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Abstract

We give some stability estimates for the inverse problem consisting
in the determination of source term and coefficients which appear in an
elliptic or parabolic equations and depend fully on all the components of
variables, from boundary measurements.
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1 Introduction

Let Ω be a bounded domain in Rn. Let T > 0 be given and Q = Ω × (0, T ).
We consider the following initial-boundary value problem.

{
∂tu−∆u = f in Q
u = 0 on Σ0 ∪ Σ.

(1.1)

Here and henceforth, Σ = ∂Ω× (0, T ) and Σ0 = Ω× {0}.
We deal with the inverse problem consisting in the determination of the

source term f by measurements of the Neumann data

∂νu = g, on Σ,

where ν is the unit outward normal vector to ∂Ω.

In general there is no uniqueness for this inverse problem as long as unknown
f depends both on x and t. Indeed any f = (∂t−∆)u, u ∈ C∞

c (Q), is such that
∂νu = 0. In other words, the kernel of the mapping f → ∂νuf , where uf is the
solution of the initial-boundary value problem (1.1), is never reduced to {0}.
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Inverse heat source problems in the case f = σ(t)ϕ(x), with σ known, were
already considered in [CY1], [CY2], [Y1] and [Y2]. In these papers stability es-
timates of logarithmic type were established. When Ω = Rn and f = σ(t)ϕ(x),
where ϕ is known, S. Saitoh, V. K. Tuan and M. Yamamoto [STY] obtain also
logarithmic type estimate by using some reverse convolution inequalities. An
uniqueness result with singular heat source was proved by A. El Badia and T.
Ha Duong in [EH2].

In the present work we prove some new stability estimates for inverse prob-
lems for parabolic and elliptic equations where unknown functions depend on
all the components of the variables but are subject to some constraints.

Throughout this paper, we shall assume, even if it is not necessary, that Ω
is of class C2.

2 Parabolic equations

We start with the general case where the source term depends both on x and t.

In the sequel, we exclusively treat real-valued functions, and we will use
some properties of the unbounded operator A given by

Au = ∆u and D(A) = {u ∈ C0(Ω) ∩H1
0 (Ω); ∆u ∈ C0(Ω)},

where C0(Ω) = {w ∈ C(Ω); w = 0 on ∂Ω}.
We recall the following well known properties:

(i) A generates a C0-semigroup etA in C0(Ω) ∩H1
0 (Ω).

(ii) etA may be extended to a semigroup, still denoted by etA, on Lp(Ω), 1 ≤
p ≤ ∞.

(iii) etA is a C0-semigroup in Lp(Ω), if 1 ≤ p < ∞.

(iv) For each 1 ≤ q ≤ p ≤ ∞, t > 0 and u ∈ Lp(Ω),

‖etAu‖Lp(Ω) ≤ (4πt)−
n
2
( 1

q
− 1

p
)‖u‖Lq(Ω).

We refer, for instance, to [CH] and [D] for more details and the proof of these
properties.

As usual, we rewrite the initial-boundary value problem (1.1) as an abstract
differential equation in Lp(Ω), 1 ≤ p < ∞ :

{
d
dtu(·, t) = Au(·, t) + f(., t) in (0, T )
u(·, 0) = 0.

Consequently (1.1) has a unique solution uf ∈ C([0, T ]; Lp(Ω)), for any
1 ≤ p < ∞, given by

uf (·, t) =
∫ t

0
e(t−s)Af(·, s)ds.
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In addition, from a theorem in [LM] (see also [LSU]) uf ∈ H2,1(Q), where

H2,1(Q) = L2(0, T ; H2(Ω)) ∩H1(0, T ; L2(Ω)),

and ∂νuf ∈ L2(Σ) (in fact ∂νuf is in a better space than L2(Σ), see [LM] for
precise trace theorems for H2,1(Q)).

We recall

f+ = max{f, 0} =
1
2
(|f |+ f), f− = −min{f, 0} =

1
2
(|f | − f).

Then f = f+ − f−.

If α > 0 and 0 ≤ θ < 1, we set

Aα,θ = {f ∈ L∞(Q); ‖f‖L∞(Q) ≤ α‖f‖L1(Q),

and
∫

Q
f− ≤ θ

∫

Q
f+ or

∫

Q
f+ ≤ θ

∫

Q
f−}.

Proposition 2.1 We assume that αT < (1−θ
1+θ )2. Then for all f ∈ Aα,θ,

‖f‖L∞(Q) ≤ (
α

1+θ
1−θ −

√
αT

)‖∂νuf‖L1(Σ).

The admissible set Aα,θ of unknown source terms is not general but is a
sufficiently large set. For example,

Aα,θ ⊃ {ϕ0 − θϕ1; ϕ0, ϕ1 ∈ C∞
c (Q), suppϕ0 ∩ suppϕ1 = ∅,∫

Q
ϕ0 =

∫

Q
ϕ1 = 1, 0 ≤ ϕ0, ϕ1 ≤ 1},

for any α ≥ 1. In fact, a straightforward computation shows that f = ϕ0− θϕ1

belongs to Aα,θ. More precisely, we have f+ = ϕ0, f− = θϕ1 (this implies∫
Q f− = θ

∫
Q f+), ‖f‖L∞(Q) ≤ 1 and ‖ϕ‖L1(Q) = (1 + θ).

We need the following lemma in the proof of Proposition 2.1.

Lemma 2.1 Let 1 ≤ p < ∞ and f ∈ L∞(Q). Then

‖uf (·, t)‖Lp(Ω) ≤
√

t‖f‖
1
2

L∞(Ω×(0,t))‖f‖
1
2

L1((0,t);Lp(Ω))
, 0 < t ≤ T.

Proof. As we have seen before,

uf (·, t) =
∫ t

0
e(t−s)Af(·, s)ds.

Therefore, for each r ≥ 1,

‖uf (·, t)‖Lp(Ω) ≤
∫ t

0
‖e(t−s)Af(·, s)‖Lp(Ω)ds

≤ |Ω| 1
pr∗

∫ t

0
‖e(t−s)Af(·, s)‖Lpr(Ω)ds,
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where |Ω| is the Lebesgue measure of Ω and r∗ is the conjugate exponent of r,
1
r + 1

r∗ = 1.

In view of property (iv) of etA, we deduce

‖uf (·, t)‖Lp(Ω) ≤ (|Ω|(4π)−
n
2 )

1
pr∗

∫ t

0
(t− s)−

n
2pr∗ ‖f(·, s)‖Lp(Ω)ds.

Hence, if r is such that n
pr∗ < 1 then

‖uf (·, t)‖Lp(Ω) ≤ (|Ω|(4π)−
n
2 )

1
pr∗ [

∫ t

0
(t− s)−

n
pr∗ ]

1
2 [

∫ t

0
‖f(·, s)‖2

Lp(Ω)ds]
1
2

≤ (|Ω|(4π)−
n
2 )

1
pr∗

(1− n
pr∗ )

1
2

t
1
2
− n

2pr∗ ‖f‖
1
2

L∞(Ω×(0,t))‖f‖
1
2

L1((0,t);Lp(Ω)
.

The desired inequality follows by letting r∗ tend to +∞. ¤
Proof of Proposition 2.1. By the Green theorem, we have

∫

Q
f =

∫

Q
(∂tuf −∆uf )

=
∫

Ω
uf (·, T )−

∫

Σ
∂νuf

≤ ‖u(·, T )‖L1(Ω) + ‖∂νuf‖L1(Σ).

Similarly we have

−
∫

Q
f ≤ ‖u(·, T )‖L1(Ω) + ‖∂νuf‖L1(Σ).

First let
∫
Q f− ≤ θ

∫
Q f+. Then, by |f | = f+ + f− and f = f+ − f−, one can

easily show that ∫

Q
|f | ≤ 1 + θ

1− θ

∫

Q
f.

Second, in the case where
∫
Q f+ ≤ θ

∫
Q f−, we can similarly prove

∫

Q
|f | ≤ 1 + θ

1− θ

∫

Q
−f.

Therefore
1− θ

1 + θ
‖f‖L1(Q) ≤ ‖u(·, T )‖L1(Ω) + ‖∂νuf‖L1(Σ).

A combination of this inequality and the previous lemma (with p = 1) gives

1− θ

1 + θ
‖f‖L1(Q) ≤

√
T‖f‖

1
2

L∞(Q)‖f‖
1
2

L1(Q)
+ ‖∂νuf‖L1(Σ).

By the assumption, we have ‖f‖L∞(Q) ≤ α‖f‖L1(Q). Hence

1− θ

1 + θ
‖f‖L1(Q) ≤

√
αT‖f‖L1(Q) + ‖∂νuf‖L1(Σ),
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and then
‖f‖L∞(Q) ≤ α‖f‖L1(Q) ≤

α
1+θ
1−θ −

√
αT

‖∂νuf‖L1(Σ).

¤
If we observe also u(·, T ), then we can take a more general admissible set of

f ’s. That is, the following estimate is seen directly from the proof of Proposition
2.1.

Proposition 2.2 For 0 ≤ θ < 1, we set

Ãθ = {f ∈ L1(Q);
∫

Q
f− ≤ θ

∫

Q
f+ or

∫

Q
f+ ≤ θ

∫

Q
f−}.

Then for all f ∈ Ãθ, we have

‖f‖L∞(Q) ≤
1 + θ

1− θ
(‖u(·, T )‖L1(Ω) + ‖∂νuf‖L1(Σ)).

We now apply the preceding result to the problem of determining the zeroth
order coefficient in a parabolic equation.

We consider then the following initial-boundary value problem




∂tu−∆u + cu = 0 in Q
u = ψ on Σ0

u = g on Σ.
(2.1)

From here and until the end of Corollary 2.1, we assume that Ω is of class
C2,γ for some γ ∈ (0, 1).

Let ψ ∈ C2+γ(Ω), g ∈ C2+γ,1+ γ
2 (Σ) be given such that

∂tg −∆ψ = 0 on ∂Ω× {0}

and
ψ ≥ δ in Ω, g ≥ δ in Σ.

Let
C̃γ, γ

2 (Q) = {c ∈ Cγ, γ
2 (Q); c = 0 on ∂Ω× {0}}.

It is well known (see for instance [LSU]) that, for each c ∈ C̃γ, γ
2 (Q),

the initial-boundary value problem (2.1) has a unique solution u = uc ∈
C2+γ,1+ γ

2 (Q). Moreover, the weak maximum principle applied to v = e−λtu
with λ ≥ ‖c‖L∞(Q) and −v gives

e−λT δ ≤ u ≤ eλT M in Q for all c ∈ C̃γ, γ
2 (Q), (2.2)

where M = max(‖ψ‖L∞(Ω), ‖g‖L∞(Σ)).

If 0 ≤ θ < 1 and α > 0, we set

Cα,θ = {c ∈ C̃γ, γ
2 (Q); ‖c‖L∞(Q) ≤ α‖c‖L1(Q) and

∫

Q
c− ≤ θ

∫

Q
c+}
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Since uc − u0 is the solution of the initial-boundary value problem
{

∂tu−∆u = −cuc in Q
u = 0 on Σ0 ∪ Σ,

and in view of (2.2), we obtain as a consequence of Proposition 2.1:

Corollary 2.1 Let T0 > 0 be given. We assume that 0 < T ≤ T0, θ < δ
M ,

0 < λ <
1

2T0
ln

δ

Mθ
and βT ≤ (

1 + µ

1− µ
)2,

where β = e2λT0Mα
δ and µ = e2λT0Mθ

δ . Then for each c ∈ Cα,θ, with ‖c‖L∞(Q) ≤
λ,

‖c‖L∞(Q) ≤ (
β

1+µ
1−µ −

√
βT

)‖∂νuc − ∂νu0‖L1(Σ).

Similarly as for Aα,θ, we can prove that Cα,θ 6= {0}. Also, since R+Cα,θ ⊂
Cα,θ, Cα,θ contain non zero function with arbitrary small L∞-norm.

Next, we show how Proposition 2.1 and its corollary can be extented to the
case ∂t − ∆ + c(x, t) instead of ∂t − ∆. Let us then start with the following
initial-boundary value problem.

{
∂tu−∆u + c(x, t)u = f in Q
u = 0 on Σ0 ∪ Σ.

(2.3)

Lemma 2.2 Assume that c ∈ C([0, T ];L∞(Ω)) and f ∈ L∞(Q).

(i) (2.3) has a unique solution u ∈ C([0, T ]; Lp(Ω)) such that ∂tu, ∂iu, ∂2
iju ∈

Lp(Q), For any p, 1 ≤ p < ∞.

(ii) Let 1 ≤ p < ∞ and µ = ‖c‖C([0,T ];Lp(Ω)). Then

‖u(·, t)‖Lp(Ω) ≤
√

teµt‖f‖
1
2

L∞(Ω×(0,t))‖f‖
1
2

L1(0,t;Lp(Ω))
, 0 ≤ t ≤ T.

Proof. (i) First, as a consequence of a classical theorem by J. L. Lions (see for
instance [LM]), we know that (2.3) has a unique solution u ∈ L2(0, T ;H1

0 (Ω))∩
C([0, T ]; L2(Ω)). On the other hand, we see, by using Duhamel’s principle, that
u must be also a solution of the following integral equation

u(·, t) =
∫ t

0
e(t−s)AB(s)u(·, s)ds +

∫ t

0
e(t−s)Af(·, s)ds, 0 ≤ t ≤ T. (2.4)

Here A is the operator defined in the begining of this section, and B(t) :
Lp(Ω) → Lp(Ω) is the multiplication operator by c(·, t).

By the Banach fixed point theorem we see that (2.4) has a unique solution
in C([0, T ];Lp(Ω)). Furthermore, as

∂tu−∆u = −c(x, t)u + f ∈ Lp(Q),
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∂tu, ∂iu, ∂2
iju ∈ Lp(Q) from a classical Lp-regularity theorem (see for instance

[LSU]).

(ii) Let s ≤ t. Then (2.4) implies

‖u(·, s)‖Lp(Ω) =
∫ s

0
‖B(τ)‖B(Lp(Ω))‖u(·, τ)‖Lp(Ω)dτ+‖

∫ s

0
e(s−τ)Af(·, τ)dτ‖Lp(Ω).

Here and henceforth ‖ · ‖B(Lp(Ω)) denotes the operator norm on Lp(Ω).

By Lemma 2.1,

‖
∫ s

0
e(s−τ)Af(·, τ)dτ‖Lp(Ω) ≤ √

s‖f‖
1
2

L∞(Ω×(0,s))‖f‖
1
2

L1(0,s;Lp(Ω))

≤
√

t‖f‖
1
2

L∞(Ω×(0,t))‖f‖
1
2

L1(0,t;Lp(Ω))
.

Hence

‖u(·, s)‖Lp(Ω) = Mp

∫ s

0
‖u(·, τ)‖Lp(Ω)dτ +

√
t‖f‖

1
2

L∞(Ω×(0,t))‖f‖
1
2

L1(0,t;Lp(Ω))
,

where we used ‖B(τ)‖B(Lp(Ω)) ≤ µ. An application of Gronwall’s lemma leads
to

‖u(·, s)‖ ≤ eµs
√

t‖f‖
1
2

L∞(Ω×(0,t))‖f‖
1
2

L1(0,t;Lp(Ω))
.

The desired estimate follows by taking s = t in the last inequality. ¤
In the present case, a result similar to Proposition 2.1 is the following

Proposition 2.3 Let c ∈ C([0, T ]; L∞(Ω)), α > 0, 0 ≤ θ < 1, be given and let
M = ‖c‖C([0,T ];L1(Ω)). If αTeMT < (1−θ

1+θ )2, then for each f ∈ Aα,θ,

‖f‖L∞(Q) ≤
α

1−θ
1+θ −

√
αTeMT

‖∂νuf‖L1(Σ),

where uf is the solution of the initial boundary value problem (2.3).

We leave to the reader to write down the statement of the corresponding
corollary when we take ∂t −∆ + c(x, t) in place of ∂t −∆.

Let us point out that M. V. Klibanov [Kl] proves uniqueness theorems for one
broad class of coefficient inverse problems. His method is based on Carleman
estimates.

We now give another result. As we seen before, the mapping f ∈ L2(Q) →
uf ∈ H2,1(Q) defines a bounded operator. This and a trace theorem in [LM]
give

T : f ∈ L2(Q) → ∂νuf ∈ H
1
2
, 1
4 (Σ)

is bounded, where

H
1
2
, 1
4 (Σ) = L2(0, T ; H

1
2 (∂Ω)) ∩H

1
4 (0, T ;L2(∂Ω)).
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We consider the following sets.

H = {w ∈ H2,1(Q); (∂t + ∆)w = 0 in Q and w = 0 on ΣT }
K = {u ∈ H2,1(Q); u = 0 on Σ0 ∪ Σ and ∂νu = 0 on Σ}

and L = (∂t −∆)K, where ΣT = Ω× {T}. If N(T ) = Ker(T ), then

Proposition 2.4 N(T ) = H⊥ and L2(Q) = H ⊕ L, where H is the closure of
H in L2(Q), and H⊥ denotes the orthogonal of H in L2(Q).

Proof. Let f ∈ N(T ). Noting that ∂νuf = 0 on Σ, an integration by parts
gives ∫

Q
fv =

∫

Q
(∂t −∆)ufv = 0,

for all v ∈ H. That is f ∈ H⊥.

Conversely, if f ∈ H⊥ then, using once again an integration by parts, we
discover

0 =
∫

Q
fv =

∫

Q
(∂t −∆)ufv = −

∫

Σ
∂νufv,

for each v ∈ H. Hence ∂νuf = 0 on Σ. In other words f ∈ N(T ).

To finish the proof, we observe that f ∈ N(T ) if and only if uf ∈ K. That
is, since f = (∂t −∆)uf , f ∈ N(T ) if and only if f ∈ L. ¤

On X = H, the closure of H in L2(Q), we define the mapping N as follows:

N (f) = sup{
∫

Q
fvϕ; ϕ ∈ Φ},

where

Φ = {ϕ ∈ C∞(Σ); ϕ(·, T ) = ∂tϕ(·, T ) = 0 and ‖ϕ‖L∞(Σ) = 1},

and vϕ ∈ H2,1(Q) is the unique solution of the following initial-boundary value
problem





∂tv + ∆v = 0 in Q
u = 0 on ΣT

u = ϕ on Σ.

We note that ϕ(·, T ) = ∂tϕ(·, T ) = 0 is the compatibility condition needed
in the existence of a solution in H2,1(Q) of the above initial-boundary value
problem (see for instance [LM] for more details).

Lemma 2.3 N defines a norm on X.

Proof. As the supremum of a set of real numbers that is symmetric about 0,
N(f) is non negative. On the other hand, we have trivially N (λf) = |λ|N (f),
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for all f ∈ X and λ ∈ R; N (f + g) ≤ N (f) +N (g), for all f , g ∈ X. Also, if
N (f) = 0 then, using N (f) = N (−f),

0 =
∫

Q
fvϕ for all ϕ ∈ Φ.

Therefore we obtain by using an integration by parts

0 =
∫

Q
fvϕ =

∫

Q
(∂t −∆)ufvϕ = −

∫

Σ
∂νufϕ, for all ϕ ∈ Φ.

Hence ∂νuf = 0 on Σ, and then f ∈ L = X⊥. Consequently f = 0. ¤
As we have seen in the preceding proof, we have
∫

Q
fvϕ =

∫

Q
(∂t −∆)ufvϕ = −

∫

Σ
∂νufϕ ≤ ‖∂νuf‖L1(Σ), for all ϕ ∈ Φ.

From this we derive the following stability in detrmining f with the norm N (f).

Proposition 2.5

N (f) ≤ ‖∂νuf‖L1(Σ), for all f ∈ X.

We note that the norm N is weaker than the L1-norm on X. This is a
consequence of the fact that

0 ≤ vϕ ≤ ‖ϕ‖L∞(Σ) = 1,

for all ϕ ∈ Φ, which is obtained from an application of the maximum principle
for weak solutions (see for instance [Li]).

We now show an L2-stability estimate in a smaller subspace than X. Let Y
be the closure of H in H

1
2 (Q) and we recall that the trace operator f → f|Σ is

bounded from H
1
2 (Q) into L2(Σ). Fix f ∈ Y and let (fn) be a sequence in H

converging to f in Y . As above, an integration by parts leads to
∫

Q
ffn =

∫

Q
(∂t −∆)uffn = −

∫

Σ
∂νuffn.

Passing to the limit, we find
∫

Q
f2 = −

∫

Σ
∂νuff,

and then
‖f‖2

L2(Q) ≤ ‖f|Σ‖L2(Σ)‖∂νuf‖L2(Σ). (2.5)

As a consequence of this estimate, we have
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Proposition 2.6 Let M > 0. Then there exists a positive constant C such
that

(i) If f ∈ {q ∈ Y ; ‖g|Σ‖L2(Σ) ≤ M‖g‖L2(Q)} then

‖f‖L2(Q) ≤ C‖∂νuf‖L2(Σ).

(ii) If f ∈ {g ∈ Y ; ‖f‖
H

1
2 (Q)

≤ M} then

‖f‖L2(Q) ≤ C‖∂νuf‖
1
2

L2(Σ)
.

(iii) If f ∈ Y ∩ {g ∈ H1(Q); ‖g‖H1(Q) ≤ M‖g‖L2(Q)} then

‖f‖L2(Q) ≤ C‖∂νuf‖
2
3

L2(Σ)
.

Proof. (i) and (ii) are immediate from (2.5). (iii) follows also from (2.5),
the continuity of the trace operator w ∈ H

1
2 (Q) → w|Σ ∈ L2(Σ) and the

interpolation inequality

‖f‖
H

1
2 (Q)

≤ K‖f‖
1
2

H1(Q)
‖f‖

1
2

L2(Q)
,

where K is some positive constant. ¤
All details concerning interpolation inequalities between Sobolev spaces can

be found for instance in [LM].

In the rest of this section we prove a logarithmic stability estimate for a
wide class of time-independent source term.

Let λ1 < λ2 ≤ . . . ≤ λn be the sequence of eigenvalues of the operator
A = −∆ with D(A) = H1

0 (Ω) ∩ H2(Ω). Let (ϕn) be an orthonormal basis in
L2(Ω) consisting of eigenfunctions of the operator A.

For f ∈ L2(Ω), let uf ∈ H2,1(Q) denote the solution of the following initial-
boundary value problem

{
∂tu−∆u = f(x) in Q
u = 0 on Σ0 ∪ Σ.

We first note that v = ∂tuf is the solution of the boundary value problem




∂tv −∆v = 0 in Q
v = f on Σ0

v = 0 on Σ.

It is well known that

v(·, t) =
∑

k≥1

e−λkt(f, ϕk)L2(Ω)ϕk,

where (·, ·)L2(Ω) is the usual scalar product on L2(Ω). ¿From this formula, we
derive

(v(·, t), ϕk)L2(Ω) = e−λkt(f, ϕk)L2(Ω), for all t ≥ 0,
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and then

(f, ϕk)L2(Ω) = (v(·, 0), ϕk)L2(Ω) = eλkT (v(·, T ), ϕk)L2(Ω).

This identity gives

|(f, ϕk)L2(Ω)| ≤ eλkT |(v(·, T ), ϕk)L2(Ω)|. (2.6)

We recall that

Hβ
0 (Ω) = {h ∈ Hβ(Ω), h = 0 on ∂Ω} if

1
2

< β <
3
2
.

In the sequel 1
4 < α < 3

4 is fixed. Following Fujiwara [Fu], we have

H2α
0 (Ω) = D(Aα) = {h ∈ L2(Ω);

∑

k≥1

λ2α
k (ϕk, h)2L2(Ω) < ∞}.

and
|‖h‖|H2α

0 (Ω) = (
∑

k≥1

λ2α
k (ϕk, h)2L2(Ω))

1
2

is an equivalent norm to the original norm on H2α
0 (Ω).

We assume

f ∈ Z(M) := {h ∈ H2α
0 (Ω); |‖h‖|H2α

0 (Ω) ≤ M},

where M is a given positive constant.

Let λ ≥ λ1 and N = N(λ) be the integer such that λN ≤ λ < λN+1. Then

‖f‖2
L2(Ω) =

∑

k≥1

(f, ϕk)2L2(Ω)

=
∑

k≤N

(f, ϕk)2L2 +
∑

k>N

(f, ϕk)2L2(Ω)

≤
∑

k≤N

(f, ϕk)2L2(Ω) +
1

λ2α

∑

k>N

λ2α
k (f, ϕk)2L2(Ω)

≤
∑

k≤N

(f, ϕk)2L2(Ω) +
M2

λ2α
.

A combination of this estimate and (2.6) gives

‖f‖2
L2(Ω) ≤ e2λT

∑

k≤N

(v(·, T ), ϕk)2L2 +
M2

λ2α

≤ e2λT ‖v(·, T )‖2
L2(Ω) +

M2

λ2α
. (2.7)

The term ‖w(·, T )‖L2(Ω) can be estimated in terms of Neumann boundary
data by using the following observability inequality :
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Theorem 2.1 Let S be a closed subset of ∂Ω with nonempty interior and Γ =
S × (0, T ). Then there exists positive constant C depending only on Ω, T and
S such that : For all h ∈ H1

0 (Ω), the solution of the initial-boundary value
problem





∂tw −∆w = 0 in Q
w = h on Σ0

w = 0 on Σ.

satisfies
‖w(·, T )‖H1

0 (Ω) ≤ C‖∂νw‖L2(Γ). (2.8)

This theorem is a simple consequence of a global Carleman estimate. We give
its proof in the appendix.

Now (2.7) and (2.8) imply

‖f‖2
L2(Ω) ≤ e2λT C2‖∂νv‖2

L2(Γ) +
M2

λ2α

≤ e2λT C2‖∂t∂νuf‖2
L2(Γ) +

M2

λ2α

≤ e2λT C2‖∂νuf‖2
H1(0,T ;L2(S)) +

M2

λ2α
.

That is,

‖f‖2
L2(Ω) ≤ min

λ≥λ1

(C2e2Tλγ2 +
M2

λ2α
), (2.9)

where we set γ = ‖∂νuf‖H1(0,T ;S). The function λ → C2e2Tλγ2 + M2

λ2α attains
its minimum at λ∗ such that

2TC2e2Tλ∗γ2 − 2α
M2

λ∗2α+1 = 0. (2.10)

Hence

e(2α+1+2T )λ∗ ≥ λ∗2α+1e2Tλ∗ =
αM2

TC2γ2
,

and then

λ∗ ≥ 1
2α + 1 + 2T

ln(
αM2

TC2γ2
). (2.11)

If we assume that γ is small enough in such a way that λ∗ ≥ max(λ1, 1), then
(2.9) and (2.10) give

‖f‖2
L2(Ω) ≤

αM2

Tλ∗2α+1 +
M2

λ∗2α ≤ (
αM2

T
+ M2)

1
λ∗2α . (2.12)

In view of inequalities (2.11) and (2.12), we can state the following theorem.

Theorem 2.2 Let S be a closed subset of ∂Ω with nonempty interior. Then
we find three positive constants ε, A and B, depending only on Ω, T , M and
S, such that

‖f‖L2(Ω) ≤
A

(ln( B
‖∂νuf‖H1(0,T ;L2(S))

))α
,

for each f ∈ Z(M), ‖f‖L2(Ω) ≤ ε.
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Remark. The second author has established in [Y2] a similar stability estimate
to the one in Theorem 2.2 when the source term is of the form σ(t)f(x) and
S = ∂Ω. The key step in the proof of [Y2] is the construction of a biorthogonal
system to (ψk(t)ϕk(x)), where ψk(t) =

∫ t
0 e−λk(t−s)σ(s)ds.

Let us see that the approach developed in this section can be extended to
the case studied in [Y2]. That is, when the source term is of the form σ(t)f(x),
where σ is a given smooth function. To this end we assume that σ ∈ C1[0, T ]
and σ(0) 6= 0. As before the solution of the following boundary value problem

{
∂tu−∆u = σ(t)f(x) in Q
u = 0 on Σ0 ∪ Σ

will be denoted by uf . Let v(·, t) = etAf , where etA is the semigroup generated
by A = ∆ with D(A) = H1

0 (Ω) ∩ H2(Ω). We find by applying Duhamel’s
formula

u(x, t) =
∫ t

0
σ(t− s)v(x, s)ds.

Let us define the operator K : L2(0, T ) → H1(0, T ) by

(Kp)(t) =
∫ t

0
σ(t− s)p(s)ds, 0 < t < T.

We set Y0 = {q ∈ H1(0, T ), q(0) = 0}. We can prove (e.g. [Y1] )that K defines
an isomorphism from L2(0, T ) onto Y0. Moreover, since

∂tu(x, t) = σ(0)v(x, t) +
∫ t

0
σ′(t− s)v(x, s)ds, 0 < t < T, a.e. x ∈ Ω,

we have

v(x, t) =
∫ t

0
τ(t, s)∂tu(x, s)ds, 0 < t < T, a.e. x ∈ Ω,

where τ is a continuous function on [0, T ]2. From the last identity we derive

‖∂νv‖L2(Γ) ≤ M‖∂νu‖H1(0,T ;L2(S)), (2.13)

for some positive constant M depending only on σ, where Γ and S are the same
as in Theorem 2.2.

On the other hand, by the inequality after Theorem 2.1 we have

‖f‖2
L2(Ω) ≤ e2λT C2‖∂νv‖2

L2(Γ) +
M2

λ2α
. (2.14)

A combination of (2.13) and (2.14) gives

‖f‖2
L2(Ω) ≤ e2λT C2‖∂νu‖H1(0,T ;L2(S)) +

M2

λ2α
.

¿From this we obtain an estimate similar to (2.9) which leads to the estimate
in Theorem 2.2 when f(x) is replaced by σ(t)f(x).
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3 Elliptic equations

In this section we consider inverse problems of determining a source function f
by a single measurement of Neumann data coming from the Dirichlet boundary
value problem. The unknown function f has n independent variables in general,
and our inverse problems are underdetermined. Hence for stability, as well as
for the uniqueness, we discuss two cases of unknown f :

(i) harmonic f .

(ii) f(x1, . . . , xn) is independent of xn.

We first consider the case (i). Let the space H∆(Ω) be given by

H∆(Ω) = {u ∈ L2(Ω); ∆u ∈ L2(Ω)}.

The vector space H∆(Ω) endowed with the norm

‖u‖H∆(Ω) = (‖u‖2
L2(Ω) + ‖∆u‖2

L2(Ω))
1
2

is a Hilbert space. The principle properties of this space are collected in the
following lemma whose proof can be found in [LM] (see also [BU]).

Lemma 3.1 (1) (trace theorem) The mapping u ∈ C∞(Ω) → (u|∂Ω, ∂νu|∂Ω)
can be extended to a bounded operator from H∆(Ω) into H− 1

2 (∂Ω)×H− 3
2 (∂Ω).

(2) (Green’s formula) for each u ∈ H∆(Ω) and v ∈ H2(Ω) we have
∫

Ω
[∆uv − u∆v] = 〈∂νu, v〉

H− 3
2 (∂Ω),H

3
2 (∂Ω)

− 〈u, ∂νv〉
H− 1

2 (∂Ω),H
1
2 (∂Ω)

,

where 〈·, ·〉X,X′ is the duality mapping between the Banach space X and its dual
space X ′.

In what follows H(Ω) denotes the closed subspace of H∆(Ω) consisting in
harmonic functions in Ω, i.e.

H(Ω) = {u ∈ H∆(Ω); ∆u = 0 in Ω},

and let λ1 denote the first eigenvalue of the −∆ with Dirichlet boundary con-
dition.

Let q ∈ L∞(Ω) be such that if 0 is not in the spectrum of the operator
−∆ + q with Dirichlet boundary condition, It is shown in [LM] that for any
f ∈ L2(Ω) the boundary value problem

{
(−∆ + q)u = f in Ω
u = 0 on ∂Ω

has a unique solution uf ∈ H2(Ω). Moreover

f ∈ L2(Ω) → uf ∈ H1
0 (Ω) ∩H2(Ω)
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is an isomorphism. From this and the continuity of the trace operator w ∈
H2(Ω) → H

1
2 (∂Ω) we deduce that the mapping

Φ : f ∈ H(Ω) → ∂νuf ∈ H
1
2 (∂Ω)

is bounded when H(Ω) is endowed with the L2-norm.

Within H(Ω), we have the following Lipschitz stability estimate.

Theorem 3.1 Φ is an isomorphism. In particular, there exists C > 0 depend-
ing on q such that

‖f‖L2(Ω) ≤ C‖∂νuf‖
H

1
2 (∂Ω)

, for all f ∈ H(Ω).

Proof. We suppose that 0 is not in the spectrum of the operator −∆2 + ∆(q·)
with Dirichlet boundary condition. Then it is known (see for instance [LM])
that for all ϕ ∈ H

1
2 (∂Ω) the boundary value problem




−∆2v + ∆(qv) = 0 in Ω
v = 0 on ∂Ω
∂νv = ϕ on ∂Ω

(3.1)

has a unique weak solution vϕ ∈ H2(Ω).

Let ϕ ∈ H
1
2 (∂Ω) and f = −∆vϕ + qvϕ ∈ L2(Ω). Then one can easily see

that f ∈ H(Ω) and uf = vϕ. That is, Φ(f) = ϕ. On the other hand Φ(g) = 0
implies ug is the solution of the boundary value problem (3.2) with ϕ = 0.
Hence ug = 0 and then g = 0. In the other words, we proved that Φ is one
to one, and since Φ is bounded Φ−1 is also bounded according to Banach’s
theorem.

We complete the proof by showing that 0 is not in the spectrum of the
operator −∆2 + ∆(q·) with Dirichlet boundary condition. We proceed by con-
tradiction. So we assume that there exists u ∈ H2(Ω), non identically equal to
zero, satisfying (3.2) with ϕ = 0. From this it follows that v = −∆u + qu is in
H(Ω) and Φ(v) = 0. Or we know that N(Φ) = H(Ω)⊥, the orthogonal of H(Ω)
in L2(Ω) (the proof of this fact is similar to that of Proposition 2.1, see also
[EH1]). Hence v = 0 and then −∆u + qu = 0 in Ω. That is 0 is an eigenvalue
of −∆u + qu = 0 with Dirichlet boundary condition. This leads to the desired
contradiction. ¤

We now consider the case (ii) when f depends only on n− 1 variables. To
this end we assume that Ω = Ω′× (a, b) ⊂ Rn−1×R. For simplicity, we suppose
that a is non negative.

In the sequel if w is a function defined in Ω, w0 will denote its extension by
0 outside Ω.

Let f ∈ L2(Ω′). Then from the Green’s formula in Theorem 3.1 we have
∫

Ω
fv = −〈∂νuf , v〉

H− 1
2 (∂Ω),H

1
2 (∂Ω)

for all v ∈ H(Ω).
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In this identity if we take v = e−ix′·ξ′e|ξ′|xn , where ξ′ ∈ Rn−1 and x = (x′, xn) ∈
Ω′ × (a, b), then we obtain

(
∫ b

a
e|ξ

′|xndxn)f̂0(ξ′) =
∫

∂Ω
v∂νuf .

Here and henceforth f̂0 is the Fourier transform of f0.

¿From ‖v‖L∞(∂Ω) ≤ eb|ξ′| we deduce

|f̂0(ξ′)| ≤ (b− a)e(b−a)|ξ′|‖∂νuf‖L1(∂Ω). (3.2)

Moreover we have

Lemma 3.2 Let D be a bounded domain of Rd, ρ : L2(D) → R be a continuous
mapping satisfying ρ(0) = 0 and there exists three positive constants α, β and
m such that

|f̂0(ξ)| ≤ αρ(f)eβ|ξ|m for all ξ ∈ Rd and f ∈ L2(D). (3.3)

Then for each s > 0 and M > 0 we can find three positive constants ε, A and
B (depending on α, β, m, s, M and d) such that

‖f‖L2(Ω) ≤
A

(ln B
ρ(f))

1
sm

,

for all f ∈ L2(D) such that f0 ∈ Hs(Rd), ‖f‖L2(D) ≤ ε and ‖f0‖Hs(Rd) ≤ M .

Lemma 3.2 and (3.2) yield

Theorem 3.2 Let s > 0 and M > 0. Then there exists three positive constants
ε, A and B (depending on a, b, s, M and n) such that

‖f‖L2(Ω′) ≤
A

(ln B
‖∂νuf‖L1(∂Ω)

)
1
s

,

for all f ∈ L2(Ω′) such that f0 ∈ Hs(Rn−1), ‖f‖L2(Ω′) ≤ ε and ‖f0‖Hs(Rn−1) ≤
M .

Proof of Lemma 3.2. Let s > 0, M > 0 be given and let X(M) be the set of
functions f ∈ L2(D) satisfying f0 ∈ Hs(Rd) and ‖f0‖Hs(Rd) ≤ M .

Let f ∈ X(M) and r > 0. Then

∫

|ξ|≥r
|f̂0|2 ≤ 1

r2s

∫

|ξ|≥r
|ξ|2s|f̂0|2 ≤

‖f0‖2
Hs(Rd)

r2s
≤ M2

r2s
. (3.4)

On the other hand

‖f‖2
L2(D) = ‖f0‖2

L2(Rd) = ‖f̂0‖2
L2(Rd) =

∫

|ξ|≤r
|f̂0|2 +

∫

|ξ|≥r
|f̂0|2.
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Inequalities (3.3) and (3.4) imply

‖f‖2
L2(D) ≤ α2ρ(f)2e2βrm

rdωd +
M2

r2s
, (3.5)

where ωd is the measure of the unit ball of Rd.

Let c = α2(2d)!
(2β)2d ωd and d = 4β. Then, we easily obtain from (3.5)

‖f‖2
L2(D) ≤ min

r≥1
(cρ(f)2edrm

rdωd +
M2

r2s
).

The rest of the proof is similar to that used for establishing the estimate in
Theorem 2.2 from (2.7). ¤

4 Appendix : proof of Theorem 2.1

We give a proof based on a global Carleman estimate.

We shall need some notations. Let S and Γ be as in the statement of
Theorem 2.2. That is S is a closed subset of ∂Ω with nonempty interior and
Γ = S × (0, T ). Following [CIK] we can find a function ψ ∈ C4(Rn) with the
following properties

(i) ψ(x) > 0 in Ω,

(ii) there exists α > 0 such that |∇ψ(x)| ≥ α for all x ∈ Ω,

(iii) ∂νψ ≥ 0 on ∂Ω\S.

Let g(t) = 1
t(T−t) and set

ϕ = ϕ(x, t) = g(t)(eρ(ψ(x)+a) − eρ(‖ψ‖∞+ã)),

where a > ‖ψ‖∞ et a < ã < 2a− ‖ψ‖∞.

The following Carleman estimate is proved in [Fe] (see also [CIK] or [Ch]).

Theorem 4.1 There exists three positive constants C, ρ0 and λ0, depending
on α, Ω, S and T such that

∫

Q
e2λϕ[(λg)−1(∆u)2 + (λg)−1(∂tu)2 + (λg)|∇u|2 + (λg)3u2]

≤ C(
∫

Q
e2λϕ[(∂t −∆)u]2 +

∫

Γ
e2λϕ(λg)(∂νu)2),

for each λ ≥ λ0, ρ ≥ ρ0 and u ∈ C2,1(Q), u = 0 on Σ.

Proof of Theorem 2.1. From the last theorem we easily have the following
estimate

‖w‖L2(Ω×(T
4

, 3T
4

)) ≤ C0‖∂νw‖L2(Γ), (4.1)
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for some positive constant C0 depending only on Ω and T .

Next, let ϕ ∈ C∞[0, T ] such that 0 ≤ ϕ ≤ 1, ϕ = 0 on [0, T
4 ] and ϕ = 1 on

[3T
4 , T ]. Then v = ϕw is the solution of the initial-boundary value problem

{
∂tv −∆v = ϕ′w in Q
v = 0 on Σ0 ∪ Σ.

A well known estimate (see for instance [CH]) gives

‖v(T )‖H1
0 (Ω) ≤ C1‖ϕ′w‖L2(Q),

where C1 is some positive constant depending only on Ω and T . However ϕ′ is
zero outside [T4 , 3T

4 ]. Hence

‖w(T )‖H1
0 (Ω) = ‖v(T )‖H1

0 (Ω) ≤ C1‖ϕ′‖L∞(0,T )‖w‖L2(Ω×(T
4

, 3T
4

)).

This estimate together with (4.1) imply (2.8). ¤
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affine Weyl groups.

2005–22 Yuji Umezawa: The minimal risk of hedging with a convex risk measure.

2005–23 J. Noguchi, and J. Winkelmann and K. Yamanoi: Degeneracy of holomorphic
curves into algebraic varieties.

2005–24 Hirotaka Fushiya: Limit theorem of a one dimensional Marokov process to
sticky reflected Brownian motion.

2005–25 Jin Cheng, Li Peng, and Masahiro Yamamoto: The conditional stability in line
unique continuation for a wave equation and an inverse wave source problem.

2005–26 M. Choulli and M. Yamamoto: Some stability estimates in determining sources
and coefficients.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


