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Abstract

We study on the minimal hedging risk for a bounded European
contingent claim when we use a convex risk measure. We find the
infimum of hedging risk by using a kind of min-max theorem, Also we
show that this infimum is again regarded as a convex risk measure.

1 Introduction

Let (Ω,F , P ) be a probability space. For 1 ≤ q ≤ ∞, We denote Lq(Ω,F , P )
by Lq, and its norm by ∥ · ∥q. Let P be the set of probability measures on
(Ω,F) that are absolutely continuous with respect to P . Föllmer and Schied
[2] introduce the following notation.

Definition 1.1. We say that a mapping ρ : L∞ → R is a convex risk mea-
sure, if the following three conditions are satisfied :

(1) X ≥ Y =⇒ ρ(X) ≤ ρ(Y ),

(2) ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ), λ ∈ (0, 1),

(3) ρ(X + c) = ρ(X) − c, c ∈ R.

For a convex risk measure ρ, ρ̃ : L∞ → R, ρ̃(X) = ρ(X) − ρ(0) is also
a convex risk measure, and ρ̃(0) = 0. So we may assume ρ(0) = 0 in the
following discussions.

Föllmer and Schied [3] proved the following.

∗This research is supported by the 21 century COE program at Graduate School of
Mathematical Sciences, the University of Tokyo.
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Theorem 1.2. For a convex risk measure ρ : L∞ → R, the following prop-
erties are equivalent.

(1) There exists a penalty function α : P → R ∪ {+∞}, which is bounded
from below such that ρ(X) = sup

Q∈P
(EQ[−X] − α(Q)).

(2) ( Fatou Property ) ρ(X) ≤ lim inf
n→∞

ρ(Xn) for any sequence (Xn)n∈N

of random variable which is uniformly bounded by 1 and converges to
X ∈ L∞ in probability.

(3) ρ is continuous from above, i.e., if a sequence (Xn)n∈N of random vari-
able in L∞ decreasing to X ∈ L∞ a.s., then ρ(Xn) converges to ρ(X).

Let αmin(Q) = sup
Y ∈Aρ

EQ[−Y ], where Aρ = {X ∈ L∞ | ρ(X) ≤ 0}, then

we have αmin(Q) ≤ α(Q), Q ∈ P for any penalty function α satisfying
the equation in (1). Note that αmin(Q) ≥ 0 for Q ∈ P by the assumption
ρ(0) = 0.

Now we state our main theorem. Let C ⊂ L∞ be a nonempty convex
subset, and M(C) = {Q ∈ P | sup

Z∈C
EQ[Z] < ∞}.

Theorem 1.3. Let ρ : L∞ → R be a convex risk measure which is continuous
from above. Suppose that ρ is continuous from below. i.e., if a sequence
(Xn)n∈N of random variable in L∞ increases to X ∈ L∞ a.s., then ρ(Xn)
converges to ρ(X). Then we have

inf
Z∈C

ρ(Z + H) = sup
Q∈P

(EQ[−H] − α̃(Q)), (1)

for any H ∈ L∞, where

α̃(Q) = αmin(Q) + sup
Z∈C

EQ[Z], Q ∈ P. (2)

Remark . Roorda [5] showed a simple version of this result in the case that
ρ is a coherent risk measure.

We give a proof of this theorem in Section 3.

Now let us consider the following mathematical financial market model.
Let (Ω,F , P ; {F(t)}t∈[0,T ]) be a filtered probability space. We assume that
the filtration {F(t)}t∈[0,T ] satisfies the usual conditions, i.e., {F(t)}t∈[0,T ] is
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right-continuous and F(0) contains all P-negligible sets in F . We also assume
that F(0) is trivial and F(T ) = F . Let S(t) = (Si(t)), 1 ≤ i ≤ d, be an
{F(t)}-adapted, RCLL, and locally bounded d dimensional process. This
process is interpreted as the discount price processes of d risky assets.

We say that a d dimensional process ξ(t) = (ξi(t)), 1 ≤ i ≤ d is a strategy
if ξ is {F(t)}-predictable and S-integrable. We define an appropriate class
Ad of strategies by the following.

Ad = {ξ = (ξi) | ξ is a strategy and

∫ ·

0

ξ(u)dS(u) is bounded}. (3)

For a pair (v, ξ), v ∈ R+ ∪ {0}, ξ ∈ Ad, we define a process {V (t)}t∈[0,T ]

by

V (t) = V (t; (v, ξ)) = v +

∫ t

0

ξ(u)dS(u), t ∈ [0, T ] (4)

This process V (t; (v, ξ)) is interpreted as the value of self-financing portfolio
strategy (v, ξ) at time t ∈ [0, T ].

We denote by M(S) the set of probability measures Q ∈ P such that the
components Si(t), 1 ≤ i ≤ d are local martingales under Q. We assume that
M(S) ̸= φ. Then we have the following.

Corollary 1.4. Let ρ : L∞ → R be a convex risk measure which is continuous
from above and below. Then we have

inf
ξ∈Ad

ρ(V (T ; (0, ξ)) + H) = inf
Q∈P

(EQ[−H] − α̃(Q)), (5)

for H ∈ L∞, where

α̃(Q) =

{
αmin(Q), if Q ∈ M(S) ∩ {Q ≪ P | αmin(Q) < ∞}
+ ∞, otherwise.

(6)

Remark . Delbaen [1] showed this result in the case that ρ is a coherent risk
measure and H = 0.

2 Remarks on a Convex Risk Measure

We prove the following in this section.

Theorem 2.1. For a convex risk measure ρ which is continuous from above,
the following properties are equivalent.
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(1) ρ is continuous from below.

(2) For arbitrary c > 0, the set {Q ∈ P | αmin(Q) ≤ c} is L1(P )-weakly
compact convex subset.

We make some preparation. Let ρ : L∞ → R be a convex risk measure
which is continuous from above. Let Λc and Λ∞ denote

Λc = {Q ∈ P | αmin(Q) ≤ c} c > 0,

Λ∞ = {Q ∈ P | αmin(Q) < ∞}.
(7)

We note that

ρ(X) = sup
Q∈Q

(EQ[−X] − αmin(Q)), Q ⊃ Λ∞, X ∈ L∞. (8)

Lemma 2.2. We have ρ(X) = sup
Q∈Λc

(EQ[−X] − αmin(Q)) for X ∈ L∞ and

c > 2∥X∥∞.

Proof. ρ(X) ≥ sup
Q∈Λc

(EQ[−X] − αmin(Q)) is obvious. We show the inverse

inequality. For each n ∈ N, there exists Qn ∈ P such that ρ(X) − 1/n ≤
EQn [−X]−αmin(Qn). We can easily see that ρ(X) ≥ −∥X∥∞ by the mono-
tonicity of ρ. Then for n ≥ 1/(c − 2∥X∥∞) we see that

αmin(Qn) ≤ EQn [−X] − ρ(X) + 1/n ≤ 2∥X∥∞ + (c − 2∥X∥∞) = c. (9)

And so Qn ∈ Λc. This implies that

ρ(X) − 1/n ≤ EQn [−X] − αmin(Qn) ≤ sup
Q∈Λc

(EQ[−X] − αmin(Q)). (10)

Letting n → ∞, we have ρ(X) ≤ sup
Q∈Λc

(EQ[−X] − αmin(Q)).

Now we prove Theorem 2.1. Assume that the Assertion (1) holds. Since
the mapping Q 7→ EQ[−Y ] is continuous for any Y ∈ L∞, we can immedi-
ately see that αmin : Q 7→ sup

Y ∈Aρ

EQ[−Y ] is lower semicontinuous with respect

to the L1-weak topology. Hence Λc is closed for c > 0.
Let (Bn)n∈N be a decreasing sequence of measurable sets such that∩

n

Bn = φ. Take Q ∈ Λc. Then we have c ≥ αmin(Q) ≥ EQ[−λ1Bc
n
]−ρ(λ1Bc

n
)
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for λ > 0, and so c/λ + ρ(λ1Bc
n
)/λ + 1 ≥ Q[Bn]. Since ρ(λ1Bc

n
) → −λ by the

assumption, we have

c/λ ≥ lim
n→∞

sup
Q∈Λc

Q[Bn], λ > 0. (11)

Letting λ → ∞, we have lim
n→∞

sup
Q∈Λc

Q[Bn] = 0 for any c > 0, and this implies

that the set Λc is uniformly P -integrable. Hence we obtain the assertion (2)
by Dunford-Pettis theorem,

Assume that the Assertion (2) holds. Let {Xn}n∈N be random variables
in L∞ such that Xn increases to X as n → ∞. Then there exists a positive
number M > 0 such that ∥Xn∥∞ ≤ M, n ∈ N and ∥X∥∞ ≤ M . We have

ρ(Xn) = sup
Q∈Λ2M+1

(EQ[−Xn] − αmin(Q)), n ∈ N,

ρ(X) = sup
Q∈Λ2M+1

(EQ[−X] − αmin(Q)).
(12)

by Lemma 2.2. Since Λ2M+1 is L1-weakly compact by assumption, Dini’s
theorem implies that

|(EQ[−Xn] − αmin(Q)) − (EQ[−X] − αmin(Q))| = |EQ[X] − EQ[Xn]| (13)

converges to 0 uniformly in Q ∈ Λ2M+1 as n → ∞. Hence we have the
assertion (1). This completes the proof.

3 The Proof of the Main Theorem

Before we start the proof, we prepare a version of minimax theorem due to
Kim [4]. For a convenience, we set the conditions a little stronger than the
original.

Lemma 3.1. Let X be a nonempty convex subset of some locally convex
linear topological space, Y be a non-empty subset of a vector space ( not
necessarily topologized ) , and f be a real-valued function on X ×Y such that

(1) x 7→ f(x, y) is convex and lower semicontinuous for any y ∈ Y,

(2) There exists y0 ∈ Y such that (1−λ)f(x, y1)+λf(x, y2) ≤ f(x, y0), x ∈
X for any y1, y2 ∈ Y and λ ∈ [0, 1],
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(3) The mapping
λ ∈ [0, 1] 7→ f(x, λy1 + (1 − λ)y2) (14)

is continuous for any x ∈ X and y1, y2 ∈ Y,

and

(4) There exists a non-empty compact subset CF of X such that

inf
x∈X\CF

f(x, y0) ≥ max{ inf
x∈CF

f(x, y0), inf
x∈X

sup
y∈Y

f(x, y)}, y0 ∈ co(F ),

(15)
for any non-empty finite set F of Y , where co(F ) is the minimal convex
set which contains all elements of F .

Then we have sup
y∈Y

inf
x∈X

f(x, y) ≥ inf
x∈X

sup
y∈Y

f(x, y).

Now we prove Theorem 1.3.

Step1. First we consider the case that M(C) ∩ {Q ≪ P | αmin(Q) <
∞} ̸= φ. We can easily see that

inf
Z∈C

ρ(Z + H)

= inf
Z∈C

sup
Q∈P

(EQ[−Z − H] − αmin(Q))

≥ sup
Q∈P

inf
Z∈C

(EQ[−Z − H] − αmin(Q))

= sup
Q∈P

(EQ[−H] − α̃(Q)).

(16)

We show the inverse inequality. We apply Lemma 3.1 for X = P , Y = C.
To show the inverse inequality, it is sufficient that the mapping

f : (Q,Z) 7→ EQ[Z + H] + αmin(Q) (17)

satisfies the conditions in Lemma 3.1. Clearly Conditions (1), (2), (3) are
satisfied ( It is already shown in the proof of theorem 2.1 that the mapping
Q 7→ αmin(Q) is lower semicontinuous with respect to L1-weak topology ).
We will verify that f satisfies Condition (4). Let F = {Z1, Z2, . . . , Zm}, m <
∞, Z0 ∈ co(F ), and

M = max
1≤i≤m

∥Zi∥∞∨{ inf
Q∈Λ∞∩M(C)

(αmin(Q)+sup
Z∈C

EQ[Z])+2∥H∥∞} < ∞. (18)
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We show that CF = Λ2M+1 satisfies Condition (4). We see that

inf
Q∈Λ2M+1

(EQ[Z0 + H] + αmin(Q))

= inf
Q∈P

(EQ[Z0 + H] + αmin(Q))

≤ inf
Q∈P\Λ2M+1

(EQ[Z0 + H] + αmin(Q)).

(19)

by Lemma 2.2. And we see that

EQ[Z0 + H] + αmin(Q)

≥ −∥Z0∥∞ − ∥H∥∞ + 2M + 1

≥ −∥H∥∞ + M + 1

≥ ∥H∥∞ + inf
Q∈Λ∞∩M(C)

(αmin(Q) + sup
Z∈C

EQ[Z])

≥ inf
Q∈P

sup
Z∈C

(EQ[Z + H] + αmin(Q)).

(20)

for Q ∈ P\Λ2M+1. Hence we have

inf
Q∈P

sup
Z∈C

(EQ[Z + H] + αmin(Q))

≤ inf
Q∈P\Λ2M+1

(EQ[Z + H] + αmin(Q)).
(21)

So we verify that f satisfies Condition (4).

Step2. We consider the case that M(C) ∩ {Q ≪ P | αmin(Q) < ∞} = φ.
In this case, it is sufficient to show that inf

Z∈C
ρ(Z + H) = −∞.

Let Cn = {Z ∈ C | ∥Z∥∞ ≤ n} for each n ∈ N. We can easily see that Cn is
convex and

M(Cn) ∩ {Q ≪ P | αmin(Q) < ∞} = {Q ≪ P | αmin(Q) < ∞} ̸= φ. (22)

Then using the result of Step1 we have

inf
Z∈Cn

ρ(Z + H) = sup
Q∈P

{EQ[−H] − (αmin(Q) + sup
Z∈Cn

EQ[Z])}. (23)

Assume that inf
Z∈C

ρ(Z + H) = γ > −∞. Since inf
Z∈Cn

ρ(Z + H) ↓ γ as n → ∞,

there exists Qn ∈ P such that

γ − 1/n ≤ EQn [−H] − (αmin(Qn) + sup
Z∈Cn

EQn [Z]) (24)
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for n ∈ N. Then we see that

αmin(Qn)

≤ EQn [−H] − γ + 1/n − sup
Z∈Cn

EQn [Z]

≤ ∥H∥∞ − γ + 1 − sup
Z∈C1

EQn [Z]

≤ (∥H∥∞ − γ + 2) ∨ 1.

(25)

Since the set {Q ≪ P | αmin(Q) ≤ (∥H∥∞ − γ + 2) ∨ 1} is L1-weakly
compact by Theorem 2.1, there exist a subsequence {Qnk

} of {Qn}n∈N and
Q̄ ∈ {Q ≪ P | αmin(Q) ≤ (∥H∥∞−γ +2)∨1} such that Qk → Q̄ as k → ∞.

We note that Q 7→ sup
Z∈Cm

EQ[Z] is lower semicontinuous for fixed m ∈ N.

Then we see that

sup
Z∈Cm

EQ̄[Z]

≤ αmin(Q̄) + sup
Z∈Cm

EQ̄[Z]

≤ lim inf
k→∞

αmin(Qnk
) + lim inf

k→∞
sup

Z∈Cm

EQnk [Z]

≤ lim inf
k→∞

(αmin(Qnk
) + sup

Z∈Cnk

EQnk [Z])

≤ lim inf
k→∞

(EQnk [−H] − γ + 1/nk)

≤ ∥H∥∞ − γ.

(26)

for nk ≥ m. Letting m → ∞, we have sup
Z∈C

EQ̄[Z] ≤ ∥H∥∞ − γ < ∞. Then

we have Q̄ ∈ M(C) ∩ {Q ≪ P | αmin(Q) < ∞}. This is a contradiction.
Hence we have inf

Z∈C
ρ(Z + H) = −∞. This completes the proof.

We can prove Corollary 1.4 by applying Theorem 1.3 for
C = {V (T ; (0, ξ)) | ξ ∈ Ad}, since we can easily see that M(C) = M(S).
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