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Abstract. In this paper, we prove a conditional stability estimate of the log-

arithmic type for a wave equation on a line in Rn, 2 ≤ n ≤ 3 by combining the

Fourier-Bros-Iagolnitzer transformation. Then we apply it to an inverse wave

source problem of determining a spatially varying source term on its extended

line by observations of a segment and establish the conditional stability.

1. Introduction and the main results

The unique continuation is a fundamental topic for partial differential equations

and there are a vast of references (e.g., Carleman [2], Hörmander [11], Isakov [12],

Robbiano [15] and the references therein). On the other hand, Cheng, Ding and

Yamamoto [3] consider a unique continuation property for a wave equation along a

segment over a time interval and apply it to prove the uniqueness in determining

a wave source term along an extension of the segment for the observation. Our

main concern for such a special continuation, is to discuss on how long extension

we can determine the solution to a wave equation or a wave source if we can know

observation data of values of the solution on a segment. This segment can be

interpreted as a probe where we can make spatial one-dimensional observations.

In this paper, under an a priori assumption on boundedness of solutions, we

will establish the conditional stability in the line unique continuation for a wave

equation and prove a stability estimate for the inverse wave source problem.
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It has been shown that the conditional stability is very useful and it has a close

relation with the Tikhonov regularization. Actually, the conditional stability results

imply the convergence rate of the regularized solutions (e.g. Cheng, Yamamoto [7],

Cheng, Yamamoto, Zou [9]).

In order to state our main results, we introduce notations. Let 2 ≤ n ≤ 3 and

Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω, and x = (x1, x
′) where

x′ = (x2, ..., xn) ∈ Rn−1. We set

¤ = ∂2
t −

n∑

j=1

∂2
xj

.

Set

B(x, r) = {y ∈ Rn; |y − x| < r}, B′(0, r) = B(0, r) ∩ {x′ = 0}

for fixed r > 0 and x ∈ Rn.

Then we can state the unique continuation for the wave equation ¤u = 0 along

a segment over a time interval: Can we determine u(x1, 0, t), |x1| < R, |t| < t0

by u(x1, 0, t), |x1| < r, |t| < T with some R > 0 and t0 > 0? Here R > r. This

continuation has a different character from a usual unique continuation where for

suitable open sets U ⊂ U ′, we are required to determine u in U ′ by u|U . In our

continuation, the information is restricted to a set on the (x1, t)-space and we will

determine the solution in a wider set in x1. At the expense of determination on a

longer x1-segment, we can expect that t0 < T , which means that the time interval

is shrunk in the determination.

Our first main result asserts the stability.

Theorem 1.1. Let 0 < r < R, κ > n
2 and B′(0, R) ⊂ Ω. Suppose that u ∈

C1([−T, T ];Hκ(Ω)) satisfies (∂2
t − ∆)u = 0 in Ω × (−T, T ) in the sense of the

distribution. Let s0 ∈ (0, T ) be fixed, and let

(1.1) ‖u‖C1([−T,T ];Hκ(Ω)) ≤ M.

Then

(1.2) |u(x1, 0, t)| ≤ CM√
log 1

ε

for (x1, t) ∈ (−R, R)× (−T + s0, T − s0) satisfying

|t|+ K(R− |x1|)−1/2(|x1| − r)1/2 < T −
√

3s0.
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Here we set

ε = sup
−T≤t≤T

‖u(·, 0, t)‖L2(−r,r),

and C = C(r, T, s0) > 0, K = K(r,R, s0) > 0 are constants.

Estimate (1.2) shows the stability of the logarithmic order which is conditional

under a priori assumption (1.1), while in a usual continuation, we can prove the

conditional stability of the Hölder type (e.g., Isakov [12]) which is stronger than

(1.2).

Next we consider the following initial/boundary value problem for a wave equa-

tion with a source term:

(1.3) ∂2
t u(x, t) = ∆u(x, t) + σ(t)f(x), x ∈ Ω, t > 0,

(1.4) u(x, 0) = ∂tu(x, 0) = 0, x ∈ Ω

and

(1.5) u(x, t) = 0, x ∈ ∂Ω, t > 0.

Here the source term σ(t)f(x) is assumed to cause the vibration. This kind of

source term in the form of a product of a spatial function and a temporal function,

is commonly used in modelling vibration phenomena. Henceforth we fix σ = σ(t) ∈
C2[0,∞). Then, for f ∈ H1+κ

0 (Ω) with κ > n
2 , there exists a unique weak solution

u ∈ C1([0,∞);H2+κ
0 (Ω)) ∩ C2([0,∞);H1+κ(Ω)) (e.g., Lions and Magenes [14]).

Therefore, for any segment ` ⊂ Rn, by the Sobolev embedding (e.g., Adams [1]),

we can regard u(x, t), x ∈ `, 0 < t < T , as a function in L2(`× (0, T )). We denote

it by u(f) = u(f)(x, t).

We discuss

Inverse wave source problem on a segment: Let ` ⊂ L be two segments in

Ω. Determine f |L from u(f)|`×(0,T ).

In Cheng, Ding and Yamamoto [3], the uniqueness is proved: If σ 6≡ 0 and

u(f)|`×(0,T ) = 0 with sufficiently large T > 0, then f = 0 on L. Our second main

result in this paper is the conditional stability.

Theorem 1.2. We assume κ > n
2 ,

(1.6) σ ∈ C2[0,∞), σ(0) 6= 0
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and

(1.7) ‖f‖H1+κ
0 (Ω) ≤ M

with some constant M > 0. Then there exists a constant T0 = T0(`, L) > 0 such

that if T > T0, then we can choose a constant C = C(Ω, σ, T, `, L,M) > 0 such that

(1.8) ‖f‖L∞(L) ≤
C

(
log 1

‖u(f)‖L2(`×(0,T ))

) 1
4
.

We can represent C(Ω, σ, T, `, L,M) > 0 as follows: for any ν > 0, there exists a

constant C̃0 = C̃0(Ω, σ, T, `, L, ν) > 0 such that

C(Ω, σ, T, `, L, M) = M1+νC̃0(Ω, σ, T, `, L, ν).

Moreover, for a fixed segment `, we can give an estimate for the critical observation

time T0 as follows; For sufficiently small µ > 0 and δ > 0, there exists a constant

C̃ = C̃(δ, µ) > 0 such that if

(1.9) T0 > µ + C̃(|L| − |`|) 1
2 ,

then estimate (1.8) holds for T > T0, provided that dist (L, ∂Ω) > δ.

In the case of L = `, we can take any short observation time T :

Corollary 1.3. We assume (1.6) and (1.7). For any µ > 0, there exists a constant

C = C(Ω, σ, µ, `,M) > 0 such that

‖f‖L∞(`) ≤
C

(
log 1

‖u(f)‖L2(`×(0,µ))

) 1
4
.

Our proof relies on the analyticity of the harmonic function which is related

by the Fourier-Bros-Iagolnizter transformation (see (2.1) below) to the wave equa-

tion, so that it is essential that all the coefficients of hyperbolic equations under

consideration are constant.

By the finiteness of the propagation speed, we should observe u(f)|` over a

sufficiently large time T , which is estimated by (1.9). Our observation is only

on ` × (0, T ) and we can determine f on the extended segment L of `, and such

observations do not give any information of u(f) outside `. Moreover the stability

rate is of the logarithmic rate. For similar inverse wave source problems, we refer

to Yamamoto [16].

The proof is based on the Fourier-Bros-Iagolnitzer transformation and a line

unique continuation for the Laplace equation (Cheng, Hon and Yamamoto [4],
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Cheng and Yamamoto [6]). The methodology here is similar to Cheng, Ding and

Yamamoto [3], Cheng, Lin and Nakamura [5], Cheng, Yamamoto and Zhou [8],

but for proving the stability results, more independent analysis is required. The

Fourier-Bros-Iagolnitzer transformation is used in Lerner [13], Robbiano [15]] for

proving sharp results on the unique continuation for a hyperbolic equation.

The paper is composed of four sections. In Section 2, we show key lemmata and

Section 3 is devoted to the proof of Theorem 1.1. In Section 4, we complete the

proof of Theorem 1.2.

2. Key lemmata

We set i =
√−1. For λ > 0 and a ∈ R, we define a transformation by

(2.1) va,λ(x, s) =

√
λ

2π

∫ T

−T

e−
λ
2 (is+a−t)2u(x, t)dt,

which we call the Fourier-Bros-Iagolnitzer transformation (FBI transformation for

short). Henceforth we fix s1 > 0 such that

0 < s1 < s0 < T and s0 − s1 > 0 is sufficiently small.

Moreover for a ∈ (−T, T ) and s1 ∈ (0, T − |a|), we set

(2.2) λ = λ(ε) =
2

(T − |a|)2 − s2
1

log
1
ε
,

(2.3) ϕ1(ε) =

√
(T − |a|)2 − s2

1√
log 1/ε

+ ε1/2 + ε
(T−|a|)2
2(T+|a|)2 ,

and

ϕ2(ε) =
(

1
(T − |a|)2 − s2

1

)3/2 (
log

1
ε

)3/2

×ε
s20

(T−|a|)2−s21

�
(T−|a|)2

[K(R−|x1|)−1/2(|x1|−r)1/2+s1
√

3]2
−1

�

(2.4)

where K = K(r,R, s1) > 0 is chosen later. We note that

ε = e−
λ
2 ((T−|a|)2−s2

1).

Henceforth the constants Cj depends on s0, s1, T , but independent of ε.

Lemma 2.1. Let κ > n
2 , 0 < ε < 1, |a| < T and s1 ∈ (0, T − |a|) be fixed. We

further assume that

(2.5) ‖u‖C1([−T,T ];Hκ(Ω)) ≤ M.
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Then

(2.6) ‖va,λ(·, 0)− u(·, a)‖L∞(Ω) ≤ C1Mϕ1(ε), −T < a < T

and

‖va,λ(·, s)‖L∞(Ω), ‖∂sva,λ(·, s)‖L∞(Ω), ‖∂xj
va,λ(·, s)‖L∞(Ω)

≤ C2Mλ
1
2 e

λ
2 s2

1 , 1 ≤ j ≤ n, −s1 < s < s1.(2.7)

Proof of Lemma 2.1: According to the definition of the FBI transformation, we

have

va,λ(x, 0) =

√
λ

2π

∫ T

−T

e−
λ
2 (a−t)2u(x, t)dt

=

√
1
2π

∫ √
λ(T−a)

√
λ(−T−a)

e−
t2
2 u

(
x,

t√
λ

+ a

)
dt.(2.8)

Noting that ∫ ∞

−∞
e−

t2
2 dt =

√
2π,

by (2.5) and (2.8) we obtain

|va,λ(x, 0)− u(x, a)|

=

√
1
2π

∣∣∣∣∣
∫ √

λ(T−a)

√
λ(−T−a)

e−
t2
2 u

(
x,

t√
λ

+ a

)
dt−

∫ ∞

−∞
e−

t2
2 u(x, a)dt

∣∣∣∣∣

≤
√

1
2π

{∫ √
λ(T−a)

√
λ(−T−a)

e−
t2
2

∣∣∣∣u
(

x,
t√
λ

+ a

)
− u(x, a)

∣∣∣∣ dt

+
∫ ∞
√

λ(T−a)

e−
t2
2 |u(x, a)|dt +

∫ √
λ(−T−a)

−∞
e−

t2
2 |u(x, a)|dt

}

≤
√

1
2π

{∫ ∞

−∞

|t|√
λ

e−
t2
2 dt× ‖∂tu(x, ·)‖L∞(−T,T )

+
∫ ∞
√

λ(T−a)

e−
t2
2 |u(x, a)|dt +

∫ √
λ(−T−a)

−∞
e−

t2
2 |u(x, a)|dt

}

≤ max−T≤t≤T (|u(x, t)|+ |∂tu(x, t)|)√
2π

{
2√
λ

+
√

πe−
λ(T−a)2

4 +
√

πe−
λ(T+a)2

4

}
.

At the second term, we have estimated:
∫ ∞
√

λ(T−a)

e−
t2
2 |u(x, a)|dt ≤ max

−T≤t≤T
|u(x, t)|e− 1

4 (λ(T−a)2)

∫ ∞

0

e−
t2
4 dt

= max
−T≤t≤T

|u(x, t)| × √πe−
λ(T−a)2

4 .

As for the third term, we estimate similarly.
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Hence, by the Sobolev embedding Hκ(Ω) ⊂ C(Ω) by κ > n
2 (e.g., [1]),

‖va,λ(·, 0)− u(·, a)‖L∞(Ω) ≤ C1Mϕ1(ε),

which completes the proof of (2.6). Since

∂s

(
exp

(
−λ

2
(is + a− t)2

))
= −i∂t

(
exp

(
−λ

2
(is + a− t)2

))
,

the integration by parts yields

|∂sva,λ(x, s)| =

√
λ

2π

∫ T

−T

(
∂se

−λ
2 (is+a−t)2

)
u(x, t)dt

=

√
λ

2π

∫ T

−T

−i∂t(e−
λ
2 (is+a−t)2)u(x, t)dt

=

√
λ

2π

{
iu(x,−T )e−

λ
2 (is+a+T )2 − iu(x, T )e−

λ
2 (is+a−T )2

}

+i

√
λ

2π

∫ T

−T

e−
λ
2 (is+a−t)2∂tu(x, t)dt.

Hence

‖∂sva,λ(·, s)‖L∞(Ω) ≤ C2Mλ
1
2 e

λ
2 s2

1 .

The rest estimates are proved in the same way, and thus the proof of Lemma 2.1 is

complete.

Remark 2.2. As is seen by the proof, Lemma 2.1 holds for any λ > 0.

Define an elliptic operator by

∆x,s := ∂2
s +

n∑

j=1

∂2
xj

, x ∈ Rn, s ∈ R

and set

(2.9) χa,λ := 4x,sva,λ

where va,λ is defined by (2.1). Then, by the same way as Lemma 2 in Cheng, Ding

and Yamamoto [3], we can prove:

Lemma 2.3. Let p > 1. Suppose that u ∈ C([−T, T ];Lp(Ω)) ∩C1([−T, T ];Lp(Ω))

satisfies ¤u = 0. Then there exists a positive number C3 such that

(2.10)

‖χa,λ(·, s)‖Lp(Ω) ≤ C3M1λ
3
2 exp

(
−λ

2
((T − |a|)2 − s2

1)
)

, −s1 < s < s1.

Here we set M1 = ‖u‖C([−T,T ];Lp(Ω)) + ‖∂tu‖C([−T,T ];Lp(Ω)).
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Our main result relies on the conditional stability in the line unique continuation

for the Laplace equation.

Lemma 2.4. Let ϕ ∈ W 2,p(B(0, R) × (−s1, s1)) satisfy ∆x,sϕ = 0 in B(0, R) ×
(−s1, s1) and ‖ ϕ ‖L1(B(0,R)×(−s1,s1))≤ M1. We fix ν > 0 sufficiently small. Then

for ρ ∈ [r,R − ν] , there exist positive constants C4 = C4(r,R, s1, ν) and α =

α(ρ, r,R, s1) ∈ (0, 1) such that

(2.11) ‖ϕ(·, 0, 0)‖L∞(−ρ,ρ) ≤ C4M
1−α

3
1 ‖ ϕ(·, 0, 0) ‖

α
3
L1(−r,r) .

Moreover

(2.12) lim
ρ↑R

α = 0, lim
ρ↓r

α = 1

and for ρ ∈ (r,R)

(2.13) α(ρ, r,R, s1) ≥ C5(R− ρ), 1− α(ρ, r,R, s1) ≤ C6(ρ− r)
1
2 ,

where the constants C5 > 0 and C6 > 0 depend on r,R, s1.

For the proof, see [6] or Corollary in [3].

3. Proof of Theorem 1.1

Without loss of generality, we may assume that 0 < ε < 1. First we recall that

(3.1) χa,λ = 4x,sva,λ = ∂2
sva,λ +

n∑

j=1

∂2
xj

va,λ, (x, s) ∈ Ω× (−s1, s1).

We set

(3.2) ϕa,λ = va,λ −Nχa,λ.

Here Nχa,λ is the Newtonian potential of χa,λ in Ω× (−s1, s1), that is,

Nχa,λ(ξ) :=
∫

Ω×(−s1,s1)

Γ(ξ − η)χa,λ(η)dη, ξ = (x, s) ∈ Rn+1,

where Γ is the fundamental solution of the Laplace equation given by

Γ(ξ − η) =
1

(n + 1)(1− n)ωn+1
|ξ − η|1−n, n + 1 ≥ 3

Γ(ξ − η) =
1
2π

log |ξ − η|, n + 1 = 2

and ωn+1 is the volume of the unit ball in Rn+1 (see e.g., DiBenedetto [10]). Since

χa,λ ∈ L2(Ω × (−s1, s1)) by Lemma 2.3, applying the property of the Newtonian

potential (e.g., Section 12 of Chapter II in [10]) and approximating χa,λ by functions
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in C∞0 (Ω× (−s1, s1)), we see that ∆x,s(Nχa,λ) = χa,λ in the sense of distribution.

Therefore ∆x,sϕa,λ = 0 in Ω× (−s1, s1).

We have

(3.3) ‖Nχa,λ‖W 1,q(Ω×(−s1,s1)) ≤ C7(µ)‖χa,λ‖Lp(Ω×(−s1,s1))

with

q =
(n + 1)p
n + 1− p

− µ,

for sufficiently small µ > 0 (e.g., Lemma 10.1 (pp.85-86) in [10]). By assumption

(1.1) and the Sobolev embedding, we can choose 2 < p < 3 such that

‖u‖C1([−T,T ];Lp(Ω)) ≤ C8M

Hence (3.3) and (2.10) yield

‖Nχa,λ‖L1(Ω×(−s1,s1)) ≤ C3C7C8Mλ
3
2 e−

λ
2 ((T−|a|)2−s2

1).

Therefore, by (3.2) and (2.7), we obtain

‖ϕa,λ‖L1(Ω×(−s1,s1)) ≤ ‖va,λ‖L1(Ω×(−s1,s1)) + ‖Nχa,λ‖L1(Ω×(−s1,s1))

≤ C2Mλ
1
2 e

λ
2 s2

1 + C9Mλ
3
2 e−

λ
2 ((T−|a|)2−s2

1).

Since

(3.4) sup
0<ε<1

λ(ε)e−
λ(ε)

2 ((T−|a|)2−s2
1) ≡ C10(s1, T ),

if T − |a| > s1

√
3, then we have

(3.5) ‖ϕa,λ‖L1(Ω×(−s1,s1)) ≤ C11Mλ
1
2 e

λ
2 s2

1 .

Next, since q > n + 1 by n = 2, 3 and p > 2, we apply Lemma 2.3 and the

Sobolev embedding (e.g., [1]) to obtain

‖Nχa,λ‖L∞(Ω×(−s1,s1)) ≤ C8‖χa,λ‖Lp(Ω×(−s1,s1))

≤ C12Mλ
3
2 exp

(
−λ

2
((T − |a|)2 − s2

1)
)

.(3.6)

Since sup−T≤t≤T ‖u(·, 0, t)‖L2(−r,r) ≤ ε, by (2.1) we obtain

|va,λ(x1, 0, 0)| ≤
√

λ

2π

∫ T

−T

e−
λ
2 (t−a)2dt× sup

−T≤t≤T
|u(x1, 0, t)|,

and so

‖va,λ(·, 0, 0)‖L2(−r,r) ≤ sup
−T≤t≤T

|u(·, 0, t)| ≤ ε.
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Therefore (3.2) and (3.6) yield

‖ϕa,λ(·, 0, 0)‖L2(−r,r) ≤ ‖va,λ(·, 0, 0)‖L2(−r,r) + ‖Nχa,λ(·, 0, 0)‖L2(−r,r)

≤ ε + C8Mλ
3
2 exp

(
−λ

2
((T − |a|)2 − s2

1)
)

≤ C13Mλ
3
2 exp

(
−λ

2
((T − |a|)2 − s2

1)
)

,(3.7)

if |a| < T − s1

√
3.

At the last inequality, by (2.2) we used

ε = e−
λ
2 ((T−|a|)2−s2

1) ≤ C ′13λ
3
2 exp

(
−λ

2
((T − |a|)2 − s2

1)
)

.

Applying Lemma 2.4 in terms of (3.5) and (3.7), we obtain

(3.8) |ϕa,λ(x, 0)| ≤ C14Mλ
3
2 e−

λ
2 [(T−|a|)2α/3−s2

1], x ∈ B′(0, ρ),

where r ≤ ρ ≤ R, C14 > 0 is dependent on r, T, a, but independent of λ > 0. Here

we choose R̃ > R > 0 such that B(0, R̃) ⊂ Ω, so that in place of R in Lemma 2.4,

we take R̃ to apply the lemma. Therefore we note that ρ can vary over [r,R], not

[r,R− ν].

Note that α = α(ρ, r,R, s1) satisfies (2.12) and (2.13). Henceforth we simply

write α = α(ρ), omitting the dependency on r,R, and s1.

Consequently, by (3.2), (3.6) and (3.8), it follows that

|va,λ(x, 0)| ≤ |ϕa,λ(x, 0)|+ |Nχa,λ(x, 0)|
≤ C15M

{
λ

3
2 e−

λ
2 [(T−|a|)2 α(|x1|)

3 −s2
1] + λ

3
2 e−

λ
2 [(T−|a|)2−s2

1]
}

, x ∈ B′(0, ρ),

that is,

|va,λ(x, 0)| ≤ C15Mλ
3
2 e−

λ
2 [(T−|a|)2α(|x1|)/3−s2

1]

for x ∈ B
′
(0, ρ) and −T + s1

√
3 < a < T − s1

√
3.(3.9)

Next we will estimate (T − |a|)2 α(|x1|)
3 − s2

1 > 0. Let us set β(ρ) = s1
√

3√
α(ρ)

. Then

for r ≤ ρ ≤ R, by (2.12) and (2.13), we see that s1

√
3 ≤ β(ρ) < ∞ and

0 ≤ β(ρ)− s1

√
3 ≤ s1

√
3

∣∣∣∣∣
1√
α(ρ)

− 1√
α(r)

∣∣∣∣∣
≤ s1

√
3|α(ρ)− α(r)|α(ρ)−

1
2 α(r)−

1
2 (

√
α(ρ) +

√
α(r))−1

≤ s1

√
3|α(ρ)− 1|α(ρ)−

1
2 ≤ s1

√
3C6(ρ− r)

1
2

√
C5(R− ρ)

1
2

.
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Set

(3.10) K = K(r,R, s1) =
s1

√
3C6(r,R, s1)√
C5(r,R, s1)

.

Hence

(3.11) 0 ≤ β(|x1|)− s1

√
3 ≤ K(R− |x1|)− 1

2 (|x1| − r)
1
2 , r ≤ |x1| < R.

Let |a|+ K(R− |x1|)− 1
2 (|x1| − r)

1
2 < T − s1

√
3. Then

[K(R− |x1|)− 1
2 (|x1| − r)

1
2 + s1

√
3]2 < (T − |a|)2.

Hence (3.11) yields

α(|x1|)
3s2

1

=
1

β2(|x1|) ≥
1

[K(R− |x1|)− 1
2 (|x1| − r)

1
2 + s1

√
3]2

,

which implies that

(T − |a|)2 α(|x1|)
3

− s2
1

≥ s2
1

{
(T − |a|)2

[K(R− |x1|)− 1
2 (|x1| − r)

1
2 + s1

√
3]2

− 1
}

,

so that

λ
3
2 exp

(
−λ

2

(
(T − |a|)2 α(|x1|)

3
− s2

1

))

≤ λ
3
2 exp

(
−λs2

1

2

{
(T − |a|)2

[K(R− |x1|)− 1
2 (|x1| − r)

1
2 + s1

√
3]2

− 1
})

.

By (2.4), (3.9) and s0 > s1, we have

(3.12) |va,λ(x, 0)| ≤ C15Mϕ2(ε), x ∈ B′(0, ρ).

Therefore from (2.6) and (3.9), we obtain

|u(x, a)| ≤ |va,λ(x, 0)− u(x, a)|+ |va,λ(x, 0)|
≤ C1Mϕ1(ε) + C15Mϕ2(ε).

Therefore, replacing a by t, we have proved:

|u(x, t)| ≤ C16M

(√
(T − |t|)2 − s2

1√
log 1

ε

+ ε
1
2 + ε

(T−|t|)2
2(T+|t|)2

+
(

1
(T − |t|)2 − s2

1

) 3
2

(
log

1
ε

) 3
2

ε

s20
(T−|t|)2−s21

(
(T−|t|)2

[K(R−|x1|)
− 1

2 (|x1|−r)
1
2 +s1

√
3]2
−1

))

if x ∈ B′(0, R) and |t|+ K(R− |x1|)− 1
2 (|x1| − r)

1
2 < T − s1

√
3.
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Now we will complete the proof of Theorem 1.1. We recall that 0 < s1 < s0 < T

and s0 − s1 > 0 is sufficiently small. Let

(3.13) x ∈ B′(0, R), |t|+ K(R− |x1|)− 1
2 (|x1| − r)

1
2 < T − s0

√
3.

In particular, |t| < T − s0

√
3. Therefore we can directly verify that

(T − |t|)2
2(T + |t|)2 ≥

3s2
0

2(2T − s0

√
3)2

,
1

(T − |t|)2 − s2
1

≤ 1
s2
0 − s2

1

and

s2
0

(T − |t|)2 − s2
1

{
(T − |t|)2

[K(R− |x1|)− 1
2 (|x1| − r)

1
2 + s1

√
3]2

− 1
}

≥ s2
1

T 2

(
(T − |t|)2

(T − |t| − √3(s0 − s1))2
− 1

)
≥ s2

1

T 2

3(s2
0 − s2

1)
T 2

.

At the second last inequality, we used (3.13). Therefore

|u(x, t)| ≤ C16M

(
1√
log 1

ε

+ ε
1
2 + ε

3s20
2(2T−s0

√
3)2 +

(
1

s2
0 − s2

1

) 3
2

(
log

1
ε

) 3
2

ε
3s21(s20−s21)

T4

)

under (3.10). Since ε
1
2 = O

(
1√
log 1

ε

)
, ε

3s20
2(2T−s0

√
3)2 = O

(
1√
log 1

ε

)
and

(
log

1
ε

) 3
2

ε
3s21(s20−s21)

T4 = O

(
ε

s21(s20−s21)

T4

)
= O


 1√

log 1
ε




as ε −→ 0, we obtain (1.2) under (3.13). Thus the proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

Let v = v(x, t) satisfy

(4.1)





∂2
t v(x, t) = ∆v(x, t), x ∈ Ω, t ∈ R,

v(x, 0) = 0, ∂tv(x, 0) = f(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t ∈ R.

Then by f ∈ H1+κ
0 (Ω), applying the regularity property (e.g., Lions and Magenes

[14]), we see that

(4.2) v ∈ C1(R;Hκ+1
0 (Ω)).

Next by a congruent transformation, we can assume that B(0, R) ⊂ Ω,

L = B′(0, R− δ) = {(x1, 0) ∈ Rn; |x1| < R− δ}
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and

` = B′(0, r) = {(x1, 0) ∈ Rn; |x1| < r}
with some 0 < r < R− δ. Then dist (L, ∂L) > δ.

For sufficiently small µ > 0, we set (1+
√

3)s0 = µ, and we define K = K(r0, R−
δ0, s0) by (3.10). We fix r0 > 0 and δ0 > 0 such that 0 < r0 < r < R− δ < R− δ0,

both r − r0 > 0 and δ − δ0 are sufficiently small. Then, setting C̃(δ, µ) = Kδ−
1
2 in

(1.9), we have

(4.3) (1 +
√

3)s0 + Kδ−
1
2 (R− r − δ)

1
2 < T0.

By Theorem 1.1, we obtain that if T > T0, then

‖v‖L∞(B′(0,R−δ0)×(−s0,s0)) ≤
CM2(

log 1
sup−T≤t≤T ‖v(·,0,t)‖L2(−r0,r0)

) 1
2
,

that is,

(4.4) ‖v‖L∞(L×(−s0,s0)) ≤
CM2(

log 1
sup−T≤t≤T ‖v(·,0,t)‖L2(−r,r)

) 1
2
.

Here we set M2 = ‖v‖C([−T,T ];Hκ(Ω)) + ‖v‖C1([−T,T ];Hκ(Ω)).

On the other hand, by [14], we have

M2 ≤ ‖v‖C([−T,T ];H2+κ
0 (Ω)) + ‖∂tv‖C([−T,T ];H1+κ

0 (Ω))

+ ‖∂2
t v‖C([−T,T ];Hκ

0 (Ω)) ≤ C17‖f‖H1+κ
0 (Ω) ≤ C17M.(4.5)

By the Sobolev embedding, κ > n
2 and (1.7), we have

sup
x∈L,−s0<t<s0

|∂2
t v(x, t)| ≤ C18‖f‖H1+κ

0 (Ω) ≤ C18M.

Hence, by the interpolation inequality (e.g., [1]) and (4.4), we obtain

(4.6) sup
x∈L,−s0<t<s0

|∂tv(x, t)| ≤ C19M(
log 1

sup−T≤t≤T ‖v(·,0,t)‖L2(−r,r)

) 1
4
.

We take the even extensions of σ = σ(t) and u(f) = u(f)(x, t) for t < 0 and we

use the same notations: σ(t) = σ(−t) and u(f)(x,−t) = u(f)(x, t) for t ∈ R and

x ∈ Ω. Then we readily see that u(f) ∈ C(R;Hκ+1
0 (Ω)) satisfies (1.3) - (1.5) also

for t < 0. By the Duhamel principle, we obtain

(4.7) u(f)(x, t) =
∫ t

0

σ(t− s)v(x, s)ds, −T < t < T, x ∈ B′(0, r).

Moreover we can prove (4.7) by verifying that the right hand side of (4.7) satisfies

(1.3) - (1.5).



14 JIN CHENG, LI PENG, AND MASAHIRO YAMAMOTO

By [14], we see that

(4.8) ‖∂tu(f)‖C([−T,T ];H2+κ
0 (Ω)) + ‖∂2

t u(f)‖C([−T,T ];H1+κ
0 (Ω)) ≤ C20M.

Hence

∂tu(f)(x, t) = σ(0)v(x, t) +
∫ t

0

σ′(t− s)v(x, s)ds, x ∈ B′(0, r), −T < t < T.

By σ(0) 6= 0, this is a Volterra equation of the second kind, so that

‖v(x1, 0, ·)‖C[−T,T ] ≤ C21‖∂tu(f)(x1, 0, ·)‖C[−T,T ], x = (x1, 0) ∈ B′(0, r),

that is,

(4.9) sup
−T≤t≤T

‖v(·, 0, t)‖L2(−r,r) ≤ C22‖∂tu(f)(·, 0, ·)‖C([−T,T ];L2(−r,r)).

We note by κ > n
2 and the Sobolev embedding that Hκ

0 (Ω) ⊂ C(Ω). By means of

(4.8) and the interpolation inequality, we have

‖∂tu(f)(·, 0, ·)‖C([−T,T ];L2(−r,r))

≤ C ′23‖∂2
t u(f)‖

1
2
C([−T,T ];Hκ

0 (Ω))‖u(f)(·, 0, ·)‖
1
2
C([−T,T ];L2(−r,r))

≤ C23M
1
2 ‖u(f)(·, 0, ·)‖

1
2
H1(−T,T ;L2(−r,r)).

Again application of the interpolation inequality yields

‖u(f)(·, 0, ·)‖H1(−T,T ;L2(−r,r)) ≤ C24‖u(f)‖
1
2
L2(`×(−T,T ))‖u(f)‖

1
2
C2([−T,T ];Hκ

0 (Ω))

in terms of Hκ
0 (Ω) ⊂ C(Ω). Thus, noting that u(f)(·,−t) = u(f)(·, t), we have

‖∂tu(f)(·, 0, ·)‖C([−T,T ];L2(−r,r)) ≤ C25M
3
4 ‖u(f)‖

1
4
L2(2`×(0,T )),

with which we combine (4.9) to obtain

sup
−T≤t≤T

‖v(·, 0, t)‖L2(−r,r) ≤ C22C25M
3
4 ‖u(f)‖

1
4
L2(`×(0,T ))

≡ C26M
3
4 ‖u(f)‖

1
4
L2(`×(0,T )).(4.10)

We consider two cases separately:

(a) ‖u(f)‖
1
4
L2(`×(0,T )) ≤

1
C26M

3
4
.

(b) ‖u(f)‖
1
4
L2(`×(0,T )) ≥

1
C26M

3
4
.

Case (a): We have

log
1

C26M
3
4

+
1
4

log
1

‖u(f)‖L2(`×(0,T ))
≥ 1

8
log

1
‖u(f)‖L2(`×(0,T ))

.
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Therefore (4.10) implies

1
log 1

sup−T≤t≤T ‖v(·,0,t)‖L2(−r,r)

≤ 1
log 1

C26M
3
4 ‖u(f)‖

1
4
L2(`×(0,T ))

≤ 8
log 1

‖u(f)‖L2(`×(0,T ))

.

Hence (4.6) yields

sup
x∈L,−s0≤t≤s0

|∂tv(x, t)| ≤ C27M(
log 1

‖u(f)‖L2(`×(0,T ))

) 1
4
.

Since ∂tv(x, 0) = f(x) by (4.1), we see (1.8).

Case (b):

1
(
log 1

‖u(f)‖L2(`×(0,T ))

) 1
4
≥ 1

(log C4
26M

3)
1
4
.

By (1.7) and the Sobolev embedding, we have

‖f‖L∞(L) ≤ M ≤ M(log C4
26M

3)
1
4

(
log 1

‖u(f)‖L2(`×(0,T ))

) 1
4
.

Thus the proof of Theorem 1.2 is complete.

5. Some remarks

Remark 5.1. Our results heavily depends on the conditional stability in the line

unique continuation for the elliptic equations with the analytic coefficients. It can

be seen that our results can be easily extended to a hyperbolic equation with time-

independent analytic coefficients.

Remark 5.2. The results in this paper are the local stability result in the sense

that we can not obtain any information or estimate about the value of the solution

outside the hyperplane.

Remark 5.3. The lines ` and L can be replaced by some analytic curves or analytic

surfaces. The stability results are same.
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