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A NONTRIVIAL ALGEBRAIC CYCLE IN THE
JACOBIAN VARIETY OF THE KLEIN QUARTIC

YUUKI TADOKORO

ABSTRACT. We prove some value of the harmonic volume for the Klein quartic C' is nonzero
1
modulo EZ’ using special values of the generalized hypergeometric function g F». This result

tells us the algebraic cycle C — C'~ is not algebraically equivalent to zero in the Jacobian
variety J(C).

1. INTRODUCTION

Let X be a compact Riemann surface of genus g > 2 and J(X) its Jacobian variety. By the
Abel-Jacobi map X — J(X), X is embedded in J(X). The algebraic 1-cycle X — X~ in J(X)
is homologous to zero. Here we denote by X ~ the image of X under the multiplication map by
—1. If X is hyperelliptic, X = X~ in J(X). For the rest of this paper, suppose g > 3. B. Harris
[5] studied the problem whether the cycle X — X~ in J(X) is algebraically equivalent to zero or
not. The harmonic volume I for X was introduced by Harris [4], using Chen’s iterated integrals
[2]. Let H denote the first integral homology group H;(X;Z) of X. The harmonic volume I
is defined to be a homomorphism (H®?)" — R/Z. Here (H®3)' is a certain subgroup of H®3.
See Section 2 for the definition. Let w be a third tensor product of holomorphic 1-forms on X.
Suppose that w +© and (w — @)/v/—1 belong to (H®3)'. If the cycle X — X~ is algebraically
equivalent to zero, then twice the values at both w + @ and (w — @)/v/—1 of the harmonic
volume are zero modulo Z. Harris proved twice the value at w + @ of the harmonic volume for
the Fermat quartic F'(4) are nonzero modulo Z. This implies F'(4) — F'(4)~ is not algebraically
equivalent to zero in J(F(4)) ([5], [6]). Ceresa [1] showed that X — X~ is not algebraically
equivalent to zero for a generic X. We know few explicit nontrivial examples except for F'(4).
Let C denote the Klein quartic. See Section 4.1 for the definition. The aim of this paper is to
show

Theorem 4.14. The algebraic cycle C — C~ is not algebraically equivalent to zero in the
Jacobian variety J(C).

Since Harris used the special feature of F'(4) that its normalized period matrix has entries
in Z[/—1], it is not difficult to find some w so that w + @ and (w — @)/y/—1 belong to (H®?)’
for F'(4). But, in general, it is not easy to find such an w. For the Klein quartic C, we prove
(D 4+ D)/7 and (D — D)/y/—T7 belong to (H®3)" (Proposition 4.7). See Section 4.3 for the
definitions of them. In Theorem 4.9 we compute the value at (D — D)/v/—7 € (H®3)" of the
harmonic volume for C

= _ B (¢g-¢ G- G =G
I((D—D)/\/__7)—\/—__7<C7+1£E172+ C$+1$2,3+ C’?+1$371> mod 7Z.

Here, (s = exp(2my/—1/7) and z; ;’s are real constants obtained from some special values of
the generalized hypergeometric function 3F» (Lemma 4.13). By numerical computation using

MATHEMATICA, we obtain Theorem 4.14. We give a calculation program in Appendix.
1
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2. THE HARMONIC VOLUME

We recall the harmonic volume for a compact Riemann surface X of genus g > 3 [4]. We
identify the first integral homology group H;(X;Z) of X with the first integral cohomology
group by Poincaré duality, and denote it by H. Moreover we identify H with the space of all
the real harmonic 1-forms on X with integral periods. Let K be the kernel of the intersection
pairing ( , ): H ®z H — Z. For the rest of this paper, we write ® = ®z, unless otherwise
stated. The Hodge star operator * on the space of all the 1-forms A!(X) is locally given by
#(f1(2)dz + fo(2)d2) = —/=1f1(2)dz + V/—1f5(2)dZ in a local coordinate z and depends only
on the complex structure and not on the choice of Hermitian metric. For any 2?21 a; ®b; € K,

there exists a unique n € A'(X) such that dn = Y"1, a; A b; and / n A xa = 0 for any closed
X

1-form a € A'(X). Here a; and b; are regarded as real harmonic 1-forms on X. Choose a point
T € X.

Definition 2.1. (The pointed harmonic volume [9])
For ' ,a; ® b; € K and ¢ € H, the pointed harmonic volume defined to be

Ix0(<2ai®bi> ®c> :Z[yaibi—/vn mod Z.
=1 =1

Here n € A'(X) is associated to Y., a; ®b; in the way stated above and v is a loop in X with

the base point xg whose homology class is equal to ¢. The integral /aibi is Chen’s iterated
vy

integral [2], that iS, / aibi = / fZ (tl)gi(tg)dtldtg for fy*ai = fz(t)dt and ’y*bi = gi(t)dt.
vy 0<t1<t><1

Here ¢ is the coordinate in the interval [0, 1].

The harmonic volume is given as a restriction of the pointed harmonic volume I,,. We denote
by (H®3)' the kernel of a natural homomorphism p: H®? — H®? defined by p(a ® b ® ¢) =
((a,b)c, (b, c)a, (c,a)b). The harmonic volume I for X is a linear form on (H®?3)" with values
in R/Z defined by the restriction of I, to (H®?)', ie., I = I, |(gesy. Harris [4] proved
that the harmonic volume [ is independent of the choice of the base point zy. We have
I3 ho(1),i®ho(2),i®ho(3),:) = sgn(o) (3, h1,i®hs i ®hs3 ;) mod Z, where ), hy ;®@hy ;®hs ; €
(H®3)" and o is an element of the third symmetric group S3. See Harris [4] and Pulte [9] for
details.

In general, it is difficult to compute the correction term 7 in Definition 2.1. If X is a
hyperelliptic curve, we have an explicit formula for the 1-form 7 given by Harris [4]. This
allows us to calculate the harmonic volumes for all the hyperelliptic curves (Tadokoro [11]). In
this paper, we deal with the case n vanishes.

3. THE ALGEBRAIC CYCLE X — X~ AND AN INTERMEDIATE JACOBIAN

We review a relation between the algebraic cycle X — X~ and the harmonic volume I.
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Let jo: H®3 — A®H be a natural homomorphism js(a®b®c) = aAbAc, where A>H denotes
the third exterior power of H. We have the homomorphism of short exact sequences

0—= (H®?) H® — > g 0
jll j2l j3l
0— (A*H)' NH——H 0,

where jz(a,b,c) = a+b+ ¢, plaAbAc) = (a,b)e+ (b,c)a + (¢,a)b and j; is the restriction
homomorphism of j» to (H®?)'. Let ./ (J) be the space of algebraic k-cycles homologous to
zero on the Jacobian variety J = J(X), modulo rational equivalence. The Abel-Jacobi map of
Griffiths ®p: @/ (J) — Homz(H2**t1(J;Z),R/Z) is defined by

e fon o}

where w is a harmonic (2k+1)-form on J with integral periods (Section 4 in [9]). Here, the mod-
ule Homgz(H?**1(J;Z),R/Z) can be identified with an intermediate Jacobian of Hayy1(J;Z)
[9]. From now on, we consider the case k = 1. Let v denote the Abel-Jacobi image Pp(X —X 7).
Harris (Proposition 2.1 in [6], [4]) proved that (A3H)' can be identified with the primitive sub-
group of H?(J;7Z) in the sence of Lefchetz, denoted by H3 ;. (J;7Z). Using this identification
and the natural projection Homz(H*(J;Z),R/Z) — Homz(H3..(J;Z),R/Z), we consider v
as an element of Homz((A*H)',R/Z) (Section 4 and 6 in [9]).

Theorem 3.1. (Harris [4], [6]). The Abel-Jacobi image v satisfies the commutative diagram

(H®3) 2L~ R/Z,

%

(N3H)'.

We say the algebraic cycle X — X~ is algebraically equivalent to zero in J if there exists a
topological 3-chain W such that W = X — X~ and W lies on S, where S is an algebraic (or
complex analytic) subset of J of complex dimension 2 (Harris [6]). The chain W is unique up
to 3-cycles. We denote by H':? the space of all the holomorphc 1-forms on X. From [5], 2.6 in
[6] and 533-534 in [13], we have

Proposition 3.2. Let w € (H1’0)®C3 satisfying that w + @ and (w — W)/V/—1 € (H®?)'.
If X — X~ is algebraically equivalent to zero in J, then twice the values at both w + W and
(w—w)/v/—1 of the harmonic volume are zero modulo Z.

Proof. Since X — X~ is algebraically equivalent to zero in .J, there exist a 3-chain W and an
algebraic subset S satisfying the above conditions. Let He denote H ® C. Theorem 3.1 gives

2l(w+w) = / J1(lw+®) and 2I((w —@)/V—-1)) = / Jilw—-m)/vV-1.
w w
It is clear that j;(w) and j; (@) are (3,0) and (0, 3)-form in H3(J;C) = A3Hc respectively.

Since dim¢ S = 2, the restriction of them to S are clearly zero. O

If twice the value at w + @ or (w — w)/+/—1 of the harmonic volume is nonzero modulo Z,
then X — X~ is not algebraically equivalent to zero in J. See Hain [3], Pirola [10] and their
references for the algebraic cycle X — X~ in J.
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4. SOME VALUES OF THE HARMONIC VOLUME FOR THE KLEIN QUARTIC

We compute some values of the harmonic volume for the Klein quartic to prove the main
theorem (Theorem 4.14).

4.1. A 1-dimensional homology basis of the Klein quartic. We denote by C' the Klein
quartic which is, by definition, the plane curve C: = {(X : Y : Z) € CP*; X?Y +Y3Z+ 73X =
0}. It is a compact Riemann surface of genus 3. It is known that the holomorphic automorphism
group of C, Aut(C), is isomorphic to PSLy(F7 ). See [7] for the details of the Klein quartic. Let
2 and y denote X3Y ~2Z -1 4+1 and —XY ! respectively. The equation X?Y +Y3Z+ 73X =0
induces 47 = (1 — z)?. The holomorphic map 7 : C' — CP! is defined by n(z,y) = x, which
is a 7-sheeted covering C' — CP!, branched over 3 branch points {0,1,0c}. Let (; denote
exp(2my/—1/7). For t € [0,1], we define a loop eg : [0,1] — C by eo(t) = (¢,y0(t)), where
yo(t) is a real analytic function /(1 —¢)%2. Let o: C' — C be a holomorphic automorphism
o(z,y) = (z,¢y). For k =0,1,...,6, we define loops in C by cx = 0¥ (ep) - e *. We denote
lp = oF1(eo) - 0¥(e9) ',k = 0,1,...,7. The loop £y can be identified with ¢;. By abuse of
notation, the homology classes of ¢, and ¢, are denoted by ¢x and £, € Hy(C';Z) respectively.
Let (, ): Hi(C;Z)® H,(C;Z) — Z be the intersection pairing, i.e., a non-degenerate bilinear
form on Hy(C;Z). Tretkoff and Tretkoff [12] proved

(o= { 0 i k=1246
CLE)TN 1 i k=35,

using the Hurwitz system of the branched covering w. By the definition of ¢, we have

0 if k=1,2
(b1, 0y) = (c1,c) — (c1,06-1) = 1 if k=35,
1 if k=4,6.
Moreover, we obtain that o.(¢x) = lry1 and (¢;,¢6;) = (0x(€;),0.(¢;)) = (lix1,€;41). The
intersection matrix K’ of £,k =1,2,...,6 is given by
0 1 -1 1 -1

1
0
0

i.e., its (i,7)-th entry is (¢;, ;). It is easy to prove det K' = 1 and {{y}r=1,2,...6 C Hi(C;Z) is
a basis of H,(C;Z).

4.2. Poincaré dual of the Klein quartic. Let wj,w) and wj be holomorphic 1-forms on
C, (1 — z)dz/y%, (1 — z)dz/y® and dz/y* respectively. It is known that {w!};—1 23 is a basis
of the space of all the holomorphic 1-forms on C. The beta function B(u,v) is defined by

1
/ =1 (1—t)"~ dt for u,v > 0. We denote (h1, ha, hg, hy) = (1/7,2/7,4/7,1/7) and & = (.
0
From the equations o*w} = &w; and / w! = B(h;, hiy1), we have
eo

Lemma 4.1.

/ Wl = (€~ E)Blhis his).
£y

Remark 4.2. These integrals depend only on the cohomology class of w} and the homology
class of ;.
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We set B, = B(hi, hiy1) and w; = w!/Bl, i = 1,2,3. We write Ly, := Y1_, (¥4, € H,(C;0)
and denote the Poincaré dual by P.D.: H'(C;C) — H,(C;C).

Proposition 4.3. We denote \; = —1/(£3(¢2 + 1)) € C. Then, we have
PD(UJZ) = AiL7hi-

Proof. Since o4 (l) = £r+1, we obtain o, Ly = C{kLk. The eigenvalues and eigenvectors of the
action of ¢ on the C-vector space H;(C;C) are C{k and L for k =1,2,...,6. We have

7.(P.D.(w;)) = P.D.((671)*w;) = & 'P.D.(w;) = (7" P.D.(w3).

There exists a constant \; € C such that P.D.(w;) = A\;L7p,. The result follows from Lemma
4.1 and the equation

/Z wi = (P.D.(wi)s 1) = (\iLons £2) = Ni(Lrnss 1) = —Mi(1 — €)(EX(E + 1)).

Remark 4.4. We have P.D.(@;) = A\;L7p,,. It immediately follows A; A A3 = —1.

4.3. Some values of the harmonic volume for the Klein quartic. For ¢ € [0,1], let f;
be a real 1-form on [0,1] defined by ejw! = thi~1(1 — t)hi+1-1dt i = 1,2,3. Let z;; denote

an iterated integral / wiwj = / fifj/(BgB;). Here, v is the path [0,1] 3t — t € [0,1]. We
e ¥
compute the iterated i(;ltegrals of wy,wy and ws along the loop /4.

Lemma 4.5. We consider (. as loops with the base point (z,y) = (0,0) € C. We have

/ wiwj = (&) (1 = &&j)mi; + (66" (&5 — &)

43

Remark 4.6. Since w; is closed and w; A w; = 0, these iterated integrals are invariant under
homotopy with fixed endpoints.

Proof. Using the shuffle product formula (Chen [2], 1.6) and the equations

— . — ., . ., . 3 3 R ! ! __
0—/ lwzwj—/wzw]+/1wzw]+/wzfle and /wz—/wi/Bi— ,
ep-eq eo es eo eq eo eo

0

wiW; =/ WiWj;

/‘Zk ot (eo)-0% (e0) 1

= wiW; -I-/ WiWj -I-/ wi/ wj
/;kl(%) ok (eq)™! 7t (o) ok (

we have

*

0 eg) !
:(figj)k71/ wiwj-l-(fifj)k/_lwiwj—ﬁf*l Jk/ wi/ wj

=(§i§j)k_1/e wiwj + (&fj)k{—/e Wiw; +/e Wz’/E wa} - &

=(&&) (- &fj)/ wiw; + (&&) & — &)

O

The subset H of (H®3)'®R is defined by {w+m, (w—©)/v—1;w € H' '@c H**@c H0}. We
will find some elements of HN(H®?)'. Let D and D denote > e, S8 (1w, (1) Ocwy(2) Bcwy(s)
and > g, S8n(1)W,(1) ®c Wy(z) ®c Wy(3) € (H¢)®c3 respectively. Using Proposition 4.3 and
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Remark 4.4, D_and D are_identiﬁed_with — ZM€S3 sgn(u)Lmu(l) ®c Lih, o, ®c Lrn,, and
— 2%53 SgH(M)Lmu(l) ®c Lrh, ., ®c L1n,,, respectively. The coefficients of £, ®c ¢, ®c ¢, of
D and D are

Cp 2p 4p 6p 5p 3p

L ok

— _ q q q =~ — _ q q q
Qp,qr = G ¢ 7 and @4 = 7 7 7
Cr 2r C4r 67 5r C?)‘r’

7 7 7 7 7 7

respectively. It is trivial that D + D and (D — D)/+/—1 € H. Furthermore, we have
Proposition 4.7. (D + D)/7 and (D — D)//=7 € (H®?3)'.

Proof. Tt suffices to prove that «a, 4, belongs to the principal ideal (v -7)Z[(1+ V/—-7)/2] C
Z[(1++v/=7)/2]. Tt is well known that Gal(Q(¢7)/Q) = {0:}iz1.2....6 = Z/6Z, where o;(¢7) = (i

Since [Q(v/=7): Q) = 2, we obtain Gal(Q((7)/Q(v/=T)), the subgroup of Gal(Q(¢7)/Q), is
generated by 2. It is clear that a, 4, is invariant under the action of o3. So, we have

ap.gr € Q(v/=T). On the other hand, it immediately follows a, ,, belongs to the principal
ideal (¢; — 1)Z[¢7] C Z[¢4]- Therefore, we have

g € QV=T)N (G = DZ[G] = (V=-DZ[(1+ V=T)/2] C Z[(1+ V=T7)/2].
We have oy q,r + Qp,q,r € 7Z and oy q,r — Qp,g,r € v/ —7Z. We complete the proof. O

Remark 4.8. Using the character of Aut(C') = PSLy(F;), we have H°(Aut(C); (H@)® 3) =
C2. This induces H°(Aut(C); H®?) = Z2 We can also prove that {(D + D)/7,(D — D)/v/-T}
is a generator of H?(Aut(C); (H®?)").

Theorem 4.9. The values at (D+ D)/7 and (D —D)/v/—7 € (H®?)' for the harmonic volume
of the Klein quartic C are given by

2 _ 6 4 _ —
Oand\/zf_7<<7 &, , 8-, L a-a

T mod Z
G+1 T 2+ A1 3’1>

respectively.

Proof. All iterated integral parts of I((D+ D)/7) and I((D — D)/+/~T) are linear combinations

of [ w;w; and / Wiw; = / wiw;. Furthermore, w; A w; = wW; Aw; = 0. So we need no
Ly, Zk Ly

correction terms 7 in Definition 2.1. Therefore, it suffices to calculate only the iterated integral
parts.

By definition, there exist complex constants 6; ;  so that I((D + D)/7) is of the form
Z Z 6iik / Wiwj — Wiw;) +Z Z Oi ik / (wiwj — wjw;),
(i,5)€U (i,5)eU &

where U is a set {(1,2),(2,3),(3,1)}. Using P.D.(w;) = ALz, = N\ 22:1 EFly, it can be
written as (I1 23 + I1,2,3)/7 mod Z. Here, we denote

1123—/\3253/ (Wiws — wowr) + A\ Zfl/ (Wawsz — w3wa) +>\2Zfz/ (Waw1 — wiws).
k=1

k=1 e k=1 s

Similarly, we obtain
I((D — 5)/\/ —7) = (117273 — 717273)/\/ —7 mod Z.

In order to complete the proof, we need two lemmas.
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Lemma 4.10. We have

/ (wiwj — wjwi) = 2(&&) (1 — &i&j)a g + (66)" (& — 1)(& + 1).
£y
Proof. We use Lemma 4.1, Lemma 4.5 and the equation

/ iji:_/ wiwj+/ wi/ wj.
Ly, Ly Ly Ly,

Lemma 4.11. We have

¢ -G SRS G =G 3
Lips = 14<C7 12+<7_'_1 23+<7_*_1 ,1—5\/—_7>-

Proof. Using Lemma 4.10 and £;£2&3 = 1, we calculate the coefficient of 21 o of I1 5 3 as follows:

7
A3 ng (&&) 1 1-66) = Z §16263)" (& 1)

gE+1 €3+1

7
G-
<7+1 j (G- D=1

Similarly, we compute the coefficients of x5 3,231 and the constant term of I; 5 5. For the
computation of the constant term, we need (7 + (¢ + (F = (=1 ++/=7)/2. a

The result follows from Lemma 4.11. We remark that all the coefficients of x1 2,223, 23,1
and the constant term of I; » 3 are pure imaginary. O

For the numerical calculation of z; ;, we recall the generalized hypergeometric function 3Fs.
We denote the gamma function T'(1) = / e~ '™ 'dt for 7 > 0 and (a,n) = T'(a + n)/T(a)

0
for non-negative integer n. For z € {z € C;|z| < 1} and a;, as, a3, 81, 82 > —1, the generalized
hypergeometric function 3F5 is defined by

Qq, 2, A3 cr) = — (alvn)(a2=n)(a3=n)xn
3F2( P, B2 ’) ZO (B1,m)(B2,n)(1,m) =

See [8] for example. By straightforward computation, we have

Proposition 4.12. Let A be a 1-simplex {(u,v) € R%;0 < v < 1,0 < u < v}. Ifa,b,p,q >
0,b < 1, then we have

— — — — B(a+pq) . a.l—ba+p

a—1 b 11) 1 q 1 3 3 )

1- 1- dudv = ———— 1 3F2( ;t).
/u ( u) v ( ’U) uav 1m 1 ’

From Proposition 4.12, we have

Lemma 4.13.
_ B(h2+hj,hj+1) hi,l—hi+1,hi+hj .
i hi B} B, th?lOSFQ( 1+ hi,hi + hj + hj t)'
€

Theorem 4.14. Let C' be the Klein quartic. Then, the cycle C — C~ is not algebraically
equivalent to zero in J(C).
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Proof. By Theorem 4.9, Lemma 4.13, the numerical calculation (Figure 1 in Appendix), we
obtain the value .
2I((D — D)/v/=7) = 0.72270 £ 1 x 10~ ° mod Z.

The result follows from Proposition 3.2. O

5. APPENDIX

In this section, we introduce the MATHEMATICA program [14] in the proof of Theorem
4.14.

z=Cos[(2Pi)/71+4Sin[(2Pi) /7]
{h[11, h[2], h[3], h[4]1}y=(1/7,2/7, 477, 1/7}
X[ _, j_1:=
Beta[h[i]+h[j], h[j +11]1/ (h[i]=*Beta[h[i], h[i +1]]*Beta[h[j], h[j +11])
Hypergeonetri cPFQ[{h[i ], 1-h[i +1], h[i1+h[j1}, {1+h[i], h[il+h[j]1+h[] +1]}, 1]
N[2 % (Ful | Simplify[28 (z"2-2z"6)/ (2Sqrt [7] (z+1))]X[1, 2] +
Full Sinmplify[28 (z"4 -z"5)/(2Sqrt [7] (z"2+1))]Xx[2, 3]+
Full Sinplify[28 (z-z"~3) /(& Sqrt [7] (z"4+1))]x[3, 1]), 20]

F1GURE 1. Numerical calculation program of Theorem 4.14

REFERENCES

[1] Ceresa, G.: C is not algebraically equivalent to C~ in its Jacobian. Ann. of Math. (2) 117 (1983), no. 2,
285—291.

[2] Chen, Kuo Tsai: Algebras of iterated path integrals and fundamental groups. Trans. Amer. Math. Soc. 156
1971 359-379.

[3] Hain, Richard M.: The geometry of the mized Hodge structure on the fundamental group. Algebraic ge-
ometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 247-282, Proc. Sympos. Pure Math., 46, Part 2, Amer.
Math. Soc., Providence, RI, 1987.

[4] Harris, Bruno: Harmonic volumes. Acta Math. 150 (1983), no. 1-2, 91-123.

[5] Harris, Bruno: Homological versus algebraic equivalence in a Jacobian. Proc. Nat. Acad. Sci. U.S.A. 80
(1983), no. 4 i., 1157-1158.

[6] Harris, Bruno: Iterated integrals and cycles on algebraic manifolds. Nankai Tracts in Mathematics, 7.
World Scientific Publishing Co., Inc., River Edge, NJ, 2004.

[7] Edited by Silvio Levy: The eightfold way. The beauty of Klein’s quartic curve. Mathematical Sciences
Research Institute Publications, 35. Cambridge University Press, Cambridge, 1999.

[8] Slater, Lucy Joan: Generalized hypergeometric functions. Cambridge University Press, Cambridge 1966.

[9] Pulte, Michael J.: The fundamental group of a Riemann surface: mized Hodge structures and algebraic
cycles. Duke Math. J. 57 (1988), no. 3, 721-760.

[10] Pirola, Gian Pietro: The infinitesimal invariant of Ct — C~. Algebraic cycles and Hodge theory (Torino,
1993), 223-232, Lecture Notes in Math., 1594, Springer, Berlin, 1994.

[11] Tadokoro, Yuuki: The Harmonic Volumes of Hyperelliptic Curves, to appear in Publ. Res. Inst. Math. Sci.

[12] Tretkoff, C. L.; Tretkoff, M. D.: Combinatorial group theory, Riemann surfaces and differential equations.
Contributions to group theory, 467-519, Contemp. Math., 33, Amer. Math. Soc., Providence, RI, 1984.

[13] Weil, Andre: Scientific works. Collected papers. Vol. II (1951-1964). Springer-Verlag, New York-
Heidelberg, 1979.

[14] Wolfram, Stephen: The Mathematica® book. Fourth edition. Wolfram Media, Inc., Champaign, IL; Cam-
bridge University Press, Cambridge, 1999.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, 3-8-1 KOMABA, MEGURO, TOKYO 153-
8914, JAPAN

FE-mail address: tado@ms.u-tokyo.ac.jp



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS
2005-19

200520

200521

200522
2005-23

200524

2005-25

200526

2005-27

200528

2005-29

Masaki Suzuki: Spaces of initial conditions of the two dimensional Garnier
system and its degenerate ones.

Kenichi Ito: Propagation of singularities for Schrédinger equations on the
FEuclidean space with a scattering metric.

Teruhisa Tsuda: Universal character and q-difference Painlevé equations with
affine Weyl groups.
Yuji Umezawa: The minimal risk of hedging with a convex risk measure.

J. Noguchi, and J. Winkelmann and K. Yamanoi: Degeneracy of holomorphic
curves into algebraic varieties.

Hirotaka Fushiya: Limit theorem of a one dimensional Marokov process to
sticky reflected Brownian motion.

Jin Cheng, Li Peng, and Masahiro Yamamoto: The conditional stability in line
unique continuation for a wave equation and an inverse wave source problem.

M. Choulli and M. Yamamoto: Some stability estimates in determining sources
and coefficients.

Cecilia Cavaterra, Alfredo Lorenzi and Masahiro Yamamoto: A stability result
Via Carleman estimates for an inverse problem related to a hyperbolic integro-
differential equation.

Fumio Kikuchi and Hironobu Saito: Remarks on a posteriori error estimation
for finite element solutions.

Yuuki Tadokoro: A nontrivial algebraic cycle in the Jacobian variety of the
Klein quartic.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:

Graduate School of Mathematical Sciences, The University of Tokyo
3-8-1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN

TEL +81-3-5465-7001 FAX 481-3-5465-7012



