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A NONTRIVIAL ALGEBRAIC CYCLE IN THEJACOBIAN VARIETY OF THE KLEIN QUARTICYUUKI TADOKOROAbstra
t. We prove some value of the harmoni
 volume for the Klein quarti
 C is nonzeromodulo 12Z, using spe
ial values of the generalized hypergeometri
 fun
tion 3F2. This resulttells us the algebrai
 
y
le C � C� is not algebrai
ally equivalent to zero in the Ja
obianvariety J(C).
1. Introdu
tionLet X be a 
ompa
t Riemann surfa
e of genus g � 2 and J(X) its Ja
obian variety. By theAbel-Ja
obi map X ! J(X), X is embedded in J(X). The algebrai
 1-
y
le X �X� in J(X)is homologous to zero. Here we denote by X� the image of X under the multipli
ation map by�1. If X is hyperellipti
, X = X� in J(X). For the rest of this paper, suppose g � 3. B. Harris[5℄ studied the problem whether the 
y
le X�X� in J(X) is algebrai
ally equivalent to zero ornot. The harmoni
 volume I for X was introdu
ed by Harris [4℄, using Chen's iterated integrals[2℄. Let H denote the �rst integral homology group H1(X ;Z) of X . The harmoni
 volume Iis de�ned to be a homomorphism (H
3)0 ! R=Z. Here (H
3)0 is a 
ertain subgroup of H
3.See Se
tion 2 for the de�nition. Let ! be a third tensor produ
t of holomorphi
 1-forms on X .Suppose that ! + ! and (! � !)=p�1 belong to (H
3)0. If the 
y
le X �X� is algebrai
allyequivalent to zero, then twi
e the values at both ! + ! and (! � !)=p�1 of the harmoni
volume are zero modulo Z. Harris proved twi
e the value at !+ ! of the harmoni
 volume forthe Fermat quarti
 F (4) are nonzero modulo Z. This implies F (4)�F (4)� is not algebrai
allyequivalent to zero in J(F (4)) ([5℄, [6℄). Ceresa [1℄ showed that X � X� is not algebrai
allyequivalent to zero for a generi
 X . We know few expli
it nontrivial examples ex
ept for F (4).Let C denote the Klein quarti
. See Se
tion 4.1 for the de�nition. The aim of this paper is toshowTheorem 4.14. The algebrai
 
y
le C � C� is not algebrai
ally equivalent to zero in theJa
obian variety J(C).Sin
e Harris used the spe
ial feature of F (4) that its normalized period matrix has entriesin Z[p�1℄, it is not diÆ
ult to �nd some ! so that ! + ! and (! � !)=p�1 belong to (H
3)0for F (4). But, in general, it is not easy to �nd su
h an !. For the Klein quarti
 C, we prove(D + D)=7 and (D � D)=p�7 belong to (H
3)0 (Proposition 4.7). See Se
tion 4.3 for thede�nitions of them. In Theorem 4.9 we 
ompute the value at (D �D)=p�7 2 (H
3)0 of theharmoni
 volume for CI((D �D)=p�7) = 28p�7��27 � �67�7 + 1 x1;2 + �47 � �57�27 + 1 x2;3 + �7 � �37�47 + 1 x3;1� mod Z:Here, �7 = exp(2�p�1=7) and xi;j 's are real 
onstants obtained from some spe
ial values ofthe generalized hypergeometri
 fun
tion 3F2 (Lemma 4.13). By numeri
al 
omputation usingMATHEMATICA, we obtain Theorem 4.14. We give a 
al
ulation program in Appendix.1
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ien
eand Te
hnology. 2. The harmoni
 volumeWe re
all the harmoni
 volume for a 
ompa
t Riemann surfa
e X of genus g � 3 [4℄. Weidentify the �rst integral homology group H1(X ;Z) of X with the �rst integral 
ohomologygroup by Poin
ar�e duality, and denote it by H . Moreover we identify H with the spa
e of allthe real harmoni
 1-forms on X with integral periods. Let K be the kernel of the interse
tionpairing ( ; ) : H 
ZH ! Z. For the rest of this paper, we write 
 = 
Z, unless otherwisestated. The Hodge star operator � on the spa
e of all the 1-forms A1(X) is lo
ally given by�(f1(z)dz + f2(z)d�z) = �p�1f1(z)dz +p�1f2(z)d�z in a lo
al 
oordinate z and depends onlyon the 
omplex stru
ture and not on the 
hoi
e of Hermitian metri
. For anyPni=1 ai
bi 2 K,there exists a unique � 2 A1(X) su
h that d� =Pni=1 ai ^ bi and ZX � ^ �� = 0 for any 
losed1-form � 2 A1(X). Here ai and bi are regarded as real harmoni
 1-forms on X . Choose a pointx0 2 X .De�nition 2.1. (The pointed harmoni
 volume [9℄)For Pni=1 ai 
 bi 2 K and 
 2 H , the pointed harmoni
 volume de�ned to beIx0 � nXi=1 ai 
 bi�
 
! = nXi=1 Z
 aibi � Z
 � mod Z:Here � 2 A1(X) is asso
iated toPni=1 ai
 bi in the way stated above and 
 is a loop in X withthe base point x0 whose homology 
lass is equal to 
. The integral Z
 aibi is Chen's iteratedintegral [2℄, that is, Z
 aibi = Z0�t1�t2�1 fi(t1)gi(t2)dt1dt2 for 
�ai = fi(t)dt and 
�bi = gi(t)dt.Here t is the 
oordinate in the interval [0; 1℄.The harmoni
 volume is given as a restri
tion of the pointed harmoni
 volume Ix0 . We denoteby (H
3)0 the kernel of a natural homomorphism p : H
3 ! H�3 de�ned by p(a 
 b 
 
) =((a; b)
; (b; 
)a; (
; a)b). The harmoni
 volume I for X is a linear form on (H
3)0 with valuesin R=Z de�ned by the restri
tion of Ix0 to (H
3)0, i.e., I = Ix0 j(H
3)0 . Harris [4℄ provedthat the harmoni
 volume I is independent of the 
hoi
e of the base point x0. We haveI(Pi h�(1);i
h�(2);i
h�(3);i) = sgn(�)I(Pi h1;i
h2;i
h3;i) mod Z, wherePi h1;i
h2;i
h3;i 2(H
3)0 and � is an element of the third symmetri
 group S3. See Harris [4℄ and Pulte [9℄ fordetails.In general, it is diÆ
ult to 
ompute the 
orre
tion term � in De�nition 2.1. If X is ahyperellipti
 
urve, we have an expli
it formula for the 1-form � given by Harris [4℄. Thisallows us to 
al
ulate the harmoni
 volumes for all the hyperellipti
 
urves (Tadokoro [11℄). Inthis paper, we deal with the 
ase � vanishes.3. The algebrai
 
y
le X �X� and an intermediate Ja
obianWe review a relation between the algebrai
 
y
le X �X� and the harmoni
 volume I .



A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN VARIETY 3Let j2 : H
3 ! ^3H be a natural homomorphism j2(a
b

) = a^b^
, where ^3H denotesthe third exterior power of H . We have the homomorphism of short exa
t sequen
es0 // (H
3)0 //j1 �� H
3j2 �� p // H�3j3 �� // 00 // (^3H)0 // ^3H �p // H // 0;where j3(a; b; 
) = a + b + 
, �p(a ^ b ^ 
) = (a; b)
 + (b; 
)a + (
; a)b and j1 is the restri
tionhomomorphism of j2 to (H
3)0. Let A k0 (J) be the spa
e of algebrai
 k-
y
les homologous tozero on the Ja
obian variety J = J(X), modulo rational equivalen
e. The Abel-Ja
obi map ofGriÆths �R : A k0 (J)! HomZ(H2k+1(J ;Z);R=Z) is de�ned by�W 7! �! 7! ZW !�;where ! is a harmoni
 (2k+1)-form on J with integral periods (Se
tion 4 in [9℄). Here, the mod-ule HomZ(H2k+1(J ;Z);R=Z) 
an be identi�ed with an intermediate Ja
obian of H2k+1(J ;Z)[9℄. From now on, we 
onsider the 
ase k = 1. Let � denote the Abel-Ja
obi image �R(X�X�).Harris (Proposition 2.1 in [6℄, [4℄) proved that (^3H)0 
an be identi�ed with the primitive sub-group of H3(J ;Z) in the sen
e of Lef
hetz, denoted by H3prim(J ;Z). Using this identi�
ationand the natural proje
tion HomZ(H3(J ;Z);R=Z) ! HomZ(H3prim(J ;Z);R=Z), we 
onsider �as an element of HomZ((^3H)0;R=Z) (Se
tion 4 and 6 in [9℄).Theorem 3.1. (Harris [4℄, [6℄). The Abel-Ja
obi image � satis�es the 
ommutative diagram(H
3)0 2I //j1 �� R=Z(^3H)0: � ;;vvvvvvvvvWe say the algebrai
 
y
le X �X� is algebrai
ally equivalent to zero in J if there exists atopologi
al 3-
hain W su
h that �W = X �X� and W lies on S, where S is an algebrai
 (or
omplex analyti
) subset of J of 
omplex dimension 2 (Harris [6℄). The 
hain W is unique upto 3-
y
les. We denote by H1;0 the spa
e of all the holomorph
 1-forms on X . From [5℄, 2.6 in[6℄ and 533-534 in [13℄, we haveProposition 3.2. Let ! 2 �H1;0�
C3 satisfying that ! + ! and (! � !)=p�1 2 (H
3)0.If X � X� is algebrai
ally equivalent to zero in J , then twi
e the values at both ! + ! and(! � !)=p�1 of the harmoni
 volume are zero modulo Z.Proof. Sin
e X �X� is algebrai
ally equivalent to zero in J , there exist a 3-
hain W and analgebrai
 subset S satisfying the above 
onditions. Let HC denote H 
 C . Theorem 3.1 gives2I(! + !) = ZW j1(! + !) and 2I((! � !)=p�1)) = ZW j1(! � !)=p�1:It is 
lear that j1(!) and j1(!) are (3; 0) and (0; 3)-form in H3(J ; C ) = ^3HC respe
tively.Sin
e dimC S = 2, the restri
tion of them to S are 
learly zero. �If twi
e the value at ! + ! or (! � !)=p�1 of the harmoni
 volume is nonzero modulo Z,then X � X� is not algebrai
ally equivalent to zero in J . See Hain [3℄, Pirola [10℄ and theirreferen
es for the algebrai
 
y
le X �X� in J .



4 YUUKI TADOKORO4. Some values of the harmoni
 volume for the Klein quarti
We 
ompute some values of the harmoni
 volume for the Klein quarti
 to prove the maintheorem (Theorem 4.14).4.1. A 1-dimensional homology basis of the Klein quarti
. We denote by C the Kleinquarti
 whi
h is, by de�nition, the plane 
urve C : = f(X : Y : Z) 2 CP 2 ;X3Y +Y 3Z+Z3X =0g. It is a 
ompa
t Riemann surfa
e of genus 3. It is known that the holomorphi
 automorphismgroup of C, Aut(C), is isomorphi
 to PSL2(F7 ). See [7℄ for the details of the Klein quarti
. Letx and y denote X3Y �2Z�1+1 and �XY �1 respe
tively. The equation X3Y +Y 3Z+Z3X = 0indu
es y7 = x(1 � x)2. The holomorphi
 map � : C ! CP 1 is de�ned by �(x; y) = x, whi
his a 7-sheeted 
overing C ! CP 1 , bran
hed over 3 bran
h points f0; 1;1g. Let �7 denoteexp(2�p�1=7). For t 2 [0; 1℄, we de�ne a loop e0 : [0; 1℄ ! C by e0(t) = (t; y0(t)), wherey0(t) is a real analyti
 fun
tion 7pt(1� t)2. Let � : C ! C be a holomorphi
 automorphism�(x; y) = (x; �7y). For k = 0; 1; : : : ; 6, we de�ne loops in C by 
k = �k� (e0) � e�10 . We denote`k = �k�1� (e0) � �k� (e0)�1; k = 0; 1; : : : ; 7. The loop `0 
an be identi�ed with `7. By abuse ofnotation, the homology 
lasses of 
k and `k are denoted by 
k and `k 2 H1(C;Z) respe
tively.Let ( ; ) : H1(C;Z)
H1(C;Z)! Z be the interse
tion pairing, i.e., a non-degenerate bilinearform on H1(C;Z). Tretko� and Tretko� [12℄ proved(
1; 
k) = � 0 if k = 1; 2; 4; 6;1 if k = 3; 5;using the Hurwitz system of the bran
hed 
overing �. By the de�nition of `k, we have(`1; `k) = (
1; 
k)� (
1; 
k�1) = 8<: 0 if k = 1; 2;1 if k = 3; 5;�1 if k = 4; 6:Moreover, we obtain that ��(`k) = `k+1 and (`i; `j) = (��(`i); ��(`j)) = (`i+1; `j+1). Theinterse
tion matrix K 0 of `k; k = 1; 2; : : : ; 6 is given by0BBBBBB� 0 0 1 �1 1 �10 0 0 1 �1 1�1 0 0 0 1 �11 �1 0 0 0 1�1 1 �1 0 0 01 �1 1 �1 0 0
1CCCCCCA ;i.e., its (i; j)-th entry is (`i; `j). It is easy to prove detK 0 = 1 and f`kgk=1;2;:::;6 � H1(C;Z) isa basis of H1(C;Z).4.2. Poin
ar�e dual of the Klein quarti
. Let !01; !02 and !03 be holomorphi
 1-forms onC, (1 � x)dx=y6; (1 � x)dx=y5 and dx=y3 respe
tively. It is known that f!0igi=1;2;3 is a basisof the spa
e of all the holomorphi
 1-forms on C. The beta fun
tion B(u; v) is de�ned byZ 10 tu�1(1� t)v�1dt for u; v > 0. We denote (h1; h2; h3; h4) = (1=7; 2=7; 4=7; 1=7) and �i = �7hi7 .From the equations ��!0i = �i!i and Ze0 !0i = B(hi; hi+1), we haveLemma 4.1. Z`k !0i = (�k�1i � �ki )B(hi; hi+1):Remark 4.2. These integrals depend only on the 
ohomology 
lass of !0j and the homology
lass of `k.



A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN VARIETY 5We set B0i = B(hi; hi+1) and !i = !0i=B0i, i = 1; 2; 3. We write Lk :=P7i=1 �ik7 `k 2 H1(C; C )and denote the Poin
ar�e dual by P:D: : H1(C; C ) ! H1(C; C ).Proposition 4.3. We denote �i = �1=(�3i (�2i + 1)) 2 C . Then, we haveP:D:(!i) = �iL7hi :Proof. Sin
e ��(`k) = `k+1, we obtain ��Lk = ��k7 Lk. The eigenvalues and eigenve
tors of thea
tion of � on the C -ve
tor spa
e H1(C; C ) are ��k7 and Lk for k = 1; 2; : : : ; 6. We have��(P:D:(!i)) = P:D:((��1)�!i) = ��1i P:D:(!i) = ��7hi7 P:D:(!i):There exists a 
onstant �i 2 C su
h that P:D:(!i) = �iL7hi . The result follows from Lemma4.1 and the equationZ`1 !i = (P:D:(!i); `1) = (�iL7hi ; `1) = �i(L7hi ; `1) = ��i(1� �i)(�3i (�2i + 1)): �Remark 4.4. We have P:D:(!i) = �iL7hi . It immediately follows �1�2�3 = �1.4.3. Some values of the harmoni
 volume for the Klein quarti
. For t 2 [0; 1℄, let fibe a real 1-form on [0; 1℄ de�ned by e�0!0i = thi�1(1 � t)hi+1�1dt, i = 1; 2; 3. Let xi;j denotean iterated integral Ze0 !i!j = Z
 fifj.(B0iB0j). Here, 
 is the path [0; 1℄ 3 t 7! t 2 [0; 1℄. We
ompute the iterated integrals of !1; !2 and !3 along the loop `k.Lemma 4.5. We 
onsider `k as loops with the base point (x; y) = (0; 0) 2 C. We haveZ`k !i!j = (�i�j)k�1(1� �i�j)xi;j + (�i�j)k�1(�i�j � �j):Remark 4.6. Sin
e !i is 
losed and !i ^ !j = 0, these iterated integrals are invariant underhomotopy with �xed endpoints.Proof. Using the shu�e produ
t formula (Chen [2℄, 1.6) and the equations0 = Ze0�e�10 !i!j = Ze0 !i!j + Ze�10 !i!j + Ze0 !i Ze�10 !j and Ze0 !i = Ze0 !0i�B0i = 1;we have Z`k !i!j = Z�k�1� (e0)��k�(e0)�1 !i!j= Z�k�1� (e0) !i!j + Z�k� (e0)�1 !i!j + Z�k�1� (e0) !i Z�k� (e0)�1 !j=(�i�j)k�1 Ze0 !i!j + (�i�j)k Ze�10 !i!j � �k�1i �kj Ze0 !i Ze0 !j=(�i�j)k�1 Ze0 !i!j + (�i�j)k�� Ze0 !i!j + Ze0 !i Ze0 !j�� �k�1i �kj=(�i�j)k�1(1� �i�j) Ze0 !i!j + (�i�j)k�1(�i�j � �j): �The subsetH of (H
3)0
R is de�ned by f!+!; (!�!)=p�1;! 2 H1;0
CH1;0
CH1;0g. Wewill �nd some elements of H\(H
3)0. Let D and D denoteP�2S3 sgn(�)!�(1)
C !�(2)
C !�(3)and P�2S3 sgn(�)!�(1) 
C !�(2) 
C !�(3) 2 (HC )
C3 respe
tively. Using Proposition 4.3 and



6 YUUKI TADOKORORemark 4.4, D and D are identi�ed with �P�2S3 sgn(�)L7h�(1) 
C L7h�(2) 
C L7h�(3) and�P�2S3 sgn(�)L7h�(1) 
C L7h�(2) 
C L7h�(3) respe
tively. The 
oeÆ
ients of `p 
C `q 
C `r ofD and D are �p;q;r = � ������ �p7 �2p7 �4p7�q7 �2q7 �4q7�r7 �2r7 �4r7 ������ and �p;q;r = � ������ �6p7 �5p7 �3p7�6q7 �5q7 �3q7�6r7 �5r7 �3r7 ������respe
tively. It is trivial that D +D and (D �D)=p�1 2 H. Furthermore, we haveProposition 4.7. (D +D)=7 and (D �D)=p�7 2 (H
3)0.Proof. It suÆ
es to prove that �p;q;r belongs to the prin
ipal ideal (p�7)Z[(1 + p�7)=2℄ �Z[(1+p�7)=2℄. It is well known that Gal(Q(�7 )=Q) �= f�igi=1;2;:::;6 �= Z=6Z, where �i(�7) = �i7.Sin
e [Q(p�7): Q℄ = 2, we obtain Gal(Q(�7 )=Q(p�7)), the subgroup of Gal(Q(�7 )=Q), isgenerated by �2. It is 
lear that �p;q;r is invariant under the a
tion of �2. So, we have�p;q;r 2 Q(p�7). On the other hand, it immediately follows �p;q;r belongs to the prin
ipalideal (�7 � 1)Z[�7℄ � Z[�7℄. Therefore, we have�p;q;r 2 Q(p�7) \ (�7 � 1)Z[�7℄ = (p�7)Z[(1+p�7)=2℄ � Z[(1+p�7)=2℄:We have �p;q;r + �p;q;r 2 7Z and �p;q;r � �p;q;r 2 p�7Z. We 
omplete the proof. �Remark 4.8. Using the 
hara
ter of Aut(C) = PSL2(F7 ), we have H0(Aut(C); (HC )
C3) =C 2 . This indu
es H0(Aut(C);H
3) = Z2. We 
an also prove that f(D+D)=7; (D�D)=p�7gis a generator of H0(Aut(C); (H
3)0).Theorem 4.9. The values at (D+D)=7 and (D�D)=p�7 2 (H
3)0 for the harmoni
 volumeof the Klein quarti
 C are given by0 and 28p�7��27 � �67�7 + 1 x1;2 + �47 � �57�27 + 1 x2;3 + �7 � �37�47 + 1 x3;1� mod Zrespe
tively.Proof. All iterated integral parts of I((D+D)=7) and I((D�D)=p�7) are linear 
ombinationsof Z`k !i!j and Z`k !i!j = Z`k !i!j . Furthermore, !i ^ !j = !i ^ !j = 0. So we need no
orre
tion terms � in De�nition 2.1. Therefore, it suÆ
es to 
al
ulate only the iterated integralparts.By de�nition, there exist 
omplex 
onstants �i;j;k so that I((D +D)=7) is of the form7Xk=1 X(i;j)2U �i;j;k Z`k (!i!j � !j!i) + 7Xk=1 X(i;j)2U �i;j;kZ`k(!i!j � !j!i);where U is a set f(1; 2); (2; 3); (3; 1)g. Using P:D:(!i) = �iL7hi = �iP7k=1 �ki `k, it 
an bewritten as (I1;2;3 + I1;2;3)=7 mod Z. Here, we denoteI1;2;3 = �3 7Xk=1 �k3 Z`k(!1!2 � !2!1) + �1 7Xk=1 �k1 Z`k(!2!3 � !3!2) + �2 7Xk=1 �k2 Z`k(!3!1 � !1!3):Similarly, we obtain I((D �D)=p�7) = (I1;2;3 � I1;2;3)=p�7 mod Z:In order to 
omplete the proof, we need two lemmas.



A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN VARIETY 7Lemma 4.10. We haveZ`k (!i!j � !j!i) = 2(�i�j)k�1(1� �i�j)xi;j + (�i�j)k�1(�i � 1)(�j + 1):Proof. We use Lemma 4.1, Lemma 4.5 and the equationZ`k !j!i = � Z`k !i!j + Z`k !i Z`k !j : �Lemma 4.11. We haveI1;2;3 = 14��27 � �67�7 + 1 x1;2 + �47 � �57�27 + 1 x2;3 + �7 � �37�47 + 1 x3;1 � 32p�7�:Proof. Using Lemma 4.10 and �1�2�3 = 1, we 
al
ulate the 
oeÆ
ient of x1;2 of I1;2;3 as follows:�3 7Xk=1 �k3 � 2(�1�2)k�1(1� �1�2) = �2�33(�23 + 1) 7Xk=1(�1�2�3)k�1(�3 � 1)= �2�127 (�87 + 1) 7Xk=1(�47 � 1) = 14�27 � �67�7 + 1 :Similarly, we 
ompute the 
oeÆ
ients of x2;3; x3;1 and the 
onstant term of I1;2;3. For the
omputation of the 
onstant term, we need �7 + �27 + �47 = (�1 +p�7)=2. �The result follows from Lemma 4.11. We remark that all the 
oeÆ
ients of x1;2; x2;3; x3;1and the 
onstant term of I1;2;3 are pure imaginary. �For the numeri
al 
al
ulation of xi;j , we re
all the generalized hypergeometri
 fun
tion 3F2.We denote the gamma fun
tion �(�) = Z 10 e�tt��1dt for � > 0 and (�; n) = �(� + n)=�(�)for non-negative integer n. For x 2 fz 2 C ; jzj < 1g and �1; �2; �3; �1; �2 > �1, the generalizedhypergeometri
 fun
tion 3F2 is de�ned by3F2� �1; �2; �3�1; �2 ;x� = 1Xn=0 (�1; n)(�2; n)(�3; n)(�1; n)(�2; n)(1; n) xn:See [8℄ for example. By straightforward 
omputation, we haveProposition 4.12. Let � be a 1-simplex f(u; v) 2 R2 ; 0 � v � 1; 0 � u � vg. If a; b; p; q >0; b < 1, then we haveZ� ua�1(1� u)b�1vp�1(1� v)q�1dudv = B(a+ p; q)a limt!1�0t2R 3F2� a; 1� b; a+ p1 + a; a+ p+ q ; t�.From Proposition 4.12, we haveLemma 4.13.xi;j = B(hi + hj ; hj+1)hiB0iB0j limt!1�0t2R 3F2� hi; 1� hi+1; hi + hj1 + hi; hi + hj + hj+1 ; t�:Theorem 4.14. Let C be the Klein quarti
. Then, the 
y
le C � C� is not algebrai
allyequivalent to zero in J(C).



8 YUUKI TADOKOROProof. By Theorem 4.9, Lemma 4.13, the numeri
al 
al
ulation (Figure 1 in Appendix), weobtain the value 2I((D �D)=p�7) = 0:72270� 1� 10�5 mod Z:The result follows from Proposition 3.2. �5. AppendixIn this se
tion, we introdu
e the MATHEMATICA program [14℄ in the proof of Theorem4.14.
z = Cos@H2 PiL�7D + ä Sin@H2 PiL�7D

8h@1D, h@2D, h@3D, h@4D< = 81�7, 2�7, 4�7, 1�7<

x@i_, j_D :=

Beta@h@iD + h@jD, h@j + 1DD�Hh@iD*Beta@h@iD, h@i + 1DD*Beta@h@jD, h@j + 1DDL 

HypergeometricPFQ@8h@iD, 1 - h@i + 1D, h@iD + h@jD<, 81 + h@iD, h@iD + h@jD + h@j + 1D<, 1D

N@2*HFullSimplify@28 Hz^2 - z^6L�Hä Sqrt@7D Hz + 1LLD x@1, 2D +

FullSimplify@28 Hz^4 - z^5L�Hä Sqrt@7D Hz^2 + 1LLD x@2, 3D +

FullSimplify@28 Hz - z^3L�Hä Sqrt@7D Hz^4 + 1LLD x@3, 1DL, 20DFigure 1. Numeri
al 
al
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