
UTMS 2005–29 July 29, 2005

A nontrivial algebraic cycle in the

Jacobian variety of the Klein quartic

by

Yuuki Tadokoro

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



A NONTRIVIAL ALGEBRAIC CYCLE IN THEJACOBIAN VARIETY OF THE KLEIN QUARTICYUUKI TADOKOROAbstrat. We prove some value of the harmoni volume for the Klein quarti C is nonzeromodulo 12Z, using speial values of the generalized hypergeometri funtion 3F2. This resulttells us the algebrai yle C � C� is not algebraially equivalent to zero in the Jaobianvariety J(C).
1. IntrodutionLet X be a ompat Riemann surfae of genus g � 2 and J(X) its Jaobian variety. By theAbel-Jaobi map X ! J(X), X is embedded in J(X). The algebrai 1-yle X �X� in J(X)is homologous to zero. Here we denote by X� the image of X under the multipliation map by�1. If X is hyperellipti, X = X� in J(X). For the rest of this paper, suppose g � 3. B. Harris[5℄ studied the problem whether the yle X�X� in J(X) is algebraially equivalent to zero ornot. The harmoni volume I for X was introdued by Harris [4℄, using Chen's iterated integrals[2℄. Let H denote the �rst integral homology group H1(X ;Z) of X . The harmoni volume Iis de�ned to be a homomorphism (H
3)0 ! R=Z. Here (H
3)0 is a ertain subgroup of H
3.See Setion 2 for the de�nition. Let ! be a third tensor produt of holomorphi 1-forms on X .Suppose that ! + ! and (! � !)=p�1 belong to (H
3)0. If the yle X �X� is algebraiallyequivalent to zero, then twie the values at both ! + ! and (! � !)=p�1 of the harmonivolume are zero modulo Z. Harris proved twie the value at !+ ! of the harmoni volume forthe Fermat quarti F (4) are nonzero modulo Z. This implies F (4)�F (4)� is not algebraiallyequivalent to zero in J(F (4)) ([5℄, [6℄). Ceresa [1℄ showed that X � X� is not algebraiallyequivalent to zero for a generi X . We know few expliit nontrivial examples exept for F (4).Let C denote the Klein quarti. See Setion 4.1 for the de�nition. The aim of this paper is toshowTheorem 4.14. The algebrai yle C � C� is not algebraially equivalent to zero in theJaobian variety J(C).Sine Harris used the speial feature of F (4) that its normalized period matrix has entriesin Z[p�1℄, it is not diÆult to �nd some ! so that ! + ! and (! � !)=p�1 belong to (H
3)0for F (4). But, in general, it is not easy to �nd suh an !. For the Klein quarti C, we prove(D + D)=7 and (D � D)=p�7 belong to (H
3)0 (Proposition 4.7). See Setion 4.3 for thede�nitions of them. In Theorem 4.9 we ompute the value at (D �D)=p�7 2 (H
3)0 of theharmoni volume for CI((D �D)=p�7) = 28p�7��27 � �67�7 + 1 x1;2 + �47 � �57�27 + 1 x2;3 + �7 � �37�47 + 1 x3;1� mod Z:Here, �7 = exp(2�p�1=7) and xi;j 's are real onstants obtained from some speial values ofthe generalized hypergeometri funtion 3F2 (Lemma 4.13). By numerial omputation usingMATHEMATICA, we obtain Theorem 4.14. We give a alulation program in Appendix.1



2 YUUKI TADOKOROAknowledgments. The author is grateful to Nariya Kawazumi for valuable advie andreading the manusript. Masahiko Yoshinaga and Shuji Yamamoto suggest useful ideas forthe proof of Proposition 4.7 to him. He would like to thank Masaaki Suzuki for his helpfulomments for MATHEMATICA programs. This work is partially supported by 21st CenturyCOE program (University of Tokyo) by the Ministry of Eduation, Culture, Sports, Sieneand Tehnology. 2. The harmoni volumeWe reall the harmoni volume for a ompat Riemann surfae X of genus g � 3 [4℄. Weidentify the �rst integral homology group H1(X ;Z) of X with the �rst integral ohomologygroup by Poinar�e duality, and denote it by H . Moreover we identify H with the spae of allthe real harmoni 1-forms on X with integral periods. Let K be the kernel of the intersetionpairing ( ; ) : H 
ZH ! Z. For the rest of this paper, we write 
 = 
Z, unless otherwisestated. The Hodge star operator � on the spae of all the 1-forms A1(X) is loally given by�(f1(z)dz + f2(z)d�z) = �p�1f1(z)dz +p�1f2(z)d�z in a loal oordinate z and depends onlyon the omplex struture and not on the hoie of Hermitian metri. For anyPni=1 ai
bi 2 K,there exists a unique � 2 A1(X) suh that d� =Pni=1 ai ^ bi and ZX � ^ �� = 0 for any losed1-form � 2 A1(X). Here ai and bi are regarded as real harmoni 1-forms on X . Choose a pointx0 2 X .De�nition 2.1. (The pointed harmoni volume [9℄)For Pni=1 ai 
 bi 2 K and  2 H , the pointed harmoni volume de�ned to beIx0 � nXi=1 ai 
 bi�
 ! = nXi=1 Z aibi � Z � mod Z:Here � 2 A1(X) is assoiated toPni=1 ai
 bi in the way stated above and  is a loop in X withthe base point x0 whose homology lass is equal to . The integral Z aibi is Chen's iteratedintegral [2℄, that is, Z aibi = Z0�t1�t2�1 fi(t1)gi(t2)dt1dt2 for �ai = fi(t)dt and �bi = gi(t)dt.Here t is the oordinate in the interval [0; 1℄.The harmoni volume is given as a restrition of the pointed harmoni volume Ix0 . We denoteby (H
3)0 the kernel of a natural homomorphism p : H
3 ! H�3 de�ned by p(a 
 b 
 ) =((a; b); (b; )a; (; a)b). The harmoni volume I for X is a linear form on (H
3)0 with valuesin R=Z de�ned by the restrition of Ix0 to (H
3)0, i.e., I = Ix0 j(H
3)0 . Harris [4℄ provedthat the harmoni volume I is independent of the hoie of the base point x0. We haveI(Pi h�(1);i
h�(2);i
h�(3);i) = sgn(�)I(Pi h1;i
h2;i
h3;i) mod Z, wherePi h1;i
h2;i
h3;i 2(H
3)0 and � is an element of the third symmetri group S3. See Harris [4℄ and Pulte [9℄ fordetails.In general, it is diÆult to ompute the orretion term � in De�nition 2.1. If X is ahyperellipti urve, we have an expliit formula for the 1-form � given by Harris [4℄. Thisallows us to alulate the harmoni volumes for all the hyperellipti urves (Tadokoro [11℄). Inthis paper, we deal with the ase � vanishes.3. The algebrai yle X �X� and an intermediate JaobianWe review a relation between the algebrai yle X �X� and the harmoni volume I .



A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN VARIETY 3Let j2 : H
3 ! ^3H be a natural homomorphism j2(a
b
) = a^b^, where ^3H denotesthe third exterior power of H . We have the homomorphism of short exat sequenes0 // (H
3)0 //j1 �� H
3j2 �� p // H�3j3 �� // 00 // (^3H)0 // ^3H �p // H // 0;where j3(a; b; ) = a + b + , �p(a ^ b ^ ) = (a; b) + (b; )a + (; a)b and j1 is the restritionhomomorphism of j2 to (H
3)0. Let A k0 (J) be the spae of algebrai k-yles homologous tozero on the Jaobian variety J = J(X), modulo rational equivalene. The Abel-Jaobi map ofGriÆths �R : A k0 (J)! HomZ(H2k+1(J ;Z);R=Z) is de�ned by�W 7! �! 7! ZW !�;where ! is a harmoni (2k+1)-form on J with integral periods (Setion 4 in [9℄). Here, the mod-ule HomZ(H2k+1(J ;Z);R=Z) an be identi�ed with an intermediate Jaobian of H2k+1(J ;Z)[9℄. From now on, we onsider the ase k = 1. Let � denote the Abel-Jaobi image �R(X�X�).Harris (Proposition 2.1 in [6℄, [4℄) proved that (^3H)0 an be identi�ed with the primitive sub-group of H3(J ;Z) in the sene of Lefhetz, denoted by H3prim(J ;Z). Using this identi�ationand the natural projetion HomZ(H3(J ;Z);R=Z) ! HomZ(H3prim(J ;Z);R=Z), we onsider �as an element of HomZ((^3H)0;R=Z) (Setion 4 and 6 in [9℄).Theorem 3.1. (Harris [4℄, [6℄). The Abel-Jaobi image � satis�es the ommutative diagram(H
3)0 2I //j1 �� R=Z(^3H)0: � ;;vvvvvvvvvWe say the algebrai yle X �X� is algebraially equivalent to zero in J if there exists atopologial 3-hain W suh that �W = X �X� and W lies on S, where S is an algebrai (oromplex analyti) subset of J of omplex dimension 2 (Harris [6℄). The hain W is unique upto 3-yles. We denote by H1;0 the spae of all the holomorph 1-forms on X . From [5℄, 2.6 in[6℄ and 533-534 in [13℄, we haveProposition 3.2. Let ! 2 �H1;0�
C3 satisfying that ! + ! and (! � !)=p�1 2 (H
3)0.If X � X� is algebraially equivalent to zero in J , then twie the values at both ! + ! and(! � !)=p�1 of the harmoni volume are zero modulo Z.Proof. Sine X �X� is algebraially equivalent to zero in J , there exist a 3-hain W and analgebrai subset S satisfying the above onditions. Let HC denote H 
 C . Theorem 3.1 gives2I(! + !) = ZW j1(! + !) and 2I((! � !)=p�1)) = ZW j1(! � !)=p�1:It is lear that j1(!) and j1(!) are (3; 0) and (0; 3)-form in H3(J ; C ) = ^3HC respetively.Sine dimC S = 2, the restrition of them to S are learly zero. �If twie the value at ! + ! or (! � !)=p�1 of the harmoni volume is nonzero modulo Z,then X � X� is not algebraially equivalent to zero in J . See Hain [3℄, Pirola [10℄ and theirreferenes for the algebrai yle X �X� in J .



4 YUUKI TADOKORO4. Some values of the harmoni volume for the Klein quartiWe ompute some values of the harmoni volume for the Klein quarti to prove the maintheorem (Theorem 4.14).4.1. A 1-dimensional homology basis of the Klein quarti. We denote by C the Kleinquarti whih is, by de�nition, the plane urve C : = f(X : Y : Z) 2 CP 2 ;X3Y +Y 3Z+Z3X =0g. It is a ompat Riemann surfae of genus 3. It is known that the holomorphi automorphismgroup of C, Aut(C), is isomorphi to PSL2(F7 ). See [7℄ for the details of the Klein quarti. Letx and y denote X3Y �2Z�1+1 and �XY �1 respetively. The equation X3Y +Y 3Z+Z3X = 0indues y7 = x(1 � x)2. The holomorphi map � : C ! CP 1 is de�ned by �(x; y) = x, whihis a 7-sheeted overing C ! CP 1 , branhed over 3 branh points f0; 1;1g. Let �7 denoteexp(2�p�1=7). For t 2 [0; 1℄, we de�ne a loop e0 : [0; 1℄ ! C by e0(t) = (t; y0(t)), wherey0(t) is a real analyti funtion 7pt(1� t)2. Let � : C ! C be a holomorphi automorphism�(x; y) = (x; �7y). For k = 0; 1; : : : ; 6, we de�ne loops in C by k = �k� (e0) � e�10 . We denote`k = �k�1� (e0) � �k� (e0)�1; k = 0; 1; : : : ; 7. The loop `0 an be identi�ed with `7. By abuse ofnotation, the homology lasses of k and `k are denoted by k and `k 2 H1(C;Z) respetively.Let ( ; ) : H1(C;Z)
H1(C;Z)! Z be the intersetion pairing, i.e., a non-degenerate bilinearform on H1(C;Z). Tretko� and Tretko� [12℄ proved(1; k) = � 0 if k = 1; 2; 4; 6;1 if k = 3; 5;using the Hurwitz system of the branhed overing �. By the de�nition of `k, we have(`1; `k) = (1; k)� (1; k�1) = 8<: 0 if k = 1; 2;1 if k = 3; 5;�1 if k = 4; 6:Moreover, we obtain that ��(`k) = `k+1 and (`i; `j) = (��(`i); ��(`j)) = (`i+1; `j+1). Theintersetion matrix K 0 of `k; k = 1; 2; : : : ; 6 is given by0BBBBBB� 0 0 1 �1 1 �10 0 0 1 �1 1�1 0 0 0 1 �11 �1 0 0 0 1�1 1 �1 0 0 01 �1 1 �1 0 0
1CCCCCCA ;i.e., its (i; j)-th entry is (`i; `j). It is easy to prove detK 0 = 1 and f`kgk=1;2;:::;6 � H1(C;Z) isa basis of H1(C;Z).4.2. Poinar�e dual of the Klein quarti. Let !01; !02 and !03 be holomorphi 1-forms onC, (1 � x)dx=y6; (1 � x)dx=y5 and dx=y3 respetively. It is known that f!0igi=1;2;3 is a basisof the spae of all the holomorphi 1-forms on C. The beta funtion B(u; v) is de�ned byZ 10 tu�1(1� t)v�1dt for u; v > 0. We denote (h1; h2; h3; h4) = (1=7; 2=7; 4=7; 1=7) and �i = �7hi7 .From the equations ��!0i = �i!i and Ze0 !0i = B(hi; hi+1), we haveLemma 4.1. Z`k !0i = (�k�1i � �ki )B(hi; hi+1):Remark 4.2. These integrals depend only on the ohomology lass of !0j and the homologylass of `k.



A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN VARIETY 5We set B0i = B(hi; hi+1) and !i = !0i=B0i, i = 1; 2; 3. We write Lk :=P7i=1 �ik7 `k 2 H1(C; C )and denote the Poinar�e dual by P:D: : H1(C; C ) ! H1(C; C ).Proposition 4.3. We denote �i = �1=(�3i (�2i + 1)) 2 C . Then, we haveP:D:(!i) = �iL7hi :Proof. Sine ��(`k) = `k+1, we obtain ��Lk = ��k7 Lk. The eigenvalues and eigenvetors of theation of � on the C -vetor spae H1(C; C ) are ��k7 and Lk for k = 1; 2; : : : ; 6. We have��(P:D:(!i)) = P:D:((��1)�!i) = ��1i P:D:(!i) = ��7hi7 P:D:(!i):There exists a onstant �i 2 C suh that P:D:(!i) = �iL7hi . The result follows from Lemma4.1 and the equationZ`1 !i = (P:D:(!i); `1) = (�iL7hi ; `1) = �i(L7hi ; `1) = ��i(1� �i)(�3i (�2i + 1)): �Remark 4.4. We have P:D:(!i) = �iL7hi . It immediately follows �1�2�3 = �1.4.3. Some values of the harmoni volume for the Klein quarti. For t 2 [0; 1℄, let fibe a real 1-form on [0; 1℄ de�ned by e�0!0i = thi�1(1 � t)hi+1�1dt, i = 1; 2; 3. Let xi;j denotean iterated integral Ze0 !i!j = Z fifj.(B0iB0j). Here,  is the path [0; 1℄ 3 t 7! t 2 [0; 1℄. Weompute the iterated integrals of !1; !2 and !3 along the loop `k.Lemma 4.5. We onsider `k as loops with the base point (x; y) = (0; 0) 2 C. We haveZ`k !i!j = (�i�j)k�1(1� �i�j)xi;j + (�i�j)k�1(�i�j � �j):Remark 4.6. Sine !i is losed and !i ^ !j = 0, these iterated integrals are invariant underhomotopy with �xed endpoints.Proof. Using the shu�e produt formula (Chen [2℄, 1.6) and the equations0 = Ze0�e�10 !i!j = Ze0 !i!j + Ze�10 !i!j + Ze0 !i Ze�10 !j and Ze0 !i = Ze0 !0i�B0i = 1;we have Z`k !i!j = Z�k�1� (e0)��k�(e0)�1 !i!j= Z�k�1� (e0) !i!j + Z�k� (e0)�1 !i!j + Z�k�1� (e0) !i Z�k� (e0)�1 !j=(�i�j)k�1 Ze0 !i!j + (�i�j)k Ze�10 !i!j � �k�1i �kj Ze0 !i Ze0 !j=(�i�j)k�1 Ze0 !i!j + (�i�j)k�� Ze0 !i!j + Ze0 !i Ze0 !j�� �k�1i �kj=(�i�j)k�1(1� �i�j) Ze0 !i!j + (�i�j)k�1(�i�j � �j): �The subsetH of (H
3)0
R is de�ned by f!+!; (!�!)=p�1;! 2 H1;0
CH1;0
CH1;0g. Wewill �nd some elements of H\(H
3)0. Let D and D denoteP�2S3 sgn(�)!�(1)
C !�(2)
C !�(3)and P�2S3 sgn(�)!�(1) 
C !�(2) 
C !�(3) 2 (HC )
C3 respetively. Using Proposition 4.3 and



6 YUUKI TADOKORORemark 4.4, D and D are identi�ed with �P�2S3 sgn(�)L7h�(1) 
C L7h�(2) 
C L7h�(3) and�P�2S3 sgn(�)L7h�(1) 
C L7h�(2) 
C L7h�(3) respetively. The oeÆients of `p 
C `q 
C `r ofD and D are �p;q;r = � ������ �p7 �2p7 �4p7�q7 �2q7 �4q7�r7 �2r7 �4r7 ������ and �p;q;r = � ������ �6p7 �5p7 �3p7�6q7 �5q7 �3q7�6r7 �5r7 �3r7 ������respetively. It is trivial that D +D and (D �D)=p�1 2 H. Furthermore, we haveProposition 4.7. (D +D)=7 and (D �D)=p�7 2 (H
3)0.Proof. It suÆes to prove that �p;q;r belongs to the prinipal ideal (p�7)Z[(1 + p�7)=2℄ �Z[(1+p�7)=2℄. It is well known that Gal(Q(�7 )=Q) �= f�igi=1;2;:::;6 �= Z=6Z, where �i(�7) = �i7.Sine [Q(p�7): Q℄ = 2, we obtain Gal(Q(�7 )=Q(p�7)), the subgroup of Gal(Q(�7 )=Q), isgenerated by �2. It is lear that �p;q;r is invariant under the ation of �2. So, we have�p;q;r 2 Q(p�7). On the other hand, it immediately follows �p;q;r belongs to the prinipalideal (�7 � 1)Z[�7℄ � Z[�7℄. Therefore, we have�p;q;r 2 Q(p�7) \ (�7 � 1)Z[�7℄ = (p�7)Z[(1+p�7)=2℄ � Z[(1+p�7)=2℄:We have �p;q;r + �p;q;r 2 7Z and �p;q;r � �p;q;r 2 p�7Z. We omplete the proof. �Remark 4.8. Using the harater of Aut(C) = PSL2(F7 ), we have H0(Aut(C); (HC )
C3) =C 2 . This indues H0(Aut(C);H
3) = Z2. We an also prove that f(D+D)=7; (D�D)=p�7gis a generator of H0(Aut(C); (H
3)0).Theorem 4.9. The values at (D+D)=7 and (D�D)=p�7 2 (H
3)0 for the harmoni volumeof the Klein quarti C are given by0 and 28p�7��27 � �67�7 + 1 x1;2 + �47 � �57�27 + 1 x2;3 + �7 � �37�47 + 1 x3;1� mod Zrespetively.Proof. All iterated integral parts of I((D+D)=7) and I((D�D)=p�7) are linear ombinationsof Z`k !i!j and Z`k !i!j = Z`k !i!j . Furthermore, !i ^ !j = !i ^ !j = 0. So we need noorretion terms � in De�nition 2.1. Therefore, it suÆes to alulate only the iterated integralparts.By de�nition, there exist omplex onstants �i;j;k so that I((D +D)=7) is of the form7Xk=1 X(i;j)2U �i;j;k Z`k (!i!j � !j!i) + 7Xk=1 X(i;j)2U �i;j;kZ`k(!i!j � !j!i);where U is a set f(1; 2); (2; 3); (3; 1)g. Using P:D:(!i) = �iL7hi = �iP7k=1 �ki `k, it an bewritten as (I1;2;3 + I1;2;3)=7 mod Z. Here, we denoteI1;2;3 = �3 7Xk=1 �k3 Z`k(!1!2 � !2!1) + �1 7Xk=1 �k1 Z`k(!2!3 � !3!2) + �2 7Xk=1 �k2 Z`k(!3!1 � !1!3):Similarly, we obtain I((D �D)=p�7) = (I1;2;3 � I1;2;3)=p�7 mod Z:In order to omplete the proof, we need two lemmas.



A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN VARIETY 7Lemma 4.10. We haveZ`k (!i!j � !j!i) = 2(�i�j)k�1(1� �i�j)xi;j + (�i�j)k�1(�i � 1)(�j + 1):Proof. We use Lemma 4.1, Lemma 4.5 and the equationZ`k !j!i = � Z`k !i!j + Z`k !i Z`k !j : �Lemma 4.11. We haveI1;2;3 = 14��27 � �67�7 + 1 x1;2 + �47 � �57�27 + 1 x2;3 + �7 � �37�47 + 1 x3;1 � 32p�7�:Proof. Using Lemma 4.10 and �1�2�3 = 1, we alulate the oeÆient of x1;2 of I1;2;3 as follows:�3 7Xk=1 �k3 � 2(�1�2)k�1(1� �1�2) = �2�33(�23 + 1) 7Xk=1(�1�2�3)k�1(�3 � 1)= �2�127 (�87 + 1) 7Xk=1(�47 � 1) = 14�27 � �67�7 + 1 :Similarly, we ompute the oeÆients of x2;3; x3;1 and the onstant term of I1;2;3. For theomputation of the onstant term, we need �7 + �27 + �47 = (�1 +p�7)=2. �The result follows from Lemma 4.11. We remark that all the oeÆients of x1;2; x2;3; x3;1and the onstant term of I1;2;3 are pure imaginary. �For the numerial alulation of xi;j , we reall the generalized hypergeometri funtion 3F2.We denote the gamma funtion �(�) = Z 10 e�tt��1dt for � > 0 and (�; n) = �(� + n)=�(�)for non-negative integer n. For x 2 fz 2 C ; jzj < 1g and �1; �2; �3; �1; �2 > �1, the generalizedhypergeometri funtion 3F2 is de�ned by3F2� �1; �2; �3�1; �2 ;x� = 1Xn=0 (�1; n)(�2; n)(�3; n)(�1; n)(�2; n)(1; n) xn:See [8℄ for example. By straightforward omputation, we haveProposition 4.12. Let � be a 1-simplex f(u; v) 2 R2 ; 0 � v � 1; 0 � u � vg. If a; b; p; q >0; b < 1, then we haveZ� ua�1(1� u)b�1vp�1(1� v)q�1dudv = B(a+ p; q)a limt!1�0t2R 3F2� a; 1� b; a+ p1 + a; a+ p+ q ; t�.From Proposition 4.12, we haveLemma 4.13.xi;j = B(hi + hj ; hj+1)hiB0iB0j limt!1�0t2R 3F2� hi; 1� hi+1; hi + hj1 + hi; hi + hj + hj+1 ; t�:Theorem 4.14. Let C be the Klein quarti. Then, the yle C � C� is not algebraiallyequivalent to zero in J(C).



8 YUUKI TADOKOROProof. By Theorem 4.9, Lemma 4.13, the numerial alulation (Figure 1 in Appendix), weobtain the value 2I((D �D)=p�7) = 0:72270� 1� 10�5 mod Z:The result follows from Proposition 3.2. �5. AppendixIn this setion, we introdue the MATHEMATICA program [14℄ in the proof of Theorem4.14.
z = Cos@H2 PiL�7D + ä Sin@H2 PiL�7D

8h@1D, h@2D, h@3D, h@4D< = 81�7, 2�7, 4�7, 1�7<

x@i_, j_D :=

Beta@h@iD + h@jD, h@j + 1DD�Hh@iD*Beta@h@iD, h@i + 1DD*Beta@h@jD, h@j + 1DDL 

HypergeometricPFQ@8h@iD, 1 - h@i + 1D, h@iD + h@jD<, 81 + h@iD, h@iD + h@jD + h@j + 1D<, 1D

N@2*HFullSimplify@28 Hz^2 - z^6L�Hä Sqrt@7D Hz + 1LLD x@1, 2D +

FullSimplify@28 Hz^4 - z^5L�Hä Sqrt@7D Hz^2 + 1LLD x@2, 3D +

FullSimplify@28 Hz - z^3L�Hä Sqrt@7D Hz^4 + 1LLD x@3, 1DL, 20DFigure 1. Numerial alulation program of Theorem 4.14Referenes[1℄ Ceresa, G.: C is not algebraially equivalent to C� in its Jaobian. Ann. of Math. (2) 117 (1983), no. 2,285{291.[2℄ Chen, Kuo Tsai: Algebras of iterated path integrals and fundamental groups. Trans. Amer. Math. So. 1561971 359{379.[3℄ Hain, Rihard M.: The geometry of the mixed Hodge struture on the fundamental group. Algebrai ge-ometry, Bowdoin, 1985 (Brunswik, Maine, 1985), 247{282, Pro. Sympos. Pure Math., 46, Part 2, Amer.Math. So., Providene, RI, 1987.[4℄ Harris, Bruno: Harmoni volumes. Ata Math. 150 (1983), no. 1-2, 91{123.[5℄ Harris, Bruno: Homologial versus algebrai equivalene in a Jaobian. Pro. Nat. Aad. Si. U.S.A. 80(1983), no. 4 i., 1157{1158.[6℄ Harris, Bruno: Iterated integrals and yles on algebrai manifolds. Nankai Trats in Mathematis, 7.World Sienti� Publishing Co., In., River Edge, NJ, 2004.[7℄ Edited by Silvio Levy: The eightfold way. The beauty of Klein's quarti urve. Mathematial SienesResearh Institute Publiations, 35. Cambridge University Press, Cambridge, 1999.[8℄ Slater, Luy Joan: Generalized hypergeometri funtions. Cambridge University Press, Cambridge 1966.[9℄ Pulte, Mihael J.: The fundamental group of a Riemann surfae: mixed Hodge strutures and algebraiyles. Duke Math. J. 57 (1988), no. 3, 721{760.[10℄ Pirola, Gian Pietro: The in�nitesimal invariant of C+ �C�. Algebrai yles and Hodge theory (Torino,1993), 223{232, Leture Notes in Math., 1594, Springer, Berlin, 1994.[11℄ Tadokoro, Yuuki: The Harmoni Volumes of Hyperellipti Curves, to appear in Publ. Res. Inst. Math. Si.[12℄ Tretko�, C. L.; Tretko�, M. D.: Combinatorial group theory, Riemann surfaes and di�erential equations.Contributions to group theory, 467{519, Contemp. Math., 33, Amer. Math. So., Providene, RI, 1984.[13℄ Weil, Andre: Sienti� works. Colleted papers. Vol. II (1951{1964). Springer-Verlag, New York-Heidelberg, 1979.[14℄ Wolfram, Stephen: The MathematiaR book. Fourth edition. Wolfram Media, In., Champaign, IL; Cam-bridge University Press, Cambridge, 1999.Department of Mathematial Sienes, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, JapanE-mail address: tado�ms.u-tokyo.a.jp
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affine Weyl groups.

2005–22 Yuji Umezawa: The minimal risk of hedging with a convex risk measure.

2005–23 J. Noguchi, and J. Winkelmann and K. Yamanoi: Degeneracy of holomorphic
curves into algebraic varieties.

2005–24 Hirotaka Fushiya: Limit theorem of a one dimensional Marokov process to
sticky reflected Brownian motion.

2005–25 Jin Cheng, Li Peng, and Masahiro Yamamoto: The conditional stability in line
unique continuation for a wave equation and an inverse wave source problem.

2005–26 M. Choulli and M. Yamamoto: Some stability estimates in determining sources
and coefficients.

2005–27 Cecilia Cavaterra, Alfredo Lorenzi and Masahiro Yamamoto: A stability result
Via Carleman estimates for an inverse problem related to a hyperbolic integro-
differential equation.

2005–28 Fumio Kikuchi and Hironobu Saito: Remarks on a posteriori error estimation
for finite element solutions.

2005–29 Yuuki Tadokoro: A nontrivial algebraic cycle in the Jacobian variety of the
Klein quartic.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


