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Abstract
We utilize the classical hypercircle method and the lowest-order Raviart-Thomas H(div)
element to obtain a posteriori error estimates of the P; finite element solutions for 2D Poisson’s
equation. A few other estimation methods are also discussed for comparison. We give some
theoretical and numerical results to see the effectiveness of the methods.
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1 Introduction

The finite element method is now used as a representative numerical method for partial differential
equations. Mathematical analysis of such a method have been also extensively performed, and the
so-called “a priori” error estimation is now popular[3, 4, 5, 7, 8]. Moreover, “a posteriori” error
estimation has also become available utilizing some information of the obtained finite element
solutions, and can be used as a basis of adaptive computation [1, 3, 7, 8, 10, 12, 13]. In this paper,
we will present some results on a special a posteriori estimation method.

As a model problem, we consider the 2D Poisson equation with the homogeneous Dirichlet
boundary condition: Given f, find u that satisfies

—Au=f inQ, u=0 ond, (1)

where (2 is a bounded polygonal domain with boundary 0f2, f a given function defined on (2, and
u an unknown function in Q. In the finite element method (FEM), we usually use the following
weak formulation of the above model problem: Given f € Ly(2), find u € U := H{(2) such that

(Vu,Vov) = (f,v) ; Yo e U, (2)

where (-,-) denotes the inner product of Ly(Q) or L2(2)2. Moreover, L2(2) and H}(Q) are usual
Sobolev spaces associated to Q[5].

To solve the above problem by a typical P, FEM, we first consider a regular family of trian-
gulations {7"}4+0 of Q, and then construct the P, (i.e., piecewise linear) finite element space U"
as a subspace of U = Hg(Q) for each T". Usually, h denotes the maximum edge length of all
triangles in the triangulation. Finally, the finite element solution us € U" is specified by

(Vun, Vo) = (f, o) ; Yo, € U". (3)
For the present up, we can obtain the following well-known a priori estimates :

IVu = Vug|| < CL8 (lullgissio) < C2hONIFI S Mlu —unll < CIRPIFI, (4)



where || - || denotes the norm of Ls() or Ly(2)2, C; and C5 are positive constants dependent on
Q and the family of triangulations only, § is a constant such that % < § < 1 depending only on
the maximum interior angle of Q, and H'*%() is the (fractional) Sobolev space. In particular,
0 = 1 when Q is a convex polygonal domain. In this type of a priori estimation, the approximate
solution uy, does not appear in the right-hand sides of the inequalities. Instead, some informations
on u and/or f are used. Furthermore, we can also obtain similar a priori error estimates in some
other norms. For quantitative purposes, the positive constants like C; and C5 above should be
evaluated beforehand, although such evaluation is not necessarily easy.

Another error estimation method developing rapidly is the so-called a posteriori method, where
the approximate solution uy, is also used in the right-hand sides. Such a method is also used as basis
of adaptive computation. There have been developed various methods in this category, and one
of the most classical one is that based on the hypercircle method [11], which does not require any
positive constants like C;, Cs for estimation in some special norms. However, it has been almost
forgotten for a long time: in fact, its implementation in FEM is not easy from strict viewpoint.
However, in some very special problems, we can apply such an idea after slightly relaxing the
severe conditions required in the original hypercircle method. Such an approach was proposed by
Destuynder and Métivet [6] utilizing the Raviart-Thomas H (div)-triangular element and the mixed
FEM [4]. See also [2, 9] for related works.

In this paper, we will present some theoretical results on such an approach together with related
methods and numerical results.

2 Hypercircle Method

Let us explain the essence of the hypercircle method for the model problem (1), which is, for a
given f € Ly(Q), to find u € U = H}(Q) such that —Awu = f. The Poisson differential equation
can be decomposed into

p=Vu, divp+f=0. (5)

Thus we naturally introduce the following affine set for the given f € L2():
Hy(div; Q) == {g € L2(Q)?; divg+ f = 0} C H(div; Q) := {q € L»(Q)?; divg € L2(Q)}.  (6)
Clearly, p = Vu belongs to this set, and we can easily obtain the Prager-Synge identity [11] :
[IVu—Vol? + |lp—ql* = IVv —qll* ; Yv € Hy(), Vg € Hy(div; Q). (7)

Essentially, this is the Pythagorean theorem based on the orthogonality condition Vu—Vuv L p—gq
in Ly(Q)2, where the vertex of right angle is at Vu = p. Thus the three points Vu = p, Vv and ¢
lie on a hypercircle whose center and radius are respectively Y4 and ||[Vu— Y4 || = L[|Vo —g]|.

The idea of the hypercircle method is very simple. If we take v as the finite element solution
up,, which is surely in U since U" C U, we have the estimates

Vup +q

IV = Vu|l < [Vun =gl , [Vu=dll <[[Vun —all, [[Vu - —

= 51V —all . (®)
provided that we can find an appropriate q. If up and ¢ are somehow obtained, these give a
posteriori error estimates without any special (uncertain) positive constants. The best possible ¢
is of course the one minimizing ||Vuy, — ¢||, but this condition is equivalent to minimizing ||Vu — g||
as may be seen from (7). Thus the best ¢ is actually p = Vu, and hence independent of uy,.

In general, it is difficult to establish a systematic way of finding nice g. Above all, the condition
divg + f = 0 is hard to realize for general f. However, for some approximation of f, it can be
achieved by using special finite elements such as the Raviart-Thomas ones, cf. [6]. We will explain
such an approach in the subsequent section.



3 P, FEM and H(div) Mixed FEM

As was already explained, we consider a regular family of triangulations {7"}40 for a bounded
polygonal domain €2, where h is the maximum diameter of all triangles K € 7". Then the popular
Py -finite element space U" is defined by U" = {v), € U; v4|K € P;(K)}, where P;(K) is the space
of linear polynomials on K. The P, finite element solution uj, € U" is then defined by (3).

To implement the hypercircle method approximately, we also consider a mixed FEM based on
the lowest order Raviart-Thomas H (div) element. The mixed variation formulation related to (5)
is, for a given f € Ly(Q2), find p € V = H(div; Q) and A € W = L»(Q) such that

(p,@) + (A divg) =0 (Vge V), (divp,u) =—(f,u) (VueW). (9)

As is well known, the solution {p, A\} exists uniquely with p = Vu and A = u[4]. Moreover, p can
be characterized by the minimization condition :

2 : 2
IplP = min ol (10)

while A plays the role of the Lagrange multiplier for the constraint ¢ € Hz(div; ).
As finite element spaces for V and W, we introduce

Vh = H'(div;Q) ;== {q €V ; ¢|K = (axz + Br,axy + k) (VK € T")}, (11)

W" = {ue W ; uK € Py(K) (VK € T")}, (12)
where V" is the lowest-order Raviart-Thomas triangular finite element space, and Py(K) is the
space of constant functions on K.

Now the mixed finite element scheme for (9) is, for a given f € Lo(Q), find p, € VF =
H"(div; Q) and A, € W" such that

(Pryqn) + (An, divan) =0 (Ygn € V"), (divpn, pn) = = (1) (Y € W"). (13)

Mathematical properties related to the above, such as the inf-sup condition, existence, uniqueness
and some a priori estimates etc. are well established and not repeated here, cf. [4].

To give a discrete analog of (10), define the orthogonal projection operator Qp, : W = Lo (Q2) —
Wy. Then we find div V® = W" and hence the second relation in (13) is expressed by divpy, +
Qnf =0, instead of the condition div py, + f = 0 desired in the hypercircle method. Then defining

H}(div; Q) = {gn € H"(div; Q);divgs + Qnf = 0}, (14)
the approximate solution p, to p is characterized by

lpwll> = min _[jga|*. (15)
qnEHY (diviQ)

4 A Posteriori Error Estimation Using Mixed FEM

The mixed finite element solution p, € H )’}(div;ﬂ) is not appropriate for the strict hypercircle

method unless Q,f = f. However, if we consider the exact solution u" € U of (1) for Q4 f in
place of f, then Vu", Vu, and ¢, € HJ’} (div; Q) make a hypercircle in Ly ()2, since HJ’} (div; Q) C
Hg, (div; Q). From the Prager-Synge type equality

IVun — ) = [Va" = Vup|* + [|Vu® — aa], (16)
together with the triangle inequalities, we have

IVu — Vun|l < IVa = Vu || +[[Vu" = Vua|| < [Vu = Vu' || +[[Vun — aall. (17)
IV — anll < IVu = Vu|| + [[Vu" = aull < Ve = Vu"|| +[[Vun — aall (18)



These estimates are close to the former two in (8) when ||Vu — Vu"|| is sufficiently small. Now
one possible strategy of choosing nice gy is to minimize the last term ||Vupn — g || above. But we
have a very clear and simple answer to this problem as follows.

Theorem 1. The minimum of ||Vup — qu|| for qn € H;}(div; Q) is attained uniquely by the mized
finite element solution py,.

proof From (16), the desired minimum is attained by g, minimizing ||[Vu" — g4]|. Thanks to the
orthogonality relation (g, — Vu”, Vul) = —(Qunf — Qnf,u") = 0, we find ||gn||* = ||gn — Vu"||* +
|IVu"||2. Thus the present minimization is equivalent to that of ||gs||, and is attained by the finite
element solution pj, as may be seen from (15). |

The above result is meaningful since p;, can be computed independently of uj, at the expense
of costly finite element calculation. We can also show that ||Vu—Vu”|| = O(h?) when f is smooth.

Proposition 1. If f € HY(Q), then ||Vu — Vu"|| < Ch?||V£||, where C is a positive constant that
can be taken common to the considered regular family of triangulations.

proof From the definition of u and u”, we find (Vu—Vu", Vo) = (f —Qnf,v) = (f —Qnf,v—Qnv)
(Vv € U). Using the well-known error estimates for the piecewise constant approximate functions [6]
and the Schwarz inequality, we obtain |(Vu — Vu”, V)| < Ch||V£|| - Ch||Vv||, from which the
desired estimation follows easily. |

From the present results, we have, for smooth f,
max{||Vu — Vun|l, [Vu = pall} < [[Vun — pall + O(h?). (19)

For smooth f, we can show the a priori estimates ||Vu — Vuy|| = O(h?) and ||Vu — pi|| = O(h%),
so that the first term in the right-hand side of the above equation is of O(h’) (3 < § < 1). Thus
this term is asymptotically dominant compared with the term of O(h?) as h — 0.

Of course, the above estimates hold for general ¢, € H )’}(div;Q) other than pj,. The same
conclusion is obtained in [6] by a slightly different approach. In [6], there is proposed a method
to produce qn with ||Vu — g4|| = O(h) by post-processing the obtained up, when 2 is a convex
polygonal domain. Moreover, some iteration methods are also given to improve the quality of
gn- Actually, these give p as limit if the iteration processes are convergent, and hence become
essentially the same as the present method after sufficient iterations.

Strictly speaking, these methods are “quasi”’-hypercircle ones since we must use H J’}(div; Q)
for general f. Moreover, in real computations, there are many pollutants to general f caused by
numerical methods such as numerical integration, interpolation and lumping. However, we can
usually find appropriate methods to keep the induced errors as O(h?) for sufficiently smooth f.

5 Non-hypercircle Methods Using H(div) Triangle

We call the preceding method as Method-1, which is based on the mixed finite element solution
pr- In this section, we will propose two other methods, which use H(div) triangle but do not
necessarily use HJ’} (div; Q).

Define the error e of the finite element solution uy by e := v — uy,. Moreover, Let Ry, : U — U"
be the Ritz projection characterized by (V(Ryv — v), Vol) = 0; Vv € U, Yo" € U". Then the
following formula for e is well known |1, 3, 7, 8] :

IVell> = (div gn + f,e — Rne) + (qn — Vun, Ve) ; Vg € H"(div; Q). (20)
Applying the Nitsche trick, we have the estimate
IVell < Coh||f + divanl| + [lgn — Vual|, (21)



where C> and & can be taken to be the same as in (4). By choosing g, € H"(div;(), we can
obtain a posteriori error estimate. Notice that the right-hand side of (21) differs with ¢5. If
qn € H)’Z(div; ), Rpe in (20) can be replaced with @, f, and then the first term in the right-hand
side of (21) is evaluated as Ch?||V f|]| when f € H'(f), thus giving essentially the same estimate
as (19).

To give possible example of such g, obtainable by post-processing up, let us make some defi-
nitions. Let K and K' be two triangles sharing an (internal) edge v in 7". When + is a portion
of 99, there is only one triangle K that has v as an edge. For K, uX and vk respectively denote
the restriction of up to K and the unit outward normal to K on +. For K', uf’ and vg+ can be
defined similarly. Notice here that v and vi have orientations opposite to each other. Then we
can define pg) € H"(div; Q) by, for each edge 7,

1 K K' K
pg_bl) VK =3 (guT; + 8;”,; ) (interior v), pg_bl) Vg = ZUK (boundary ) . (22)

The present p( ) can be used as gn in (20) and (21). We call the present approach Method-2.

8uh

Let us define the jump of 3

= for interior v by
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(23)
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For boundary -, [g:j;] ‘ is specified as 0. Then we can give another expression for (20)[1, 3, 7]:
Y

IVell? = (divaVun, + f,e — Rpe) — Z/BK e — Rpe) {T] dy, (24)

where divy, is the element-wise divergence operator, K is the boundary of K € T" composed
of three edges, [gVLI’;] is of the form (22) when restricted to each edge, and dry is the infinitesimal
line element. More precisely, for ¢ € Lo(2) with ¢|K € H(div; K) (VK), divsg is defined as a
function in L2(9) such that (divng)|K = div(g|K)(VK). The above formula can be directly used
to give a posteriori estimates in terms of [8“h] on 0K as in [6]. However, as such an approach

(2)

sometimes gives too large error bounds, we further transform it by using p,” € L»(€)* with
P2 |K € H"(div; K) (VK) defined by

@ _ _1[ouy
Py VK =5 |:8VK (0K of VK). (25)
Then, by using the Green formula and noting that R,e = 0, (24) becomes
IVel* = (diva(Vur +p;”) + f.e = Rue) + (05, Ve). (26)
As (21), we obtain
IVell < Coh® || + diva(Vun + o) | + 1051l (27)

which is a posteriori error estimation for u,. We call the present method as Method-3.

In general, Method-2 and -3 are based on different ideas. Method-2 can be viewed as an
averaging or smoothing method [1, 8, 13], while Method-3 is a variant of an approach using the
jump of the flux of uy [1, 3, 7]. These methods can be actually different from each other in general
situation. However, in the present case, they completely coincide with each other:

Theorem 2. For the present U", V" and W", Methods-2 and -3 are equivalent in the sense that
(1) = p(2) + Vup, i.e., the right-hand sides of (21) (qn = pg_bl)) and (27) coincide with each other.



proof Clearly, pg), pf) and Vuy are the lowest-order Raviart-Thomas type functions in each

K. Thus the equality can be shown by checking the degrees of freedom for each K, which are
the normal components on the edges[4, 6]. From (22), (23) and (25), we can easily show that

p&ll) VK = (p&f) + Vuy,) - vk for each 7y of K, and hence p&ll) = p&f) +Vup in K and alsoin Q. O

As in [6], we can show that ||V, —pi"|| = O(R), and || f+divp{" || = O(1) when u is sufficiently
smooth and the family of triangulations is quasi-uniform, although we omit the proof. In such cases,
Method-2 (and -3) can give reasonable upper bounds to ||[Ve||. Moreover, especially for regular

meshes, we can often observe || f +div pg) || = o(1) in numerical tests like in the subsequent section.

6 Numerical Experiments

We performed some numerical tests for the model problem (1). They include one and two di-
mensional (2-D) cases based on the P; elements, and 2-D one by the bilinear rectangular element.
Here, we only show some typical results based on the 2-D P; element and the H(div) one.

The test case to be shown is for the unit square Q = (0,1) x (0,1), and f is taken as f(z,y) =
2{z(1—2z)4+y(1—y)}. Then the exact solution is u(z,y) = (1 —z)y(1 —y). In actual computation,
f is approximated by its P;-interpolantation. The double and/or quadruple precision arithmetics
are employed to retain sufficient accuracy, although no numerical verification is made.

Figure 1: Triangulations (upper: uniform, lower: non-uniform)

Figure 1 depicts the triangulations used in the tests, where N denotes the number of division
on each edge of 2, and both uniform and non-uniform meshes are included.

Figures 2 and 3 show calculated errors by Method-1 and Method-2 (and -3) for the triangu-
lations in Fig. 1. The results for N = 40 are also included. For Method-1, the exact errors
[Vu — Vug|| and ||[Vu — pgl|| are plotted together with the bound ||Vu — pgl||, where the higher
order term in (19) is omitted. For Method-2, two terms in (21) are plotted with the total one. We
employ 1/2 as a tentative value of Cs, and d is 1 since (2 is convex in the present case.
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Figure 2: Calculated errors versus N : uniform triangulations

We can see that Method-1 gives a posteriori upper bounds |[Vup — pi|| of O(h) since h =
O(1/N), which are about 1.2 times larger than ||[Vu — Vul| in both uniform and non-uniform
mesh cases. The present results are slightly superior or almost equal to those reported in [6]. We
also checked the orthogonality condition Vu—Vu, L Vu—pp, numerically, since such orthogonality
holds only asymptotically (i.e., h — 0) in the present case. On the other hand, Methods-2 gives
larger upper bound, though the 2nd term in (21) is often close to the bound by Method-1 and the

first term Coh| f + div pgll) || appears to decrease more rapidly than the second.

7 Concluding Remarks

We have given some results for a posteriori error estimation suggested by the hypercircle method.
Such a method appears to be very effective when available, although its applicability is rather
limited. Still it can play a role of model in the a posteriori estimation.

We are going to perform numerical tests for more singular problems, where § in (1) is in the
interval 1/2 < § < 1. We should also consider some other boundary conditions, higher order
elements, the 3-D Poisson equation, problems other than described by the Poisson equation, and
error estimates in norms other than the energy norm. It is also important to develop simple
post-processing methods based on the H(div) elements.
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