1(π§ωX/S , k · kL2) = µ§ωWP

near s = 0. Let ηX/S be a local basis of π§ωX/S and set

ωWP,X/S := µ§ωWP = −ddc log kηX/Sk2L2 = c1(π§ωX/S , k · kL2).

Theorem 4.9. The following identity of (1, 1)-forms on (S, 0) holds:

c1(∏(≠•X/S)) =
χ(X)
12

ωWP,X/S .

Proof. We follow [58, Sect. 5.2]. Since the assertion is of local nature, it suffices
to prove it when S ª= ∆dim S . Then π§KX/S

ª= OS . Let ηX/S ∈ H0(S,π§KX/S)
be a nowhere vanishing holomorphic section. For s ∈ S, set ηs = ηX/S |Xs . Then
ηs ∈ H0(Xs,KXs) \ {0} and ηX/S are identified with the family of holomorphic
n-forms {ηs}s∈S varying holomorphically in s ∈ S. Define kηX/Sk2L2 ∈ C1(S) by

kηX/Sk2L2(s) = kηsk2L2 , s ∈ S.

Set gs = gX/S |Xs . Then gX/S is identified with the family of Kähler metrics
{gs}s∈S . Let ∞s be the Kähler form of hs. Let ∞X/S = {∞s}s∈S be the family of
Kähler forms associated to gX/S .

Define the C1 functions Vol(X/S) and A(X/S) on S by

Vol(X/S)(s) = Vol(Xs, ∞s), A(X/S)(s) = A(Xs, ∞s), s ∈ S.

Let ci(X/S) be the i-th Chern form of the holomorphic Hermitian vector bundle
(TX/S, gX/S). Since

c1(X/S) = −c1(KX/S ,det g−1
X/S) = ddc log

√
(
√−1)n2

ηX/S ∧ ηX/S

∞n
X/S/n!

!
,

the following identity of (1, 1)-forms on X holds:

(4.2)

c1(X/S) = −π§
©
ωWP,X/S + ddc log Vol(X/S)

™
+ ddc log

(
(
√−1)n2

ηX/S ∧ η̄X/S

∞n
X/S/n!

· π§
µ

Vol(X/S)
kηX/Sk2L2

∂)
.
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Then we get
(4.3)

− 1
12

π§ [c1(X/S) cn(X/S)]

= − 1
12

π§
£−π§

©
ωWP,X/S + ddc log Vol(X/S)

™
cn(X/S)

§
+ π§

"
− 1

12
ddc log

(
(
√−1)n2

ηX/S ∧ η̄X/S

∞n
X/S/n!

· π§
µ

Vol(X/S)
kηX/Sk2L2

∂)
cn(X/S)

#

=
χ(X)
12

ωWP,X/S + ddc log A(X/S),

where the first equality follows from (4.2), and the second one follows from the
projection formula and the commutativity of ddc and π§.

Since the map π : X → S is locally projective by Proposition 2.8, we may apply
Theorem 3.5 to the family π : X → S. Then we deduce from (4.3) that

c1(∏(≠•X/S)) = c1(∏(≠•X/S)Q)− ddc log A(X/S)

= − 1
12

π§[c1(X/S) cn(X/S)]− ddc log A(X/S)

=
χ(X)
12

ωWP,X/S .

This completes the proof of Theorem 4.9. §

Theorem 4.10. Let X be a smooth Calabi-Yau n-fold. The Hermitian metric
k · k∏(≠•X) on ∏(≠•X) is independent of the choice of a Kähler metric on X. In
particular, the BCOV Hermitian line ∏(≠•X) is an invariant of X.

Proof. Let σ ∈ ∏(≠•X) \ {0}. Let X = X × P1 → P1 be the trivial family over P1.
Let ∞0, ∞1 be arbitrary Kähler forms on X. Let ∞X/P1 = {∞t}t∈P1 be a C1-family
of Kähler forms on X connecting ∞0 and ∞1. Since ωWP,X/P1 = 0, log kσk2∏(≠•X/P1 )

is a harmonic function on P1 by Theorem 4.9. Hence kσk∏(≠•X/P1 ) is a constant
function on P1. This proves Theorem 4.10. §

4.4. The BCOV invariant of Calabi-Yau threefolds
In Subsection 4.4, we fix n = 3. Hence X is a smooth Calabi-Yau threefold. Set

b2(X) := dimH2(X, R). Let cX(·, ·, ·) be the cubic form on H2(X, R) induced from
the cup-product:

cX(α,β, ∞) :=
1

(2π)3

Z
X

α ∧ β ∧ ∞, α,β, ∞ ∈ H2(X, R).

4.4.1. The covolume of the cohomology lattice. Let ∑ be a Kähler class on X.
Let h·, ·iL2,∑ be the L2-inner product on H2(X, R) with respect to ∑, and let
h·, ·iL2,det ∑ be the induced L2-inner product on detH2(X, R). Set H2(X, Z)fr :=
H2(X, Z)/Torsion.

Definition 4.11. For a basis {e1, . . . , eb2(X)} of H2(X, Z)fr over Z, set

VolL2(H2(X, Z),∑) := det
°hei, ejiL2,∑

¢
= he1∧ · · ·∧eb2(X), e1∧ · · ·∧eb2(X)iL2,det ∑.
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Obviously, VolL2(H2(X, Z), ∑) is independent of the choice of a Z-basis of H2(X, Z)fr;
it is the volume of the real torus H2(X, R)/H2(X, Z)fr with respect to h·, ·iL2,∑. We
can write VolL2(H2(X, Z),∑) in terms of the cubic form cX as follows:

Let L be the operator on H•(X, R) defined by L(') = ∑ ∧ ' for ' ∈ H•(X, R).

Lemma 4.12. The following identity holds

hα,βiL2,∑ =
3
2

cX(α,∑, ∑) cX(β,∑, ∑)
cX(∑, ∑, ∑)

− cX(α, β,∑), α,β ∈ H2(X, R).

In particular, VolL2(H2(X, Z),∑) ∈ Q if ∑ ∈ H2(X, Q).

Proof. Let ' ∈ H1,1(X, R) = H2(X, R). By [55, Lemma 6.31], one has the orthog-
onal decomposition H1,1(X, R) = ker(L2)© R∑ with respect to h·, ·iL2,∑. Since

(4.4) h', 'iL2,∑ =
Ω −cX(', ', ∑) (L2(') = 0)

1
2cX(', ', ∑) (' ∈ R∑)

by [55, Th. 6.32], we get the decomposition

(4.5) ' =
µ

'− cX(', ∑, ∑)
cX(∑, ∑, ∑)

∑

∂
+

cX(', ∑,∑)
cX(∑, ∑,∑)

∑ ∈ ker(L2)© R∑.

By (4.4), (4.5), we get

hα,βiL2,∑ = −cX

µ
α− cX(α,∑, ∑)

cX(∑, ∑,∑)
∑ , β − cX(β,∑,∑)

cX(∑,∑, ∑)
∑ , ∑

∂
+

1
2
cX

µ
cX(α,∑, ∑)
cX(∑, ∑,∑)

∑ ,
cX(β, ∑,∑)
cX(∑, ∑, ∑)

∑ , ∑

∂
=

3
2

cX(α,∑, ∑) cX(β,∑,∑)
cX(∑,∑,∑)

− cX(α,β,∑).

This proves the lemma. §
4.4.2. The BCOV invariant. Let us introduce the main object of this paper.

Definition 4.13. For a Kähler form ∞ on X, the BCOV invariant of (X, ∞) is the
real number defined by

τBCOV(X, ∞) : = Vol(X, ∞)−3 VolL2(H2(X, Z), [∞])−1A(X, ∞) TBCOV(X, ∞)

= Vol(X, ∞)
χ(X)
12 −3 VolL2(H2(X, Z), [∞])−1

× exp
∑
− 1

12

Z
X

log
µ√−1 η ∧ η̄

∞3/3!
· Vol(X, ∞)
kηk2L2

∂
c3(X, ∞)

∏
TBCOV(X, ∞).

In the rest of Section 4, we derive a variational formula for the BCOV invariant.

4.4.3. The curvature formula for the BCOV invariant. Let π : (X , X) → (S, 0) be a
flat deformation of X which is induced from the Kuranishi family by a holomorphic
map µ : (S, 0) → (Def(X), [X]). Let ωH,X/S be the (1, 1)-form on S induced from
the Hodge form on Def(X) via µ:

ωH,X/S := µ§ωH.

Let gX/S be a fiberwise-Kähler metric on TX/S. Let ∞s be the Kähler form of
gX/S |Xs . Let τBCOV(X/S) be the function on S defined by

τBCOV(X/S)(s) := τBCOV(Xs, ∞s), s ∈ S.
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Theorem 4.14. The following identity of (1, 1)-forms on (S, 0) holds

ddc log τBCOV(X/S) = −χ(X)
12

ωWP,X/S − ωH,X/S

= −
µ

h1,2(X) +
χ(X)
12

+ 3
∂

µ§ωWP − µ§Ric ωWP.

Proof. We follow [58, Th. 5.6]. Let A(X/S) and TBCOV(X/S) be the C1 functions
on S defined by

A(X/S)(s) := A(Xs, ∞s), TBCOV(X/S)(s) := TBCOV(Xs, ∞s)

for s ∈ S. By Theorem 4.9, we get

− ddc log[A(X/S) TBCOV(X/S)] +
X

p,q≥0

(−1)p+qp c1(det Rqπ§≠p
X/S , k · kL2,gX/S

)

=
χ(X)
12

µ§ωWP.

Since Rqπ§≠p
X/S 6= 0 if and only if p + q = 3 or p = q, we deduce from Proposition

4.6 that

(4.6)

− ddc log[A(X/S) TBCOV(X/S)] +
X
p>0

p c1(detRpπ§≠p
X/S , k · kL2,gX/S

)

− °
µ§Ric ωWP + h1,2(X) µ§ωWP

¢− 3µ§ωWP

=
χ(X)
12

µ§ωWP.

Define a function VolL2(H2(X/S, Z)) on S by

VolL2(H2(X/S, Z))(s) := VolL2(H2(Xs, Z), [∞s]), s ∈ S.

Since π : X → S is induced from the Kuranishi family, there exist holomorphic
line bundles L1, . . . ,Lb2(X) on X by Lemma 2.16 such that c1(Li)|X = ei for 1 ∑ i ∑
b2(X), and such that C1(L1)∧ · · ·∧C1(Lb2(X)) is a nowhere vanishing holomorphic
section of R1π§≠1

X/S . Then

(4.7) kC1(L1) ∧ · · · ∧ C1(Lb2(X))k2L2,gX/S
= VolL2(H2(X/S, Z)).

By the Serre duality and (3.5), 1(1,1),(2,2) ≠ (C1(L1) ∧ · · · ∧ C1(Lb2(X)))−1 is a
nowhere vanishing holomorphic section of R2π§≠2

X/S such that

(4.8) k1(1,1),(2,2) ≠ C1(L1) ∧ · · · ∧ C1(Lb2(X))k2L2,gX/S
= VolL2(H2(X/S, Z))−1.

Let Vol(X/S, ∞X/S) be the function on S defined by

Vol(X/S)(s) := Vol(Xs, ∞s).

Then ∞3
X/S

3!Vol(X/S) is a nowhere vanishing holomorphic section of R3π§≠3
X/S such that

(4.9)

∞∞∞∞∞ ∞3
X/S

3!Vol(X/S)

∞∞∞∞∞
2

L2,gX/S

= Vol(X/S)−1.
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Substituting (4.7), (4.8), (4.9) into (4.6), we get the equation:
(4.10)
− ddc log[A(X/S) TBCOV(X/S)] + ddc log VolL2(H2(X/S, Z)) + 3ddc log Vol(X/S)

=
µ

h1,2(X) +
χ(X)
12

+ 3
∂

µ§ωWP + µ§Ric ωWP.

The theorem follows from the definition of the BCOV invariant and (4.10). §

Remark 4.15. If we follow the mirror symmetry and if X∨ is the mirror Calabi-Yau
threefold of X, the coefficient of µ§ωWP in (4.10) is compatible with that of [6,
Eq. (14)] since h1,1(X∨) = h1,2(X) and χ(X∨) = −χ(X).

For a higher dimensional analogue of Theorem 4.14, we refer to [17].

Theorem 4.16. The BCOV invariant τBCOV(X, ∞) is independent of the choice of
a Kähler metric on X. In particular, τBCOV(X, ∞) is an invariant of X.

Proof. Let X = X×P1 → P1 be the trivial family over P1. Let ∞0, ∞1 be arbitrary
Kähler forms on X. Let ∞X/P1 = {∞t}t∈P1 be a C1-family of Kähler forms on
X connecting ∞0 and ∞1. Since µ§ωWP = µ§Ric(ωWP), log τBCOV(X/P1) is a
harmonic function on P1 by Theorem 4.14. Hence τBCOV(X/P1) is a constant
function on P1. §

After Theorem 4.16, we shall write τBCOV(X) for τBCOV(X, ∞) in the rest of this
paper.

5. The singularity of the Quillen metric on the BCOV bundle

In Section 5, we fix the following notation: Let X be a compact Kähler manifold
of dimension n + 1 and let S be a compact Riemann surface. Let π : X → S be
a surjective holomorphic map, and we do not assume that a general fiber of π is
Calabi-Yau.

Let Σπ be the critical locus of π, and set

D := π(Σπ), So := S \ D, X o := X|So , πo := π|Xo .

Then πo : X o → So is a holomorphic family of compact complex manifolds, and
≠1
Xo/So is a holomorphic vector bundle of rank n over X o.
As in Sections 3 and 4, we have the holomorphic line bundles on So:

∏(≠p
Xo/So) = ≠n

q=0(detRqπ§≠
p
Xo/So)(−1)q

, ∏(≠•Xo/So) = ≠n
p=0∏(≠p

Xo/So)(−1)pp.

In this section, we construct holomorphic extensions of ∏(≠p
Xo/So) and ∏(≠•Xo/So)

from So to S, and we study the singularity of the corresponding Quillen metrics.

5.1. The Kähler extension of the determinant line bundles
Since ≠1

X/S = ≠1
X /π§≠1

S , we have the following complex of coherent sheaves on
X , which is acyclic on X (cf. [33, p.94 l.12-l.16]):

0 −→ π§≠1
S −→ ≠1

X −→ ≠1
X/S −→ 0.

Definition 5.1. (i) For p > 0, let Ep
X/S be the complex of holomorphic vector

bundles on X defined by

Ep
X/S : (π§≠1

S)≠p −→ ≠1
X ≠ (π§≠1

S)≠(p−1) −→ · · · −→ ≠p−1
X ≠ π§≠1

S −→ ≠p
X ,
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where the maps ≠i
X ≠ (π§≠1

S)≠(p−i) → ≠i+1
X ≠ (π§≠1

S)≠(p−i−1) are given by

ω ≠ (π§ξ)≠(p−i) 7→ (ω ∧ π§ξ)≠ (π§ξ)≠(p−i−1), ω ∈ ≠i
X , ξ ∈ ≠1

S .

For p = 0, set E0
X/S : 0 → OX → 0.

(ii) For p ≥ 0, let Fp
X/S be the complex of coherent sheaves on X defined by

Fp
X/S : 0 −−−−→ Ep

X/S
r−−−−→ ≠p

X/S −−−−→ 0,

where r : ≠p
X → ≠p

X/S is the quotient map for p > 0 and the identity map for p = 0.

Since rk(π§≠1
S) = 1, Fp

X/S is acyclic on X \ Σπ for p > 1 and on X for p = 0, 1.

Definition 5.2. (i) Let ∏(Ep
X/S) be the holomorphic line bundle on S defined by

∏(Ep
X/S) :=

pO
i=0

∏(≠p−i
X ≠ (π§≠1

S)≠i)(−1)i

.

(ii) Let ∏(≠•X/S) be the holomorphic line bundle on S defined by

∏(≠•X/S) :=
O
p≥0

∏(Ep
X/S)(−1)pp.

We call ∏(Ep
X/S) and ∏(≠•X/S) the Kähler extensions of ∏(≠p

Xo/So) and ∏(≠•Xo/So)
from So to S, respectively.

Since Fp
X/S is acyclic on X \ Σπ, we have the canonical isomorphisms of holo-

morphic line bundles on So:

∏(≠p
Xo/So) ª= ∏(Ep

X/S)|So , ∏(≠•Xo/So) ª= ∏(≠•X/S)|So .

Let gX be a Kähler metric on X . Let gX/S := gX |TX/S be the Hermitian metric
on TX/S|X\Σπ

induced from gX . Then gX/S (resp. gX ) induces the Hermitian
metric g≠p

X/S
(resp. g≠p

X ) on ≠p
X/S |X\Σπ (resp. ≠p

X ) for all p ≥ 0.
Following Bismut [9] and Yoshikawa [59], we determine the singularity of the

Quillen metric on ∏(≠p
Xo/So) near D with respect to the Kähler extension and with

respect to the metrics gX/S , g≠p
X/S

.

5.2. Three Quillen metrics on the extended BCOV bundles
Let 0 ∈ D. Let (U , t) be a coordinate neighborhood of 0 in S centered at 0 such

that U ª= ∆ and U ∩D = {0}. We set Uo := U \ D = U \ {0}.
Let kS be a Hermitian metric on ≠1

S such that kS(dt, dt) = 1 on U . Then π§kS

is a Hermitian metric on π§≠1
S . Let gπ§≠1

S
be the Hermitian metric on π§≠1

S |X\Σπ

induced from g≠1
X

by the inclusion π§≠1
S Ω ≠1X . Since

π§kS(dπ, dπ) = π§{kS(dt, dt)} = 1, gπ§≠1
S
(dπ, dπ) = g≠1

X
(dπ, dπ) = kdπk2

on π−1(U), the following identity holds on π−1(U):

gπ§≠1
S

= kdπk2 π§kS .

We define three Quillen metrics on the Kähler extension ∏(Ep
X/S)|Uo as follows.
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Definition 5.3. (i) Let k ·k2∏(≠p
Xo/So ),Q,gX/S

be the Quillen metric on ∏(≠p
Xo/So)|Uo

with respect to gX/S and g≠p
X/S

. Let k · k2∏(Ep
X/S),Q,gX/S

be the Quillen metric

on ∏(Ep
X/S)|Uo induced from k · k2∏(≠p

Xo/So ),Q,gX/S
by the canonical isomorphism

∏(≠p
Xo/So)|Uo ª= ∏(Ep

X/S)|Uo :

k · k2∏(Ep
X/S

),Q,gX/S
:= k · k2∏(≠p

Xo/So ),Q,gX/S
.

(ii) Let k ·k2
∏(≠p−i

X ≠(π§≠1
S)≠i),Q,π§kS

be the Quillen metric on ∏(≠p−i
X ≠(π§≠1

S)≠i)|Uo

with respect to gX/S and g≠p−i
X

≠ π§kS . Set

k · k2∏(Ep
X/S

),Q,π§kS
:=

pO
i=0

k · k2(−1)i

∏(≠p−i
X ≠(π§≠1

S)≠i),Q,π§kS
.

(iii) Let k·k2
∏(≠p−i

X ≠(π§≠1
S)≠i),Q,hπ§≠1

S

be the Quillen metric on ∏(≠p−i
X ≠(π§≠1

S)≠i)|Uo

with respect to gX/S and g≠p−i
X

≠ gπ§≠1
S
. Set

k · k2∏(Ep
X/S

),Q,gπ§≠1
S

:=
pO

i=0

k · k2(−1)i

∏(≠p−i
X ≠(π§≠1

S)≠i),Q,gπ§≠1
S

.

When p = 0, we have the following relations

k · k2∏(E0
X/S),Q,gX/S

= k · k2∏(E0
X/S),Q,π§kS

= k · k2∏(E0
X/S),Q,gπ§≠1

S

= k · k2∏(OX ),Q,gX/S
.

We shall prove that log k · k2∏(Ep
X/S

),Q,gX/S
has logarithmic singularities at 0 ∈ D,

whose coefficients are determined by the resolution data of the Gauss map.

5.3. The Gauss maps and their resolutions
Let Π : P(≠1

X ) → X be the projective bundle associated with the holomorphic
cotangent bundle ≠1

X . Let Π∨ : P(TX ) → X be the projective bundle associated
with the holomorphic tangent bundle TX . Then the fiber P(TxX )∨ is the set of all
hyperplanes of TxX containing 0x ∈ TxX . We have P(≠1X ) ª= P(TX )∨.

We define the Gauss maps ∫ : X \ Σπ → P(≠1X ) and µ : X \ Σπ → P(TX )∨ by

∫(x) := [dπx] =

"
nX

i=0

@π

@zi
(x) dzi

#
, µ(x) := [TxXπ(x)].

Then ∫ = µ under the canonical isomorphism P(≠1X ) ª= P(TX )∨.
Let L := OP(≠1

X )(−1) Ω Π§≠1X be the tautological line bundle over P(≠1X ), and
set Q := Π§≠1

X /L. Then we have the following exact sequences S of holomorphic
vector bundles on P(≠1

X ):

S : 0 −→ L −→ Π§≠1
X −→ Q −→ 0.

Let p ∑ n. Since rk(L) = 1, this induces the following exact sequence of holomor-
phic vector bundles on P(≠1

X ):

Kp : 0 −→ Lp −→ Π§≠1
X≠Lp−1 −→ · · · −→ Π§≠p−1

X ≠L −→ Π§≠p
X −→

p̂

Q −→ 0,
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where Π§≠p
X →

Vp Q is the quotient map and Π§≠i
X ≠ Lp−i → Π§≠i+1

X ≠ Lp−i−1

is given by ω ≠ σ≠(p−i) 7→ (ω ∧ σ)≠ σ≠(p−i−1) for ω ∈ Π§≠1
X and σ ∈ L. Then

Fp
X/S = ∫§Kp.

Similarly, let H := OP(≠1
X )(1), and let U be the universal hyperplane bundle of

(Π∨)§TX . Then the dual of S is given by

S∨ : 0 −→ U −→ (Π∨)§TX −→ H −→ 0.

Since TxX/S = {v ∈ TxX ; dπx(v) = 0}, we have

TX/S = µ§U.

Let gU be the Hermitian metric on U induced from (Π∨)§gX , and let gH be the
Hermitian metric on H induced from (Π∨)§gX by the C1-isomorphism H ª= U?.

Let gL be the Hermitian metric on L induced from Π§g≠1
X

by the inclusion
L Ω Π§≠1X . Let gQ be the Hermitian metric on Q induced from Π§g≠1

X
by the

C1-isomorphism Q ª= L?. We consider the Hermitian metric gΠ§≠i
X≠Lp−i on

Π§≠i
X ≠Lp−i induced from Π§g≠1

X
, gL, and we consider the Hermitian metric g∧pQ

on
Vp Q induced from gQ. We define Kp to be the exact sequence Kp equipped

with the Hermitian metrics {gΠ§≠i
X≠Lp−i} and g∧pQ. Then we have the following

isomorphisms of Hermitian vector bundles over X \ Σπ:

(5.1) Fp
X/S = ∫§Kp

, (TX/S, gX/S) = µ§(U, gU ).

Since dπ is a nowhere vanishing holomorphic section of ∫§L|X\Σπ
, we get the fol-

lowing equation on X \ Σπ

−ddc log kdπk2 = ∫§c1(L, gL).

Since Σπ is a proper analytic subset of X , the Gauss maps ∫ : X \ Σπ → P(≠1X )
and µ : X \ Σπ → P(TX )∨ extend to meromorphic maps ∫ : X 99K P(≠1X ) and
µ : X 99K P(TX )∨ by e.g. [42, Th. 4.5.3]. By Hironaka, there exist a projective
algebraic manifold eX , a divisor of normal crossing E Ω X , a birational holomorphic
map q : eX → X , and holomorphic maps e∫ : eX → P(≠1

X ) and eµ : eX → P(TX )∨
satisfying the following conditions:
(i) q| eX\q−1(Σπ) : eX \ q−1(Σπ) → X \ Σπ is an isomorphism;
(ii) q−1(Σπ) = E;
(iii) e∫ = ∫ ◦ q and eµ = µ ◦ q on eX \ E.

By (iii), we have e∫ = eµ under the canonical isomorphism P1(≠1X ) = P(TX )∨.
We set eπ := π ◦ q and eXt := eπ−1(t) for t ∈ S. Similarly, we set Eb := E ∩ eXb for

b ∈ D. Then E = qb∈DEb, because E = q−1(Σπ) Ω eπ−1(D).

5.4. The singularity of Quillen metrics
After Barlet [3], we define a subspace of C0(U) by

B(U) := C1(U)©
M

r∈Q∩(0,1]

nM
k=0

|t|2r(log |t|)k · C1(U).

A function '(t) ∈ B(U) has an asymptotic expansion at 0 ∈ D, i.e., there exist
r1, . . . , rm ∈ Q ∩ (0, 1] and f0, fl,k ∈ C1(U), l = 1, . . . , m, k = 0, . . . , n, such
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that '(t) = f0(t) +
Pm

l=1

Pn
k=0 |t|2rl(log |t|)k fl,k(t) as t → 0. In what follows, if

f(t), g(t) ∈ C1(Uo) satisfies f(t)− g(t) ∈ B(U), we write

f ≡B g.

The purpose of Section 5 is to prove the following:

Theorem 5.4. Let σp be a nowhere vanishing C1 section of the Kähler extension
∏(Ep

X/S)|U . Then

log kσpk2∏(Ep
X/S),Q,gX/S

≡B0@Z
E0

pX
j=0

(−1)p−j eµ§Ω
Td(U)

Td(c1(H))− e−(p−j)c1(H)

c1(H)

æ
q§ch(≠j

X )

1A log |t|2.

The proof of Theorem 5.4 is divided into the following three intermediary results,
whose proofs shall be given in the subsections below:

Proposition 5.5. The following identity of functions on U holds

log(k · k2∏(Ep
X/S),Q,gX/S

/k · k2∏(Ep
X/S),Q,gπ§≠1

S

) ≡B 0.

Proposition 5.6. The following identity of functions on U holds

log

0@k · k2∏(Ep
X/S

),Q,gπ§≠1
S

k · k2∏(Ep
X/S),Q,π§kS

1A ≡B0@Z
E0

pX
j=0

(−1)p−j eµ§Ω
Td(U)

1− e−(p−j)c1(H)

c1(H)

æ
q§ch(≠j

X )

1A log |t|2.

Proposition 5.7. The following identity of functions on U holds
log kσp(t)k2∏(Ep

X/S
),Q,π§kS

≡B0@Z
E0

pX
j=0

(−1)p−j eµ§Ω
Td(U)

Td(c1(H))− 1
c1(H)

æ
q§ch(≠j

X )

1A log |t|2.

Proof of Theorem 5.4. By Propositions 5.5, 5.6, and 5.7, we get
log kσpk2∏(Ep

X/S
),Q,gX/S

=

log

0@ k · k2∏(Ep
X/S),Q,gX/S

k · k2∏(Ep
X/S

),Q,gπ§≠1
S

1A + log

0@k · k2∏(Ep
X/S),Q,gπ§≠1

S

k · k2∏(Ep
X/S

),Q,π§kS

1A + log kσpk2∏(Ep
X/S),Q,π§kS

≡B
0@Z

E0

pX
j=0

(−1)p−j eµ§Ω
Td(U)

1− e−(p−j)c1(H)

c1(H)

æ
q§ch(≠j

X )

1A log |t|2

+

0@Z
E0

pX
j=0

(−1)p−jeµ§Ω
Td(U)

Td(c1(H))− 1
c1(H)

æ
q§ch(≠j

X )

1A log |t|2

≡B
0@Z

E0

pX
j=0

(−1)p−j eµ§Ω
Td(U)

Td(c1(H))− e−(p−j)c1(H)

c1(H)

æ
q§ch(≠j

X )

1A log |t|2.
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This proves the theorem. §

5.5. Proof of Proposition 5.5
Let g≠i

X≠(π§≠1
S)≠(p−i) be the Hermitian metric on ≠i

X ≠ (π§≠1
S)≠(p−i) induced

from gX , gπ§≠1
S
. We define Fp

X/S to be the complex of holomorphic vector bundles
Fp
X/S equipped with the Hermitian metrics g≠i

X≠(π§≠1
S)≠(p−i) on ≠i

X ≠(π§≠1
S)≠(p−i)

and g≠p
X/S

on ≠p
X/S .

Let π§ (resp. eπ§) be the integration along the fibers of π (resp. eπ). For a C1

differential form √ on eX , one has eπ§(√)(0,0) ∈ B(U) by [3, Th. 4bis].
Since Fp

X/S is acyclic on X o, the following identity of C1 functions on So holds
by the anomaly formula [11, Th. 0.3]:

(5.2) log

0@ k · k2∏(Ep
X/S),Q,gX/S

k · k2
∏(Ep

X/S),Q,gπ§≠1
S

1A = π§
≥
Td(TX/S, gX/S) ech(Fp

X/S)
¥(0,0)

.

By (5.1), the following identity of C1 differential forms on X \ Σπ holds:

Td(TX/S, gX/S) ech(Fp
X/S)|X\Σπ

= µ§Td(U, gU ) ∫§ ech(Kp).

Since q§ = (q−1)§ on eX \ q−1(Σπ), this yields the following identity on X \ Σπ:

Td(TX/S, gX/S) ech(Fp
X/S)|X\Σπ

= (q)§
neµ§Td(U, gU ) e∫§ ech(Kp)

o
.

Hence we get the following equation of C1 functions on So:
(5.3)

π§
≥
Td(TX/S, gX/S) ech(Fp

X )|X\Σπ

¥(0,0)
=

heπ§ neµ§Td(U, gU ) e∫§ ech(Kp)
oi(0,0)

.

Since {eµ§Td(U, gU ) e∫§ ech(Kp)}(n,n) is a C1 (n, n)-form on eX and since the projec-
tion eπ : eX → S is proper and holomorphic, the right hand side of (5.3) lies in B(U)
by [3, Th. 4bis], which, together with (5.2), (5.3), yields the result. §

5.6. Proof of Proposition 5.6
For 0 ∑ i ∑ p, we deduce from the anomaly formula [11, Th. 0.3] that

(5.4)

log

0@k · k2∏(≠i
X≠(π§≠1

S)≠(p−i)),Q,gπ§≠1
S

k · k2
∏(≠i

X≠(π§≠1
S)≠(p−i)),Q,π§kS

1A
= π§

≥
Td(TX/S, gX/S) ch(≠i

X , gX ) ech((π§≠1
S)≠(p−i); π§kS , gπ§≠1

S
)
¥(0,0)

= π§
≥
Td(TX/S, gX/S) ch(≠i

X , gX ) ech((π§≠1
S)≠(p−i); π§kS , kdπk2π§kS)

¥(0,0)
.
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Since ∫§c1(L, gL)|X\Σπ
= −ddc log kdπk2 and c1(≠1

S , kS) = 0 on U , we deduce from
(3.7) that
(5.5)ech((π§≠1

S)≠l; π§k≠l
S , kdπk2lπ§k≠l

S )
ØØØ
π−1(U)\Σπ

=
1X

m=1

1
m!

X
a+b=m−1

c1

°
(π§≠1

S)≠l,π§k≠l
S

¢a
c1

°
(π§≠1

S)≠l, kdπk2lπ§k≠l
S

¢b
log kdπk2l

=
1X

m=1

1
m!

(−ddc log kdπk2l)m−1 log kdπk2l =
el∫§c1(L,gL) − 1

∫§c1(L, gL)
log kdπk2.

By substituting (5.5) and Td(TX/S, gX/S) = µ§Td(U, gU ) into (5.4), we get

(5.6)

log

0@k · k2∏(≠i
X≠(π§≠1

S)≠(p−i)),Q,gπ§≠1
S

k · k2
∏(≠i

X≠(π§≠1
S)≠(p−i)),Q,π§kS

1AØØØØØØ
Uo

= π§
Ω

µ§Td(U, gU ) ch(≠i
X , gX )

e(p−i)∫§c1(L,gL) − 1
∫§c1(L, gL)

log kdπk2
æ(0,0)

= eπ§Ωeµ§Td(U, gU ) q§ch(≠i
X , gX )

e(p−i)e∫§c1(L,gL) − 1e∫§c1(L, gL)
q§(log kdπk2)

æ(0,0)

,

which yields that
(5.7)

log

0@k · k2∏(Ep
X/S),Q,gπ§≠1

S

k · k2
∏(Ep

X/S),Q,π§kS

1AØØØØØØ
Uo

=

pX
j=0

(−1)p−j log

0@k · k2
∏(≠j

X≠(π§≠1
S)≠(p−j)),Q,gπ§≠1

S

k · k2
∏(≠j

X≠(π§≠1
S)≠(p−j)),Q,π§kS

1A =

eπ§
24q§(log kdπk2)

pX
j=0

(−1)p−jeµ§Td(U, gU ) e∫§Ω
e(p−j)c1(L,gL) − 1

c1(L, gL)

æ
q§ch(≠j

X , gX )

35(0,0)

.

Lemma 5.8. Let ' be a @ and @̄-closed C1 differential form on eX . Let (F, k · k)
be a holomorphic Hermitian line bundle on eX . Let s be a holomorphic section of
F with div(s) Ω S

b∈D eXb. Then the following identity of functions on U holds

eπ§((log ksk2) ')(0,0)|U ≡B
√Z

div(s)∩ eX0

'

!
log |t|2.

In particular, eπ§(q§(log kdπk2) ')(0,0)|U ≡B
µZ

E0

'

∂
log |t|2.

Proof. See [59, Lemma 4.4 and Cor. 4.6] §

Since
Pp

j=0(−1)p−jeµ§Td(U, gU ) e∫§{ e(p−j)c1(L,gL)−1
c1(L,gL) }q§ch(≠j

X , gX ) is a C1 differ-
ential form on eX and since e∫§c1(L) = −eµ§c1(H) in H2(eπ−1(U), Z), Proposition 5.6
follows from (5.7) and Lemma 5.8. §
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5.7. Proof of Proposition 5.7
We need the following result:

Theorem 5.9. Let ξ → X be a holomorphic vector bundle on X equipped with a
Hermitian metric hξ. Let ∏(ξ) = det Rπ§ξ be the determinant of the cohomologies
of ξ equipped with the Quillen metric k · k2∏(ξ),Q with respect to gX/S and ξ. Let s

be a nowhere vanishing holomorphic section of ∏(ξ)|U . Then

log ksk2Q,∏(ξ) ≡B
µZ

E0

eµ§Ω
Td(U)

Td(c1(H))− 1
c1(H)

æ
q§ch(ξ)

∂
log |t|2.

Proof. See [59, Th. 1.1]. §

Let σ(p,j) be a nowhere vanishing C1 section of ∏(≠j
X ≠ (π§≠1

S)≠(p−j))|U . Then

σp := ≠p
j=0σ

(−1)p−j

(p,j)

is a nowhere vanishing C1 section of ∏(Ep
X/S)|U . Since π§≠1

S is trivial near E0 and
since

log k · k2∏(Ep
X/S

),Q,π§kS
=

pX
j=0

(−1)p−j log k · k2
∏(≠j

X≠(π§≠1
S)≠(p−j)),Q,π§kS

,

we deduce from Theorem 5.9 that

log kσpk2∏(Ep
X/S),Q,π§kS

|U

=
pX

j=0

(−1)p−j log kσ(p,j)k2∏(≠j
X≠(π§≠1

S)≠(p−j)),Q,π§kS
|U

≡B
pX

j=0

(−1)p−j

µZ
E0

eµ§Ω
Td(U)

Td(c1(H))− 1
c1(H)

æ
q§ch(≠j

X ≠ (π§≠1
S)≠(p−j))

∂
log |t|2

≡B
0@Z

E0

pX
j=0

(−1)p−j eµ§Ω
Td(U)

Td(c1(H))− 1
c1(H)

æ
q§ch(≠j

X )

1A log |t|2.

This completes the proof of Proposition 5.7. §

5.8. An extension of Theorem 5.4
Let hπ−1(U) be a Kähler metric on π−1(U), and let hX/S be the Hermitian metric

on TX/S induced from hπ−1(U). We do not assume that hπ−1(U) extends to a Kähler
metric on X .

Theorem 5.10. Let σp be a nowhere vanishing C1 section of the Kähler extension
∏(Ep

X/S)|U . Then

log kσpk2∏(Ep
X/S),Q,hX/S

|U ≡B0@Z
E0

pX
j=0

(−1)p−j eµ§Ω
Td(U)

Td(c1(H))− e−(p−j)c1(H)

c1(H)

æ
q§ch(≠j

X )

1A log |t|2.
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Proof. By the anomaly formula [11, Ths. 0.2 and 0.3], we have on Uo

(5.8)

log
≥
k · k2∏(Ep

X/S),Q,hX/S
/k · k2∏(Ep

X/S),Q,gX/S

¥
=

X
q

(−1)qq π§
≥fTd(TX/S; gX/S , hX/S) ch(≠q

X/S , h≠q
X/S

)
¥(0,0)

+
X

q

(−1)qq π§
≥
Td(TX/S, gX/S) ech(≠q

X/S ; g≠q
X/S

, h≠q
X/S

)
¥(0,0)

.

Let hU be the Hermitian metric on U induced from (Π∨)§hπ−1(U). Let h≠1
X

be the Hermitian metric on ≠1
X |π−1(U) induced from hπ−1(U). Let h≠q

X/S
be the

Hermitian metric on ≠q
X/S induced from h≠1

X
. Let h∧qQ be the Hermitian met-

ric on ∧qQ induced from Π§h≠1
X

. Then we have the following isomorphisms of
holomorphic Hermitian vector bundles over X \ Σπ:

(5.9) (TX/S, hX/S) = µ§(U, hU ), (≠q
X/S , h≠q

X/S
) = µ§(∧qQ,h∧qQ).

By (5.1), (5.8), (5.9), we get

(5.10)

log
≥
k · k2∏(Ep

X/S),Q,hX/S
/k · k2∏(Ep

X/S),Q,gX/S

¥
=

X
q

(−1)qq eπ§ ≥eµ§fTd(U ; gU , hU ) e∫§ch(∧qQ,h∧qQ)
¥(0,0)

+
X

q

(−1)qq eπ§ ≥eµ§Td(U, gU ) e∫§ ech(∧qQ; g∧qQ, h∧qQ)
¥(0,0) ≡B 0.

Here the right hand side of (5.10) lies in B(U) by [3, Th. 4bis], because

eµ§fTd(U ;hU , gU ) e∫§ch(∧qQ,h∧qQ), eµ§Td(U, gU ) e∫§ ech(∧qQ;h∧qQ, g∧qQ)

are C1 differential forms on eπ−1(U). The result follows from Th. 5.4 and (5.10). §

5.9. The case of ODP
In Subsection 5.9, we assume that Σπ ∩ X0 consists of non-degenerate critical

points. Hence Sing(X0) consists of ODP’s. For y ∈ X , let my be the maximal
ideal of the local ring OX ,y. Then there exists a neighborhood of X0 in X on which
IΣπ = ©y∈Sing(X0)my. Let q : eX → X be the blowing-up of the discrete set Σπ∩X0,
and set Ey := q−1(y) for y ∈ Sing(X0). Then E0 = qy∈Sing(X0)Ey and Ey

ª= Pn.
Since Σπ is discrete, we may identify P(≠1

X ) and P(TX ) with the trivial projective
bundle on a neighborhood of Σπ∩X0 by fixing a system of coordinates near Σπ∩X0.
Under this trivialization, we consider the Gauss maps ∫ and µ only on a small
neighborhood of Σπ ∩X0. Then we have the following on a neighborhood of each
y ∈ Σπ ∩X0:

µ(z) = ∫(z) =
µ

@π

@z0
(z) : · · · : @π

@zn
(z)

∂
.

Since π is non-degenerate at every y ∈ Σπ ∩X0, we may assume by Morse’s lemma
that π(z) = z2

0 + · · ·+ z2
n near Σπ ∩X0. Hence the composition ∫ ◦ q : eX \E0 → Pn

extends to a holomorphic map e∫ := ∫ ◦ q : eX → Pn such thate∫|E = eµ|E = idE .



30 HAO FANG, ZHIQIN LU, AND KEN-ICHI YOSHIKAWA

For n ∈ N and 0 ∑ p ∑ n, set

δ(n, p) :=
pX

j=0

(−1)j

µ
n + 1

j

∂
(p− j + 1)n+2 − (p− j)n+2

(n + 2)!
.

For a formal power series f(x) ∈ C[[x]], we define f(x)|xm to be the coefficient
of xm of f(x). Recall that the metric hX/S is defined only on TX/S|π−1(U)\Σπ

.

Theorem 5.11. Let σp be a nowhere vanishing C1 section of the Kähler extension
∏(Ep

X/S)|U . Then the following identity of functions on U holds

(−1)p log kσp(t)k2∏(Ep
X/S),Q,hX/S

≡B (−1)nδ(n, p) #Sing(X0) log |t|2.

Proof. In Theorem 5.10, we can identify U (resp. L) with the universal hyperplane
bundle (resp. tautological line bundle) on Pn. Then H = L−1. Set x := c1(H).
Hence

R
Pn xn = 1. From the exact sequence 0 → U → Cn+1 → H → 0, we

get Td(U) = Td−1(x) = (1 − e−x)/x. Since q(E0) consists of a point, we get
q§≠j

X |E0 = C©(n+1
p ). By substituting this and the equation q§ch(≠j

X )|E0 =
°n+1

p

¢
into the formula in Theorem 5.10, we get

(5.11)

Z
E

pX
j=0

(−1)p−j eµ§Ω
Td(U)

Td(c1(H))− e−(p−j)c1(H)

c1(H)

æ
q§ch(≠j

X )

= #Sing(X0)
pX

j=0

(−1)p−j 1
Td(x)

· Td(x)− e−(p−j)x

x
·
µ

n + 1
j

∂ØØØØØØ
xn

= #Sing(X0)
pX

j=0

(−1)p−j

µ
n + 1

j

∂ Ω
(e−x − 1)e−(p−j)x

x2
+

1
x

æØØØØØØ
xn

= #Sing(X0)
pX

j=0

(−1)p−j

µ
n + 1

j

∂
{e−(p−j+1)x − e−(p−j)x}|xn+2

= (−1)n−p δ(n, p) #Sing(X0).

The result follows from Theorem 5.4 and (5.11). §

Lemma 5.12. The following identities hold:

δ(3, p) + δ(3, 3− p) = 1 (0 ∑ p ∑ 3),
3X

p=0

p δ(3, p) =
19
4

.

Proof. By the definition of δ(n, p), we get

δ(3, 0) =
1

120
, δ(3, 1) =

27
120

, δ(3, 2) =
93
120

, δ(3, 3) =
119
120

,

which yields the result. §

Set
σ := ≠n

p=0σ
(−1)pp
p .

Then σ is a nowhere vanishing C1 section of ∏(≠•X/S) near D.
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Theorem 5.13. When n = 3,

log kσ(t)k2∏(≠•X/S),Q,hX/S
≡B −19

4
#Sing(X0) log |t|2.

Proof. By Theorem 5.11, we get

log kσk2∏(≠•X/S),Q,gX/S
|U =

3X
p=0

(−1)pp log kσpk2∏(Ep
X/S

),Q,gX/S
|U

≡B (−1)3
3X

p=0

p δ(3, p)#Sing(X0) log |t|2.

This, together with the second identity of Lemma 5.12, yields the result. §

Remark 5.14. In our subsequent paper [18], we shall determine the behavior of
log kσ(t)k2∏(≠•X/S),Q,hX/S

as t → 0 for arbitrary relative dimension n.

6. The cotangent sheaf of the Kuranishi space

Let X be a smoothable Calabi-Yau n-fold with only one ODP as its singular
set. Let p : (X, X) → (Def(X), [X]) be the Kuranishi family of X with discriminant
locus D. Then X, Def(X), and D are smooth by Lemmas 2.3 and 2.7.

Lemma 6.1. The dualizing sheaf KX of X is trivial. In particular, the relative
dualizing sheaf KX/Def(X) = KX ≠ (p§KDef(X))−1 is trivial.

Proof. By the same argument as in [58, p.68 l.25-l.28], we see that KX|Xs
ª= OXs

for all s ∈ Def(X). Since Def(X) ª= ∆N+1, we get the triviality of KX by the same
argument as in [58, p.68 l.29-l.33]. §

Recall that the Kodaira-Spencer isomorphism

ρDef(X)\D : ΘDef(X)\D → R1p§ΘX/Def(X)|Def(X)\D

was defined in Subsection 4.2. By considering the dual of ρDef(X)\D, the relative
Serre duality induces an isomorphism of ODef(X)-modules on Def(X) \D:

ρ∨Def(X)\D : Rn−1p§(≠1
X/Def(X) ≠KX/Def(X))|Def(X)\D ª= ≠1

Def(X)|Def(X)\D.

Theorem 6.2. The isomomorphism ρ∨Def(X)\D extends to an isomorphism

ρ∨Def(X) : Rn−1p§(≠1
X/Def(X) ≠KX/Def(X)) ª= ≠1

Def(X).

of ODef(X)-modules over Def(X).

The isomorphism ρ∨Def(X) is again called the Kodaira-Spencer isomorphism. Be-
fore proving Theorem 6.2, we first prove an intermediate result in the next subsec-
tion.
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6.1. Blowing-up and the regularity of differential forms
Set

∆̂n+1 = {(z, [≥]) ∈ ∆n+1 × Pn; zi≥j − zj≥i = 0 0 ∑ i, j ∑ n}, q := pr1.

Then q : ∆̂n+1 → ∆n+1 is the blowing-up at the origin. Set E := q−1(0) and

Ui : = {(z, [≥]) ∈ ∆̂n+1; ≥i 6= 0}, Oi := {z ∈ ∆n+1; zi 6= 0},
Wi : = {(≥0, . . . , ≥i−1, zi, ≥i+1, . . . , ≥n) ∈ Cn+1; |zi| < 1, |zi≥j | < 1 (j 6= i)}.

Then Ui
ª= Wi Ω Cn+1 via the map

Wi 3 (≥0, . . . , ≥i−1, zi, ≥i+1, . . . , ≥n)
→ ((zi≥0, . . . , zi≥i−1, zi, zi≥i+1, . . . , zi≥n), [≥0 : · · · : ≥i−1 : 1 : ≥i+1 : · · · : ≥n]) ∈ Ui.

By construction, we have e∆n+1 =
Sn

i=0 Ui and

E ∩ Ui
ª= {(≥0, . . . , ≥i−1, zi, ≥i+1, . . . , ≥n) ∈ Wi; zi = 0}, q(Ui) æ Oi.

Let ωij be the C1 (n, 0)-form on Oi defined by

ωij :=
|zj |2

|z0|2 + · · ·+ |zn|2 ·
dz0 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn

zn−2
i zj

.

Lemma 6.3. For all 0 ∑ i, j ∑ n, the C1 (n, 0)-form q§ωij on q−1(Oi) = Ui \ E
extends to a C1 (n, 0)-form on Ui and satisfies q§ωij |E∩Ui = 0.

Proof. Since q|Wi(≥0, . . . , ≥i−1, zi, ≥i+1, . . . , ≥n) = (zi≥0, . . . , zi≥i−1, zi, zi≥i+1, . . . , zi≥n)
under the identification Ui

ª= Wi, we get the following two formulas:

q§
µ |zj |2
|z0|2 + · · ·+ |zn|2

∂
=

Ω |≥j |2(1 + k≥k2)−1 (j 6= i)
(1 + k≥k2)−1 (j = i),

q§
≥
z−(n−1)
i dz0 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn

¥
= z−(n−1)

i d(zi≥0) ∧ · · · ∧ d(zi≥i−1) ∧ d(zi≥i+1) ∧ · · · ∧ d(zi≥n)

= zi d≥0 ∧ · · · cd≥i · · · ∧ d≥n + dzi ∧
X
j<i

(−1)j−1d≥0 ∧ · · · cd≥j · · · cd≥i · · · ∧ d≥n

+ dzi ∧
X
j>i

(−1)jd≥0 ∧ · · · cd≥i · · · cd≥j · · · ∧ d≥n ∈ An,0(Ui),

which yields that q§ωii ∈ An,0(Ui) and q§ωii|E∩Ui = 0. Since q§ωij = ≥̄j

1+k≥k2 q§ωii

when j 6= i, the assertion for q§ωij (i 6= j) follows from the assertion for q§ωii. §
6.2. Proof of Theorem 6.2

For simplicity, we set

X := X, S := Def(X), π := p, 0 := [X], X0 := X, N + 1 = dimS.

Hence (S, 0) ª= (∆N+1, 0) and π : (X , X0) → (S, 0) is the Kuranishi family of X0.
Let s = (s0, . . . , sN ) be a system of coordinates of S such that D = div(s0). We

set s0 = (s1, . . . , sN ). Then @/@sα is a nowhere vanishing holomorphic vector field
on S for 0 ∑ α ∑ N .
(Step 1) The Kodaira-Spencer isomorphism ρS\D : ΘS\D → R1π§ΘX/S |S\D yields
holomorphic sections ρ(@/@sα) ∈ H0(S \D, R1π§ΘX/S). Let h·, is be the Yoneda
product between Hn−1(Xs,≠1

Xs
≠KXs) and Ext1OXs

(≠1
Xs
≠KXs ,KXs).
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Since hn−1(Xs,≠1
Xs

) = N + 1, there exist φ0, . . . ,φN ∈ Hn−1(X ,≠1
X/S ≠KX/S)

such that
(i) {φ0, . . . ,φN} is a basis of Rn−1π§(≠1

X/S ≠KX/S) as a free OS-module;
(ii) {φ0|Xs , . . . ,φN |Xs} is a basis of Hn−1(Xs,≠1

Xs
≠KXs) for all s ∈ S;

(iii) hφα|X0 , ρ0(@/@sβ)i0 = δαβ for 0 ∑ α,β ∑ N .
Let ρ∨s : Hn−1(Xs,≠1

Xs
≠KXs) → ≠1

S,s be the dual of the Kodaira-Spencer map.
For s ∈ S, set

gαβ(s) := hφα|Xs , ρs(@/@sβ)is = hhρ∨s (φα|Xs), @/@sβii,
where hh·, ·ii : ≠1

S,s × TSs → C is the natural pairing. Then gαβ is a function on S,
which is holomorphic on S \D but which may not be continuous on S, such that

gαβ(0) = δαβ .

It suffices to prove gαβ ∈ C0(S); if it is the case, (gαβ(s)) is a family of invertible
matrices depending holomorphically on s ∈ S, so that Rn−1π§(≠1

X/S ≠ KX/S) is
the holomorphic dual bundle of ΘS via the extension of ρ∨S\D.
(Step 2) Let AX be the sheaf of germs of C1 functions on X , and let Ap,q

X be the
sheaf of germs of C1 (p, q)-forms on X . Set

Ap,q(X ,≠1
X/S ≠KX/S) := Γ(X ,Ap,q

X ≠OX ≠1
X/S ≠KX/S).

Then Ap,q(X ,≠1
X/S≠KX/S) is the vector space of C1 (p, q)-forms on X with values

in ≠1
X/S ≠ KX/S . By Malgrange [38, pp. 88, Cor. 1.12], OX is a flat AX -module.

Hence we have the Dolbeault isomorphism [1, Chap.VII, Prop. 4.5]

Hn−1(X ,≠1
X/S ≠KX/S)

=
ker{@̄ : A0,n−1(X ,≠1

X/S ≠KX/S) → A0,n(X ,≠1
X/S ≠KX/S)}

Im{@̄ : A0,n−2(X ,≠1
X/S ≠KX/S) → A0,n−1(X ,≠1

X/S ≠KX/S)} .

Let Φα ∈ A0,n−1(X ,≠1
X/S ≠KX/S) be a @̄-closed differential form representing

φα, i.e., φα = [Φα].
(Step 3) To study the behavior of gαβ(s) near D, we compute a representative of
the Kodaira-Spencer classes ρ(@/@sα) in the Dolbeault cohomology.

Near the critical locus Σπ Ω X , there is a neighborhood V ª= ∆n+1 × ∆N of
Σπ in X such that π(z0, . . . , zn, s0) = (z2

0 + · · · + z2
n, s1, . . . , sN ). Hence we have

Σπ ∩ V = {0}×∆N . For i = 0, 1, . . . , n, we set

Vi := ∆i−1 ×∆§ ×∆n−i ×∆N = {(z, s0) ∈ ∆n+1 ×∆N ; zi 6= 0}.
Then {Vi}i is an open covering of V \ Σπ, i.e., V \ Σπ =

Sn
i=0 Vi. Let {V∏}∏∈Λ

be an open covering of X \ V such that V∏
ª= ∆n × ∆N+1 and π|V∏ = pr2. Then

V := {Vi}i ∪ {V∏}∏ is an open covering of X \ Σπ.
First let us construct a representative of the Kodaira-Spencer class ρ(@/@sα) in

the Cech cohomology with respect to the covering V.
On Vi, set

v(i)
0 :=

1
2zi

@

@zi
, v(i)

α =
@

@sα
(α = 1, . . . , N).

Then v(i)
0 , . . . v(i)

N ∈ H0(Vi,ΘX ) and π§(v
(i)
α ) = @

@sα
(α = 0, . . . , N). We also fix a

holomorphic vector field v(∏)
α such that v(∏)

α = @/@sα on every V∏. We get in Cech
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cohomology

ρ

µ
@

@sα

∂
= {(v(µ)

α − v(∫)
α )|Vµ∩V∫}Vµ,V∫∈V ∈ H1(X \ Σπ,ΘX/S ;V).

Let {χi}i ∪ {χ∏}∏ be a partition of unity of X \ Σπ subject to the covering V
such that on Vi,

χi(z) =
|zi|2

|z0|2 + · · ·+ |zn|2 , i = 0, . . . , n.

Then the following differential form ξα ∈ A0,1(X \Σπ,ΘX/S) represents ρ(@/@sα):

ξα|V∫ :=
X

µ

@̄χµ ≠ (v(µ)
α − v(∫)

α ), ρs

µ
@

@sα

∂
= [ξα|Xs ] (s ∈ S \D).

In particular, we get on V \ Σπ

ξ0|V \Σπ
=

nX
i=0

@̄χi ≠ 1
2zi

@

@zi
, ξα|V \Σπ

= 0 (α = 1, . . . , N).

(Step 4) Let us study the behavior of gαβ |S\D(s) as s → D. Let %(z) ∈ C10 (∆n+1)
be a cut-off function with % ≡ 1 near 0 ∈ ∆n+1. Recall that ∂(·) denotes the interior
product. There exists hαβ(s) ∈ C1(S) such that for s ∈ S \D,

gαβ(s) = hφα|Xs , ρs(@/@sβ)is =
Z

Xs

∂(ξβ)Φα =
Z

Xs∩V
%(z) · ∂(ξβ)Φα + hαβ(s).

Since ξβ ≡ 0 on V \ Σπ for β 6= 0, gαβ |S\D(s) extends to a C1 function on S if
β 6= 0. Let us prove that gα0|S\D extends to a continuous function on S.

Since Φα is a (0, n− 1)-form on X with values in ≠1
X/S ≠KX/S , we can write

Φα|V =
nX

i=0

θi
α(z, s) [dzi]≠ η,

with [dzi] = dzi mod (π§ds0, . . . ,π§dsN ), θi
α ∈ A0,n−1(V ), and

η|Vi := (−1)i−1 dz0 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn

2zi

ØØØØ
Vi

= Res
µ

dz0 ∧ · · · ∧ dzn

z2
0 + · · ·+ z2

n

∂ØØØØ
Vi

.

Hence we have the following formula on Vi

(6.1)

∂(ξ0)Φα|Vi = ∂(
nX

j=0

@̄χj ≠ 1
2zj

@

@zj
)

nX
k=0

θk
α [dzk]≠ η|Vi

=
1
2

nX
j=0

@̄χj ∧ θj
α

zj
∧ η|Vi =

1
4

nX
i=0

(−1)n+i zn−3
i θj

α ∧ @̄ωij ,

where we used the following relations to get the second equality:

∂(
nX

j=0

@̄χj ≠ 1
2zj

@

@zj
)π§dsk = 0, k = 0, . . . , N.

Let q : eX → X be the blowing-up along the submanifold Σπ Ω V with exceptional
divisor E := q−1(Σπ) = P(NΣπ/X ). Then q|E : P(NΣπ/V ) → Σπ is the standard
projection. Since n ≥ 3 and since {Ui ×∆N}i is an open covering of eV := q−1(V ),
we deduce from Lemma 6.3 and (6.1) that q§(∂(ξ0)Φα) ∈ A(n,n)( eX ).
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Set eπ = π ◦ q. By King [30, Th. 3.3.2], we have eπ§q§(∂(ξα)Φα) ∈ C0(S). Since

gα0|S\D = π§(∂(ξ0)Φα) = eπ§q§(∂(ξ0)Φα),

gα0|S\D extends to a continuous function on S.
(Step 5) Let s0 ∈ D. We must prove limS\D3s→s0 gαβ |S\D(s) = gαβ(s0). Let
Ys0 be the proper transform of Xs0 . Since q−1(Xs0) = Ys0 ∪ E and since gαβ |S\D
extends to a continuous function on S, we get

lim
s→s0

gαβ |S\D(s) =
Z

q−1(Xs0 )
q§(∂(ξβ)Φα) =

Z
Ys0

q§(∂(ξβ)Φα) +
Z

E
q§(∂(ξβ)Φα).

Since q§(∂(ξβ)Φα)|E = 0 by Lemma 6.3 and (6.1), we get

lim
s→s0

gαβ |S\D(s) =
Z

Ys0

q§(∂(ξβ)Φα) =
Z

(Xs0 )reg

∂(ξβ)Φα = hφα|Xs0
, ρs0(

@

@sβ
)is0 = gαβ(s0),

where we used Lemma 2.9 to get the third equality. This proves gαβ(s) ∈ C0(S).
This completes the proof of Theorem 6.2. §

7. Behaviors of the Weil-Petersson metric and the Hodge metric

In this section, we study the boundary behavior of the Weil-Petersson metric and
the Hodge metric for one-parameter families of Calabi-Yau threefolds that shall be
used later. We first recall some basic notions about positive (1, 1)-current and give
two lemmas on harmonic functions on ∆§.

7.1. Positive (1, 1)-currents and their trivial extensions
Let u be a (1, 1)-current on ∆. Then u is positive if u is real and if the inequality

u(') ≥ 0 holds for all non-negative function ' ∈ C10 (∆). For real (1, 1)-currents
u, v on ∆, u ≥ v if u − v is a positive (1, 1)-current on ∆. For a divisor H on ∆,
let δH be the current of integration over H. A real-valued function f ∈ L1

loc(∆) is
subharmonic if f is upper semi-continuous and if ddcf ≥ 0 as currents on ∆.

Let ω∆§ be the Kähler form of the Poincaré metric on ∆§:

ω∆§ :=
√−1dt ∧ dt̄

|t|2(− log |t|2)2 = −ddc log(− log |t|2).

A C1 real (1, 1)-form T on ∆§ has Poincaré growth if there exists C > 0 with

(7.1) −C ω∆§ ∑ T ∑ C ω∆§ .

In that case, the coefficient of T lies in L1
loc(∆). The (1, 1)-current on ∆ defined by

eT (√) :=
Z

∆
√ T, √ ∈ C10 (∆)

is called the trivial extension of T from ∆§ to ∆. We have gω∆§ = −ddc log(− log |t|2)
as currents on ∆.

7.2. Two lemmas on harmonic functions on ∆§

Lemma 7.1. Let H(t) be a real-valued harmonic function on ∆§.
(1) There exist c ∈ R and F (t) ∈ O(∆§) with H(t) = c log |t|2 + 2Re F (t).
(2) If there exist ∞ ∈ R such that |t|∞eH(t) ∈ L1

loc(∆), then F (t) ∈ O(∆).
(3) If H(t) = O(log(− log |t|)) as t → 0, then H(t) extends to a harmonic function
on ∆.
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Proof. (1) Since H(t) is harmonic on ∆§, there exists f(t) ∈ O(∆§) with @H(t) =
f(t) dt. Let f(t) =

P
n∈Z an tn be the Laurent expansion of f(t) and define the

meromorphic function F (t) on ∆§ by F (t) :=
P

n 6=−1
an

n+1 tn+1. By the reality of
H(t), we get dH(t) = a−1

dt
t + a−1

dt
t + dF (t) + dF̄ (t). Integrating the both hand

sides over the circle |t| = 1/2, we get a−1 ∈ R by the Stokes theorem, so that
dH(t) = a−1 d log |t|2 + 2d{Re F (t)}. This proves (1).
(2) By assumption, we get

(7.2)
Z
|t|<1/2

|t|∞ |eF (t)|2√−1 dt ∧ dt̄ < +1.

Since eF (t) is holomorphic on ∆§, we deduce from (7.2) that eF (t) is a meromorphic
function on ∆. There exist ∫ ∈ Z and a nowhere vanishing holomorphic function
≤(t) ∈ O(∆) with eF (t) = t∫ ≤(t). Then F 0(t) = ∫ t−1 + ≤0(t)≤(t)−1. Since F (t) is a
meromorphic function on ∆§, the residue of F 0(t) must vanish, i.e., ∫ = 0. Thus
we have proved that F (t) = log ≤(t) is holomorphic on ∆.
(3) Since eH(t) ∈ L1

loc(∆), H(t)− c log |t|2 is a harmonic function on ∆ by (1), (2).
Since H(t) = O(log(− log |t|)) as t → 0, we get c = 0. This completes the proof. §

Lemma 7.2. Let ∏(t) be a positive, locally Lm-integrable function on ∆ for some
m > 0. Let χ(t) be a function on ∆§ satisfying χ(t) ∑ C (− log |t| + 2), where
C ∈ R is a constant. If log ∏(t) + χ(t) is harmonic on ∆§, then there exists c ∈ R
such that

log ∏(t) = c log |t|2 + O(|χ(t)|+ 1) (t → 0).

Proof. Set H(t) := log ∏(t) + χ(t). Since χ(t) ∑ C (− log |t|+ 2), we get

(7.3) log ∏(t) = H(t)− χ(t) ≥ H(t)− C (− log |t|+ 2).

Since ∏(t) ∈ Lm(∆(1/2)), we get

(7.4) e−2Cm

Z
∆(1/2)

|t|Cmem H(t)
√−1 dt ∧ dt̄ ∑

Z
∆(1/2)

∏(t)m
√−1 dt ∧ dt̄ < +1.

By (7.4) and Lemma 7.1 (1), (2), there exists c ∈ R and F (t) ∈ O(∆) with

(7.5) H(t) = c log |t|2 + 2 Re F (t).

Since log ∏(t) = H(t)− χ(t), the result follows from (7.5). §

7.3. The boundary behaviors
In Subsect. 7.3, we fix the following notation. Let X be a possibly singular

complex fourfold and let π : X → ∆ be a proper surjective holomorphic function.
Assume that Xt := π−1(t) is a smooth Calabi-Yau threefold for t ∈ ∆§. We do not
assume that the central fiber X0 has only ODP’s as its singular set. Recall that
the Weil-Petersson form ωWP,X/∆ and the Hodge form ωH,X/∆ for π : X → ∆ were
defined in Sects. 4.3 and 4.4.3, respectively.

Proposition 7.3. There exists a positive constant C such that

(7.6) 0 ∑ ωWP,X/∆ ∑ C ω∆§ , 0 ∑ ωH,X/∆ ∑ C ω∆§ .

In particular, the positive (1, 1)-forms ωWP,X/∆ and ωH,X/∆ on ∆§ extend trivially
to closed positive (1, 1)-currents on ∆.
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Proof. We follow [37, Proof of Th. 5.1]. Since (7.6) is obvious when ωH,X/∆ = 0, we
assume that ωH,X/∆ does not vanish identically on ∆§. Shrinking ∆ if necessary,
we may assume that ωH,X/∆ is strictly positive on ∆§. Let b ∈ ∆§. Since ωH,X/∆ is
non-degenerate at b, the deformation germ π : (X , Xb) → (∆, b) is induced from the
Kuranishi family by an immersion of germs (∆, b) ↪→ (Def(Xb), [Xb]). Let ωH be
the Hodge form on Def(Xb). By [36, Th. 1.1.2], the holomorphic sectional curvature
of (Def(Xb),ωH) is bounded from above by α := −(5 + 2

√
3)−1. Since b ∈ ∆§ is

an arbitrary point, the holomorphic sectional curvature of (∆§,ωH,X/∆) is bounded
from above by α (cf. e.g. [29, Prop. 2.3.9]). The second inequality of (7.6) follows
from the Schwarz lemma [29, Th. 2.3.5]. The first inequality of (7.6) follows from
the second one because ωWP,X/∆ ∑ 2 ωH,X/∆ by [36, p.107, l.17].

Since (∆(r)§,ω∆§) has finite volume when r < 1, the positive (1, 1)-forms
ωWP,X/∆ and ωH,X/∆ extend trivially to closed positive (1, 1)-currents on ∆. §

Definition 7.4. Define ≠WP,X/∆ and ≠H,X/∆ as the trivial extensions of ωWP,X/∆

and ωH,X/∆ from ∆§ to ∆, respectively.

Lemma 7.5. Let A,B ∈ R. Let ∏(t) be a positive, locally Lm-integrable C1
function on ∆§ for some m > 0 such that −ddc log ∏ = A ωH,X/∆ + B ωWP,X/∆.
(1) There exists c ∈ R such that as t → 0,

log ∏(t) = c log |t|2 + O(log(− log |t|)).

(2) With the same constant c as above, the following equation of currents on ∆
holds:

−ddc log ∏ = A ≠H,X/∆ + B ≠WP,X/∆ − c δ0.

Proof. We follow [58, Prop. 3.11]. By [48, Proof of Lemma 5.4], there exist subhar-
monic functions ' and θ on ∆ such that the following equations of currents on ∆
hold:

(7.7) ≠WP,X/∆ = ddc', ≠H,X/∆ = ddcθ.

Since ' and θ are subharmonic, there exists C0 ∈ R with

(7.8) '(t) ∑ C0, θ(t) ∑ C0, t ∈ ∆(1/2).

Since gω∆§ = −ddc log(− log |t|) as currents on ∆, we deduce from (7.6) that

ddc {−C log(− log |t|)− '} = C gω∆§ − ≠WP,X/∆ ≥ 0,

ddc {−C log(− log |t|)− θ} = C gω∆§ − ≠H,X/∆ ≥ 0.

Hence −C log(− log |t|)−' and −C log(− log |t|)− θ are subharmonic functions on
∆, so that there exists C1 ∈ R with
(7.9)
−C log(− log |t|)− '(t) ∑ C1, −C log(− log |t|)− θ(t) ∑ C1, 8 t ∈ ∆(1/2).

By (7.8) and (7.9), there exists C2 ∈ R such that for all t ∈ ∆(1/2),

(7.10) −C log(− log |t|)−C1 ∑ '(t) ∑ C0, −C log(− log |t|)−C1 ∑ θ(t) ∑ C0.

Set

(7.11) H(t) := log ∏(t) + A θ(t) + B '(t).
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Since ddcH = 0, H(t) is a harmonic function on ∆§. Since ∏(t) is locally Lm-
integrable on ∆, the first assertion follows from (7.10) and Lemma 7.2 by setting
χ(t) = A θ(t) + B '(t). The second assertion follows from (7.5), (7.7), (7.11). §

Let gWP,X/∆ be the Kähler metric on ∆§ whose Kähler form is ωWP,X/∆.

Proposition 7.6. Assume that h1,2(Xt) = 1 for all t ∈ ∆§.
(1) There exists α ∈ R such that as t → 0:

log gWP,X/∆

µ
@

@t
,

@

@t

∂
= α log |t|2 + O(log(− log |t|)).

(2) With the same constant α as above, the following equation of currents on ∆
holds:

ddc log gWP,X/∆

µ
@

@t
,

@

@t

∂
= α δ0 − ≠H,X/∆ + 4 ≠WP,X/∆.

(3) If X0 is a Calabi-Yau threefold with at most one ODP and if π : X → ∆ is the
Kuranishi family of X0, then α = 0.

Proof. (1) Set ∏(t) := gWP,X/∆( @
@t ,

@
@t ) and A = 1, B = −4 in Lemma 7.5. By the

definition of Hodge form, we have −ddc log ∏ = ωH,X/∆ − 4 ωWP,X/∆ on ∆§. Since
∏(t) ∈ L1

loc(∆) by Proposition 7.3, the result follows from Lemma 7.5 (1).
(2) The result follows from Lemma 7.5 (2).
(3) The result follows from [53, Cor. 5.1]. This completes the proof. §

If X is smooth, π§KX is locally free by [51, p.391, Th.V]. Since K∆ is trivial
and since h0(KX |Xt) = 1 for t ∈ ∆§, π§KX/∆ = π§(KX ≠ π§K−1

∆ ) ª= π§KX is an
invertible sheaf on ∆ in that case.

Lemma 7.7. Assume that Xt is Calabi-Yau for all t ∈ ∆§. If X is smooth, there
exists ξ ∈ H0(X ,KX ) such that div(ξ) Ω X0.

Proof. Since π§KX is an invertible sheaf on ∆, there exists ξ ∈ H0(X , KX ) =
H0(∆, π§KX ) that generates π§KX as an O∆-module, i.e., π§KX = O∆ · ξ. Since
H0(Xt,KX |Xt) ª= H0(Xt,KXt) ª= C for all t ∈ ∆§, we get H0(Xt, KX |Xt) = C ξ|Xt

in that case by [1, Chap. 3, Th. 4.12 (ii)]. Since KX |Xt
ª= KXt

ª= OXt for t ∈ ∆§,
ξ|Xt is nowhere vanishing on Xt, t ∈ ∆§. This proves the lemma. §

If X is smooth, there exists ξ ∈ H0(X ,KX ) by Lemma 7.7 such that div(ξ) Ω X0.
In that case, we define a section ηX/∆ ∈ H0(X ,KX/∆) by ηX/∆ := ξ ≠ (π§dt)−1.
We identify ηX/∆|Xt with the Poincaré residue ηt := ResXtξ/(π−t) ∈ H0(Xt,KXt)
for t ∈ ∆§. Then

(7.12) ξ|Xt = ηt ≠ dπ,

and ηX/∆ is regarded as a family of holomorphic 3-forms. We also regard ηX/∆ as
the corresponding element of H0(∆, π§KX/∆).

Proposition 7.8. Assume that X is smooth. Let ηX/∆ be a nowhere vanishing
holomorphic section of π§KX/∆.
(1) There exists β ∈ R such that as t → 0:

log kηX/∆(t)k2L2 = β log |t|2 + O(log(− log |t|)).
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(2) With the same constant β as above, the following equation of currents on ∆
holds:

ddc log kηX/∆(t)k2L2 = β δ0 − ≠WP,X/∆.

(3) If X0 is a Calabi-Yau threefold with at most one ODP and if ξ is nowhere
vanishing on X , then log kηX/∆(t)k2L2 extends to a continuous function on ∆. In
particular, β = 0.

Proof. (1) Set ∏(t) := kηX/∆(t)k2L2 and A = 0, B = 1 in Lemma 7.5. SinceZ
∆(1/2)

∏(t)
√−1dt ∧ dt̄ =

Z
∆(1/2)

π§(
√−1ηX/∆ ∧ ηX/∆)

√−1dt ∧ dt̄

=
Z

π−1(∆(1/2))
ξ ∧ ξ̄ < +1

by (7.12), we get ∏(t) ∈ L1
loc(∆). Since −ddc log ∏ = ωWP,X/∆ by the definition of

the Weil-Petersson form, the result follows from Lemma 7.5 (1).
(2) The result follows from Lemma 7.5 (2).
(3) The result follows from e.g. [57, Proof of Th. 8.1]. This completes the proof. §

7.4. The boundary behavior of the anomaly term
In Subsection 7.4, we fix the following notation. Let π : X → ∆ be a proper

surjective holomorphic function on a smooth Kähler fourfold with critical locus Σπ,
so that π has relative dimension 3. Assume that Σπ Ω X0 and that Xt is a smooth
Calabi-Yau threefold for all t ∈ ∆§.

Let gX be a Kähler metric on X . Let ∞X be the Kähler form of gX and set
∞t := ∞X |Xt . Recall that the anomaly term A(Xt, ∞t) was defined in Definition 4.1.
The following result is a generalization of [58, (6.17), (6.19)].

Proposition 7.9. (1) There exists c ∈ R such that as t → 0:

logA(Xt, ∞t) = c log |t|2 + O(log(− log |t|)).

(2) If Σπ consists of a unique ODP and if X0 is Calabi-Yau, then as t → 0

logA(Xt, ∞t) = − 1
12

log |t|2 + O(1).

Proof. (1) Let gX/∆ be the Hermitian metric on TX/∆ induced from gX , and let
∞X/∆ be the corresponding (1, 1)-form on TX/∆. Then we may identify ∞X/∆ with
the family of Kähler forms {∞t}t∈∆. Let N§

Xt/X be the conormal bundle of Xt in
X for t ∈ ∆§. Then dπ = π§dt ∈ H0(Xt, N§

Xt/X ) generates N§
Xt/X for t ∈ ∆§, so

that N§
Xt/X is trivial in that case. Since the Hermitian metric on ≠1

Xt
is induced

from gX via the C1 identification ≠1
Xt
ª= (N§

Xt/X )? and since (∞3
X/∆/3!)|Xt is the

volume form on ≠1
Xt

, we get

(7.13)
∞4
X
4!

=
∞3
X/∆

3!
∧

µ√−1
dπ

kdπk ∧
dπ

kdπk
∂

.

By Lemma 7.7, there exists ξ ∈ H0(X ,KX ) such that div(ξ) Ω X0. As before,
define ηX/∆ ∈ H0(X ,KX/∆) by ηX/∆ := ξ ≠ (π§dt)−1, and identify ηX/∆|Xt with



40 HAO FANG, ZHIQIN LU, AND KEN-ICHI YOSHIKAWA

the Poincaré residue ηt := ResXtξ/(π − t) ∈ H0(Xt,KXt) for t ∈ ∆§. Then ηX/∆

is regarded as a family of holomorphic 3-forms {ηt}. By (7.12) and (7.13), we get

(7.14)
√−1 ηX/∆ ∧ ηX/∆

∞3
X/∆/3!

=
(−1)3

√−1 ξ ∧ ξ

(∞3
X/∆/3!) ∧ dπ ∧ dπ

=
ξ ∧ ξ

∞4
X/∆/4!

· 1
kdπk2 =

kξk2
kdπk2 .

Let X denote a general fiber of π : X → ∆. Let A(X/∆) be the function on ∆§
defined by A(X/∆)(t) := A(Xt, ∞t). Then

(7.15)
logA(X/∆) = − 1

12
π§

"
log

√√−1 ηX/∆ ∧ ηX/∆

∞3
X/∆/3!

!
c3(TX/∆, gX/∆)

#

+
χ(X)
12

log kηX/∆k2L2 .

We use the notation in Subsection 5.3. Hence q : eX → X is the resolution of the
Gauss maps µ and ∫. Substituting (7.14) into (7.15) and using (5.1), we get
(7.16)

logA(X/∆) = − 1
12

π§
∑
log

µ kξk2
kdπk2

∂
c3(TX/∆, gX/∆)

∏
+

χ(X)
12

log kηX/∆k2L2

= − 1
12

eπ§ ∑
log q§

µ kξk2
kdπk2

∂ eµ§c3(U, gU )
∏

+
χ(X)
12

log kηX/∆k2L2 .

Since div(q§ξ) Ω eπ−1(0) by the condition div(ξ) Ω X0, the assertion follows from
Lemma 5.8 and Proposition 7.8 (1) applied to the second line of (7.16).
(2) Assume that Σπ consists of a unique ODP and that X0 is Calabi-Yau. We use
the notation in Subsect. 5.9. We may assume by Lemma 6.1 that ξ is nowhere van-
ishing on X . Hence div(q§ξ) = ;, and eπ§{q§ log kξk2 eµ§c3(U, gU )} and log kηX/∆k2L2

are bounded as t → 0 by the first equation of Lemma 5.8 and by Proposition 7.8
(3). We deduce from (7.16) that

(7.17) logA(X/∆) =
1
12

eπ§{q§(log kdπk2) eµ§c3(U, gU )}+ O(1).

Since E = P3 and ' = (−1)3eµ§c3(U) in the second equation of Lemma 5.8, we get

(7.18) logA(X/∆)(t) =
µ

1
12

Z
P3

c3(U)
∂

log |t|2 + O(1) =
(−1)3

12
log |t|2 + O(1).

This proves (2). §

7.5. The Weil-Petersson and Hodge metrics on the Kuranishi space
In Subsect. 7.5, we fix the following notation. Let X be a smoothable Calabi-Yau

threefold with only one ODP as its singular set, and let p : (X, X) → (Def(X), [X])
be the Kuranishi family with discriminant locus D. Assume that dimDef(X) =
h1,2(X) = 1.

By Lemma 6.1, there exists a nowhere vanishing holomorphic 4-form ξ on X.
Then ηX/Def(X) = ξ ≠ π§(ds)−1 is a nowhere vanishing holomorphic section of
p§KX/Def(X). Set ηs := ηX/Def(X)|Xs . We identify ηs with the corresponding holo-
morphic n-form on (Xs)reg such that ηs ≠ (ds) = ξ|Xs under the canonical isomor-
phism KXs ≠ p§KDef(X)|Xs = KX|Xs . Then {ηs}s∈S is regarded as a holomorphic
family of nowhere vanishing holomorphic 3-forms.
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For p = 0, 1 and q ≥ 0, the direct image sheaves Rqp§≠p
X/Def(X) are locally free

by Definition 2.1 (ii) and Theorem 2.11. For p = 0, 1, let σp be a nowhere vanishing
holomorphic section of ∏(≠p

X/Def(X)).
By Proposition 2.8, there exists a Kähler metric gX on X. Let gX/Def(X) be

the Hermitian metric on TX/Def(X)|X\Σp
induced from gX. Set gs := gX|Xs for

s ∈ Def(X).

Theorem 7.10. The following formula holds for p = 0, 1:

log kσp(s)k2∏(≠p
X/Def(X)),L

2,gX/Def(X)
= O(log(− log |s|)).

Proof. Let p = 0. Let 1 be the section of p§OX such that 1s = 1 ∈ H0(Xs,OXs).
Regard ηX/Def(X) as a nowhere vanishing holomorphic section of (R3p§OX)∨ by the
relative Serre duality. Set σ0 := 1≠ ηX/Def(X). Since

log kσ0(s)k2L2,gs
= log Vol(Xs, gs) + log kηsk2L2 = log kηsk2L2 + O(1),

the assertion for p = 0 follows from Proposition 7.8 (3).
Let p = 1. Let e1, . . . , eb2(X) be a Z-basis of H2(X, Z)/Torsion. There exist

holomorphic line bundles L1, . . . ,Lb2(X) on X by Lemma 2.16 such that c1(Li)|X =
ei for 1 ∑ i ∑ b2(X), and such that the Dolbeault cohomology classes of their Chern
forms C1(L1), . . . ,C1(Lb2(X)) form a local basis of R1π§≠1

X/Def(X) as a ODef(X)-
module.

By Theorem 6.2, (ρ∨s )−1(ds) ≠ η−1
s is a local basis of R2π§≠1

X/Def(X) as an
ODef(X)-module. For s ∈ Def(X), set

σ1(s) := (C1(L1) ∧ · · · ∧ C1(Lb2(X)))−1 ≠ ((ρ∨s )−1(ds)≠ η−1
s ).

Then σ1 is a nowhere vanishing holomorphic section of ∏(≠1
X/Def(X)).

Let ∞s be the Kähler form of gX|Xs . Since gX is a Kähler metric on X, the section
Def(X) 3 s → [∞s] ∈ H2(Xs, R) of R2p§R is constant. Let [∞] ∈ H2(X, R) be the
element corresponding to [∞s]. By Lemma 4.12,

kC1(L1) ∧ · · · ∧ C1(Lb2(X))k2L2,gs
(s) = VolL2(H2(X, Z), [∞]) 6= 0

is a constant function on Def(X). Hence we get

log kσ1(s)k2L2,gs
= − log VolL2(H2(X, Z), [∞])− log gWP(

@

@s
,

@

@s
)− h1,2(X) log kηsk2L2

= O(log(− log |s|))
by Propositions 4.4, 7.6 (3) and 7.8 (3). This proves the theorem. §

8. The singularity of the BCOV invariant I – the case of ODP

In Sect. 8, we fix the following notation. Let π : X → S be a proper, surjective,
flat holomorphic map from a compact, connected smooth Kähler fourfold to a
compact Riemann surface. Let D be the discriminant locus and let 0 ∈ D. We
assume that X := X0 is a Calabi-Yau threefold with a unique ODP as its singular
set satisfying h2(≠1

X) = 1. The deformation germ π : (X , X) → (S, 0) is a smoothing
of X, and a general fiber of π is a smooth Calabi-Yau threefold. We set o := Sing X.

Let p : (X, X) → (Def(X), [X]) be the Kuranishi family of X with discriminant
locus D = [X]. Since h2(≠1

X) = 1, we have dimDef(X) = 1. By Proposition 2.8, X
is Kähler. Let gX be a Kähler metric on X, and set gX/Def(X) := gX|TX/Def(X).
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Let µ : (S, 0) → (Def(X), [X]) be the holomorphic map that induces the family
π : (X , X) → (S, 0) from the Kuranishi family. By the local description (2.2), we
have OX ,o

ª= C{z0, z1, z2, z3}/(z2
0 + · · · + z2

3 − µ(t)). Since X is smooth, D = µ(0)
is not a critical value of µ, and the morphism of germs µ : (S, 0) → (Def(X), [X]) is
an isomorphism. Hence there exist a neighborhood U of 0 ∈ S and an isomorphism
of families f : X|U ª= X|µ(U).

Let gπ−1(U) be the Kähler metric on π−1(U) defined as

gπ−1(U) = f§gX.

Let gX/S be the Hermitian metric on TX/S|π−1(U)\Σπ
induced from gπ−1(U). Then

gX/S = f§gX/Def(X).

Let k ·k2∏(Ep
X/S),L2,gX/S

be the L2-metric on the Kähler extension ∏(Ep
X/S)|U with

respect to gX/S . Since Fp
X/S is acyclic on X for p = 0, 1, we have the following

isomorphisms for p = 0, 1:

(8.1) ∏(Ep
X/S)|U ª= µ§∏(≠p

X/Def(X)), k · kL2,gX/S
= µ§k · kL2,gX/Def(X) .

Let t be a local coordinate of S centered at 0. Let σp be a nowhere vanishing
holomorphic section of the Kähler extension ∏(Ep

X/S) near 0 ∈ D.

Theorem 8.1. The following formula holds as t → 0:

(−1)p log kσp(t)k2∏(Ep
X/S),L2,gX/S

=
Ω

O(log(− log |t|)) (p = 0, 1)
− log |t|2 + O(log(− log |t|)) (p = 2, 3).

Proof. Let p = 0, 1. Since µ : (S, 0) → (Def(X), [X]) is an isomorphism, the asser-
tion follows from Theorem 7.10 and (8.1).

Let p = 2, 3. Recall that the canonical element 1p,3−p(Xt) ∈ ∏(≠p
Xt

)≠∏(≠3−p
Xt

)∨
was defined in Subsection 3.3. Let 1p,3−p,So be the nowhere vanishing holomorphic
section of ∏(≠p

Xo/So)≠ ∏(≠3−p
Xo/So)∨ defined by

1p,3−p,So(t) := 1p,3−p(Xt) ∈ ∏(≠p
Xt

)≠ ∏(≠3−p
Xt

)∨, t ∈ So.

Then

(8.2) k1p,3−p,So(t)kL2,gX/S
= k1p,3−p,So(t)kQ,gX/S = 1, t ∈ So.

by Proposition 3.4.
By Theorem 5.11, we get

(8.3)

log kσp(t)≠ σ3−p(t)−1k2
∏(Ep

X/S
)≠∏(E3−p

X/S
)∨,Q,gX/S

= (−1)3−pδ(3, p) log |t|2 + (−1)3 · (−1)3−(3−p)δ(3, 3− p) log |t|2 + O(1)

= (−1)3−p log |t|2 + O(1),

where we used the first identity of Lemma 5.12 to get the last equality of (8.3).
Set

fp(t) :=
σp(t)≠ σ3−p(t)−1

1p,3−p(t)
∈ O(So).
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By (8.2), we get

(8.4)

kσp(t)≠ σ3−p(t)−1k2
∏(Ep

X/S)≠∏(E3−p
X/S)∨,Q,gX/S

= |fp(t)|2 · k1p,3−p(t)k2∏(Ep
X/S)≠∏(E3−p

X/S)∨,Q,gX/S

= |fp(t)|2 · k1p,3−p(t)k2∏(Ep
X/S)≠∏(E3−p

X/S)∨,L2,gX/S

= log kσp(t)≠ σ3−p(t)−1k2
∏(Ep

X/S
)≠∏(E3−p

X/S
)∨,L2,gX/S

,

which, together with (8.3), yields that

(8.5) log kσp(t)≠ σ3−p(t)−1k2
∏(Ep

X/S
)≠∏(E3−p

X/S
)∨,L2,gX/S

= (−1)3−p log |t|2 + O(1).

By Theorem 8.1 for p = 0, 1 and (8.4), we get

(−1)p log kσp(t)k2∏(Ep
X/S

),L2,gX/S

= (−1)p log kσp(t)≠ σ3−p(t)−1k2
∏(Ep

X/S)≠∏(E3−p
X/S)∨,L2,gX/S

+ (−1)p log kσ3−p(t)k2∏(E3−p
X/S),L2,gX/S

= − log |t|2 + O(log(− log |t|)).
This proves the theorem for p = 2, 3. §

Let ∞t be the Kähler form of gX/S |Xt .

Theorem 8.2. The following formula holds as t → 0:

log τBCOV(Xt) =
1
6

log |t|2 + O(log(− log |t|)).

Proof. By the definition of the BCOV torsion of (Xt, ∞t), we have

(8.6)

log TBCOV(Xt, ∞t) =
X
p≥0

(−1)pp log kσp(t)k2∏(Ep
X/S),Q,gX/S

−
X
p≥0

(−1)pp log kσp(t)k2∏(Ep
X/S),L2,gX/S

.

= −19
4

log |t|2 +
3X

p=2

p log |t|2 + O(log(− log |t|2))

=
1
4

log |t|2 + O(log(− log |t|2)),
where we used Theorems 5.13 and 8.1 to get the second equality. Since

log Vol(Xt, ∞t) = O(1), log VolL2(H2(Xt, Z), [∞t]) = O(1),

we deduce from Proposition 7.9 (2) and (8.6) that

log τBCOV(Xt) = logA(Xt, ∞t) + log TBCOV(Xt, ∞t) + O(1)

=
1
6

log |t|2 + O(log(− log |t|2)).
This proves the theorem. §
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9. The singularity of the BCOV invariant II – general degenerations

In Section 9, we fix the following notation: Let X be an irreducible projective
algebraic fourfold and let S be a compact Riemann surface. Let π : X → S be a
surjective, flat holomorphic map. Let D Ω S be a reduced divisor and set X o :=
X \ π−1(D), So := S \ D, πo := π|Xo . Let 0 ∈ D, and let (U, t) be a coordinate
neighborhood of S centered at 0 such that U \ {0} ª= ∆§.

In Section 9, we shall prove a generalization of Theorem 8.2.

Theorem 9.1. If πo : X o → So is a smooth morphism whose fibers are Calabi-Yau
threefolds, then there exists α ∈ R such that as t → 0,

log τBCOV(Xt) = α log |t|2 + O(log(− log |t|2)).
First, we shall prove Theorem 9.1 when π : X → S is a semi-stable family. Then

we shall reduce the general case to this particular case by the semi-stable reduction
theorem of Mumford [27]. We set D := X0 in this section.

9.1. The singularity of L2 metrics for semi-stable degenerations
In Subsections 9.1 and 9.2, we assume that X is smooth and that D = X0

is a reduced divisor of normal crossing, i.e., for every x ∈ D, there exist integers
≤0, ≤1, ≤2, ≤3 ∈ {0, 1} and a coordinate neighborhood (U , (z0, z1, z2, z3)) of X centered
at x such that

π(z) = z≤0
0 z≤1

1 z≤2
2 z≤3

3 , z ∈ U .

Let ≠1
X/S(log D) be the sheaf of meromorphic 1-forms on X with logarithmic pole

along D. Then ≠1X (log D)|X\D = ≠1X |X\D, and ≠1X (log D)|U is a free OU -module
generated by dz0/z≤0

0 , dz1/z≤1
1 , dz2/z≤2

2 , dz3/z≤3
3 .

Let ≠1
S(log 0) be the sheaf of meromorphic 1-forms on S with logarithmic pole

at 0. Then ≠1
S(log 0)0 = OS,0 dt/t. We set

≠1
X/S(log D) := ≠1

X (log D)/π§≠1
S(log 0).

See e.g. [50, Sect. 2], [54, Chap. 3, Sect. 2] for more details about ≠1
X/S(log D).

Let gX be a Kähler metric on X whose Kähler class is integral. Let ∑ ∈ H2(X , Z)
be the Kähler class of gX . We set gX/S := gX |TX /S .

9.1.1. The canonical extension of the Hodge bundles. For the proof of Theorem 9.1,
let us recall some results of Schmid [47] and Steenbrink [50]. Set Uo := U \ {0}.
We fix b ∈ Uo and set W := Hm(Xb, C) and l := dimW .

Let oHm := Rmπ§C≠COUo and consider the Gauss-Manin connection on oHm.
The canonical extension Hm of oHm from Uo to U is defined as follows: Let
{v1, . . . , vl} be a basis of W , and let ∞ ∈ GL(W ) be the Picard-Lefschetz transfor-
mation. There exists a Nilpotent operator N ∈ End(W ) with ∞ = exp(N).

Let √ : fUo 3 z → exp(2π
√−1z) ∈ Uo be the universal covering. Since oHm

is flat, the vectors vi extend to flat holomorphic sections vi ∈ Γ(fUo,√§(oHm)),
which induce an isomorphism √§(oHm) ª= OfUo ≠C W of flat bundles. Under this
trivialization of √§(oHm), we have vi(z + 1) = ∞ · vi(z) for all i. After Schmid [47,
pp.234-236], we define holomorphic frame fields of √§(oHm) by

(9.1) si(exp 2π
√−1z) := exp (−z N) vi(z) =

X
k≥0

1
k!

(−z N)kvi(z).
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Since s1, . . . , sl ∈ Γ(fUo,√§(oHm)) are invariant under the translation z → z + 1,
they descend to single-valued holomorphic frame fields of oHm. Then Hm is a
locally free sheaf on U defined as Hm := OU s1 © · · ·©OU sl.

By Hodge theory, oHm carries the Hodge filtration 0 Ω oFm Ω · · · Ω oF1 Ω oHm

such that oFp is a holomorphic subbundle of oHm with oFp+1/oFp ª= Rm−pπ§≠p
X/S |Uo .

For t ∈ Uo, we have the natural identification oFp
t =

L
i≥p Hm−i(Xt,≠i

Xt
).

By [47, p.235], [50, Th. 2.11], [61, pp.130 Cor.], the filtration {oFp} extends to
a filtration {Fp} of Hm such that Fp/Fp+1 ª= Rm−pπ§≠p

X/S(log D)|U . Under this
isomorphism, we have an identification of holomorphic line bundles on U :

(9.2) ip : (detFp)≠ (detFp+1)−1 ª= detRm−pπ§≠
p
X/S(log D)|U .

Since oHm
t = Hm(Xt, C) for t ∈ Uo, oHm is equipped with the L2-metric hRmπ§C

with respect to gX/S . Recall that the C1 vector bundles Kp,q(X o/Uo) on Uo were
defined in Subsect. 3.5. Let hFp be the L2-metric on oFp induced from hRmπ§C by
the C1 isomorphism oFp ª= L

i≥pKi,m−i(X o/Uo). By the definition of L2-metrics,
the isomorphism ip|Uo induces an isometry of Hermitian line bundles on Uo:
(9.3)°

(det oFp)≠ (det oFp+1)−1,dethFp ≠ (dethFp+1)−1
¢ ª= (detRm−p≠p

X/S , k · kL2).

Recall that the Kähler operator L : Hm(Xt, C) → Hm+2(Xt, C) with respect to
∑|Xt was defined in Subsect. 4.4.1. Then L induces a homomorphism of OU -modules
L : Hm → Hm+2. The primitive part of Hm is the holomorphic flat subbundle of
Hm defined as Pm := Hm ∩ ker L4−m. The Picard-Lefschetz transformation ∞
preserves Pm. If si ∈ Γ(U,Pm), there exists k ∈ Z, C ∈ R by [47, p.252 Th. 6.6’]
such that

(9.4) ksi(t)k2L2 ∑ C (− log |t|)k, t ∈ Uo.

9.1.2. Singularities of the L2-metrics: the case of canonical extension.

Lemma 9.2. Let m = 3. Let fp be a nowhere vanishing holomorphic section of
detFp defined on U . Then there exists cp ∈ R such that as t → 0,

log kfp(t)k2L2 = cp log |t|2 + O(log(− log |t|)).
Proof. Since m = 3, we have H3 = P3, i.e., the groups H3(Xt, C) are primitive.
By (9.4), there exists a constant C > 0 and l ∈ Z such that

(9.5) ∏p(t) := kfp(t)k2L2 ∑ C (− log |t|)l, t ∈ Uo.

We set ∏4(t) = 0. By Proposition 4.6 and (9.3), we get the following on Uo:

(9.6) −ddc(log ∏p − log ∏p+1) =

8>><>>:
−ωWP,Xo/Uo (p = 0)
−ωH,Xo/Uo + 3 ωWP,Xo/Uo (p = 1)
ωH,Xo/Uo − 3ωWP,Xo/Uo (p = 2)
ωWP,Xo/Uo (p = 3).

Since ∏p ∈ L1
loc(U) by (9.5), the result follows from Lemma 7.5 (1) and (9.6). §

Let σp be a nowhere vanishing holomorphic section of ∏(Ep
X/S) near 0.

Proposition 9.3. There exists β0 ∈ R such that as t → 0:

log kσ0(t)k2∏(OX ),L2,gX/S
= β0 log |t|2 + O(log(− log |t|)).
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Proof. We may assume that σ0 = f0≠ f−1
1 under the isomorphism (9.2). Since (9.2)

induces the isometry (9.3), the result follows from Lemma 9.2. §

By [50, Th. 2.11], Rqπ§≠1
X/S(log D) is locally free. Set r := rkRqπ§≠1

X/S(log D).
Let e1(t), . . . , er(t) be a basis of Rqπ§≠1

X/S(log D) as a free OU -module.

Proposition 9.4. For 0 ∑ q ∑ 3, there exists δq ∈ R such that as t → 0,

log ke1(t) ∧ · · · ∧ er(t)k2det Rqπ§≠1
X/S(log D),L2,gX/S

= δq log |t|2 + O(log(− log |t|)).

Proof. Since r = 0 when q = 0, 3, it suffices to prove the cases q = 1, 2.
(Case 1) Let q = 2. There exists a nowhere vanishing holomorphic function

h(t) on U such that e1(t)∧ · · ·∧ er(t) = h(t) f1(t)≠ f2(t)−1 under the isomorphism
(9.2). Since (9.2) induces the isometry (9.3), the result follows from Lemma 9.2.

(Case 2) Let q = 1. When m = 2, we have H2 = F1. Hence r = l. Identify the
integral Kähler class ∑ on X with the corresponding flat section of H2. Then Pm

and OU ∑ are holomorphic flat subbundles of Hm preserved by the Picard-Lefschetz
transformation ∞. Hence we have a decomposition H2 = P2 ©OU ∑ of ∞-invariant
flat bundles on U . By choosing v1 = ∑b and v2, . . . , vl ∈ P2

b in Subsect. 9.1.1, we
may assume that s1 = ∑ and Pm = OU s2 © · · ·©OU sl.

Recall that the cubic form cXt(·, ·, ·) on H2(Xt, C) was defined in Subsect. 4.4.
By the flatness of vi and (4.4), we have for i, j ≥ 2 and z ∈ fUo:
(9.7)

(si(e2π
√−1z), sj(e2π

√−1z))L2 = −cXt

≥
exp(−z N)vi(z), exp(−z N)vj(z),∑

¥
= −

lX
µ,∫=0

zµz̄∫

µ!∫!
cXb(N

µ vi, N
∫ vj ,∑b).

Since the left hand side of (9.7) is invariant under the translation z → z + 1, the
right hand side must be a polynomial in z − z̄. Hence there exist A ∈ Z≥0 and
cijk ∈ C, 1 ∑ i, j ∑ l, 0 ∑ k ∑ A, such that for all t ∈ Uo,

(9.8) (si(t), sj(t))L2 =
AX

k=0

cijk (− log |t|2)k.

Since the decomposition H2 = P2 © OU ∑ is orthogonal with respect to the L2-
metric hR2π§C by [55, Lemma 6.31] or by Lemma 4.12, we deduce from (9.8) the
existence of B ∈ Z≥0 and real numbers c0, · · · , cB such that

(9.9) ks1(t)∧ · · ·∧sl(t)k2L2 = k∑k2L2 ·det ((si(t), sj(t))L2)i,j≥2 =
BX

k=0

ck (− log |t|2)k.

Since the left hand side of (9.9) is positive, we may assume that cB > 0. The result
follows from (9.9). This completes the proof. §

9.1.3. Comparison of the Kähler extension and the canonical extension.

Proposition 9.5. There exists β1 ∈ R such that

log kσ1(t)k2∏(≠1
X/S),L2,gX/S

= β1 log |t|2 + O(log(− log |t|)) (t → 0).
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Proof. Consider the natural injection 0 → ≠1
X/S → ≠1

X/S(log D), and set Q :=
≠1
X/S(log D)/≠1

X/S . Then Q is a torsion sheaf on X whose support is contained in
Sing(D). Consider the long exact sequence of direct image sheaves induced by the
short exact sequence of sheaves 0 → ≠1

X/S → ≠1
X/S(log D) → Q → 0 on X :

Rq−1π§≠1
X/S(log D) → Rq−1π§Q → Rqπ§≠1

X/S → Rqπ§≠1
X/S(log D) → Rqπ§Q.

Since Rqπ§Q is a torsion sheaf on U supported at {0} for all q, there exist torsion
sheaves Mq, Nq on U supported at {0} and an exact sequence of coherent sheaves
on U :

(9.10) 0 → Mq → Rqπ§≠1
X/S

j−−−−→ Rqπ§≠1
X/S(log D) → Nq → 0.

Since U ª= ∆ and hence OU,t is a discrete valuation ring for all t ∈ U , the image
j(Rqπ§≠1

X/S) is a locally free submodule of Rqπ§≠1
X/S(log D). Hence (Rqπ§≠1

X/S)tor,
the torsion part of Rqπ§≠1

X/S , is contained in ker j. Since Mq Ω (Rqπ§≠1
X/S)tor,

we have

(9.11) Mq = (Rqπ§≠1
X/S)tor.

Since Nq = Rqπ§≠1
X/S(log D)/j(Rqπ§≠1

X/S) is a torsion sheaf, there exist inte-
gers ∫1, . . . , ∫r ≥ 0 such that Nq

ª= C{t}/(t∫1)©· · ·©C{t}/(t∫r ) and j(Rqπ§≠1
X/S) =

OU t∫1e1(t)© · · ·©OU t∫rer(t). Hence

(9.12) det j(Rqπ§≠1
X/S) = OU · t∫1e1(t) ∧ · · · ∧ t∫rer(t).

By [1, p.110 3. Proof of the theorem], there exists a complex of locally free
sheaves of finite rank on U

E• : 0 → E−1
v−1−−−−→ E0

v0−−−−→ · · · vk−1−−−−→ Ek → 0

such that Rqπ§≠1
X/S is the q-th cohomology sheaf of E•, i.e., Rqπ§≠1

X/S
ª= Hq(E•)

for all q ≥ 0. Since U ª= ∆, ker vq Ω Eq and Im vq Ω Eq+1 are locally free
sheaves on U for all q ≥ −1. Let ξq be the inverse image of (Rqπ§≠1

X/S)tor by
the natural surjection ker vq → Rqπ§≠1

X/S , and set ηq := Im vq−1. There exists an
exact sequence of coherent sheaves on U

0 → ηq
'q−−−−→ ξq → (Rqπ§≠1

X/S)tor → 0

such that ηq, ξq are locally free with equal rank. Under the canonical isomor-
phism det(Rqπ§≠1

X/S)tor ª= det ξq ≠ (det ηq)−1, the canonical section det'q ∈
H0(U,det ξq ≠ (det ηq)−1) induces the trivialization det(Rqπ§≠1

X/S)tor ª= OU on
Uo by [49, pp.118, Proof of Lemma 1, First Case]:

(9.13) det(Rqπ§≠1
X/S)tor 3 det 'q → 1 ∈ OU .

Since det Rqπ§≠1
X/S

ª= det j(Rqπ§≠1
X/S)≠det(Rqπ§≠1

X/S)tor by (9.10) and (9.11),
we deduce from (9.12), (9.13) that the following expression s1,q is a holomorphic
section of det Rqπ§≠1

X/S :

s1,q(t) := (t∫1e1(t) ∧ · · · ∧ t∫rer(t))≠ det 'q(t).
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Since s1,q(t)|Uo is identified with the section t∫1e1(t) ∧ · · · ∧ t∫rer(t)|Uo under the
identification det Rqπ§≠1

X/S |Uo ª= det j(Rqπ§≠1
X/S)|Uo induced by (9.13), we de-

duce from Proposition 9.4 that for t ∈ Uo,

(9.14)

log ks1,q(t)k2L2,gX/S
= log kt∫1e1(t) ∧ · · · ∧ t∫rer(t)k2L2,gX/S

= dimC Nq log |t|2 + log ke1(t) ∧ · · · ∧ er(t)k2L2,gX/S

= (dimC Nq + δq) log |t|2 + O(log(− log |t|)).
Since det 'q vanishes at t = 0 with multiplicity dimC Mq, σ1,q(t) := t− dimC Mq s1,q(t)
is a nowhere vanishing holomorphic section of det Rqπ§≠1

X/S . By (9.14), we get

(9.15) log kσ1,q(t)k2L2,gX/S
= (dimC Nq + δq −dimC Mq) log |t|2 +O(log(− log |t|)).

The result follows from (9.15). This completes the proof of Proposition 9.5. §
Proposition 9.6. Let p = 2, 3. There exists βp ∈ R such that as t → 0,

log kσp(t)k2∏(Ep
X/S),L2,gX/S

= βp log |t|2 + O(log(− log |t|)).
Proof. We keep the notation in Section 8, Proof of Theorem 8.1. By Theorem 5.4,
there exists ap ∈ Q such that

(9.16) log kσp(t)≠ σ3−p(t)−1k2
∏(Ep

X/S)≠∏(E3−p
X/S)∨,Q,gX/S

= ap log |t|2 + O(1).

By the same argument as in the proof of Theorem 8.1 (8.4) using (9.16) in stead of
(8.3), we get

log kσp(t)≠ σ3−p(t)−1k2
∏(Ep

X/S)≠∏(E3−p
X/S)∨,L2,gX/S

= ap log |t|2 + O(1),

which, together with Propositions 9.3 and 9.5, yields the existence of βp ∈ R such
that

log kσp(t)k2∏(Ep
X/S),L2,gX/S

= βp log |t|2 + O(log(− log |t|)).
This proves the proposition. §
9.2. Proof of Theorem 9.1: the case of semi-stable degenerations

Let ∞t be the Kähler form of gX/S |Xt . By the definition of the BCOV torsion of
(Xt, ∞t), we have

log TBCOV(Xt, ∞t) =
X

p

(−1)pp {log kσp(t)k2∏(Ep
X/S),Q,gX/S

−log kσp(t)k2∏(Ep
X/S),L2,gX/S

}.

By Theorem 5.4 and Propositions 9.3, 9.5, 9.6, there exists a ∈ R such that

(9.17) log TBCOV(Xt, ∞t) = a log |t|2 + O(log(− log |t|2)).
Since the Kähler class of gX is integral, there exist positive constants A,B ∈ Q by
Lemma 4.12 such that for all t ∈ Uo,

(9.18) log Vol(Xt, ∞t) = A, log VolL2(H2(Xt, Z), [∞t]) = B.

By Proposition 7.9 (1), there exists ≤ ∈ R such that

(9.19) logA(Xt, ∞t) = ≤ log |t|2 + O(log(− log |t|2)).
By (9.17), (9.18), (9.19), we get

log τBCOV(Xt) = logA(Xt, ∞t) + log TBCOV(Xt, ∞t) + O(1)

= (a + ≤) log |t|2 + O(log(− log |t|2)).
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This proves the theorem. §
9.3. Proof of Theorem 9.1: general cases

In Subsection 9.3, we only assume that πo : X o → So is a smooth morphism
whose fibers are Calabi-Yau threefolds.

By the semi-stable reduction theorem [27, Chap. II], there exist a pointed pro-
jective curve (B, o), a finite surjective holomorphic map f : (B, o) → (S, 0), and a
holomorphic surjection p : Y → B from a projective fourfold Y to B satisfying the
following conditions:
(i) Let V be the component of f−1(U) containing o. Then f : V \ {o} → U \ {0}
is an isomorphism;
(ii) Set U§ = U \ {0} and V § = V \ {o}. Then p|V § : Y|V § → V § is induced from
π|U§ : X|U§ → U§ by f |V § ;
(iii) Y is smooth, and Yo is a reduced divisor of normal crossing.

Let b be the coordinate on V centered at o. By condition (i), we may assume
that there exists ∫ ∈ N such that f§t = b∫ . Let τU§ and τV § be the functions on
U§ and V § defined by

τU§(t) := τBCOV(Xt), τV §(b) := τBCOV(Yb)

for t ∈ U§ and b ∈ V §, respectively. By condition (ii) and Theorem 4.16, we get

(9.20) τV § = f§τU§

We can apply Theorem 9.1 to the family p|V : Y|V → V by condition (iii), so that
there exists α ∈ R such that as b → 0,

(9.21) log τV §(b) = α log |b|2 + O(log(− log |b|)).
Since b = t∫ , the desired formula follows from (9.20) and (9.21). This completes
the proof of Theorem 9.1. §

10. The curvature current of the BCOV invariant

Following [58, Sect. 7], we extend Theorem 4.14 to the Kuranishi space of Calabi-
Yau threefold with a unique ODP as its singular set.

10.1. The curvature current of τBCOV: general cases
In Subsection 10.1, we fix the following notation. Let X be an irreducible pro-

jective algebraic fourfold and let S be a compact Riemann surface. Let π : X → S
be a surjective, flat holomorphic map. Let D Ω S be a reduced divisor and set
X o := X \ π−1(D), So := S \ D, πo := π|Xo . We assume that the fibers of
πo : X o → So are Calabi-Yau threefolds with h2(≠1

Xs
) = 1 for s ∈ So. Let χ(X)

denote the topological Euler number of Xs, s ∈ So.
Let ≠WP,X/S and ≠H,X/S be the trivial extensions of the Weil-Petersson form

and the Hodge form from So to S (cf. Proposition 7.3 and Definition 7.4). Then
the (1, 1)-currents ≠WP,X/S and ≠H,X/S are positive.

Let 0 ∈ D and let (U, t) be a coordinate neighborhood of S centered at 0. By [48,
Proof of Lemma 5.4], there exist subharmonic functions ' and θ on U satisfying
the following equations of currents on U :

(10.1) ddc' = ≠WP,X/S |U , ddcθ = ≠H,X/S |U .

As in Subsection 4.4.2, we define a function on S by

τBCOV(X/S)(t) := τBCOV(Xt), t ∈ S.
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By Theorems 4.14 and 9.1, log τBCOV(X/S) ∈ C1(So) ∩ L1(S).

Theorem 10.1. Set

a := lim
t→0

log τBCOV(X/S)|U (t)
log |t|2 ∈ R.

Then the following equation of currents on U holds:

ddc log τBCOV(X/S) = −χ(X)
12

≠WP,X/S − ≠H,X/S + a δ0.

Proof. Identify U with ∆ in what follows. By Theorem 9.1, there exists a positive
constant K such that

(10.2)
ØØlog τBCOV(X/S)(t)− a log |t|2ØØ ∑ K log(− log |t|), t ∈ ∆(1/2)§.

For t ∈ ∆(1/2)§, set

P (t) :=
°
log τBCOV(X/S)(t)− a log |t|2¢ +

χ(X)
12

'(t) + θ(t).

Then P (t) ∈ C1(∆(1/2)§). By (7.10) and (10.2), there exists a positive constant
L such that

(10.3) |P (t)| ∑ L log(− log |t|2), t ∈ ∆(1/2)§.

Since P is harmonic on ∆(1/2)§ by Theorem 4.14 and (10.1), we deduce from
Lemma 7.1 (3) that P extends to a harmonic function on ∆(1/2). Since P is
harmonic on ∆(1/2), it follows from (7.10) that

(10.4) log τBCOV(X/S) = a log |t|2 − χ(X)
12

'− θ + P ∈ L1
loc(∆(1/2)).

Since ddcP = 0 on ∆, Eq. (10.4), together with (10.1), yields the assertion. §

10.2. The curvature current of τBCOV: the case of Kuranishi families
In Subsection 10.2, we fix the following notation: Let X be a smoothable Calabi-

Yau threefold with only one ODP as its singular set. Let Def(X) be the Kuranishi
space of X with discriminant locus D, and let p : (X, X) → (Def(X), [X]) be the
Kuranishi family of X. Assume that dimDef(X) = h2(≠1

X) = 1. Let s be a
coordinate on Def(X) such that D = div(s). We identify Def(X) with the disc ∆
equipped with the coordinate s. Then Def(X) \D ª= ∆§.

Let ≠WP and ≠H be the trivial extensions of the Weil-Petersson form and the
Hodge form from Def(X) \D to Def(X). Let χ(Xgen) denote the topological Euler
number of a general fiber of the Kuranishi family.

Theorem 10.2. The function log τBCOV is locally integrable on Def(X), and the
following equation of currents on Def(X) holds:

ddc log τBCOV = −χ(Xgen)
12

≠WP − ≠H +
1
6

δD.

Proof. By Proposition 2.8, there exist a pointed projective curve (B, 0), a projective
fourfold Z, and a surjective, proper, flat holomorphic map f : Z → B such that the
deformation germ f : (Z, f−1(0)) → (B, 0) is isomorphic to the Kuranishi family
p : (X, X) → (Def(X), [X]). Since Def(X) is smooth at [X], so is B at 0. By Theo-
rem 9.1, we get log τBCOV ∈ L1

loc(Def(X)). Let ∞ := limt→0 log τBCOV(Xt)/ log |t|2.
Since ∞ = 1

6 by Theorem 8.2, the result follows from Theorem 10.1. §
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10.3. The curvature current of τBCOV: the case of induced families
We keep the notation in Subsection 10.2. Let µ : (∆, 0) → (Def(X), [X]) be

a holomorphic map and let π : X → ∆ be the family of Calabi-Yau threefolds
induced from the Kuranishi family p : (X, X) → (Def(X), [X]) by µ. Notice that X
is singular if 0 is a critical point of µ.

Theorem 10.3. The function log τBCOV(X/∆) lies in L1
loc(∆), and the following

equation of currents on ∆ holds:

ddc log τBCOV(X/∆) = −χ(Xgen)
12

≠WP,X/∆ − ≠H,X/∆ +
1
6

δµ§D.

Proof. Let f ∈ ODef(X),[X] be such that D = div(f). Let ≠WP and ≠H be the trivial
extensions of the Weil-Petersson and the Hodge forms on Def(X), respectively. As
in the proof of Theorem 10.1, let ' and θ be the subharmonic functions on Def(X)
with ≠WP = ddc' and ≠H = ddcθ. Then µ§' and µ§θ are subharmonic functions
on ∆ with

(10.5) ddc(µ§')|∆§ = ωWP,X/∆, ddc(µ§θ)|∆§ = ωH,X/∆.

After shrinking Def(X) if necessary, we may assume by (7.10) the existence of
constants C0, C1 > 0 with
(10.6)
−C0 log(− log |f |2) ∑ '|Def(X)\D ∑ C1, −C0 log(− log |f |2) ∑ θ|Def(X)\D ∑ C1.

Since µ−1(D) ∩∆ = {0}, there exist a positive integer k and a nowhere vanishing
holomorphic function ε(s) ∈ O(∆) with

(10.7) µ§f(s) = sk ε(s).

After shrinking ∆ if necessary, the following inequality holds by (10.6)
(10.8)

−C2 log(− log |s|2) ∑ µ§'|∆§ ∑ C1, −C2 log(− log |s|2) ∑ µ§θ|∆§ ∑ C1,

where C2 > 0 is a constant. By (10.5), (10.8) and Lemma 7.5 (2), we get the
following equations of currents on ∆:

(10.9) ≠WP,X/∆ = ddc(µ§'), ≠H,X/∆ = ddc(µ§θ).

By (10.4) and Theorem 10.2, there exists a harmonic function P on Def(X) such
that

log τBCOV =
1
6

log |f |2 − χ(X)
12

'− θ + P.

Since τBCOV(X/∆) = µ§τBCOV, we get

(10.10) log τBCOV(X/∆) =
1
6

µ§ log |f |2 − χ(X)
12

µ§'− µ§θ + µ§P.

By (10.8), (10.10), we get log τBCOV(X/∆) ∈ L1
loc(∆). By (10.9), (10.10), we get

the desired equation of currents. This complete the proof. §

11. The BCOV invariant of Calabi-Yau threefolds with h1,2 = 1

In Section 11, we fix the following notation. Let X be a possibly singular
irreducible projective fourfold and let S be a compact Riemann surface. Let
π : X → S be a proper, surjective, flat morphism with discriminant locus D :=
{s ∈ S; Sing Xs 6= ;}. We set

So := S \ D, X o := π−1(So),
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D§ := {s ∈ D; Sing Xs consists of a unique ODP},
and

S§ := So ∪D§, X § := π−1(S§).

In Section 11, we make the following:

Assumption (i) Xs is a Calabi-Yau threefold with h2(≠1
Xs

) = 1 for all s ∈ S§;
(ii) D \ D§ consists of a unique point 1 ∈ S;
(iii) Sing(X ) ∩X1 = ; and X1 is a divisor of normal crossing.

The ramification divisor of the family π : X → S is defined as follows. For s ∈ S§,
let µs : (S, s) → (Def(Xs), [Xs]) be the map of germs of analytic sets defined by

µs(t) := [Xt] ∈ Def(Xs).

Since dimDef(Xs) = 1, we may identify (Def(Xs), [Xs]) with (C, 0). Let z be the
coordinate of C, so that z ◦ µs(t) ∈ OS,s. We define the ramification index of
π : X → S at s ∈ S by

rX/S(s) := ordt=sz ◦ µs(t) ∈ N.

Let {Rj}j∈J be the set of points of P1 whose ramification index is > 1. The
ramification divisor is then defined as

R :=
X
j∈J

(rj − 1) Rj , rj := rX/S(Rj).

Let p ∈ D§ and Sing(Xp) = {o}. By the local description (2.2), we have an
isomorphism of local rings

(11.1) OX ,o
ª= C{x, y, z, w, t}/(x2 + y2 + z2 + w2 + trX/S(p)).

Write D§ = {Dk}k∈K . As a divisor of S, we define

D§ :=
X
k∈K

rk Dk, rk := rX/S(Dk).

Since SingX Ω ∪s∈D§Sing Xs, X has at most isolated hypersurface singularities
as its singular points by (11.1). Hence KX and KX/S := KX ≠π§K−1

S are invertible
sheaves on X .

Lemma 11.1. The sheaf π§KX/S is an invertible sheaf on S.

Proof. Since π−1(S \ D§) is smooth, π§KX/S is an invertible sheaf on S \ D§ by
Assumption (i) and [51, p.391, Th.V]. Let s ∈ D§. Since the conormal bundle of
(Xs)reg in Xreg is trivial, we have KX/S |(Xs)reg

ª= K(Xs)reg . Since KX/S |Xs and
KXs are invertible sheaves on Xs, we get KX/S |Xs

ª= KXs by the normality of Xs.
Since Xs is Calabi-Yau, we have h0(KX/S |Xs) = h0(KXs) = 1. By [1, Th. 4.12 (ii)],
π§KX/S is an invertible sheaf near s ∈ D§. This proves the lemma. §

Let χ be the topological Euler number of a general fiber Xs, s ∈ So. Let k · k be
the Hermitian metric on (π§KX/S)≠(48+χ)≠(TS)≠12|So induced from the L2-metric
on π§KX/S and from the Weil-Petersson metric gWP,X/S on So. The following is
the main result of this paper.
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Main Theorem 11.2. Let • be a meromorphic section of π§KX/S on S with

div(•) =
X
i∈I

mi Pi + m1P1, Pi 6= P1 (i ∈ I),

and let V be a meromorphic vector field on S. Then the following hold:
(1) There exists a locally integrable function F•,V on S with

ddcF•,V =
n

(24 +
χ

2
) deg π§KX/S + 6 χ(S) + 6 degR− degD§

o
δ1

+ δD§ − (24 +
χ

2
) δdiv(•) − 6 δdiv(V ) − 6 δR

such that
τBCOV(X/S) =

∞∞eF•,V •48+χ ≠ V 12
∞∞ 1

6 .

(2) When S = P1, let √ be the inhomogeneous coordinate of P1 with √(1) = 1.
Identify the points Pi, Rj , Dk with their coordinates √(Pi),√(Rj),√(Dk), respec-
tively. Then there exists a constant C 6= 0 such that

τBCOV(X√) = C

∞∞∞∞∞∞
Y

i∈I,j∈J,k∈K

(√ −Dk)2rk

(√ − Pi)(48+χ)mi(√ −Rj)12(rj−1)
•48+χ

√ ≠
µ

@

@√

∂12
∞∞∞∞∞∞

1
6

.

In the rest of this section, we shall prove Theorem 11.2. For p ∈ D, let (Up, t) be
a coordinate neighborhood of S centered at p with Up∩D = {p} and Up \{p} ª= ∆§.

By Proposition 7.3, the positive (1, 1)-forms ωWP,X/S and ωH,X/S on So extend
trivially to closed positive (1, 1)-currents on S.

Definition 11.3. Let ≠WP,X/S and ≠H,X/S be the trivial extensions of ωWP,X/S

and ωH,X/S from So to S, respectively.

Proposition 11.4. (1) There exists a(p) ∈ R such that the following equation of
currents on Up holds:

ddc log ≠WP,X/S |Up

µ
@

@t
,

@

@ t̄

∂
= a(p) δp − ≠H,X/S + 4 ≠WP,X/S .

(2) For Dk ∈ D§, one has a(Dk) = rk − 1.

Proof. We get (1) by Proposition 7.6 (2). Let p = Dk. Under the identification of
the Kuranishi space (Def(Xp), [Xp]) with (C, 0), we may assume by the definition of
the ramification index rX/S that π|Up : X|Up → Up is induced from the Kuranishi
family of Xp by the map µ(t) = trk . Let ωWP be the Weil-Petersson form on
Def(Xp). Since ≠WP,X/S |Up\{p} = µ§ωWP, we deduce from Proposition 7.6 (1), (3)
that as t → 0,

(11.2)
log ≠WP,X/S |Up

µ
@

@t
,

@

@ t̄

∂
= log ωWP

µ
µ§

@

@t
, µ§

@

@ t̄

∂
= (rk − 1) log |t|2 + O(log(− log |t|)).

By (11.2), we get a(p) = rk − 1. This completes the proof. §
Proposition 11.5. There exists b(1) ∈ R such that the following equation of
currents on S holds:

(11.3) ddc log k•k2L2 = b(1) δ1 + δdiv(•) − ≠WP,X/S .
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Proof. Let s ∈ S be an arbitrary point. It suffices to prove Eq. (11.3) on a neigh-
borhood of s. By Proposition 7.8 (2), Eq. (11.3) holds on a neighborhood of 1.

Assume that s ∈ S§. Let p : (X, Xs) → (Def(Xs), [Xs]) be the Kuranishi family
of Xs. Since π : (X , Xs) → (S, s) is induced from the Kuranishi family by the
map µs : (S, s) → (Def(Xs), [Xs]), there exists a morphism of deformation germs
fµs : (X , Xs) → (X, Xs) satisfying the commutative diagram:

(X , Xs)
fµs−−−−→ (X, Xs)

π

??y p

??y
(S, s) µs−−−−→ (Def(Xs), [Xs]).

Let Us
ª= ∆ be a neighborhood of s in S such that µs (resp. fµs) is defined on

Us (resp. π−1(Us)) and such that µs has no critical points on Uo
s := Us \{s}. Since

(11.4) f§µs
KX/Def(Xs) = KX/S

on π−1(Us) \ Sing Xs, the normality of X implies that (11.4) holds on π−1(Us).
By Lemma 6.1, KX/Def(Xs) is trivial. Let ηX/Def(Xs) be a nowhere vanishing

holomorphic section of KX/Def(Xs) defined on Def(Xs). We regard ηX/Def(Xs) as a
family of holomorphic 3-forms {ηX/Def(Xs)|Xb}b∈Def(Xs). Since Xs has at most one
ODP as its singular set, log kηX/Def(Xs)kL2 ∈ C0(Def(Xs)) by Proposition 7.8 (3).

Since f§µs
ηX/Def(Xs) ∈ H0(π−1(Us),KX/S) = H0(Us,π§KX/S) is nowhere van-

ishing, f§µs
ηX/Def(Xs) generates π§KX/S on Us as an OUs -module. Since

kf§µs
ηX/Def(Xs)kL2(t) = kηX/Def(Xs)kL2(µs(t)), t ∈ Uo

s

by (11.4) and since log kηX/Def(Xs)kL2 ∈ C0(Def(Xs)), log kf§µs
ηX/Def(Xs)kL2 is a

continuous function on Us. Since −ddc log kf§µs
ηX/Def(Xs)kL2 = ≠WP,X/S on Uo

s ,
we get the following equation of currents on Us by Lemma 7.5 (1), (2):

(11.5) −ddc log kf§µs
ηX/Def(Xs)kL2 = ≠WP,X/S .

Since f§µs
ηX/Def(Xs) ∈ H0(Us,π§KX/S) is nowhere vanishing, there exists h(t) ∈

O(Us) such that • = h · f§µs
ηX/Def(Xs) on Us. By (11.5), we get

(11.6) −ddc log k•k2L2 = ≠WP,X/S − δdiv(h)

as currents on Us. Eq. (11.3) on Us follows from (11.6). §

Theorem 11.6. There exists c(1) ∈ Q such that the following equation of currents
on S holds:

(11.7) ddc log τBCOV(X/S) = − χ

12
≠WP,X/S − ≠H,X/S +

1
6

δD§ + c(1) δ1.

Proof. The result follows from Theorems 10.1 and 10.3. §

Proof of Theorem 11.2 (1) By Proposition 11.4 and (4.1), we get the following
equation of currents on S:

(11.8) ddc log kV k2 = a(1) δ1 + δR + δdiv(V ) − ≠H,X/S + 4 ≠WP,X/S .
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By (11.3), (11.7), (11.8), we get
(11.9)
ddc log kV 12 ≠•48+χk2 = 12(a(1) δ1 + δR + δdiv(V ))− 12 ≠H,X/S + 48 ≠WP,X/S

+ (48 + χ) (b(1) δ1 + δdiv(•))− (48 + χ) ≠WP,X/S

= 12 ddc log τBCOV(X/S)
+ {12 a(1) + (48 + χ) b(1)− 12 c(1)} δ1
− 2 δD§ + 12 δR + 12 δdiv(V ) + (48 + χ) δdiv(•).

Integrating the both hand sides of (11.9) over S, we get
(11.10)
{12 a(1)+(48+χ) b(1)−12 c(1)}−2 degD§+12 degR+12χ(S)+(48+χ) deg • = 0.

By (11.9) and (11.10),

F•,V := log τBCOV(X/S)6 − log kV 12 ≠•48+χk.
is a harmonic function on S \ (D∪R) satisfying Theorem 11.2 (1). This proves (1).
(2) We set V (√) := @/@√ ∈ H0(P1, TP1). Then div(V ) = 21, so that F•,V

satisfies the following equation of currents on P1 by (11.9), (11.10):

(11.11)
ddcF•,V =

n
(24 +

χ

2
) deg π§KX/S + 6 degR− degD§

o
δ1

+ δD§ − (24 +
χ

2
) δdiv(•) − 6 δR.

Up to a constant, the solution of Eq. (11.11) is given by the following formula:

(11.12) F•,V (√) = log

ØØØØØØ
Y

i∈I,j∈J,k∈K

(√ −Dk)2rk

(√ − Pi)(48+χ)mi(√ −Rj)12(rj−1)

ØØØØØØ .

The second assertion of Theorem 11.2 follows from (11.12). This completes the
proof of Theorem 11.2. §

12. The BCOV invariant of quintic mirror threefolds

12.1. Quintic mirror threefolds
Let p : X → P1 be the pencil of quintic threefolds in P4 defined by

X := {([z],√) ∈ P4 × P1; F√(z) = 0}, p = pr2,

F√(z) := z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5√ z0z1z2z3z4.

The parameter √ is regarded as the inhomogeneous coordinate of P1. Identify Z5

with the set of fifth roots of unity: Z5 = {≥ ∈ C; ≥5 = 1}. We define

G :=
{(a0, a1, a2, a3, a4) ∈ (Z5)5; a0a1a2a3a4 = 1}

Z5(1, 1, 1, 1, 1)
ª= Z3

5.

The group G× Z5 acts on X and P1 by

(a, b) · ([z],√) := ([b−1a0z0 : a1z1 : a2z2 : a3z3 : a4z4], b√), (a, b) · √ := b √.

Then the projection p : X → P1 is G×Z5-equivariant. Since G preserves the fibers
of p, we have the induced family

p : X/G → P1
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equipped with the induced Z5-action. We set

D§ :=
Ω

exp
2π
√−1 m

5
∈ P1; 0 ∑ m ∑ 4

æ
Ω P1, D := D§ ∪ {1} Ω P1.

Then D is the discriminant locus of the family p : X → P1 by [14, p.27].

Proposition 12.1. There exists a resolution f : W → X/G satisfying the following
conditions:
(1) Set f√ := f |W√ . Then f√ : W√ → X√/G is a crepant resolution for √ ∈ P1 \D.
In particular, W√ is a smooth Calabi-Yau threefold for √ ∈ P1 \ D;
(2) Sing W√ consists of a unique ODP if √5 = 1;
(3) W1 is a divisor of normal crossing.

Proof. See [39, Appendix B], [4], [15, Sects. 2.2 and 2.4] for (1) and [14, p.27] for
(2). The last assertion follows from Hironaka’s theorem. §

Notice that the choice of a resolution f : W → X/G as above is not unique.

Definition 12.2. Set π := p ◦ f . Any family π : W → P1 satisfying the conditions
(1), (2), (3) as above is called a family of quintic mirror threefolds. The induced
family π : W/Z5 → P1/Z5 is also called a family of quintic mirror threefolds.

Lemma 12.3. If √ ∈ P1 \ D, then

h1,2(W√) = 1, h1,1(W√) = 101, χ(W√) = 200.

Proof. Since h1,1(X√) = 1, h1,2(X√) = 101, and χ(X√) = −200, the result follows
from [4], [15, Th. 4.1.5], [54, Th. 4.30]. §

We refer to [14], [15], [39], [54] for more details about quintic mirror threefolds.

12.2. The mirror map

Definition 12.4. The mirror map is the holomorphic map from a neighborhood
of 1 ∈ P1 to a neighborhood of 0 ∈ ∆ defined by the following formula:

q := (5√)−5 exp

0@ 5
y0(√)

1X
n=1

(5n)!
(n!)5

8<:
5nX

j=n+1

1
j

9=; 1
(5√)5n

1A , |√|¿ 1,

where

y0(√) :=
1X

n=1

(5n)!
(n!)5(5√)5n

, |√| > 1.

The inverse of the mirror map is denoted by √(q).

For √ ∈ P1 \ D, we define a holomorphic 3-form on X√ by

≠√ :=
µ

2π
√−1
5

∂−3

5√
z4 dz0 ∧ dz1 ∧ dz2

@F√(z)/@z3
.

Since ≠√ is G-invariant, ≠√ induces a holomorphic 3-form on X√/G in the sense
of orbifolds. We identify ≠√ with the corresponding holomorphic 3-form on X√/G.
Then f§√≠√ is a holomorphic 3-form on W√. Set

•√ := f§√≠√ ∈ H0(W√,KW√ ).
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By Lemma 12.3, we know rkH3(W√, Z) = 4. There exists a symplectic basis
{A1, A2, B1, B2} of H3(W√, Q), √ 6∈ D, such that Aa ∩ Bb = δan, Aa ∩ Ab =
Ba ∩Bb = 0. By [14], [39, p.245 l.13], the mirror map q(√) is expressed as follows:

q = exp

√
2π
√−1

R
2B1−A1 •√R

A2 •√

!
, y0(√) =

Z
A2

•√.

We refer to [14], [15, Sect. 2.3, Sect. 6.3], [39], [54, Chap. 3] for more details about
the mirror map.

12.3. Conjectures of Bershadsky-Cecotti-Ooguri-Vafa

Definition 12.5. Under the identification of the local parameters √5 and q via the
mirror map, define a multi-valued analytic function near 1 ∈ P1 as

F top
1,B(√) :=

µ
√

y0(√)

∂ 62
3

(√5 − 1)−
1
6 q

d√

dq

and a power series in q as

F top
1,A(q) := F top

1,B(√(q)).

Set

η(q) :=
1Y

n=1

(1− qn).

In [6, Eq.(16), (23), (24)] and [7, l.34], Bershadsky-Cecotti-Ooguri-Vafa conjectured
the following:

Conjecture 12.6. (A) Let Ng(d) be the genus-g Gromov-Witten invariant of de-
gree d of a general quintic threefold in P4 (cf. [34]). Then the following identity
holds:

q
d

dq
log F top

1,A(q) =
50
12
−

1X
n,d=1

N1(d)
2nd qnd

1− qnd
−

1X
d=1

N0(d)
2d qd

12(1− qd)
,

or equivalently

F top
1,A(q) = Const.

(
q25/12

1Y
d=1

η(qd)N1(d)(1− qd)N0(d)/12

)2

.

(B) Let k·k be the Hermitian metric on the line bundle (π§KW/P1)≠62≠(TP1)≠3|P1\D
induced from the L2-metric on π§KW/P1 and from the Weil-Petersson metric on
TP1. Then the following identity holds:

τBCOV(W√) = Const.

∞∞∞∞∞√−62(√5 − 1)
1
2 (•√)62 ≠

µ
d

d√

∂3
∞∞∞∞∞

2
3

= Const.

∞∞∞∞∞ 1
F top

1,B(√)3

µ
•√

y0(√)

∂62

≠
µ

q
d

dq

∂3
∞∞∞∞∞

2
3

.
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Remark 12.7. Under Conjecture 12.6, the Gromov-Witten invariants {Ng(d)}g∑1,d∈N
of a general quintic threefold in P4 and the BCOV invariant of the mirror quintic
threefolds satisfy the following relation:

τBCOV(W√) = Const.

∞∞∞∞∞∞
(

q
25
12

1Y
d=1

η(qd)N1(d)(1− qd)
N0(d)

12

)6 µ
•√

y0(√)

∂62

≠
µ

q
d

dq

∂3
∞∞∞∞∞∞

2
3

.

In the rest of this section, we prove Conjecture 12.6 (B) as an application of
Theorem 11.2.

12.4. Proof of Conjecture 12.6 (B)
Let π : W → P1 be a family of quintic mirror threefolds. Let K(√) be the Kähler

potential of the Weil-Petersson form ≠WP defined as

K(√) := − log

√√−1
Z

W√

•√ ∧•√

!
.

Define a function G(√) by G(√) = gWP( @
@√ , @

@√̄
), so that

≠WP(√) =
√−1 G(√) d√ ∧ d√̄ =

√−1
2π

@2K(√)
@√@√̄

d√ ∧ d√̄.

Proposition 12.8. The following estimates hold

(12.1) K(√) =

8<: log |√|2 + O(1) (√ → 0)
O(1) (√5 → 1)
O(log log |√|) (√ →1),

(12.2) log G(√) =

8<: O(1) (√ → 0)
O(log(− log |√5 − 1|)) (√5 → 1)
− log |√|2 + O(log log |√|) (√ →1).

In particular, R ∩D§ = ; for any family of quintic mirror threefolds.

Proof. See [14, p.50 Table 2]. §

Proposition 12.9. The family of quintic mirror threefolds has trivial ramification
divisor, i.e., R = 0 for the family π : W → P1.

Proof. By (11.2) and Proposition 12.8, if suffices to prove that G(√) > 0 on P1 \D.
Since

K(√) = − log

√√−1
|G|

Z
X√

≠√ ∧≠√

!
,

≠WP(√) coincides with the Weil-Petersson form for X√ by (4.1). Thus G(√) > 0 if
and only if the Kodaira-Spencer map µ√ : T√P1 → H1(X√,ΘX√ ) for p : X → P1 is
non-degenerate at √ ∈ P1 \ D. By [54, p.53 l.18-l.27], µ√ is non-degenerate for all
√ ∈ P1 \ D. This proves the proposition. §

Theorem 12.10. Conjecture 12.6 (B) holds.
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Proof. For a point z = (1 : z) ∈ P1, let [z] = [(1 : z)] denote the corresponding
divisor. By Proposition 12.1, we get

(12.3) div(D§) =
X
≥5=1

[≥],

which is a reduced divisor. By (12.1), we have

(12.4) div(•) = [0].

Substituting (12.3), (12.4) and R = 0 into the formula for τBCOV in Theorem 11.2
(2) and using χ(W√) = 200, we get

(12.5)

τBCOV(W√) = Const.

∞∞∞∞∞
Q

≥5=1(√ − ≥)2

√48+χ
•48+χ

√ ≠
µ

@

@√

∂12
∞∞∞∞∞

1/6

= Const.

∞∞∞∞∞ (√5 − 1)2

√248
•248

√ ≠
µ

@

@√

∂12
∞∞∞∞∞

1/6

= Const.

∞∞∞∞∞√−62(√5 − 1)1/2 •62
√ ≠

µ
@

@√

∂3
∞∞∞∞∞

2/3

.

This proves Conjecture 12.6 (B). §

Remark 12.11. It seems that the families of Calabi-Yau threefolds over P1 studied
in [31, Eqs. (2.1), (2.2)] satisfy Assumption (i), (ii), (iii) of Sect. 11. (See [31, p.157,
last five lines].) By the explicit formula for the Yukawa coupling [31, Eq. (4.6)], we
get R ∩ (P1 \ D) = ; for these examples. If R ∩ D§ = ;, the conjectured formulas
for the BCOV invariants of these families [6, p.294] follow from Theorem 11.2 (2).

13. The BCOV invariant of FHSV threefolds

13.1. The threefolds of Ferrara-Harvey-Strominger-Vafa
A compact connected complex surface S is an Enriques surface if it satisfies

H1(S,OS) = 0, KS 6ª= OS , and K2
S
ª= OS . An Enriques surface S is an algebraic

surface with π1(S) ª= Z2 whose universal covering eS is a K3 surface. For an
Enriques surface S, let ∂S : eS → eS be the non-trivial covering transformation that
generates π1(S). Then (eS, ∂S) is a 2-elementray K3 surface. (See [58, Sect. 8.1].)

Let H Ω C be the complex upper-half plane. For τ ∈ H, let Eτ denote the
elliptic curve C/Z + τZ. For an elliptic curve T = Eτ , let −1T be the involution
on T defined as −1T (z) = −z for z ∈ C/Z + τZ.

Let Z2 be a group of order 2 with generator θ. Then Z2 acts on the spaces eS,
T , and eS × T by identifying θ with ∂S , −1T and ∂S × (−1T ), respectively.

Definition 13.1. For an Enriques surface S and an elliptic curve T , define

X(S,T ) := eS × T/Z2.

Since ∂S×(−1T ) has no fixed points, X(S,T ) is a smooth Calabi-Yau threefold. Let
p1 : X(S,T ) → S = eS/Z2 and let p2 : X(S,T ) → P1/Z2 be the natural projections.
Then p1 is an elliptic fibration with constant fiber T , and p2 is a K3 fibration
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with constant fiber eS. After Ferrara-Harvey-Strominger-Vafa [19], the Calabi-Yau
threefold X(S,T ) is called the FHSV threefold associated with (S, T ). We have

(13.1) χ(X(S,T )) =
1
2

χ(eS × T ) =
1
2

χ(eS)χ(T ) = 0.

13.2. The moduli space of FHSV threefolds
The period of an Enriques surface S is defined as the period of (eS, ∂S) and lies

in the quotient space ≠/Γ, where ≠ is a symmetric bounded domain of type IV
of dimension 10 and where Γ is an arithmetic subgroup of Aut(≠). The period
of S is denoted by [S] ∈ ≠/Γ. There exists a Γ-invariant divisor D Ω ≠, called
the discriminant locus, such that (≠ \ D)/Γ is a coarse moduli space of Enriques
surfaces via the period map. We refer to e.g. [2, Chap. 8, Sects. 19-21] for more
details about the moduli space of Enriques surfaces.

In [13], Borcherds constructed an automorphic form Φ on ≠ for Γ of weight 4
with div(Φ) = D. The automorphic form Φ is called the Borcherds Φ-function. Let
B≠ be the Bergman kernel function of ≠. The Petersson norm of the Borcherds
Φ-function is the Γ-invariant C1 function on ≠ defined as

kΦk2 := B4
≠|Φ|2.

By the Γ-invariance of kΦk2, it descends to a function on ≠/Γ, denoted again by
kΦk2. Then kΦ([S])k2 is the value of the Petersson norm of the Borcherds Φ-
function at the period point of an Enriques surface S. We refer to [13], [58] for
more details about the Borcherds Φ-function.

For an elliptic curve T ª= Eτ , the period of T is defined as the SL2(Z)-orbit
of τ ∈ H and is denoted by [T ] ∈ H/SL2(Z). The quotient space H/SL2(Z) is a
coarse moduli space of elliptic curves via the period map. Let

∆(τ) := q
1Y

n=1

(1− qn)24, q := exp(2π
√−1τ)

be the Jacobi ∆-function, which is a unique cusp form of weight 12. The Petersson
norm of the Jacobi ∆-function is a SL2(Z)-invariant C1 function on H defined as

k∆(τ)k2 := (det Im τ)12|∆(τ)|2.
By the SL2(Z)-invariance of k∆k2, it descends to a function on H/SL2(Z). Then
k∆([T ])k2 is the value of the Petersson norm of the Jacobi ∆-function at the period
point of an elliptic curve T .

Theorem 13.2. The analytic space [(≠ \D)/Γ] × [H/SL2(Z)] is a coarse moduli
space of FHSV threefolds.

Proof. Since (≠ \ D)/Γ is a coarse moduli space of Enriques surfaces [2, Chap. 8,
Ths. 21.2 and 21.4] and since H/SL2(Z) is a coarse moduli space of elliptic curves
via the elliptic j-function, it suffices to prove that X(S,T )

ª= X(S0,T 0) if and only if
S ª= S0 and T ª= T 0. This statement follows from [5, Sect. 3]. §

13.3. A Conjecture of Harvey-Moore
Following [25, Sect. V] and [58, Sect. 8.1], we interpret a result of the third-

named author [58, Th. 8.3] in terms of the BCOV torsion of FHSV threefolds. The
following formula was conjectured by Harvey-Moore [25, Eq. (4.9)].
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Theorem 13.3. There exists a constant C such that for every Enriques surface S
and for every elliptic curve T ,

τBCOV(X(S,T )) = C kΦ([S])k2 k∆([T ])k2.
For the proof of Theorem 13.3, we need some intermediary results. Let H2

+(eS, Z)
be the invariant subspace of H2(eS, Z) with respect to the ∂S-action. Let H ∈
H2

+(eS, Z) be an ∂S-invariant Kähler class on eS, and let v ∈ H2(T, Z) be the gener-
ator with

R
T v = 1. Let π : eS × T → X(S,T ) be the natural projection. We define

∑ ∈ H2(X(S,T ), Z) to be the Kähler class on X(S,T ) such that π§∑ = H +v. By [56],
there exists a unique Ricci-flat Kähler form ∞ = ∞∑ on X(S,T ) with Kähler class ∑.
By [56] again, there exist a unique Ricci-flat Kähler form ∞H on eS and a unique
Ricci-flat Kähler form ∞T on T such that

π§∞∑ = ∞H + ∞T , [∞H ] = H, [∞T ] = v.

Let h·, ·i denote the cup-product pairing on H2(eS, Z). Since
R

T v = 1 and ha, bi =ReS a ∧ b for a, b ∈ H2(eS, Z), we get

(13.2) Vol(X(S,T ), ∞) =
1
2

Z
eS×T

(H + v)3

(2π)33!
=

1
25π3

hH,Hi.

By the Ricci-flatness of ∞, Remark 4.2, and (13.1), we get

(13.3) A(X(S,T ), ∞) = Vol(X(S,T ), ∞)χ(X(S,T ))/12 = 1.

Lemma 13.4. The following identity holds:

VolL2(H2(X(S,T ), Z),∑) =
hH, Hi
235π33

.

Proof. Let H2
+(eS×T, Z) be the invariant subspace of H2(eS×T, Z) with respect to

the ∂S×(−1T )-action. Similarly, let H2
+(T, Z) be the invariant subspace of H2(T, Z)

with respect to the −1T -action. We have
(13.4)

π§H2(X(S,T ), Z)fr = H2
+(eS × T, Z) = H2

+(eS, Z)©H2
+(T, Z) = H2

+(eS, Z)© Zv.

By [2, Chap. 8, Lemma 15.1 (iii)], there exists an integral basis {e1, . . . , e10} of
H2

+(eS, Z) such that

(13.5) det(hei, eji)1∑i,j∑10 = −210.

By (13.4), we fix the basis {ē1, . . . , ē10, v̄} of H2(X(S,T ), Z)fr such that

π§(ēi) = ei (1 ∑ i ∑ 10), π§(v̄) = v.

Recall that the cubic form c = cX(S,T ) on H2(X(S,T ), Z)fr was defined in Sect. 4.4.
Then we get

c(ēi, v̄,∑) =
1

2(2π)3

Z
eS×T

ei∧v∧π§∑ =
1

2(2π)3

Z
eS×T

ei∧v∧(H+v) =
1

2(2π)3
hei, Hi,

c(ēi, ēj ,∑) =
1

2(2π)3

Z
eS×T

ei∧ej∧π§∑ =
1

2(2π)3

Z
eS×T

ei∧ej∧(H+v) =
1

2(2π)3
hei, eji,

c(ēi,∑, ∑) =
1

2(2π)3

Z
eS×T

ei ∧ (π§∑)2 =
1

2(2π)3

Z
eS×T

ei ∧ (H + v)2 =
1

(2π)3
hei,Hi,



62 HAO FANG, ZHIQIN LU, AND KEN-ICHI YOSHIKAWA

c(v̄, v̄,∑) =
1

2(2π)3

Z
eS×T

v ∧ v ∧ π§∑ =
1

2(2π)3

Z
eS×T

v ∧ v ∧ (H + v) = 0,

c(v̄,∑, ∑) =
1

2(2π)3

Z
eS×T

v ∧ (π§∑)2 =
1

2(2π)3

Z
eS×T

v ∧ (H + v)2 =
1

2(2π)3
hH,Hi,

c(∑, ∑, ∑) =
1

2(2π)3

Z
eS×T

(π§∑)3 =
1

2(2π)3

Z
eS×T

(H + v)3 =
3

2(2π)3
hH,Hi.

By Lemma 4.12 and these formulae, we get

(2π)3hēi, ējiL2,∑ =
3
2

c(ēi,∑, ∑)c(ēj ,∑, ∑)
c(∑, ∑,∑)

−c(ēi, ēj ,∑) =
hei, Hi hej , Hi

hH,Hi − 1
2
hei, eji,

(2π)3hēi, v̄iL2,∑ =
3
2

c(ēi,∑, ∑)c(v̄,∑, ∑)
c(∑, ∑, ∑)

−c(ēi, v̄,∑) =
1
2
hei, Hi hH, Hi

hH,Hi −1
2
hei, Hi = 0,

(2π)3hv̄, v̄iL2,∑ =
3
2

c(v̄,∑, ∑)c(v̄,∑, ∑)
c(∑, ∑, ∑)

−c(v̄, v̄, ∑) =
1
4
hH, Hi hH, Hi

hH,Hi −0 =
1
4
hH,Hi,

which yields that

(13.6)

VolL2(H2(X(S,T ), Z),∑)

= det
µhēi, ējiL2,∑ hēi, v̄iL2,∑

hēi, v̄iL2,∑ hv̄, v̄iL2,∑

∂
= (2π)−332−10 hH,Hi

4
det

µ
hei, eji − 2

hei, Hi hej , Hi
hH, Hi

∂
1∑i,j∑10

.

Define a 10 × 10 symmetric matrix A by A = (hei, eji). Write H =
P10

i=1 hi ei

and define a column vector h ∈ Z10 by h = (hi). We set

B := A− 2
(Ah) · (thA)

thAh
.

Since A is invertible and since thAh = hH, Hi > 0, we get the decomposition
R10 = Rh © (Ah)?. Since B h = −Ah and B x = Ax for x ∈ (Ah)?, we get
det B = −det A = 210 by (13.5), which, together with (13.6), yields that

VolL2(H2(X(S,T ), Z),∑) = (2π)−332−10 hH,Hi
4

det B =
hH,Hi
235π33

.

This completes the proof of Lemma 13.4. §
Let §H (resp. §T ) be the @̄-Laplacain of (eS, ∞H) (resp. (T, ∞T )) acting on

C1(eS) (resp. C1(T )). We define

A±(eS) := {f ∈ C1(eS); ∂§Sf = ±f}, A±(T ) := {f ∈ C1(T ); (−1T )§f = ±f}.
Since ∂S (resp. −1T ) preserves ∞H (resp. ∞T ), §H commutes with the ∂S-action on
C1(eS) and §T commutes with the (−1)T -action on C1(T ). Hence §H preserves
A±(eS), and §T preserves A±(T ). We set

§±
H := §H |A±(eS), §±

T := §T |A±(T ).

Let ≥±H(s) (resp. ≥±T (s)) be the spectral zeta function of §±
H (resp. §±

T ). Then
≥±H(s) and ≥±T (s) converges absolutely for Re s ¿ 0, they extend meromorphically
to the complex plane C, and they are holomorphic at s = 0.

Lemma 13.5. The following identity holds

log TBCOV(X(S,T ), ∞) = −24 (≥+
T )0(0)− 8

©
(≥+

H)0(0)− (≥−H)0(0)
™

.
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Proof. See [25, Sect. V], in particular [25, Eqs. (5.3), (5.9), (5.10)]. §
Remark 13.6. The signs in [25, Eqs. (5.10), (5.11)] are not correct. In [25, Eqs. (5.10),
(5.11)], the formula log det0§±

H = (≥±H)0(0) was used, while the correct formula is
log det0§±

H = −(≥±H)0(0).

Lemma 13.7. There exists a constant C0 such that for every Enriques surface S
and for every Kähler class H on eS, the following identity holds

8
©
(≥+

H)0(0)− (≥−H)0(0)
™

+ 4 loghH,Hi = − log kΦ([S])k2 + C0.

Proof. The result follows from [58, Eq. (8.3)] and [60, Lemma 4.3, Eq. (4.4)]. §
Lemma 13.8. There exists a constant C1 such that for every elliptic curve T ,

24 (≥+
T )0(0) = − log k∆([T ])k2 + C1.

Proof. Since ≥+
T (s) = ≥−T (s) by [45, p.166 l.8 and l.10] and since ≥+

T (s)+≥−T (s) is the
spectral zeta function of §T , the result follows from the Kronecker limit formula.
See e.g. [45, Th. 4.1] or [10, Th. 13.1]. §
13.4. Proof of Theorem 13.3

By Lemmas 13.5, 13.7, 13.8, we get

(13.7) log TBCOV(X(S,T ), ∞) = log(kΦ([S])k2 k∆([T ])k2) + 4 loghH,Hi − C0 − C1.

By (13.2), (13.3), (13.7) and Lemma 13.4, we get
τBCOV(X(S,T ), ∞)

= Vol(X(S,T ),
∞

2π
)−3 VolL2(H2(X(S,T ), Z), [∞])−1A(X(S,T ), ∞) TBCOV(X(S,T ), ∞)

=
µ hH,Hi

25π3

∂−3

·
µ hH,Hi

235π33

∂−1

· 1 · kΦ([S])k2 k∆([T ])k2hH,Hi4
eC0+C1

= C kΦ([S])k2 k∆([T ])k2,
where we set C = 250π42 e−C0−C1 . This completes the proof of Theorem 13.3. §
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[16] Douady, A. Le problémes des modules locaux pour les espaces C-analytiques compacts, Ann.
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