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Abstract

The universal character is a polynomial attached to a pair of partitions and is a generalization
of the Schur polynomial. In this paper, we introduce an integrable systegrddference
lattice equations satisfied by the universal character, and calllatthee g-UC hierarchy We

regard it as generalizing botipKP andg-UC hierarchies. Suitable similarity and periodic
reductions of the hierarchy yield thipdifference Painléy equations of typea%)+1 (9=1),

D,(sl), andEg). As its consequence, a class of algebraic solutions aj-fRainle\e equations is
rapidly obtained by means of the universal character. In particular, we demonstrate explicitly
the reduction procedure for the case of tyﬁ)é), via the framework ofr-functions based on

the geometry of certain rational surfaces.
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1 Introduction

The present article is a sequel to our previous papers [Tsu04c, TM04] and is aimed to clarify the
underlying relationship between the universal charactergatitference Painléy equations with
affine Weyl groups, by means of the viewpoint of infinite integrable systems.

The universal characte, (X, y), defined by K. Koike [K0i89], is a polynomial inx(y) =
(X1, X2, - - -, Y1, ¥, . . .) @ttached to a pair of partitiomsandy, which naturally generalizes the Schur
polynomialS,(x). The universal character describes the irreducible rational character of the gen-
eral linear group, while the Schur polynomial, as is well-known, does the irreducible polynomial
character of the group; see [Koi89], for details.

The algebraic theory of the KP hierarchy of nonlinear partiffliedential equations is probably
the most beautiful one in the field of classical integrable systems. It was discovered by M. Sato that
the totality of solutions of the KP hierarchy forms an infinite-dimensional Grassmann manifold;
in particular, the set of homogeneous polynomial solutions coincides with the whole set of Schur
polynomials; see.g.[MJDO0O, Sat81]. We say that the KP hierarchy is an infinite integrable system
which characterizes the Schur polynomials. On the other hand, an extension of the KP hierarchy,
called theUC hierarchy was proposed by the author [TsuO4a]; it is an infinite integrable system
characterizing the universal characters as its homogeneous polynomial solutions (see the table
below).

Character polynomials versus Infinite integrable systems
Schur polynomiab,(x) KP hierarchy
N N
Universal characte$, (X, Y) UC hierarchy

In this paper, we first introduce a new kind of integrable systemdifference equations on
two-dimensional lattice, called thattice g-UC hierarchy(see Definition 2.1). It is considered
as generalizing botl-KP andg-UC hierarchies, which are thgganalogues of the KP and UC
hierarchies defined by K. Kajiwarat al. [KNY02] and the auther [Tsu04c], respectively (see
Remark 2.4). Next, we show that suitable similarity and periodic reductions of the lgttice
hierarchy yield theg-Painlee equations with fine Weyl group symmetries. Let us refer each of
g-Painlewe equations by the Dynkin diagram of associated root system; for examptePtiale\e
VI equation is represented 51); see [JS96, Sak01]. Then, our result is stated as follows:

Theorem 1.1. Theg-Painlevé equations of types), , (g > 1), D, andE{’ can be obtained as
certain similarity reductions of the latticg-UC hierarchy with the periodic conditions of order
(g+1,g+1),(22),and(3, 3), respectively.

We shall demonstrate the proof of the above theorem in detail, particularly for the case of type
E(; the other cases are briefly studied in Appendix.

Recall that theg-Painlee equation of typ<a‘3\(Nll1 is a further generalization af-Painlee IV
and V equations which correspond to the cades 3 and 4, respectively; see [KNY01, Mas03].
As shown in [KNYO02], it can also be obtained as a similarity reduction ofjthké hierarchy with
N-periodicity. With this fact in mind, we summarize, in the following table, how dHeainle\e
equations relate to the similarity reductions@®KP or lattice g-UC hierarchies with periodic
conditions:



q-Painlew equation A}/ A Dy EY
g-KP hierarchy g+1 29+ 2 - -
Latticeg-UC hierarchy — gd+19+1) (22) (33

The universal characters are homogeneous solutions of the lgtti€hierarchy (see Propo-
sition 2.2). Hence we have immediately from Theorem 1.1 a class of algebraic solutions of the
g-Painlee equations in terms of the universal character.

Corollary 1.2. Theg-Painlevé equations of typety),, (g > 1), DY’, and E{” admit a class of
algebraic solutions expressed in terms of the universal characters attached to p@rs bj-, 2-,
and 3-core partitions, respectively.

Remark1.3. (i) In [KNYO02], rational solutions of theg-Painle\e equations of type\y were
constructed by means of the Schur polynomial attached td-aare partition, via the similarity
reduction of theg-KP hierarchy.

(i) We investigated certain similarity reductions of tgeJC hierarchy and already obtained the
same class of solutions as above for the cagls andD{”; see [Tsu04c] and [TM04]. Also, for

A(Sl) (the g-Painlewe V equation), the rational solutions were firstly found by T. Masuda [Mas03]
without concerning any relationship to the infinite integrable systems.

In Section 2, we introduce the latticgUC hierarchy, which is an integrable systemagsf
difference lattice equations satisfied by the universal characters (Definition 2.1 and Proposition 2.2).
In Section 3, we obtain a birational representationfha Weyl group of typeEél) defined over the
field of r-functions starting from a certain configuration of nine points in the complex projective
plane (Theorem 3.2). In Section 4, we then definectiRainlee equation of typ&.” (q-P(Es))
by means of the translation part of thi&me Weyl group (Definition 4.2). Section 5 concerns the
system of bilinear equations satisfiedbjunctions (Proposition 5.2). In Section 6, we show that
the bilinear form ofg-P(Es) coincides with a similarity reduction of the latticeUC hierarchy.
Consequently, in Section 7, we have a class of algebraic solutiap$(Eg) in terms of the uni-
versal character (Theorem 7.2). Section 8 is devoted to the proof of Proposition 2.2. We briefly
sum up in Appendix results on the reductions togkRainle\e equations of typea$’,; andD}".

Note. Throughout this paper, we shall use the following conventiog-siifted factrials

@de=[[@-ad). (@p.a=]]a-add).
i=0

i,j=0

and alsod, ..., a; 0w = (A1) Qe - - (&} Q) o-



2 Universal characters and latticeg-UC hierarchy

2.1 Universal characters

For a pair of sequences of integets= (11,4,,...,4) andu = (ug, uo, ..., u), theuniversal
characterS, (X, y) is a polynomial in K, y) = (X1, X2, ..., Y1, Y2, . ..) defined by the determinant
formula oftwistedJacobi—Trudi type (see [K0i89]):

— pﬂl’—i+1+i—j(y)9 1<i</V
S[/L/—l](x’ y) - det( p/li_l,_i+j(x), I/ + 1 S | S | + |/ 1Si’j5|+|, s (21)

wherep, is a polynomial defined by the generating function:

Z pe(X)Z = exp(i xnz”). (2.2)
n=1

kezZ
Schur polynomiab,(x) (see [Mac95]) is regarded as a special case of the universal character:

Sa(x) = de(p,-i+j(X)) = Spia (X, Y).

If we count the degree of variables as dgg= n and deg,, = —n, then the universal character
S (X, y) is a weighted homogeneous polynomial of degrge- |u|, wherejd| = A1 + --- + A,.
Namely, we have

S[/l,,u] (CX]_, C2X2a st C_lyl’ C_2y23 .. ) = Cl/ll_lms[/l,/l] (Xl, X2, st yl’ y23 . ')’ (23)

for any nonzero constaut

2.2 Lattice g-UC hierarchy

Letl c Z.o andJ c Z_g be finite indexing sets angl (i € 1 U J) the independent variables. Let
Ti = Ti,q be theg-shift operator defined by

o Jat (iel),
Tialt) = { a4 (e d).
andTiq(t;) = t; (i # j). We use also the notatioft;, T, - - - Ti, = Tii,..i,, fOr the sake of brevity.

Definition 2.1. The following system of-difference equations for unknoworg,n(t) (m,n € Z) is
called thelattice g-UC hierarchy

4T (O'm,n+l)Tj(0'm+1,n) - thj(o'mn+1)Ti (O'm+1,n) = (ti - tj)Tij (O'mn)o'm+1,n+1, (2-4)
wherei, j e | U J.
Let us consider the change of variables:

Zian§ =" Zjes Zia T =" Ejea j"
X, = | JJJ, Yo = iel 4 _]JJ, (25)
n(1-q") n(1-qg™)
then define the symmetric functian, ; = Sa,(t) inti (i € 1 U J) by
Sa(1) = Spag (X, Y)- (2.6)

The universal characters solve the lattige/C hierarchy in the following sense.
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Proposition 2.2. We have

T (S ) Ti(Sikaya) = 6T (St Ti(Sik )
= (t — ) Ti; (Stap) Sk (<) (2.7)

for any integerk, k' and sequences of integets= (A4,...,4),u = (U1, ..., 1.
The proof of the proposition above will be given in Section 8.

Remark2.3. Define the function$, = h,(t) andH,, = Hu(t) by

hn(t) = pn(X), Hn(t) = pn(Y),

under (2.5). We note also the following expression by the generating functions:

94z 9)w @'tz orl)oo
th(t)i‘ IE]:L g ZHk(t)i‘ .el:L Tz, (2.8)

Hence, functiors,, ,(t) can be expressed as

- Hﬂ|ui+1+i—j(t)’ 1<i<l
) = dEt( i@, VHL<i<lel | (2.9)

Remark2.4. (i) One can easily deduce from (2.4) the following equation:

t = t)Tij(emn) Tx(emirn) + () = ) Tik(@mn) Ti(Omen)
+ (tk - ti)-l_ik(o'r‘n,n)-rj (0'm+1,n) =0, (2.10)

wherei, j,k € 1 U J, which is exactly the bilinear equation of tqdJC hierarchy; see [TsuO4c].
(i) If omn(t) does not depend am that iS,omny1 = omn for all mandn, then (2.4) is reduced to
theg-KP hierarchy; see [KNY02].

3 Point configuration, Weyl group and r-functions

Consider the configuration of nine points in the complex projective pknevhich are divided
into three triples of colinear points. Let[ y : 7] be the homogeneous coordinateP3f We can
normalize, without loss of generality, the nine poipt$l < i < 9) under consideration as follows:

pr=[0:-1:a3], p.=[0:-1:a3a8], pzs=[0:-1:azas’a’],
Ps=[az:0:-1], ps=[aCas:0:-1], ps=[a’a®a3:0:-1], (3.1)
pr=[-1:a83:0], ps=[-1:aza®:0], po=[-1:azas’as’:0],

wherea; € C* are parameters such thah,a,2az*a,asas? = q.

Lety : X = X4 — P2 be the blowing-up at nine points (1 <i < 9). Lete = y~(p) be the
exceptional divisor ant the divisor class corresponding to a hyperplane. We thus have the Picard
lattice:

PicX) =ZhoZe @ - - - & Zey,
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of rational surfaceX, equipped with the intersection form ) defined by fih) = 1, (&le;) = -6,
and fle;) = 0. The anti-canonical divisorKy is uniquely decomposed into prime divisors:

—Kx =3n- > =Dy +D;+Ds,
1<i<9
whereD; =h-e—e,—€3, D, = h—e,— 65— 65, andD; = h—e;,—eg—ey. Consider the orthogonal
complement:

(—Kx)* £ v € Pic(X) | (VD;) = O fori = 1,2, 3},

then one can verify that (i}-Kx)* is generated by the vectong, = e — € (where bothi and |
belong to the same indexing 9t 2, 3}, {4,5,6}, or {7,8,9}) andaijx =h-g - - (i <3<
j <6 < K); (i) hence, £Kx)* is isomorphic to the root lattice of tyrjéél); see [DO88, Sak01].
For instance, we have

Q:i=(-Kx)' =Zag® - & Zas,

where we choose a root ba#ds= {«ao, ..., ae} defined by
Qp = 23, @1 = 56, A2 = 45, @3 = A147, A4 = Qa78, (@5 = dgy, «Ap = X12.

Note that the 72 roots dfs are represented hy; (18 vectors) anda;j (54 vectors). The Dynkin
diagram ofB is of type Eg) and looks as follows (see [Kac90]):

0

6

O—O0—C—C—=0
1 2 3 4 5

Define the action of the reflection corresponding to a toetQ by
r.(vV) =v+ (Vl@)a, Ve Pic(X).

We prepare the notations; := r,, lijk = 'y, ands :=r, (i = 0,...,6), for convenience. The
action of the diagram automorphisn(i = 1, 2) is defined by

L1(911,2,3,7,8,9}) = €789123})> tz(e{1,2,3,4,5,6}) = €456,1,2,3,)-

We thus obtain the linear action of the (extendetiha Weyl groupN(Eél)) =(S0,...» S 1,12y ON
Pic(X). In parallel, we fix the action dW(Eél)) on themultiplicativeroot variablesa = (ay, . . ., )
as follows:

S(aj) = ajai_Cij’ (32)

-1 -1
t1(840123456)) = A5123604 >  2(A0123456) = 1063452 >

whereC = (C;;); ; being the Cartan matrix of typgS".
Next, we extend this realization (W(Eél)) to birational transformations. To this end, we
shall introduce the notion af-functions;cf. [KMNOYO03]. Consider the fieldf = K(r,...,79)
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of rational functions in indeterminants (1 < i < 9) with the codficient fieldK = C(a'/®) =
C(ao'3, ..., as"%). Take a sub-lattic®! = (J;_1,3 M; of Pic(X), where

M; = {v e Pic(X) | (V) = (VID;) = -1, (MDj) = 0 (j #i)}.

Definition 3.1. A functiont: M — L is sgid to be a-functionifT it satisfies the conditions:
(i) 7(w.v) = w.r(v) for anyv e M andw € WEL); (i) 7(e) = ri (L <i < 9).

Such functions and the action W(E{"”) on them are explicitly determined in the following
way. Denote byL; the line passing througp andp;. LetF;; = Fij(X,y,2) € Q(a)[X.y, Z] be the
uniquedefining polynomial ofL;; such that the product of the dtieients ofx, y andz equals 1;
for instance, we have

Lis = {F1s = a3+ agy + z= 0},
Laz = {Fa7 = x+ag 'y + agz= 0},
L17 = {F17 =azX+y+ a3_1Z = O}

Set
(x y z

- T —) = (T172T3,T47'5T6, T7T87'9), (3-3)
C123 Cs456 Crsg

with

Wi

1
3

12 2 _ 12 2 _ 12 2 _1
Cioz = aq13@3ay 3ag 3, Cg56=ag3aAs®as Qg 3, Crgo= Apidgiay °a; 3,
and suppose that
Fi(xy,2 = 7(e)r(e)r(h- e - &). (3.4)

By rij(&) = h— & — g;, one can immediately compute the actiom;gffrom (3.3) and (3.4). Each
action ofr;; and diagram automorphismis realized as just a permutation ofs. Summarizing
above, we now arrive at the following theorem.

Theorem 3.2. Define the birational transformations (0 < i < 6)and¢; (j = 1,2) on L =
C(a'®)(t1, ..., 7o) by

Si(tise) = Tes),  2(Tias) = Tsa,  SulTre) = Tisns  S(Tee) = Tea)

Ss(tu2) =721, So(t23) =732, t(ri123) = 7789, (TL23) = Tuss),

S3(71) = (01237' 1T2T3 + @3 'Ca56TaTsTe + 3CragT7TaT 9) [(T477), (3.5)
S3(74) = (8C123T1T2T3 + CasgTaTsTe + 83 "CrgaT7T8T 9) /(t177),

Ss(77) = Q37 1C12a71T2T3 + A3C456T4T5Te + CrggT7TaT: 9) /(T174).

Then(3.5)with (3.2) provide a realization oW(EL") = (so, .. ., So. 11, 12)-

4 Discrete Painlee equation

By virtue of Theorem 3.2 given in the preceding section, we have also birational act'TU(Eélf))
on the inhomogeneous coordinate:

X .Y . 2z

[f:g:l]:[

: : ] = [T17o73 | T4T5Te © T7TgTo] . (4.1)
Ci23 Csas6 Crso
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Corollary 4.1. Let

Ciz2af + @37 Cy560 + A3Crg9

fy=f ,
S(f) as_lcleSf + a3C4569 +1 C7s9
_ a3Ci231 + Cy560 + A3 "Crs9 (4.2)
(@) 233_101231: + @3Cs560 + Crg9’
aM =7 u@=2 wf=g w@-="

Then(4.2) with (3.2) realizesW(EL") on the function field(a®'3; f, g) = C(a¥3)(f, g).

This representation is essentially equivalent to that given in [Sak01]. The birational action
arising from the translation part offame Weyl group can be regrded as a discrete dynamical system
and is called aliscrete Painlevé equatioof. [NY98]. Consider an element

€ = I'p58r 369V 258 147
= (94505 SS9 U% %)’ € W(EL), (4.3)

acting on the parametess= (ay, . . ., as) as theirg-shifts:
€(a) = a= (ao, a1, q "ap, q°as, g ‘a4, as, 4 ). (4.4)

We define rational functions(a; f, g), G(a; f,g) € C(a¥3; f, g) by

((f)=F(a f,9), 9 =0G(a f.9). (4.5)
Definition 4.2. The system of functional equations:
f(a) = F(a; f(a),9(a)). 9(a) = G(a; f(a),9(a)), (4.6)

for unknownsf = f(a) andg = g(a) is called theg-Painlevé equation of typEél).
We shall often denote (4.6) shortly loyP(Es).

Remark4.3. We have the following inclusion relation offae Weyl groupsW(EL) > W(AD) @
W(Ag_l)) For instance, the sets of vect@'s= {158, @367, X248, X169, X257, X349} andB” = {147, @psgt+
aseo) realize the root bases of typas’ andAlY, respectively. Moreover, they are mutually orthog-
onal. The transformatiofi used to define thg-Painlee equation (4.6), is exactly the translation
in W(A(ll))i that is,r o,sg+aseel a1ar = (F2587 3697 258) 147 = L.

5 Bilinear equations amongr-functions

Intoroduce the transformatiofs = raegl 1471369l 258 ANA {3 = 147 258 1477 369, IN parallel withé;, =
{ = Iosgl3al 258 147. These act on the root variables as tlpghifts:

01(a) = (a0, a1, g tap, g%as, q tay, as, 4 ag),
6,(a) = (0 a0, g tay, e, g 'as, qau, g tas, qae), (5.1)
t3(a) = (qao, gay, a2, g ta, as, qas, ).
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Note that/;'s are mutually commutable arfé(»¢s = id. The action of; on the auxiliary variables:
a= (aoaas)"’, b= (aa4a60)"", (5.2)
is described as follows:
G(ab)=(aq'h), C(ab)=(a"aagh)., {(a(ab)=(gab). (5.3)
Lemma 5.1. It holds that

a2a,\"° 1 - afh’
T3l3(7s) — @bla(t3)7e = (acl,za:-,) 2p e (5.4)
Proof. Thenormalizeddefining polynomials of linet sy andLeg read (see Section 3)
Aodsy Z

Fao(X, Y, 2) = 8p@s4°as’aX +

435X y
Feo(X,Y,2) =
(X ¥.2) a * &y 2pagauas?

respectively. Eliminatingc andy, we get

+ 2 22
485 Apasudsas
+ ay?a,’azauasz,

1 - (apy@a3348586)° .
ap?83848586°

Recall thatz = c7ggr77579 andFy; = 7i7j7(h — & — €)); see (3.3) and (3.4). By virtue @(es) =
h— e; — ey and/z(e3) = h — e5 — &y, we thus obtain (5.4) from (5.5). O

(5.5)

F39 — apa1@r8z3a4a585F69 =

Now, we shall rename thefunctions as follows:

T(1,4,7) T(25,8) T(3,6,9) (5 6)

U2z = NG.b)’ V123 N(q“3a. q-270)’ Wii23 = N(G 78, 30)"

where the normalization fact®(a, b) is defined by

a b3 3 3
(_ Fq,—aqu, q ;q’q)w(_q & et o, q3)

~a’h a® ’a3ht’ -
N(&.b) = P 400 o . &)
(?, 20 bg% g%, q )

Equation (5.4) in Lemma 5.1 is then rewritten into

Luta(Wy) — abla(Wow, = (222 RIESPATY (5.8)
3 Vals(Wz sWIW2 = 2 2a a 3V, :

by straightforward computation. As seen below, all the other bilinear equatiohk,fgr, andW
can also be derived from (5.8) by suitable symmetrieW(Eél)). Applying rqar46f79 to (5.8) and
viewing thatf;, = ryarsef 793l 13r 46f 79, WE thus obtain
1/3
q 203> ( q)
abU,l1(Uy) — =61(U)U, = | — ab— — | VsWa. 5.9
162 - faUUa = (222) (ab- F)vaw, 59
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Moreover, let us consider an element $5,Sst1t0 € \TV(ES)) of order six whose action is given
as follows:

1 1 1
7 . (8, &1, 2, Ag, 84, A5, 86; T(1.234,56.7.89)) F (a—, %, dpds, Az, A1 a, 2 435, T(7,9,81,32465) | -
5 1

Hence we see that 1
(& b;U,Vi,W) — (5, ab; Ui—la\Ni—laVi—l) , (5.10)

and also that the commutation relationé, = €1, nts = {3m, né3 = €om, hold. Note thair realizes
the rotational diagram automorphism/én(f), considered in Remark 4.3. Applyingto (5.8) and

(5.9), we get the following proposition.
Proposition 5.2. The following bilinear equations among thdunctionsU;, V; and W, hold:

abU(1(Ui2) = Jea(UUisz = i (@b 2 VisoWz, (5.11a)
1 1 1 1
Bvigz(vi+l) - afz(Vi)ViJrl =6 (l_) - 5)\Ni+2Ui+2a (5.11b)
1 1
avvi€3(vvi+1) —abl3(W)Wi,1 = g (a - ab) Uis2Visa, (5.11¢c)

fori € Z/3Z. Herey; andé; are the parameters defined by

_ aoa62)1/3 _ a1a22)1/3 B a42a5)”3
Y1 = a1a221/3 s Y2 = a42a51/3 > V3= a08621/3 s
5y = @) . b= @) . 6s= @) , (5.12)
a12615 1/3 a2a52 1/3 a02a4 1/3
o alaz) . a4a5) ’ Egzaoae)
ap2ag a12ay aas?

We call system (5.11) thigilinear form of theg-Painlevé equation of typEél). Conversely, we
can verify that, for any functiond;, Vi, W, (i € Z/3Z) satisfying (5.11), the pair of variable$, @)

defined by
UiViWe  UVoW,

UsVaWs' J UsVaWs'

certainly solves thg-Painlee equation (4.6); here we recall (4.1) and (5.6).

Remark5.3. (i) Consider the case whee = a; = as anda, = a4 = a. Then, the functions
71 =14 = 77 = N(@,b), 72 = 75 = 7§ = N(q"3a, q"%3b), andr3 = 76 = 79 = N(qV3a, g/3h),
provide the fixed solution with respect to the actiontdf= 1y, the diagram rotation oEgl) of

order three.
(i) We have also another type of bilinear equations among-$unctions connected with:

b - a_lb) L3(Wh)lo(Visa) + (a_lb B a) € (Wi)Viy1 = 0, (5.13a)

(a— bWty (Vi) + (
b a
This system can be viewed as a similarlity reduction ofghéC hierarchy (see (2.10)), in factf.
[TsuO4c, TMO4].

(g - ab) Vit (W) + (ab— %) (Vi) (W) + (1 1)le(vi)vvi+1 _0.  (5.13b)
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6 Similarity reduction of lattice g-UC hierarchy to g-P(Es)

We shall explain how the bilinear form ofP(Eg), (5.11), arises naturally from the lattigeUC
hierarchy, through certain periodic and similarity reductions.ILet{1, 2, 3} andJ = 0; consider
the latticeg-UC hierarchy:

i Ti(Omne) Ti(Omern) = 4 Ti(Omne) Ti(omern) = (& = 1) Tij(Omn) Tmene- (6.1)
We impose the (B)-periodic condition:
Omn = Tmi3n = Tmn+3s (6.2)
and the similarity condition:
T mn(Cty, Cty, Ctg) = 9o (ty, B, ), (6.3)

for anyc € C*. Hered,, are constant parameters such that + dmni1.n:1 = Omien + dmne- Then,
we introduce the functionsmn(a, b) in two variables defined by mn(a, b) = omn(ts, t2, t3) under
the substitutiontg, t,, t3) = (a1, b1, ab). We thus have the following lemma.

Lemma 6.1. Let
Ui(a,b) = i i(a b),
Vi(a,b) = Fis1-ir1(d"%a, g 7°b), (6.4)
Wi(a,b) = Tisz-is2(d 3a, g D),
fori € Z/3Z. Then these functions satisfy the bilinear forng-¢¥(Eg), (5.11) with the parameters
yi = q(di,—i+2_di+l.—i)/3, 6 = q(di+1,_i—di+2,_i+1)/3, € = q(di+2,—i+1—di,_i+2)/3. (6.5)

Proof. Being attentive to the action @f’s on variablesa andb (see (5.3)), one can deduce the
bilinear form ofg-P(Eg) straightforwardly from the latticg-UC hierarchy (6.1) by the similarity
condition (6.3) together with the periodicity (6.2).
For instance, we shall start from (6.1) wittm,(0) = (r + 1, —r) and (, j) = (1, 2):
t10 1 -rea (Ot t2, t3)orio o (ta, O, 1) — t20mrsa r1a(ta, Ao, 3)ors 2. (O, T2, ta)
= (ty = )01 (s, Qto, t3) i 41 (ts, T2, t3).
By using the homogeneity (6.3), we have
q(dr+l'_r+1+dr+2‘_r)/3t10'r+l,—r+l(qz/stl, q_1/3t2, (:{—1/3'[3)0-”2’_r (q_1/3t1, q2/3t2, q—1/3t3)
— et B g (07, 0Pt 07V 3ts) 0o (07 Pte, 73, 7H3t5)
= P 3t - t)ora o (03, 0%, T Pte) o et o, ).
Putting ¢, to, t3) = (a1, b™%, ab), therefore we obtain

1_ _ — _
ao'r+1,—r+1(q 2/33-» q1/3b)0'r+2,—r(ql/3a’ q 2/3b)

1_ _ — _
B Bo-r+1,—r+1(ql/3aa q 2/3b)0'r+2,—r(q ?l*a, q"°b)
1 1\_ _ _ —
= q(dr+1,—r—dr+2.—r+l)/3 (a - t_)) O-I‘+l,—l‘ (q 1/3a-7 q 1/3b)0-r+2,—l‘+l(aa b)’

which turns out to coincide with (5.11b) in view of the actior¢gfin the same way, we can derive
also (5.11a) and (5.11c). The proof is now complete. |
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7 Algebraic solutions of g-Painleve equation in terms of the
universal character

As seen in the preceding section, tipPainlee equation of typeEél) is in fact equivalent to a
similarity reduction of the (periodic) latticg-UC hierarchy. On the other hand, we have already
known that the latticg-UC hierarchy admits the universal characters as its homogeneous solutions;
see Proposition 2.2. Consequently, we obtain in particular a class of algebraic solutiong-of the
Painlee equation in terms of the universal character.

In order to state our main result precisely, we first recall the notid#robre partitions; see.g.
[Nou04]. A subseM c Z is said to be aMaya diagramf me M (m < 0) andm ¢ M (m > 0).
Each Maya diagrantM = {..., mg, M, my} corresponds to a unique partitian= (14, A, ...) such
thatm — m,1 = A; — Ai,1 + 1. For a sequence of integars= (N, Ny, ..., Ny) € ZN, let us consider
the Maya diagram:

M(n) = (NZop, + 1)U (NZp, + 2)U - - U(NZop, + N),

and denote byl(n) the corresponding partition. Note thiin) = A(n+ 1), wherel = (1,1,...,1).
We call a partition of the formi(n) an N-core partition It is well-known that a partitiom is
N-core if and only ifA has no hook with length of a multiple ®f. We have a cyclic chain of the
universal characters attachedNecore partitions; see [Tsu0O4b, Lemma 2.2].

Lemma 7.1. It holds that
S[(M(n(i—l))),u] = ES[ni). ] (7.1)

for arbitrary n = (ng,ny,...,ny) € ZN and partitionu. Heren(i) = n+(1,...,1,0,...,0) and
ki =Nn —[nwith|n| = ng + np + - + Ny

Finally, by virtue of Proposition 2.2 and Lemmas 6.1 and 7.1, we are led to the following
expression of algebraic solutions by means of the universal character attached to a pair of three-
core partitions. Define a rational functi®, ,; = R, (& b) by (recall (2.1) or (2.9)):

Ruyia(@ b) = S (%) = spaa (), (7.2)
under the substitution:
a"+b™"+ (ab)" a'+b"+ (ab)™
TTaaew T naegn o OTRE (7.3)

or (ty, 1, t3) = (@1, b1, ab) with | = {1,2,3} andJ = 0.

Theorem 7.2. For anym = (my, My, Mg), N = (Ny, Ny, N3) € Z3, let

Ui(a b) = Ry, i (@ b),
Vi(a, b) = R 1= (@%a, g #°b), 7.4
Wi(a, b) = Rumi+2), an-i+20 (a2, 47°0).
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(i) These functions solve the system of bilinear equa(idrid)with the parameters

Yi = qnfi—M+1+‘m‘§m" 6i — qn—i+l_m+2+lm|§|nl’ 6 = q _i+2— m+\m| Inj (75)
(i) Consequently, the pair of functions
U,ViW. U, VLW,
— 1Vl 1’ _ 2V2 2, (76)
U3sVaWs UsVaWs
gives an algebraic solution of thegPainlevé equation of typg(", (4.6), when
[mi+[n] [mi+[n] [mi+[n]
a = a —3 M- n3 — —3 mz—ﬂz’ a m3—n1’
! qM a5 quHInI 1 aO q|n1+|n| 1 (77)

a = bq —mg— n2’ s = bq ml—nl’ g = bq —Mp—nz

Example7.3. Let us consider the special polynomial:

P (@ b; o) = @) g™ [ (1= ") [ | (a™ - 1) Ruu(a b),

(i,))ea (k.Deu

associated with the algebraic solutions. Here we denotgiby) the hook-lengththat is,h(i, j) =
A+ ) —i—j+1 (see [Mac95]); we let = (v1,v,,...) be a sequence of integers defined by
vi = maxo,y — A;}. Itis interesting thaPy, ,;(a, b; g) forms a polynomial whose céiicients are

all positive integers. A few examples of the special polynomials are given below:

A 1| Prgi(a,b;0)

0 0|1

(1) | 0 [a+b+a%b®

(2) | 0 |a®+b?+a*b*+ (1+g)ab(l+a’b+ ab?)
(1L,1)| 0 |q@ +b?+a*b* + (1+ qg)ab(l + a’b + ab’)

0 |(1)]1+a’b+ab?

0 | (2] g+ a*?+a’b*) + (1+qg)abla+ b+ a’b?)

(1) | Q)] @+g+g)a’b® +gab(a® + b?) + q(a+ b)(1 + a’b?)

(1) (@] @+g+29 +g’)a®b?(1 + a’b + ab’) + q(1 + g)ab(a® + b* + a*b?)
+0%(a+ b+ a?b?(a® + b?) + a*b*(a? + b?))

8 Verification of Proposition 2.2
Take an(+ 1" + 2) x (I + I’ + 2) matrix of the form:

X = (Xab)1cabsi+i+2
1T (Hﬂl a+l+a_1) ‘ 1Ti(H:“I’—a+l+a_1) ‘ Tij(HﬂI’—a+1+a_b+2) } I”+1

) 8.1
Ty e T e T e e ) 1141 8.1)

1 1 1+l

Let D = detX and denote byD[iy, io,...; j1, j2,...] itS minor determinant removing rowsg,} and
columns{ja}. We putiy = kandug = K.

13



Lemma 8.1. It holds that

(6 = ) S ke (D) = (tit) D, (8.2a)
Tij(§a(t) = DI + L,1" + 2,1, 2], (8.2b)
Ti(Skaa (1) = (=t)"'DII" + 1; 1], (8.2¢)
T () = (=) D[l + 2; 2], (8.2d)
Ti(S,a(1) = (-6)'DII + 1; 2], (8.2€)
Ti(Stagegan(1) = (=) D[ +2; 1] (8.2f)

Proof. Let us prove only (8.2a) in the following; the others (8.2b)—(8.2f) can be verified in a
similar manner. It is easy to see that

Ti(hy) = hy—thy g, (8.3a)
Ti(Hn) = Hn—t7*Hopa (8.3b)

We shall apply elemantary transformations successively to the row (@gioF. 1, ..., hhr_1)
of sizer =1 +1" + 2 . First we add thé-th column multiplied by €t;) to the p + 1)-th column for
1<b<r-1, we then obtain by (8.3a),

(hn, Ti(hn+1)’ Ti(hn+2)» cees Ti (hn+r—1)) .

Secondly adding thie-th column multiplied by £t;) to the @ + 1)-th columnfor2<b <r -1, we

get
(Mo Ti(Pnea). Tij(Mne2). - Tij (Mera) ).

Add the second column multiplied by ¢ t;)™* to the first column, we finally obtain the vector:
(6 = )T (Masa), TiChoe), Tij(Mas), -, Tig(Moera))
By the same procedure as above, the low ve@tiarH,_1, ..., Hn_r,1) is also converted to
(_(ti — ;)7 Ti(Hn), =t Ti(Hn), 6ty Ti; (Hn), . . -,tithij(Hn—r+3)),

via (8.3b).
Therefore, remenbering (2.9), we arrive at the expresstpa:t() S w0 (1) = (tit) *D. O

Proof of Proposition 2.2.By applying Jacobi’s identity:
DD[lI" + L,I"+2;12] = D[I" + 1; 1]D[I" + 2; 2] - D[I" + 1; 2]D[I" + 2; 1],

then (2.7) follows immediately from Lemma 8.1. |
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A Reductions tog-Painlevée equations of typeszb\(ztl)+1 and DY

Recall that theg-Painlewe equations of types,, and D§” can be derived as reductions from
the g-UC hierarchy; see [Tsu04c] and [TMO04], respectively. Accordingly, it is obvious that they
can be derived also from the latticeUC hierarchy, as the latter hierarchy includes the former
one; see Remark 2.4 (i). We verify that the equations of ty{jgs andD{” are, in fact, similarity
reductions of the latticg-UC hierarchy together with periodic conditions of ordg#(, g+ 1) and
(2,2), respectively. In this appendix, we shall demonstrate how to obtaig-Banle\e equation
only for the case of typ@gl); the other case is simpler, so it may be left to the reader; see [Tsu04c].
Letl = {1,2} andJ = {-1,-2}. Suppose thatn, = omn(t) is a solution of the lattice
g-UC hierarchy (2.4), satisfying the periodic conditiotr,n = Omi2n = Omn2 @nd the simi-
larity condition: omn(ct) = cdmnamn(t). Hered,,, are constants balanced dg,, + dni1n1 =
Omi1n + Omne1- NOw let us introduce the function, (e, 8; X) in X, equipped with constant pa-
rametersy andg, defined bypmn(a,B; X) = omn(t) under the substitution = (t;,t,t 5,1 5) =
(o, 7Y, —g1Bx, —g 187 1X). Let

D(X) = pii(e.B; X, () = pi,(qM2a, 0Y/2; X), (A1)
Y00 = piisa(e g8 020, W) = piiaa(0a, B 6Y2X),

fori e Z/2Z. As similar to the case cEél) (see Section 6), we therfore obtain from (2.4), together
with the above constraints, the following system of bilinear equations:

a,ilq(di,i —di,i+l)/2q)i(i) (X)(I)(J_r) (X) + IBilxq(di+1,i —di,i)/zq)i(¢) (X)(D(i) (X)

i+1 i+1

= (o + g P (g P (%), (A.2a)
L RN + £ Fl A - 4

a—lq(dl,ul dl,l)/Z\Pi( )(X)\PI(+;_(X) + (ql/zﬁ) (ql/ZX) q(dl+l,| dl,l)/z\Pi( )(X)\P|(+?I_(X)

= (o + (@%B)™0"2%) 2 ()07} (0. (A.2b)

wherei € Z/27Z. Take the variables

oM ()04 (%) PP (%)

f)=—"—5—7—~ 9I¥N=—"—"r—" (A.3)
oD ()% (%) P 9P (%)
sety = q@1~%2/2 gndg = q%1-%)/2 Hence, it follows from (A.2) that
~1p-1 ~1s-1
(xg+ aByd)(axg+ a Bty 167)
f+a 1By 26X (f + B~ 1yo1X
gg_( By ox)(f + " yoX) (A.4b)

=2 (x4 By L) (X + a~1Bys-L)’

where the symbol$ andg stand forf(qx) andg(q*x), respectively. This system is equivalent to
theg-Painle\e equation of typé)gl), known as tha}-Painle\e VI equation; see [JS96].
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