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��������� First we prove a Carleman estimate for a hyperbolic integro-differential
equation. Next we apply such a result to identify a spatially dependent function in

a source term by a single measurement of boundary data.

§1. Introduction and the main results.

Let Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω and let ν = ν(x) be

the outward unit normal vector to ∂Ω at x, ∂νu = ∇u ·ν. We consider a hyperbolic

integro-differential equation:

∂2
t u(x, t) = div (p(x)∇u(x, t)) + div

(∫ t

0

K(x, t, η)∇u(x, η)dη

)
+ F (x, t),

x ∈ Ω, t > 0.
(1.1)

Here p ∈ C2(Ω), > 0 on Ω and K ∈ C2(Ω × [0,∞)2). We set ∂t = ∂
∂t

, ∂j = ∂
∂xj

,

j = 1, 2, ..., n, ∇x,t = (∇, ∂t) = (∂1, ..., ∂n, ∂t), ∆ =
∑n

j=1 ∂2
j . Equation (1.1)

appears in various cases such as viscoelasticity.
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2 C. CAVATERRA, A. LORENZI AND AND M. YAMAMOTO

One of the fundamental question for (1.1) is the unique continuation: if u satisfies

(1.1) with F ≡ 0 and u = ∂νu = 0 on Γ×(0, T ) where Γ ⊂ ∂Ω, then can we conclude

that u = 0 in U × (T ′, T ′′) where U is a neighbourhood of Γ and 0 < T ′ < T ′′ < T?

To prove the unique continuation and other application to inverse problems, a

Carleman estimate is a main tool. In this paper, we will establish a Carleman

estimate for (1.1), and apply it to determine an unknown source term. We stress

that our result is the first step to determine p(x) or an x-dependent function in

K(x, t, η). In a forthcoming paper, we discuss details for the unique continuation.

In addition to the assumption that p ∈ C2(Ω), p(x) > 0 on Ω, throughout this

paper, we suppose that there exists x0 ∈ R
n \ Ω such that

(1.2)
1
2
p(x)2 − (∇p(x) · (x − x0)) ≥ 0, x ∈ Ω.

We set

(1.3) ϕ(x, t) = |x − x0|2 − βt2,

where β > 0 is a sufficiently small positive constant depending on Ω, p, x0. Fur-

thermore for a fixed R > 0, let

Q(ε) = {(x, t) ∈ Ω × (0, T ); ϕ(x, t) > R2 + ε, t > 0}

for ε ≥ 0. Then we can show

Theorem 1 (Carleman estimate). Let p ∈ C2(Ω), K ∈ C2(Ω × [0, T ]2) and let

u = u(x, t) ∈ H2(Q(ε)) satisfy

Pu(x, t) ≡ ∂2
t u(x, t) − div (p(x)∇u(x, t)) − div

(∫ t

0

K(x, t, η)∇u(x, η)dη

)

=F (x, t), x ∈ Ω, t > 0
(1.4)
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and

(1.5) u(x, 0) = 0 or ∂tu(x, 0) = K(x, 0, 0) = 0, x ∈ Q(0) ∩ {t = 0}.

Then there exists s0 > 0 such that we can choose a constant C = C(s0) > 0 which

is independent of u and s, such that

∫
Q(ε)

(s|∇x,tu|2 + s3u2)e2sϕdxdt

≤C

∫
Q(ε)

|F |2e2sϕdxdt + CeCs

∫
∂Q(ε)\(Q(ε)∩{t=0})

(|∇x,tu|2 + u2)dS

(1.6)

for any s ≥ s0.

Remark. In the weight function ϕ, we have to choose β = β(Ω, p, x0) > 0 suffi-

ciently small. In paricular, if p ≡ 1, then we can choose any β ∈ (0, 1).

Inequality (1.6) is called a Carleman estimate. Carleman estimates have been

well known for elliptic, parabolic and hyperbolic operators (e.g., Hörmander [8],

Isakov [12], [13], Klibanov and Timonov [20], Lavrent’ev, Romanov and Shishat·skĭı[23]).

However our system is involved with the integral term

(1.7) div
(∫ t

0

K(x, t, η)∇u(x, η)dη

)
,

so that a Carleman estimate is not directly proved for (1.4) in the existing papers.

In Yong and Zhang [31], one can find such an argument for the exact controllability

but the result is not related with inverse problems. To treat the integral term (1.7),

we have to assume the extra information (1.5). In other words, a usual Carleman

estimate is proved for the extended domain

{(x, t); x ∈ Ω, ϕ(x, t) > R2 + ε},
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but not for

{(x, t); x ∈ Ω, ϕ(x, t) > R2 + ε} ∩ {t > 0},

so that for applying a usual Carleman estimate to an inverse problem in t > 0,

we have to extend the solution u to t < 0. Such an extension requires an extra

argument by term (1.7). On the contrary, for an inverse problem over a time

interval (0, T ) under (1.5), we need not extend u to (−T, 0) and directly apply our

Carleman estimate (1.6). This kind of Carleman estimates in t > 0 are derived

by a pointwise inequality in Klibanov and Timonov [20], Lavrent’ev, Romanov and

Shishat·skĭı[23], and is quite different from the Carleman estimates in Hörmander

[8], Isakov [12], [13], etc.

Next we will consider

The Inverse Source Problem. Let ε > 0 be arbitrarily fixed. Ler R = R(x, t) ∈

W 1,∞(0, T ; L∞(Ω)) and let us consider

(1.8) (Pu)(x, t) = R(x, t)f(x), x ∈ Ω, 0 < t < T,

(1.9) u(x, 0) = ∂tu(x, 0) = 0, x ∈ Ω.

Then determine f = f(x) in Ω(ε) from the knowledge of

u|Γ×(0,T ), ∂ν |Γ×(0,T ).

Here Γ be some sub-boundary of ∂Ω.

The problem to be solved is actually a sort of ”double” Cauchy problem, since

we are given Cauchy conditions on both t = 0 and Γ. Note that we are given only



A STABILTY RESULT FOR AN INVERSE PROBLEM 5

incomplete boundary conditions, since no conditions on u or ∂νu are prescribed on

the whole of ∂Ω.

We set

(1.10) Ω(ε) = Q(ε) ∩ {t = 0}.

Let us assume

(1.11) Ω(0) ⊂ Ω ∪ Γ.

Condition (1.11) follows if Ω is convex near Γ, that is, for any x ∈ Γ, there exists a

neighbourhood U of x such that U ∩ Ω is convex.

We are ready to state the stability result for our inverse source problem.

Theorem 2. Let u ∈ C3([0, T ]; L2(Ω))∩C2([0, T ]; H1(Ω))∩C1([0, T ]; H2(Ω)) sat-

isfy (1.8) and (1.9). We assume

(1.12) |R(x, 0)| > 0, x ∈ Ω

and

(1.13) T >
supx∈Ω(0)(|x − x0|2 − R2)

1
2

√
β

.

Then for any δ > 0, there exist contants C = C(Ω, T, p, x0, β, δ, R) > 0 and κ =

κ(Ω, T, p, x0, β, δ, R) ∈ (0, 1) such that

‖f‖L2(Ω(δ)) ≤ C(‖u‖H1(Q(0)) + ‖∂tu‖H1(Q(0)) + ‖f‖L2(Ω(0)))1−κ

(‖u‖H1(Γ×(0,T )) + ‖∂tu‖H1(Γ×(0,T )))κ.

(1.14)

The factor (‖u‖H1(Γ×(0,T )) + ‖∂tu‖H1(Γ×(0,T ))) is observation data and (1.14)

shows the stability of Hölder type which is conditional under an a priori bounded-

ness of ‖u‖H1(Q(0)) + ‖∂tu‖H1(Q(0)) + ‖f‖L2(Ω(0)).
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Theorem 2 is derived from Theorem 1 by means of the method created by

Bukhgeim and Klibanov [3]. As related works on inverse problems by Carle-

man estimates, see Bellassoued [1], Bukhgeim [2], Imanuvilov and Yamamoto [9]

- [11], Isakov [12] - [14], Khăıdarov [18], Klibanov [19], Klibanov and Timonov

[20], Klibanov and Yamamoto [21], Kubo [22], Yamamoto [30] and the references

therein. As for other inverse problems of determining time dependent factor in

the kernel K(x, t, η) and related inverse problems, see Cavaterra [4], Cavaterra and

Grasselli [5], Cavaterra and Lorenzi [6], Janno and Lorenzi [15], Janno and von

Wolfersdorf [16], Kabanikhin and Lorenzi [17], Lorenzi [24], Lorenzi and Messina

[25], [26], Lorenzi and Romanov [27], Lorenzi and Yahkno [28], von Wolfersdorf [29]

and the references therein.

The rest of this paper is composed of two sections: In Section 2, we will prove

Theorem 1, while Section 3 is devoted to the proof of Theorem 2.

§2. Proof of Theorem 1.

Henceforth C > 0, Cj > 0 denote generic constants which are independent of s > 0,

and may vary from line to line. Set

(2.1) v(x, t) = p(x)u(x, t) +
∫ t

0

K(x, t, η)u(x, η)dη, x ∈ Ω, t > 0.

Then direct calculations yield

∂2
t v(x, t) = p(x)∆v(x, t) − p∇p · ∇u

−p(x)
∫ t

0

∇K(x, t, η) · ∇u(x, η)dη +
(

∂(K(x, t, t))
∂t

+ (∂tK)(x, t, t) − p∆p

)
u

+K(x, t, t)∂tu +
∫ t

0

(∂2
t K(x, t, η)− p∆K)u(x, η)dη + pF, x ∈ Ω, t > 0

(2.2)
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and

(2.3) v(x, 0) = 0 or ∂tv(x, 0) = 0, x ∈ Ω(0).

Noting (2.3), to (2.2) we apply a pointwise Carleman estimate for a hyperbolic

operator (Theorem 2.2.4 in Klibanov and Timonov [20, pp.45–46], or Lemma 2 in

[23, p.128]) for the case of p ≡ 1, see also Cheng, Isakov, Yamamoto and Zhou [7]),

so that for some postive constant s0, we obtain

∫
Q(ε)

(s|∇x,tv|2 + s3v2)e2sϕdxdt

≤C

∫
Q(ε)

{
|p∇p · ∇u|2 +

∣∣∣∣
(

∂(K(x, t, t))
∂t

+ (∂tK)(x, t, t)− p∆p

)
u

∣∣∣∣
2

+|K(x, t, t)∂tu|2
}

e2sϕdxdt + C

∫
Q(ε)

|pF |2e2sϕdxdt

+C

∫
Q(ε)

{∣∣∣∣p
∫ t

0

∇K(x, t, η) · ∇u(x, η)dη

∣∣∣∣
2

+
∣∣∣∣
∫ t

0

((∂2
t K)(x, t, η)− p∆K)u(x, η)dη

∣∣∣∣
2
}

e2sϕdxdt

+CeCs

∫
∂Q(ε)\Ω(ε)

(|∇x,tv|2 + |v|2)dS,

(2.4)

if s ≥ s0. Since p ∈ C2(Ω) and K ∈ C2(Ω × [0, T ]2), we have

∫
Q(ε)

(s|∇x,tv|2 + s3v2)e2sϕdxdt

≤C

∫
Q(ε)

(|∇x,tu|2 + u2)e2sϕdxdt + C

∫
Q(ε)

|F |2e2sϕdxdt

+C

∫
Q(ε)

(∫ t

0

(|∇u(x, η)|2 + u(x, η)2)dη

)
e2sϕdxdt

+CeCs

∫
∂Q(ε)\Ω(ε)

(|∇x,tv|2 + s3v2)dS, s ≥ s0.(2.5)

We show
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Lemma 1.

∫
Q(ε)

(∫ t

0

|w(x, ξ)|dξ

)2

e2sϕdxdt ≤ C

s

∫
Q(ε)

|w(x, t)|2e2sϕdxdt

for w ∈ L2(Q(ε)).

Lemma 1 is fundamental to derive a Carleman estimate for our inverse problem.

We note that it was proved in Bukhgeim and Klibanov [3], Klibanov [19], but with

a factor not containing 1
s

at the right hand side. On the contrary, for our proof,

the factor 1
s is essential. As for the proof of Lemma 1, see Lemma 3.1.1 (pp.77-78)

in [20]. However, for completeness, we will give the proof of it in Appendix.

By (2.1) and p > 0 on Ω,

(2.6) u(x, t) =
1

p(x)
v(x, t) −

∫ t

0

K(x, t, η)
p(x)

u(x, η)dη.

Hence, in terms of Lemma 1, we have

∫
Q(ε)

u2e2sϕdxdt ≤ C

∫
Q(ε)

v2e2sϕdxdt +
C

s

∫
Q(ε)

u2e2sϕdxdt.

Taking s > 0 sufficiently large, we can absorb the second term at the right hand

side into the left hand side, and we have

(2.7)
∫

Q(ε)

u2e2sϕdxdt ≤ C

∫
Q(ε)

v2e2sϕdxdt.

Similarly from (2.6), we obtain

(2.8)
∫

Q(ε)

|∇x,tu|2e2sϕdxdt ≤ C

∫
Q(ε)

(|∇x,tv| + v2)e2sϕdxdt, s ≥ s0.

Hence, substituing (2.7) and (2.8) into the left hand side of (2.5) and applying
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Lemma 1 to the third term at the right hand side of (2.5), we have

∫
Q(ε)

(s|∇x,tu|2 + s3u2)e2sϕdxdt

≤C

∫
Q(ε)

(|∇x,tu|2 + u2)e2sϕdxdt + C

∫
Q(ε)

F 2e2sϕdxdt

+CeCs

∫
∂Q(ε)\Ω(ε)

(|∇x,tv|2 + v2)dS.(2.9)

By (2.1), we have

‖v‖L2(∂Q(ε)) ≤ C‖u‖L2(∂Q(ε)),

‖∇x,tv‖L2(∂Q(ε)) ≤ C‖u‖H1(∂Q(ε)).(2.10)

Again taking s > 0 sufficiently large, we absorb the first term at the right hand

side into the left hand side in (2.9), and we apply (2.10) to the third term at the

right hand side of (2.9). Thus the proof of Theorem 1 is complete.

§3. Proof of Theorem 2.

The proof is based on the modification by Imanuvilov and Yamamoto [10] of the

original method by Bukhgeim and Klibanov [3]. First we modify Theorem 1 as

follows.

Corollary. Let u = u(x, t) ∈ H2(Q(ε)) satisfy (1.4) and u(x, 0) = 0 for x ∈ Ω(0).

Then there exist s0 > 0 and a constant C = C(s0) > 0 independent of u and s,

such that

∫
Q(ε)

(s|∇x,tu|2 + s3u2)e2sϕdxdt ≤ C

∫
Q(ε)

|F |2e2sϕdxdt

+CeCs

∫
∂Q(ε)∩(Γ×(0,∞))

(|∇x,tu|2 + u2)dS + Cs3e2s(R2+3ε)‖u‖2
H1(Q(ε))

(3.1)

for any s ≥ s0.
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Proof of Corollay 1. Let χ ∈ C∞
0 (Rn+1) satisfy 0 ≤ χ ≤ 1 in R

n+1 and

(3.2) χ(x, t) =
{

1, (x, t) ∈ Q(3ε),
0, (x, t) ∈ Q(ε) \ Q(2ε).

We set v = χu. Then |v| = |∇x,tv| = 0 on ∂Q(ε) \ {(Γ × (0,∞))∪Ω(ε)} and v = 0

on Ω(ε). Therefore Theorem 1 yields

∫
Q(3ε)

(s|∇x,tu|2 + s3|u|2)e2sϕdxdt ≤
∫

Q(ε)

(s|∇x,t(χu)|2 + s3|χu|2)e2sϕdxdt

≤C

∫
Q(ε)

|F |2e2sϕdxdt + CeCs

∫
∂Q(ε)∩(Γ×(0,∞))

(|∇x,t(χu)|2 + |χu|2)dS,

(3.3)

for any s ≥ s0. Since

∫
Q(ε)

(s|∇x,tu|2 + s3u2)e2sϕdxdt

=

(∫
Q(3ε)

+
∫

Q(ε)\Q(3ε)

)
(s|∇x,tu|2 + s3u2)e2sϕdxdt

and χ = 1 in Q(3ε), ϕ(x, t) ≤ R2 + 3ε for (x, t) ∈ Q(ε) \ Q(3ε), we have

∫
Q(ε)

(s|∇x,tu|2 + s3u2)e2sϕdxdt

≤
∫

Q(3ε)

(s|∇x,t(χu)|2 + s3|χu|2)e2sϕdxdt + Cs3e2s(R2+3ε)‖u‖2
H1(Q(ε)).

Substituting this into (3.3), we complete the proof of Corollary.

Now we proceed to the proof of Theorem 2. By (1.13), there exists ε > 0 such

that |x − x0|2 − βT 2 < R2 + ε for all x ∈ Ω(0). Hence (x, t) ∈ Q(ε) implies that

0 ≤ t ≤ T . In particular,

(Γ × (0,∞)) ∩ ∂Q(ε) ⊂ Γ × (0, T ).

For simplicity, we set

(3.4)




D = ‖u‖2
H1(Γ×(0,T )) + ‖∂tu‖2

H1(Γ×(0,T )),

M = ‖u‖2
H1(Q(0)) + ‖∂tu‖2

H1(Q(0)) + ‖f‖2
L2(Ω(0)).
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Applying Corollary to (1.8), we have

∫
Q(ε)

(s|∇x,tu|2 + s3u2)e2sϕdxdt

≤C

∫
Q(ε)

|f |2e2sϕdxdt + CeCsD + Cs3e2s(R2+3ε)M, s ≥ s0.(3.5)

On the other hand, (1.8) yields

∆u = −
∫ t

0

K(x, t, η)
p(x)

∆u(x, η)dη +
1
p
∂2

t u(x, t) − ∇p

p
· ∇u(x, t)

−1
p

∫ t

0

∇K(x, t, η) · ∇u(x, η)dη − 1
p
R(x, t)f(x), (x, t) ∈ Q(ε).

Therefore Lemma 1 implies

∫
Q(ε)

|∆u|2e2sϕdxdt ≤ C

s

∫
Q(ε)

|∆u|2e2sϕdxdt

+C

∫
Q(ε)

|∂2
t u|2e2sϕdxdt + C

∫
Q(ε)

|∇u|2e2sϕdxdt + C

∫
Q(ε)

f2e2sϕdxdt,

that is,

∫
Q(ε)

|∆u|2e2sϕdxdt ≤ C

∫
Q(ε)

|∂2
t u|2e2sϕdxdt

+C

∫
Q(ε)

|∇u|2e2sϕdxdt + C

∫
Q(ε)

f2e2sϕdxdt, s ≥ s0,(3.6)

by taking s > 0 sufficiently large. Setting v = ∂tu, we have

∂2
t v = div (p(x)∇v) + div (K(x, t, t)∇u(x, t))

+div
(∫ t

0

∂tK(x, t, η)∇u(x, η)dη

)
+ (∂tR)(x, t)f(x), (x, t) ∈ Q(ε)

and v(x, 0) = 0 for x ∈ Ω(ε). Hence we apply Corollary to the operator ∂2
t −
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div (p(x)∇) to have

∫
Q(ε)

(s|∇x,t∂tu|2 + s3|∂tu|2)e2sϕdxdt

≤C

∫
Q(ε)

|f |2e2sϕdxdt + C

∫
Q(ε)

|div (K(x, t, t)∇u(x)|2e2sϕdxdt

+C

∫
Q(ε)

∣∣∣∣
∫ t

0

div (∂tK(x, t, η)∇u(x, η))dη

∣∣∣∣
2

e2sϕdxdt

+CeCsD + Cs3e2s(R2+3ε)M

≤C

∫
Q(ε)

|f |2e2sϕdxdt + C

∫
Q(ε)

(|∇u|2 + |∆u|2)e2sϕdxdt

+CeCsD + Cs3e2s(R2+3ε)M, s ≥ s0,(3.7)

where in the last inequality, we have used Lemma 1 again. Combining (3.5) - (3.7)

and taking s > 0 sufficiently large, we obtain

∫
Q(ε)

(|∆u|2 + s|∇x,tu|2 + s|∇x,t∂tu|2 + s3|∂tu|2 + s3u2)e2sϕdxdt

≤C

∫
Q(ε)

|f |2e2sϕdxdt + CeCsD + Cs3e2s(R2+3ε)M, s ≥ s0.

(3.8)

We now set z = χ(∂tu)esϕ. Then by direct calculations, we can see that z satisfies

the equation

∂2
t z − div (p∇z) = χesϕdiv (K(x, t, t)∇u) + χesϕ

∫ t

0

div (∂tK(x, t, η)∇u(x, η))dη

+χesϕ(∂tR)f + 2sχ(∂tϕ)(∂2
t u)esϕ − 2pχs(∇ϕ · ∇(∂tu))esϕ

+[s2{(∂tϕ)2 − p|∇ϕ|2} + s{(∂2
t ϕ) − p∆ϕ − (∇ϕ · ∇p)}]z

+2(∂2
t u)(∂tχ)esϕ + (∂tu){∂2

t χ + 2s(∂tχ)∂tϕ}esϕ

−2pesϕ∇(∂tu) · ∇χ − esϕ{p∆χ + 2sp(∇χ · ∇ϕ) + ∇χ · ∇p}∂tu ≡ J.
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Then we have

|J(x, t)| ≤ Cesϕ(|∇u(x, t)| + |∆u(x, t)| + s|∇x,t(∂tu)(x, t)| + s2|∂tu|)

+Cesϕ|f(x)| + Cesϕ

∫ t

0

(|∇u(x, η)| + |∆u(x, η)|)dη, (x, t) ∈ Q(ε).

(3.9)

Multiply −∂2
t z + div (p∇z) = −J by 2∂tz and integrate over Q(ε) to obtain

−
∫

Q(ε)

2(∂2
t z)∂tzdxdt +

∫
Q(ε)

2(∂tz)div (p∇z)dxdt

= − 2
∫

Q(ε)

J(∂tz)dzdt.(3.10)

Henceforth let (ν, νn+1) = (ν1, ..., νn, νn+1) denote the unit outward normal vector

to ∂Q(ε). Hence, in terms of (1.9) and (3.2), we obtain z = |∇x,tz| = 0 on

∂Q(ε)\ ((Γ× (0, T ))∪Ω(ε)), ∇z = 0 on Ω(ε), νn+1 = 0 on ∂Q(ε)∩ (Γ× (0, T )) and

ν = (0, ..., 0,−1) on Ω(ε). An integration by parts gives

−
∫

Q(ε)

2(∂2
t z)∂tzdxdt +

∫
Q(ε)

2(∂tz)div (p∇z)dxdt

= −
∫

Q(ε)

∂t(|∂tz|2)dxdt −
∫

Q(ε)

p∂t(|∇z|2)dxdt +
∫

∂Q(ε)

2(∂tz)p∇z · νdS

= −
∫

Ω(ε)

|∂tz|2νn+1dS + 2
∫

∂Q(ε)∩(Γ×(0,T ))

p(∂tz)∇z · νdS.

(3.11)

On the other hand, we see that

|∂tz(x, t)| ≤ Cs|∂tu(x, t)|esϕ + C|∂2
t u(x, t)|esϕ, (x, t) ∈ Q(ε).

Therefore, by (3.9), we have∣∣∣∣∣−2
∫

Q(ε)

J(∂tz)dxdt

∣∣∣∣∣
≤C

∫
Q(ε)

(|∇u| + |∆u| + s|∇x,t∂tu| + s2|∂tu|)(|∂2
t u| + s|∂tu|)e2sϕdxdt

+C

∫
Q(ε)

|f |(|∂2
t u| + s|∂tu|)e2sϕdxdt

+C

∫
Q(ε)

e2sϕ(|∂2
t u| + s|∂tu|)

(∫ t

0

(|∇u(x, η)| + |∆u(x, η)|)dη

)
dxdt.
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We apply the Cauchy-Schwarz inequality to obtain

s2|∇x,t∂tu||∂tu| ≤ s|∇x,t∂tu|2 + s3|∂tu|2,

|f |(|∂2
t u| + s|∂tu|) ≤ 2|f |2 + |∂2

t u|2 + s2|∂tu|2.

Hence we have∣∣∣∣∣−2
∫

Q(ε)

J(∂tz)dxdt

∣∣∣∣∣
≤C

∫
Q(ε)

(|∆u|2 + s|∇x,tu|2 + s|∇x,t∂tu|2 + s3|∂tu|2)e2sϕdxdt

+C

∫
Q(ε)

|f |2e2sϕdxdt.

Hence inequality (3.8) yields∣∣∣∣∣−2
∫

Q(ε)

J(∂tz)dxdt

∣∣∣∣∣
≤C

∫
Q(ε)

|f |2e2sϕdxdt + CeCsD + Cs3e2s(3ε+R2)M, s ≥ s0.

(3.12)

Consequently we derive from (3.10) - (3.12) that

∫
Ω(ε)

|∂tz(x, 0)|2dx ≤ C

∫
Γ×(0,T )

(|∂tz|2 + |∇z|2)dS

+C

∫
Q(ε)

|f |2e2sϕdxdt + CeCsD + Cs3e2s(3ε+R2)M

≤C

∫
Q(ε)

|f |2e2sϕdxdt + CeCsD + Cs3e2s(3ε+R2)M, s ≥ s0.

(3.13)

By (1.8) and (1.9), we have

(∂tz)(x, 0) = χ(x, 0)(∂2
t u)(x, 0)esϕ(x,0) = χ(x, 0)R(x, 0)f(x)esϕ(x,0)

for x ∈ Ω(ε). Hence (1.12), (3.2) and (3.13) imply

∫
Ω(3ε)

|f |2e2sϕ(x,0)dx ≤ C

∫
Ω(ε)

|∂tz(x, 0)|2dx

≤C

∫
Q(ε)

|f |2e2sϕdxdt + CeCsD + Cs3e2s(3ε+R2)M, s ≥ s0.
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We have

C

∫
Q(ε)

f2e2sϕdxdt =
∫

Ω(ε)

|f(x)|2e2sϕ(x,0)


∫ (|x−x0|2−R2−ε)

1
2 β

− 1
2

0

e2s(ϕ(x,t)−ϕ(x,0))dt


 dx

≤
∫

Ω(ε)

|f(x)|2e2sϕ(x,0)

(∫ ∞

0

e−2sβt2dt

)
dx =

√
π

2
√

2β

1√
s

∫
Ω(ε)

|f(x)|2e2sϕ(x,0)dx

≤ C√
s

∫
Ω(3ε)

|f(x)|2e2sϕ(x,0)dx + CMe2s(3ε+R2),

because

∫
Ω(ε)

|f(x)|2e2sϕ(x,0)dx =

(∫
Ω(3ε)

+
∫

Ω(ε)\Ω(3ε)

)
|f(x)|2e2sϕ(x,0)dx

≤
∫

Ω(3ε)

|f(x)|2e2sϕ(x,0)dx + ‖f‖2
L2(Ω(ε))e

2s(3ε+R2).

Therefore

∫
Ω(3ε)

|f |2e2sϕ(x,0)dx ≤ C√
s

∫
Ω(3ε)

|f |2e2sϕ(x,0)dx + CeCsD + Cs3e2s(3ε+R2)M.

Hence for sufficiently large s > 0, we obtain

∫
Ω(3ε)

|f |2e2sϕ(x,0)dx ≤ CeCsD + Cs3e2s(3ε+R2)M, s ≥ s0.

Consequently

e2s(4ε+R2)‖f‖2
L2(Ω(4ε)) ≤

∫
Ω(3ε)

|f(x)|2e2sϕ(x,0)dx ≤ CeCsD+Cs3e2s(3ε+R2)M, s ≥ s0,

that is,

(3.14) ‖f‖2
L2(Ω(4ε)) ≤ CeCsD + Cs3e−2εsM ≤ CeCsD + Ce−εsM, s ≥ s0,

for a suitable C > 0. Then we replace C > 0 with CeCs0 so that (3.14) holds for

all s > 0. Without loss of generality, we can assume M > D. Finally, choosing

s = 1
C+ε log M

D > 0, from (3.14), we obtain

‖f‖2
L2(Ω(4ε)) ≤ 2CM

C
C+ε D

ε
C+ε .

Choosing δ = 4ε concludes the proof of Theorem 2.
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Appendix. Proof of Lemma 1.

First we have

te2sϕ(x,t) = − 1
4βs

∂t(e2sϕ).

Therefore, by the Cauchy-Schewarz inequality, we obtain

∫
Q(ε)

(∫ t

0

|w(x, ξ)|dξ

)2

e2sϕdxdt

≤
∫

Q(ε)

t

(∫ t

0

|w(x, ξ)|2dξ

)
e2sϕdxdt

≤
∫
|x−x0 |>

√
R2+ε

{∫ �(x)

0

− 1
4βs

∂t(e2sϕ)
(∫ t

0

|w(x, ξ)|2dξ

)
dt

}
dx.

Here we set �(x) =
(

|x−x0|2−R2−ε
β

) 1
2
. An integration by parts yields

∫
Q(ε)

(∫ t

0

|w(x, ξ)|dξ

)2

e2sϕdxdt

≤ 1
4βs

{
−e2s(R2+ε)

∫
|x−x0|>

√
R2+ε

(∫ �(x)

0

|w(x, ξ)|2dξ

)
dx +

∫
Q(ε)

|w(x, t)|2e2sϕdxdt

}

≤ 1
4βs

∫
Q(ε)

|w(x, t)|2e2sϕdxdt.

The proof of Lemma 1 is complete.
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