UTMS 2005-21

June 29, 2005

Universal character and q-difference Painlevé equations with affine Weyl groups

by

Teruhisa TSUDA

UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES KOMABA, TOKYO, JAPAN

Universal character and *q*-difference Painlevé equations with affine Weyl groups

Teruhisa TSUDA

Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan. tudateru@ms.u-tokyo.ac.jp

May 6, 2005

Abstract

The universal character is a polynomial attached to a pair of partitions and is a generalization of the Schur polynomial. In this paper, we introduce an integrable system of *q*-difference lattice equations satisfied by the universal character, and call it the *lattice q-UC hierarchy*. We regard it as generalizing both *q*-KP and *q*-UC hierarchies. Suitable similarity and periodic reductions of the hierarchy yield the *q*-difference Painlevé equations of types $A_{2g+1}^{(1)}$ ($g \ge 1$), $D_5^{(1)}$, and $E_6^{(1)}$. As its consequence, a class of algebraic solutions of the *q*-Painlevé equations is rapidly obtained by means of the universal character. In particular, we demonstrate explicitly the reduction procedure for the case of type $E_6^{(1)}$, via the framework of τ -functions based on the geometry of certain rational surfaces.

²⁰⁰⁰ Mathematics Subject Classification 34M55, 37K10, 39A13.

Keywords: affine Weyl group, q-Painlevé equation, UC hierarchy, universal character.

1 Introduction

The present article is a sequel to our previous papers [Tsu04c, TM04] and is aimed to clarify the underlying relationship between the universal character and *q*-difference Painlevé equations with affine Weyl groups, by means of the viewpoint of infinite integrable systems.

The universal character $S_{[\lambda,\mu]}(x, y)$, defined by K. Koike [Koi89], is a polynomial in $(x, y) = (x_1, x_2, ..., y_1, y_2, ...)$ attached to a pair of partitions λ and μ , which naturally generalizes the Schur polynomial $S_{\lambda}(x)$. The universal character describes the irreducible rational character of the general linear group, while the Schur polynomial, as is well-known, does the irreducible polynomial character of the group; see [Koi89], for details.

The algebraic theory of the KP hierarchy of nonlinear partial-differential equations is probably the most beautiful one in the field of classical integrable systems. It was discovered by M. Sato that the totality of solutions of the KP hierarchy forms an infinite-dimensional Grassmann manifold; in particular, the set of homogeneous polynomial solutions coincides with the whole set of Schur polynomials; see *e.g.* [MJD00, Sat81]. We say that the KP hierarchy is an infinite integrable system which characterizes the Schur polynomials. On the other hand, an extension of the KP hierarchy, called the *UC hierarchy*, was proposed by the author [Tsu04a]; it is an infinite integrable system characterizing the universal characters as its homogeneous polynomial solutions (see the table below).

Character polynomials	versus	versus Infinite integrable systems	
Schur polynomial $S_{\lambda}(\mathbf{x})$		KP hierarchy	
\cap		\cap	
Universal character $S_{[\lambda,\mu]}(x, y)$		UC hierarchy	

In this paper, we first introduce a new kind of integrable system of q-difference equations on two-dimensional lattice, called the *lattice q-UC hierarchy* (see Definition 2.1). It is considered as generalizing both q-KP and q-UC hierarchies, which are the q-analogues of the KP and UC hierarchies defined by K. Kajiwara *et al.* [KNY02] and the auther [Tsu04c], respectively (see Remark 2.4). Next, we show that suitable similarity and periodic reductions of the lattice q-UC hierarchy yield the q-Painlevé equations with affine Weyl group symmetries. Let us refer each of q-Painlevé equations by the Dynkin diagram of associated root system; for example, the q-Painlevé VI equation is represented by $D_5^{(1)}$; see [JS96, Sak01]. Then, our result is stated as follows:

Theorem 1.1. The q-Painlevé equations of types $A_{2g+1}^{(1)}$ ($g \ge 1$), $D_5^{(1)}$, and $E_6^{(1)}$ can be obtained as certain similarity reductions of the lattice q-UC hierarchy with the periodic conditions of order (g + 1, g + 1), (2, 2), and (3, 3), respectively.

We shall demonstrate the proof of the above theorem in detail, particularly for the case of type $E_6^{(1)}$; the other cases are briefly studied in Appendix.

Recall that the *q*-Painlevé equation of type $A_{N-1}^{(1)}$ is a further generalization of *q*-Painlevé IV and V equations which correspond to the cases N = 3 and 4, respectively; see [KNY01, Mas03]. As shown in [KNY02], it can also be obtained as a similarity reduction of the *q*-KP hierarchy with *N*-periodicity. With this fact in mind, we summarize, in the following table, how the *q*-Painlevé equations relate to the similarity reductions of *q*-KP or lattice *q*-UC hierarchies with periodic conditions:

q-Painlevé equation	$A_{2g}^{(1)}$	$A_{2g+1}^{(1)}$	$D_{5}^{(1)}$	$E_{6}^{(1)}$
q-KP hierarchy	2g + 1	2g + 2	_	_
Lattice q-UC hierarchy	_	(g + 1, g + 1)	(2, 2)	(3,3)

The universal characters are homogeneous solutions of the lattice q-UC hierarchy (see Proposition 2.2). Hence we have immediately from Theorem 1.1 a class of algebraic solutions of the q-Painlevé equations in terms of the universal character.

Corollary 1.2. The q-Painlevé equations of types $A_{2g+1}^{(1)}$ ($g \ge 1$), $D_5^{(1)}$, and $E_6^{(1)}$ admit a class of algebraic solutions expressed in terms of the universal characters attached to pairs of (g + 1)-, 2-, and 3-core partitions, respectively.

Remark 1.3. (i) In [KNY02], rational solutions of the *q*-Painlevé equations of type $A_{N-1}^{(1)}$ were constructed by means of the Schur polynomial attached to an *N*-core partition, via the similarity reduction of the *q*-KP hierarchy.

(ii) We investigated certain similarity reductions of the *q*-UC hierarchy and already obtained the same class of solutions as above for the cases $A_{2g+1}^{(1)}$ and $D_5^{(1)}$; see [Tsu04c] and [TM04]. Also, for $A_3^{(1)}$ (the *q*-Painlevé V equation), the rational solutions were firstly found by T. Masuda [Mas03] without concerning any relationship to the infinite integrable systems.

In Section 2, we introduce the lattice *q*-UC hierarchy, which is an integrable system of *q*-difference lattice equations satisfied by the universal characters (Definition 2.1 and Proposition 2.2). In Section 3, we obtain a birational representation of affine Weyl group of type $E_6^{(1)}$ defined over the field of τ -functions, starting from a certain configuration of nine points in the complex projective plane (Theorem 3.2). In Section 4, we then define the *q*-Painlevé equation of type $E_6^{(1)}$ (*q*-*P*(E_6)) by means of the translation part of the affine Weyl group (Definition 4.2). Section 5 concerns the system of bilinear equations satisfied by τ -functions (Proposition 5.2). In Section 6, we show that the bilinear form of *q*-*P*(E_6) coincides with a similarity reduction of the lattice *q*-UC hierarchy. Consequently, in Section 7, we have a class of algebraic solutions of *q*-*P*(E_6) in terms of the universal character (Theorem 7.2). Section 8 is devoted to the proof of Proposition 2.2. We briefly sum up in Appendix results on the reductions to the *q*-Painlevé equations of types $A_{2g+1}^{(1)}$ and $D_5^{(1)}$.

Note. Throughout this paper, we shall use the following convention of *q*-shifted factrials:

$$(a;q)_{\infty} = \prod_{i=0}^{\infty} (1 - aq^i), \quad (a;p,q)_{\infty} = \prod_{i,j=0}^{\infty} (1 - ap^i q^j),$$

and also $(a_1, \ldots, a_r; q)_{\infty} = (a_1; q)_{\infty} \cdots (a_r; q)_{\infty}$.

2 Universal characters and lattice q-UC hierarchy

2.1 Universal characters

For a pair of sequences of integers $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$ and $\mu = (\mu_1, \mu_2, ..., \mu_{l'})$, the *universal* character $S_{[\lambda,\mu]}(\mathbf{x}, \mathbf{y})$ is a polynomial in $(\mathbf{x}, \mathbf{y}) = (x_1, x_2, ..., y_1, y_2, ...)$ defined by the determinant formula of *twisted* Jacobi–Trudi type (see [Koi89]):

$$S_{[\lambda,\mu]}(\mathbf{x},\mathbf{y}) = \det \begin{pmatrix} p_{\mu_{l'-i+1}+i-j}(\mathbf{y}), & 1 \le i \le l' \\ p_{\lambda_{i-l'}-i+j}(\mathbf{x}), & l'+1 \le i \le l+l' \end{pmatrix}_{1 \le i,j \le l+l'},$$
(2.1)

where p_n is a polynomial defined by the generating function:

$$\sum_{k\in\mathbb{Z}} p_k(\mathbf{x}) z^k = \exp\left(\sum_{n=1}^{\infty} x_n z^n\right).$$
(2.2)

Schur polynomial $S_{\lambda}(\mathbf{x})$ (see [Mac95]) is regarded as a special case of the universal character:

$$S_{\lambda}(\boldsymbol{x}) = \det(p_{\lambda_i-i+j}(\boldsymbol{x})) = S_{[\lambda,\emptyset]}(\boldsymbol{x},\boldsymbol{y}).$$

If we count the degree of variables as deg $x_n = n$ and deg $y_n = -n$, then the universal character $S_{[\lambda,\mu]}(\mathbf{x}, \mathbf{y})$ is a weighted homogeneous polynomial of degree $|\lambda| - |\mu|$, where $|\lambda| = \lambda_1 + \cdots + \lambda_l$. Namely, we have

$$S_{[\lambda,\mu]}(cx_1, c^2x_2, \dots, c^{-1}y_1, c^{-2}y_2, \dots) = c^{|\lambda| - |\mu|} S_{[\lambda,\mu]}(x_1, x_2, \dots, y_1, y_2, \dots),$$
(2.3)

for any nonzero constant c.

2.2 Lattice *q*-UC hierarchy

Let $I \subset \mathbb{Z}_{>0}$ and $J \subset \mathbb{Z}_{<0}$ be finite indexing sets and t_i $(i \in I \cup J)$ the independent variables. Let $T_i = T_{i:q}$ be the *q*-shift operator defined by

$$T_{i;q}(t_i) = \begin{cases} qt_i & (i \in I), \\ q^{-1}t_i & (i \in J), \end{cases}$$

and $T_{i;q}(t_j) = t_j$ $(i \neq j)$. We use also the notation: $T_{i_1}T_{i_2}\cdots T_{i_n} = T_{i_1i_2\dots i_n}$, for the sake of brevity.

Definition 2.1. The following system of *q*-difference equations for unknowns $\sigma_{m,n}(t)$ $(m, n \in \mathbb{Z})$ is called the *lattice q-UC hierarchy*:

$$t_i T_i(\sigma_{m,n+1}) T_j(\sigma_{m+1,n}) - t_j T_j(\sigma_{m,n+1}) T_i(\sigma_{m+1,n}) = (t_i - t_j) T_{ij}(\sigma_{m,n}) \sigma_{m+1,n+1},$$
(2.4)

where $i, j \in I \cup J$.

Let us consider the change of variables:

$$x_n = \frac{\sum_{i \in I} t_i^n - q^n \sum_{j \in J} t_j^n}{n(1 - q^n)}, \quad y_n = \frac{\sum_{i \in I} t_i^{-n} - q^{-n} \sum_{j \in J} t_j^{-n}}{n(1 - q^{-n})}, \quad (2.5)$$

then define the symmetric function $s_{[\lambda,\mu]} = s_{[\lambda,\mu]}(t)$ in t_i $(i \in I \cup J)$ by

$$s_{[\lambda,\mu]}(t) = S_{[\lambda,\mu]}(x,y).$$
(2.6)

The universal characters solve the lattice q-UC hierarchy in the following sense.

Proposition 2.2. We have

$$t_{i}T_{i}(s_{[\lambda,(k',\mu)]})T_{j}(s_{[(k,\lambda),\mu]}) - t_{j}T_{j}(s_{[\lambda,(k',\mu)]})T_{i}(s_{[(k,\lambda),\mu]})$$

= $(t_{i} - t_{j})T_{ij}(s_{[\lambda,\mu]})s_{[(k,\lambda),(k',\mu)]},$ (2.7)

for any integers k, k' and sequences of integers $\lambda = (\lambda_1, \dots, \lambda_l), \mu = (\mu_1, \dots, \mu_{l'}).$

The proof of the proposition above will be given in Section 8.

Remark 2.3. Define the functions $h_n = h_n(t)$ and $H_n = H_n(t)$ by

$$h_n(\mathbf{t}) = p_n(\mathbf{x}), \quad H_n(\mathbf{t}) = p_n(\mathbf{y}),$$

under (2.5). We note also the following expression by the generating functions:

$$\sum_{k=0}^{\infty} h_k(t) z^k = \prod_{i \in I, j \in J} \frac{(qt_j z; q)_{\infty}}{(t_i z; q)_{\infty}}, \quad \sum_{k=0}^{\infty} H_k(t) z^k = \prod_{i \in I, j \in J} \frac{(q^{-1} t_j^{-1} z; q^{-1})_{\infty}}{(t_i^{-1} z; q^{-1})_{\infty}}.$$
(2.8)

Hence, function $s_{[\lambda,\mu]}(t)$ can be expressed as

$$s_{[\lambda,\mu]}(t) = \det \begin{pmatrix} H_{\mu_{l'-i+1}+i-j}(t), & 1 \le i \le l' \\ h_{\lambda_{i-l'}-i+j}(t), & l'+1 \le i \le l+l' \end{pmatrix}_{1 \le i,j \le l+l'}.$$
(2.9)

Remark 2.4. (i) One can easily deduce from (2.4) the following equation:

$$(t_i - t_j)T_{ij}(\sigma_{m,n})T_k(\sigma_{m+1,n}) + (t_j - t_k)T_{jk}(\sigma_{m,n})T_i(\sigma_{m+1,n}) + (t_k - t_i)T_{ik}(\sigma_{m,n})T_j(\sigma_{m+1,n}) = 0,$$
(2.10)

where *i*, *j*, $k \in I \cup J$, which is exactly the bilinear equation of the *q*-UC hierarchy; see [Tsu04c]. (ii) If $\sigma_{m,n}(t)$ does not depend on *n*, that is, $\sigma_{m,n+1} = \sigma_{m,n}$ for all *m* and *n*, then (2.4) is reduced to the *q*-KP hierarchy; see [KNY02].

3 Point configuration, Weyl group and τ -functions

Consider the configuration of nine points in the complex projective plane \mathbb{P}^2 , which are divided into three triples of colinear points. Let [x : y : z] be the homogeneous coordinate of \mathbb{P}^2 . We can normalize, without loss of generality, the nine points p_i $(1 \le i \le 9)$ under consideration as follows:

$$p_{1} = [0:-1:a_{3}], \quad p_{2} = [0:-1:a_{3}a_{6}^{3}], \quad p_{3} = [0:-1:a_{3}a_{6}^{3}a_{0}^{3}],$$

$$p_{4} = [a_{3}:0:-1], \quad p_{5} = [a_{2}^{3}a_{3}:0:-1], \quad p_{6} = [a_{1}^{3}a_{2}^{3}a_{3}:0:-1],$$

$$p_{7} = [-1:a_{3}:0], \quad p_{8} = [-1:a_{3}a_{4}^{3}:0], \quad p_{9} = [-1:a_{3}a_{4}^{3}a_{5}^{3}:0],$$

(3.1)

where $a_i \in \mathbb{C}^{\times}$ are parameters such that $a_0 a_1 a_2^2 a_3^3 a_4^2 a_5 a_6^2 = q$.

Let $\psi : X = X_a \to \mathbb{P}^2$ be the blowing-up at nine points p_i $(1 \le i \le 9)$. Let $e_i = \psi^{-1}(p_i)$ be the exceptional divisor and *h* the divisor class corresponding to a hyperplane. We thus have the Picard lattice:

$$\operatorname{Pic}(X) = \mathbb{Z}h \oplus \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_9$$

of rational surface X, equipped with the intersection form (|) defined by (h|h) = 1, $(e_i|e_j) = -\delta_{i,j}$, and $(h|e_j) = 0$. The anti-canonical divisor $-K_X$ is uniquely decomposed into prime divisors:

$$-K_X = 3h - \sum_{1 \le i \le 9} e_i = D_1 + D_2 + D_3.$$

where $D_1 = h - e_1 - e_2 - e_3$, $D_2 = h - e_4 - e_5 - e_6$, and $D_3 = h - e_7 - e_8 - e_9$. Consider the orthogonal complement:

$$(-K_X)^{\perp} \stackrel{\text{def}}{=} \{ v \in \operatorname{Pic}(X) \, | \, (v|D_i) = 0 \text{ for } i = 1, 2, 3 \},\$$

then one can verify that (i) $(-K_X)^{\perp}$ is generated by the vectors $\alpha_{ij} = e_i - e_j$ (where both *i* and *j* belong to the same indexing set {1, 2, 3}, {4, 5, 6}, or {7, 8, 9}) and $\alpha_{ijk} = h - e_i - e_j - e_k$ ($i \le 3 < j \le 6 < k$); (ii) hence, $(-K_X)^{\perp}$ is isomorphic to the root lattice of type $E_6^{(1)}$; see [DO88, Sak01]. For instance, we have

$$Q := (-K_X)^{\perp} = \mathbb{Z}\alpha_0 \oplus \cdots \oplus \mathbb{Z}\alpha_6,$$

where we choose a root basis $B = \{\alpha_0, \ldots, \alpha_6\}$ defined by

$$\alpha_0 = \alpha_{23}, \quad \alpha_1 = \alpha_{56}, \quad \alpha_2 = \alpha_{45}, \quad \alpha_3 = \alpha_{147}, \quad \alpha_4 = \alpha_{78}, \quad \alpha_5 = \alpha_{89}, \quad \alpha_6 = \alpha_{12}$$

Note that the 72 roots of E_6 are represented by α_{ij} (18 vectors) and $\pm \alpha_{ijk}$ (54 vectors). The Dynkin diagram of *B* is of type $E_6^{(1)}$ and looks as follows (see [Kac90]):

Define the action of the reflection corresponding to a root $\alpha \in Q$ by

$$r_{\alpha}(v) = v + (v|\alpha)\alpha, \quad v \in \operatorname{Pic}(X).$$

We prepare the notations, $r_{ij} := r_{\alpha_{ij}}$, $r_{ijk} := r_{\alpha_{ijk}}$, and $s_i := r_{\alpha_i}$ (i = 0, ..., 6), for convenience. The action of the diagram automorphism ι_i (i = 1, 2) is defined by

$$\iota_1(e_{\{1,2,3,7,8,9\}}) = e_{\{7,8,9,1,2,3\}}, \quad \iota_2(e_{\{1,2,3,4,5,6\}}) = e_{\{4,5,6,1,2,3\}}$$

We thus obtain the linear action of the (extended) affine Weyl group $\widetilde{W}(E_6^{(1)}) = \langle s_0, \ldots, s_6, \iota_1, \iota_2 \rangle$ on Pic(X). In parallel, we fix the action of $\widetilde{W}(E_6^{(1)})$ on the *multiplicative* root variables $\boldsymbol{a} = (a_0, \ldots, a_6)$ as follows:

$$s_i(a_j) = a_j a_i^{-\iota_{ij}},$$

$$\iota_1(a_{\{0,1,2,3,4,5,6\}}) = a_{\{5,1,2,3,6,0,4\}}^{-1}, \quad \iota_2(a_{\{0,1,2,3,4,5,6\}}) = a_{\{1,0,6,3,4,5,2\}}^{-1},$$
(3.2)

where $C = (C_{ij})_{i,j}$ being the Cartan matrix of type $E_6^{(1)}$.

Next, we extend this realization of $\widetilde{W}(E_6^{(1)})$ to birational transformations. To this end, we shall introduce the notion of τ -functions; *cf.* [KMNOY03]. Consider the field $\mathcal{L} = K(\tau_1, \ldots, \tau_9)$

of rational functions in indeterminants τ_i $(1 \le i \le 9)$ with the coefficient field $K = \mathbb{C}(a^{1/3}) = \mathbb{C}(a_0^{1/3}, \dots, a_6^{1/3})$. Take a sub-lattice $M = \bigcup_{i=1,2,3} M_i$ of Pic(X), where

$$M_i = \left\{ v \in \operatorname{Pic}(X) \mid (v|v) = (v|D_i) = -1, \ (v|D_j) = 0 \ (j \neq i) \right\}$$

Definition 3.1. A function $\tau : M \to \mathcal{L}$ is said to be a τ -function iff it satisfies the conditions: (i) $\tau(w.v) = w.\tau(v)$ for any $v \in M$ and $w \in \widetilde{W}(E_6^{(1)})$; (ii) $\tau(e_i) = \tau_i$ $(1 \le i \le 9)$.

Such functions and the action of $\widetilde{W}(E_6^{(1)})$ on them are explicitly determined in the following way. Denote by L_{ij} the line passing through p_i and p_j . Let $F_{ij} = F_{ij}(x, y, z) \in \mathbb{Q}(a)[x, y, z]$ be the *unique* defining polynomial of L_{ij} such that the product of the coefficients of x, y and z equals 1; for instance, we have

$$L_{14} = \{F_{14} = a_3^{-1}x + a_3y + z = 0\},\$$

$$L_{47} = \{F_{47} = x + a_3^{-1}y + a_3z = 0\},\$$

$$L_{17} = \{F_{17} = a_3x + y + a_3^{-1}z = 0\}.$$

Set

$$\left(\frac{x}{c_{123}}, \frac{y}{c_{456}}, \frac{z}{c_{789}}\right) = (\tau_1 \tau_2 \tau_3, \tau_4 \tau_5 \tau_6, \tau_7 \tau_8 \tau_9), \tag{3.3}$$

with

$$c_{123} = a_1^{\frac{1}{3}} a_2^{\frac{2}{3}} a_4^{-\frac{2}{3}} a_5^{-\frac{1}{3}}, \quad c_{456} = a_5^{\frac{1}{3}} a_4^{\frac{2}{3}} a_6^{-\frac{2}{3}} a_0^{-\frac{1}{3}}, \quad c_{789} = a_0^{\frac{1}{3}} a_6^{\frac{2}{3}} a_2^{-\frac{2}{3}} a_1^{-\frac{1}{3}},$$

and suppose that

$$F_{ij}(x, y, z) = \tau(e_i)\tau(e_j)\tau(h - e_i - e_j).$$
(3.4)

By $r_{ijk}(e_k) = h - e_i - e_j$, one can immediately compute the action of r_{ijk} from (3.3) and (3.4). Each action of r_{ij} and diagram automorphism ι_i is realized as just a permutation of τ_i 's. Summarizing above, we now arrive at the following theorem.

Theorem 3.2. Define the birational transformations s_i $(0 \le i \le 6)$ and ι_j (j = 1, 2) on $\mathcal{L} = \mathbb{C}(a^{1/3})(\tau_1, \ldots, \tau_9)$ by

$$s_{1}(\tau_{\{5,6\}}) = \tau_{\{6,5\}}, \quad s_{2}(\tau_{\{4,5\}}) = \tau_{\{5,4\}}, \quad s_{4}(\tau_{\{7,8\}}) = \tau_{\{8,7\}}, \quad s_{5}(\tau_{\{8,9\}}) = \tau_{\{9,8\}}, \\ s_{6}(\tau_{\{1,2\}}) = \tau_{\{2,1\}}, \quad s_{0}(\tau_{\{2,3\}}) = \tau_{\{3,2\}}, \quad \iota_{1}(\tau_{\{1,2,3\}}) = \tau_{\{7,8,9\}}, \quad \iota_{2}(\tau_{\{1,2,3\}}) = \tau_{\{4,5,6\}}, \\ s_{3}(\tau_{1}) = \left(c_{123}\tau_{1}\tau_{2}\tau_{3} + a_{3}^{-1}c_{456}\tau_{4}\tau_{5}\tau_{6} + a_{3}c_{789}\tau_{7}\tau_{8}\tau_{9}\right)/(\tau_{4}\tau_{7}), \\ s_{3}(\tau_{4}) = \left(a_{3}c_{123}\tau_{1}\tau_{2}\tau_{3} + c_{456}\tau_{4}\tau_{5}\tau_{6} + a_{3}^{-1}c_{789}\tau_{7}\tau_{8}\tau_{9}\right)/(\tau_{1}\tau_{7}), \\ s_{3}(\tau_{7}) = \left(a_{3}^{-1}c_{123}\tau_{1}\tau_{2}\tau_{3} + a_{3}c_{456}\tau_{4}\tau_{5}\tau_{6} + c_{789}\tau_{7}\tau_{8}\tau_{9}\right)/(\tau_{1}\tau_{4}).$$

$$(3.5)$$

Then (3.5) with (3.2) provide a realization of $\widetilde{W}(E_6^{(1)}) = \langle s_0, \ldots, s_6, \iota_1, \iota_2 \rangle$.

4 Discrete Painlevé equation

By virtue of Theorem 3.2 given in the preceding section, we have also birational action of $\widetilde{W}(E_6^{(1)})$ on the inhomogeneous coordinate:

$$[f:g:1] = \left[\frac{x}{c_{123}}:\frac{y}{c_{456}}:\frac{z}{c_{789}}\right] = [\tau_1\tau_2\tau_3:\tau_4\tau_5\tau_6:\tau_7\tau_8\tau_9].$$
(4.1)

Corollary 4.1. Let

$$s_{3}(f) = f \frac{c_{123}f + a_{3}^{-1}c_{456}g + a_{3}c_{789}}{a_{3}^{-1}c_{123}f + a_{3}c_{456}g + c_{789}},$$

$$s_{3}(g) = g \frac{a_{3}c_{123}f + c_{456}g + a_{3}^{-1}c_{789}}{a_{3}^{-1}c_{123}f + a_{3}c_{456}g + c_{789}},$$

$$\iota_{1}(f) = \frac{1}{f}, \quad \iota_{1}(g) = \frac{g}{f}, \quad \iota_{2}(f) = g, \quad \iota_{2}(g) = f.$$
(4.2)

Then (4.2) with (3.2) realizes $\widetilde{W}(E_6^{(1)})$ on the function field $\mathbb{C}(\boldsymbol{a}^{1/3}; f, g) = \mathbb{C}(\boldsymbol{a}^{1/3})(f, g)$.

This representation is essentially equivalent to that given in [Sak01]. The birational action arising from the translation part of affine Weyl group can be regrded as a discrete dynamical system and is called a *discrete Painlevé equation*; *cf.* [NY98]. Consider an element

$$\ell = r_{258}r_{369}r_{258}r_{147}$$

= $(s_2s_4s_6s_0s_1s_5s_3s_2s_4s_6s_3)^2 \in W(E_6^{(1)}),$ (4.3)

acting on the parameters $a = (a_0, \ldots, a_6)$ as their q-shifts:

$$\ell(\boldsymbol{a}) = \overline{\boldsymbol{a}} = (a_0, a_1, q^{-1}a_2, q^2a_3, q^{-1}a_4, a_5, q^{-1}a_6).$$
(4.4)

We define rational functions F(a; f, g), $G(a; f, g) \in \mathbb{C}(a^{1/3}; f, g)$ by

$$\ell(f) = F(a; f, g), \quad \ell(g) = G(a; f, g).$$
 (4.5)

Definition 4.2. The system of functional equations:

$$f(\overline{a}) = F(a; f(a), g(a)), \quad g(\overline{a}) = G(a; f(a), g(a)), \tag{4.6}$$

for unknowns f = f(a) and g = g(a) is called the *q*-Painlevé equation of type $E_6^{(1)}$.

We shall often denote (4.6) shortly by q- $P(E_6)$.

Remark 4.3. We have the following inclusion relation of affine Weyl groups: $W(E_6^{(1)}) \supset W(A_5^{(1)}) \oplus W(A_1^{(1)})$. For instance, the sets of vectors $B' = \{\alpha_{158}, \alpha_{367}, \alpha_{248}, \alpha_{169}, \alpha_{257}, \alpha_{349}\}$ and $B'' = \{\alpha_{147}, \alpha_{258} + \alpha_{369}\}$ realize the root bases of types $A_5^{(1)}$ and $A_1^{(1)}$, respectively. Moreover, they are mutually orthogonal. The transformation ℓ , used to define the *q*-Painlevé equation (4.6), is exactly the translation in $W(A_1^{(1)})$; that is, $r_{\alpha_{258}+\alpha_{369}}r_{\alpha_{147}} = (r_{258}r_{369}r_{258})r_{147} = \ell$.

5 Bilinear equations among τ -functions

Intoroduce the transformations $\ell_2 = r_{369}r_{147}r_{369}r_{258}$ and $\ell_3 = r_{147}r_{258}r_{147}r_{369}$, in parallel with $\ell_1 = \ell = r_{258}r_{369}r_{258}r_{147}$. These act on the root variables as their *q*-shifts:

$$\ell_{1}(\boldsymbol{a}) = (a_{0}, a_{1}, q^{-1}a_{2}, q^{2}a_{3}, q^{-1}a_{4}, a_{5}, q^{-1}a_{6}),$$

$$\ell_{2}(\boldsymbol{a}) = (q^{-1}a_{0}, q^{-1}a_{1}, qa_{2}, q^{-1}a_{3}, qa_{4}, q^{-1}a_{5}, qa_{6}),$$

$$\ell_{3}(\boldsymbol{a}) = (qa_{0}, qa_{1}, a_{2}, q^{-1}a_{3}, a_{4}, qa_{5}, a_{6}).$$

(5.1)

Note that ℓ_i 's are mutually commutable and $\ell_1 \ell_2 \ell_3 = id$. The action of ℓ_i on the auxiliary variables:

$$a = (a_0 a_1 a_5)^{1/3}, \quad b = (a_2 a_4 a_6 q)^{1/3},$$
 (5.2)

is described as follows:

$$\ell_1(a,b) = (a,q^{-1}b), \quad \ell_2(a,b) = (q^{-1}a,qb), \quad \ell_3(a,b) = (qa,b).$$
 (5.3)

Lemma 5.1. It holds that

$$\tau_3 \ell_3(\tau_6) - a^2 b \ell_3(\tau_3) \tau_6 = \left(\frac{a_1^2 a_2}{a_0^2 a_6}\right)^{1/3} \frac{1 - a^6 b^3}{a^2 b} \tau_7 \tau_8.$$
(5.4)

Proof. The *normalized* defining polynomials of lines L_{39} and L_{69} read (see Section 3)

$$F_{39}(x, y, z) = a_0 a_3 a_4^2 a_5^2 a_6 x + \frac{a_0 a_6 y}{a_4 a_5} + \frac{z}{a_0^2 a_3 a_4 a_5 a_6^2},$$

$$F_{69}(x, y, z) = \frac{a_4 a_5 x}{a_1 a_2} + \frac{y}{a_1 a_2 a_3 a_4^2 a_5^2} + a_1^2 a_2^2 a_3 a_4 a_5 z,$$

respectively. Eliminating x and y, we get

$$F_{39} - a_0 a_1 a_2 a_3 a_4 a_5 a_6 F_{69} = \frac{1 - (a_0 a_1 a_2 a_3 a_4 a_5 a_6)^3}{a_0^2 a_3 a_4 a_5 a_6^2} z.$$
 (5.5)

Recall that $z = c_{789}\tau_7\tau_8\tau_9$ and $F_{ij} = \tau_i\tau_j\tau(h - e_i - e_j)$; see (3.3) and (3.4). By virtue of $\ell_3(e_6) = h - e_3 - e_9$ and $\ell_3(e_3) = h - e_6 - e_9$, we thus obtain (5.4) from (5.5).

Now, we shall rename the τ -functions as follows:

$$U_{\{1,2,3\}} = \frac{\tau_{\{1,4,7\}}}{N(a,b)}, \quad V_{\{1,2,3\}} = \frac{\tau_{\{2,5,8\}}}{N(q^{1/3}a, q^{-2/3}b)}, \quad W_{\{1,2,3\}} = \frac{\tau_{\{3,6,9\}}}{N(q^{-1/3}a, q^{-1/3}b)}, \tag{5.6}$$

where the normalization factor N(a, b) is defined by

$$N(a,b) = \frac{\left(-\frac{aq}{b}, -ab^2q, -\frac{q}{a^2b}; q, q\right)_{\infty} \left(\frac{b^3q^3}{a^3}, \frac{q^3}{a^3b^6}, a^6b^3q^3; q^3, q^3\right)_{\infty}}{\left(\frac{b^2q^2}{a^2}, \frac{q^2}{a^2b^4}, a^4b^2q^2; q^2, q^2\right)_{\infty}}.$$
(5.7)

Equation (5.4) in Lemma 5.1 is then rewritten into

$$\frac{1}{a}W_1\ell_3(W_2) - ab\ell_3(W_1)W_2 = \left(\frac{a_1^2a_2}{a_0^2a_6}\right)^{1/3} \left(\frac{1}{a} - ab\right) U_3V_3,$$
(5.8)

by straightforward computation. As seen below, all the other bilinear equations for U_i , V_i , and W_i can also be derived from (5.8) by suitable symmetries of $\widetilde{W}(E_6^{(1)})$. Applying $r_{13}r_{46}r_{79}$ to (5.8) and viewing that $\ell_1 = r_{13}r_{46}r_{79}\ell_3r_{13}r_{46}r_{79}$, we thus obtain

$$abU_1\ell_1(U_2) - \frac{q}{b}\ell_1(U_1)U_2 = \left(\frac{a_0a_6^2}{a_1a_2^2}\right)^{1/3} \left(ab - \frac{q}{b}\right)V_3W_3.$$
(5.9)

Moreover, let us consider an element $\pi = s_0 s_1 s_5 \iota_1 \iota_2 \in \widetilde{W}(E_6^{(1)})$ of order six whose action is given as follows:

$$\pi: (a_0, a_1, a_2, a_3, a_4, a_5, a_6; \tau_{\{1,2,3,4,5,6,7,8,9\}}) \mapsto \left(\frac{1}{a_5}, \frac{1}{a_0}, a_0a_6, a_3, a_1a_2, \frac{1}{a_1}, a_4a_5; \tau_{\{7,9,8,1,3,2,4,6,5\}}\right).$$

Hence we see that

$$\pi: (a, b; U_i, V_i, W_i) \mapsto \left(\frac{1}{a}, ab; U_{i-1}, W_{i-1}, V_{i-1}\right),$$
(5.10)

and also that the commutation relations, $\pi \ell_1 = \ell_1 \pi$, $\pi \ell_2 = \ell_3 \pi$, $\pi \ell_3 = \ell_2 \pi$, hold. Note that π realizes the rotational diagram automorphism of $A_5^{(1)}$, considered in Remark 4.3. Applying π to (5.8) and (5.9), we get the following proposition.

Proposition 5.2. The following bilinear equations among the τ -functions U_i , V_i and W_i hold:

$$abU_{i}\ell_{1}(U_{i+1}) - \frac{q}{b}\ell_{1}(U_{i})U_{i+1} = \gamma_{i}\left(ab - \frac{q}{b}\right)V_{i+2}W_{i+2},$$
(5.11a)

$$\frac{1}{b}V_i\ell_2(V_{i+1}) - \frac{1}{a}\ell_2(V_i)V_{i+1} = \delta_i\left(\frac{1}{b} - \frac{1}{a}\right)W_{i+2}U_{i+2},$$
(5.11b)

$$\frac{1}{a}W_{i}\ell_{3}(W_{i+1}) - ab\ell_{3}(W_{i})W_{i+1} = \epsilon_{i}\left(\frac{1}{a} - ab\right)U_{i+2}V_{i+2},$$
(5.11c)

for $i \in \mathbb{Z}/3\mathbb{Z}$. Here γ_i and δ_i are the parameters defined by

$$\gamma_{1} = \left(\frac{a_{0}a_{6}^{2}}{a_{1}a_{2}^{2}}\right)^{1/3}, \quad \gamma_{2} = \left(\frac{a_{1}a_{2}^{2}}{a_{4}^{2}a_{5}}\right)^{1/3}, \quad \gamma_{3} = \left(\frac{a_{4}^{2}a_{5}}{a_{0}a_{6}^{2}}\right)^{1/3},$$

$$\delta_{1} = \left(\frac{a_{0}a_{2}}{a_{1}a_{6}}\right)^{1/3}, \quad \delta_{2} = \left(\frac{a_{1}a_{4}}{a_{2}a_{5}}\right)^{1/3}, \quad \delta_{3} = \left(\frac{a_{5}a_{6}}{a_{0}a_{4}}\right)^{1/3},$$

$$\epsilon_{1} = \left(\frac{a_{1}^{2}a_{2}}{a_{0}^{2}a_{6}}\right)^{1/3}, \quad \epsilon_{2} = \left(\frac{a_{4}a_{5}^{2}}{a_{1}^{2}a_{2}}\right)^{1/3}, \quad \epsilon_{3} = \left(\frac{a_{0}^{2}a_{6}}{a_{4}a_{5}^{2}}\right)^{1/3}.$$
(5.12)

We call system (5.11) the *bilinear form of the q-Painlevé equation of type* $E_6^{(1)}$. Conversely, we can verify that, for any functions U_i , V_i , W_i ($i \in \mathbb{Z}/3\mathbb{Z}$) satisfying (5.11), the pair of variables (f, g) defined by

$$f = \frac{U_1 V_1 W_1}{U_3 V_3 W_3}, \quad g = \frac{U_2 V_2 W_2}{U_3 V_3 W_3},$$

certainly solves the q-Painlevé equation (4.6); here we recall (4.1) and (5.6).

Remark 5.3. (i) Consider the case where $a_0 = a_1 = a_5$ and $a_2 = a_4 = a_6$. Then, the functions $\tau_1 = \tau_4 = \tau_7 = N(a, b)$, $\tau_2 = \tau_5 = \tau_8 = N(q^{1/3}a, q^{-2/3}b)$, and $\tau_3 = \tau_6 = \tau_9 = N(q^{-1/3}a, q^{-1/3}b)$, provide the fixed solution with respect to the action of $\pi^2 = \iota_2 \iota_1$, the diagram rotation of $E_6^{(1)}$ of order three.

(ii) We have also another type of bilinear equations among six τ -functions connected with π :

$$(a-b)W_i\ell_1^{-1}(V_{i+1}) + \left(b - \frac{1}{ab}\right)\ell_3(W_i)\ell_2(V_{i+1}) + \left(\frac{1}{ab} - a\right)\ell_1^{-1}(W_i)V_{i+1} = 0,$$
(5.13a)

$$\left(\frac{1}{a} - ab\right) V_i \ell_1^{-1}(W_{i+1}) + \left(ab - \frac{1}{b}\right) \ell_2(V_i) \ell_3(W_{i+1}) + \left(\frac{1}{b} - \frac{1}{a}\right) \ell_1^{-1}(V_i) W_{i+1} = 0.$$
(5.13b)

This system can be viewed as a similarlity reduction of the *q*-UC hierarchy (see (2.10)), in fact; *cf*. [Tsu04c, TM04].

6 Similarity reduction of lattice q-UC hierarchy to q- $P(E_6)$

We shall explain how the bilinear form of q- $P(E_6)$, (5.11), arises naturally from the lattice q-UC hierarchy, through certain periodic and similarity reductions. Let $I = \{1, 2, 3\}$ and $J = \emptyset$; consider the lattice q-UC hierarchy:

$$t_i T_i(\sigma_{m,n+1}) T_j(\sigma_{m+1,n}) - t_j T_j(\sigma_{m,n+1}) T_i(\sigma_{m+1,n}) = (t_i - t_j) T_{ij}(\sigma_{m,n}) \sigma_{m+1,n+1}.$$
(6.1)

We impose the (3, 3)-periodic condition:

$$\sigma_{m,n} = \sigma_{m+3,n} = \sigma_{m,n+3},\tag{6.2}$$

and the similarity condition:

$$\sigma_{m,n}(ct_1, ct_2, ct_3) = c^{d_{m,n}} \sigma_{m,n}(t_1, t_2, t_3), \tag{6.3}$$

for any $c \in \mathbb{C}^{\times}$. Here $d_{m,n}$ are constant parameters such that $d_{m,n} + d_{m+1,n+1} = d_{m+1,n} + d_{m,n+1}$. Then, we introduce the functions $\widetilde{\sigma}_{m,n}(a, b)$ in two variables defined by $\widetilde{\sigma}_{m,n}(a, b) = \sigma_{m,n}(t_1, t_2, t_3)$ under the substitution $(t_1, t_2, t_3) = (a^{-1}, b^{-1}, ab)$. We thus have the following lemma.

Lemma 6.1. Let

$$U_{i}(a,b) = \widetilde{\sigma}_{i,-i}(a,b),$$

$$V_{i}(a,b) = \widetilde{\sigma}_{i+1,-i+1}(q^{1/3}a,q^{-2/3}b),$$

$$W_{i}(a,b) = \widetilde{\sigma}_{i+2,-i+2}(q^{-1/3}a,q^{-1/3}b),$$
(6.4)

for $i \in \mathbb{Z}/3\mathbb{Z}$. Then these functions satisfy the bilinear form of q- $P(E_6)$, (5.11), with the parameters:

$$\gamma_i = q^{(d_{i,-i+2} - d_{i+1,-i})/3}, \quad \delta_i = q^{(d_{i+1,-i} - d_{i+2,-i+1})/3}, \quad \epsilon_i = q^{(d_{i+2,-i+1} - d_{i,-i+2})/3}.$$
(6.5)

Proof. Being attentive to the action of ℓ_i 's on variables *a* and *b* (see (5.3)), one can deduce the bilinear form of q- $P(E_6)$ straightforwardly from the lattice q-UC hierarchy (6.1) by the similarity condition (6.3) together with the periodicity (6.2).

For instance, we shall start from (6.1) with (m, n) = (r + 1, -r) and (i, j) = (1, 2):

$$t_1\sigma_{r+1,-r+1}(qt_1,t_2,t_3)\sigma_{r+2,-r}(t_1,qt_2,t_3) - t_2\sigma_{r+1,-r+1}(t_1,qt_2,t_3)\sigma_{r+2,-r}(qt_1,t_2,t_3)$$

= $(t_1 - t_2)\sigma_{r+1,-r}(qt_1,qt_2,t_3)\sigma_{r+2,-r+1}(t_1,t_2,t_3).$

By using the homogeneity (6.3), we have

$$\begin{aligned} &q^{(d_{r+1,-r+1}+d_{r+2,-r})/3}t_1\sigma_{r+1,-r+1}(q^{2/3}t_1,q^{-1/3}t_2,q^{-1/3}t_3)\sigma_{r+2,-r}(q^{-1/3}t_1,q^{2/3}t_2,q^{-1/3}t_3) \\ &-q^{(d_{r+1,-r+1}+d_{r+2,-r})/3}t_2\sigma_{r+1,-r+1}(q^{-1/3}t_1,q^{2/3}t_2,q^{-1/3}t_3)\sigma_{r+2,-r}(q^{2/3}t_1,q^{-1/3}t_2,q^{-1/3}t_3) \\ &=q^{2d_{r+1,-r}/3}(t_1-t_2)\sigma_{r+1,-r}(q^{1/3}t_1,q^{1/3}t_2,q^{-2/3}t_3)\sigma_{r+2,-r+1}(t_1,t_2,t_3). \end{aligned}$$

Putting $(t_1, t_2, t_3) = (a^{-1}, b^{-1}, ab)$, therefore we obtain

$$\begin{split} &\frac{1}{a}\widetilde{\sigma}_{r+1,-r+1}(q^{-2/3}a,q^{1/3}b)\widetilde{\sigma}_{r+2,-r}(q^{1/3}a,q^{-2/3}b) \\ &-\frac{1}{b}\widetilde{\sigma}_{r+1,-r+1}(q^{1/3}a,q^{-2/3}b)\widetilde{\sigma}_{r+2,-r}(q^{-2/3}a,q^{1/3}b) \\ &=q^{(d_{r+1,-r}-d_{r+2,-r+1})/3}\left(\frac{1}{a}-\frac{1}{b}\right)\widetilde{\sigma}_{r+1,-r}(q^{-1/3}a,q^{-1/3}b)\widetilde{\sigma}_{r+2,-r+1}(a,b) \end{split}$$

which turns out to coincide with (5.11b) in view of the action of ℓ_2 . In the same way, we can derive also (5.11a) and (5.11c). The proof is now complete.

7 Algebraic solutions of *q*-Painlevé equation in terms of the universal character

As seen in the preceding section, the q-Painlevé equation of type $E_6^{(1)}$ is in fact equivalent to a similarity reduction of the (periodic) lattice q-UC hierarchy. On the other hand, we have already known that the lattice q-UC hierarchy admits the universal characters as its homogeneous solutions; see Proposition 2.2. Consequently, we obtain in particular a class of algebraic solutions of the q-Painlevé equation in terms of the universal character.

In order to state our main result precisely, we first recall the notion of *N*-core partitions; see *e.g.* [Nou04]. A subset $M \subset \mathbb{Z}$ is said to be a *Maya diagram* if $m \in M$ ($m \ll 0$) and $m \notin M$ ($m \gg 0$). Each Maya diagram $M = \{\dots, m_3, m_2, m_1\}$ corresponds to a unique partition $\lambda = (\lambda_1, \lambda_2, \dots)$ such that $m_i - m_{i+1} = \lambda_i - \lambda_{i+1} + 1$. For a sequence of integers $\mathbf{n} = (n_1, n_2, \dots, n_N) \in \mathbb{Z}^N$, let us consider the Maya diagram:

$$M(\mathbf{n}) = (N\mathbb{Z}_{< n_1} + 1) \cup (N\mathbb{Z}_{< n_2} + 2) \cup \cdots \cup (N\mathbb{Z}_{< n_N} + N),$$

and denote by $\lambda(n)$ the corresponding partition. Note that $\lambda(n) = \lambda(n+1)$, where $\mathbf{1} = (1, 1, ..., 1)$. We call a partition of the form $\lambda(n)$ an *N*-core partition. It is well-known that a partition λ is *N*-core if and only if λ has no hook with length of a multiple of *N*. We have a cyclic chain of the universal characters attached to *N*-core partitions; see [Tsu04b, Lemma 2.2].

Lemma 7.1. It holds that

$$S_{\left[\left(k_{i},\lambda(\boldsymbol{n}(i-1))\right),\mu\right]} = \pm S_{\left[\lambda(\boldsymbol{n}(i)),\mu\right]},\tag{7.1}$$

for arbitrary $\mathbf{n} = (n_1, n_2, ..., n_N) \in \mathbb{Z}^N$ and partition μ . Here $\mathbf{n}(i) = \mathbf{n} + (1, ..., 1, 0, ..., 0)$ and $k_i = Nn_i - |\mathbf{n}|$ with $|\mathbf{n}| = n_1 + n_2 + \cdots + n_N$.

Finally, by virtue of Proposition 2.2 and Lemmas 6.1 and 7.1, we are led to the following expression of algebraic solutions by means of the universal character attached to a pair of three-core partitions. Define a rational function $R_{[\lambda,\mu]} = R_{[\lambda,\mu]}(a,b)$ by (recall (2.1) or (2.9)):

$$R_{[\lambda,\mu]}(a,b) = S_{[\lambda,\mu]}(\boldsymbol{x},\boldsymbol{y}) = s_{[\lambda,\mu]}(\boldsymbol{t}), \qquad (7.2)$$

under the substitution:

$$x_n = \frac{a^{-n} + b^{-n} + (ab)^n}{n(1 - q^n)}, \quad y_n = \frac{a^n + b^n + (ab)^{-n}}{n(1 - q^{-n})}, \quad (n = 1, 2, ...),$$
(7.3)

or $(t_1, t_2, t_3) = (a^{-1}, b^{-1}, ab)$ with $I = \{1, 2, 3\}$ and $J = \emptyset$.

Theorem 7.2. For any $m = (m_1, m_2, m_3), n = (n_1, n_2, n_3) \in \mathbb{Z}^3$, let

$$U_{i}(a,b) = R_{[\lambda(\mathbf{m}(i)), \lambda(\mathbf{n}(-i))]}(a,b),$$

$$V_{i}(a,b) = R_{[\lambda(\mathbf{m}(i+1)), \lambda(\mathbf{n}(-i+1))]}(q^{1/3}a, q^{-2/3}b),$$

$$W_{i}(a,b) = R_{[\lambda(\mathbf{m}(i+2)), \lambda(\mathbf{n}(-i+2))]}(q^{-1/3}a, q^{-1/3}b).$$

(7.4)

(i) These functions solve the system of bilinear equations (5.11) with the parameters:

$$\gamma_i = q^{n_{-i} - m_{i+1} + \frac{|\mathbf{m}| - |\mathbf{n}|}{3}}, \quad \delta_i = q^{n_{-i+1} - m_{i+2} + \frac{|\mathbf{m}| - |\mathbf{n}|}{3}}, \quad \epsilon_i = q^{n_{-i+2} - m_i + \frac{|\mathbf{m}| - |\mathbf{n}|}{3}}.$$
(7.5)

(ii) Consequently, the pair of functions

$$f = \frac{U_1 V_1 W_1}{U_3 V_3 W_3}, \quad g = \frac{U_2 V_2 W_2}{U_3 V_3 W_3},$$
(7.6)

gives an algebraic solution of the q-Painlevé equation of type $E_6^{(1)}$, (4.6), when

$$a_{1} = aq^{\frac{|m|+|n|}{3} - m_{1} - n_{3}}, \quad a_{5} = aq^{\frac{|m|+|n|}{3} - m_{2} - n_{2}}, \quad a_{0} = aq^{\frac{|m|+|n|}{3} - m_{3} - n_{1}}, \\ a_{2} = bq^{\frac{|m|+|n|-1}{3} - m_{3} - n_{2}}, \quad a_{4} = bq^{\frac{|m|+|n|-1}{3} - m_{1} - n_{1}}, \quad a_{6} = bq^{\frac{|m|+|n|-1}{3} - m_{2} - n_{3}}.$$
(7.7)

Example 7.3. Let us consider the special polynomial:

$$P_{[\lambda,\mu]}(a,b;q) = (ab)^{|\lambda|+|\mu|} q^{-|\nu|} \prod_{(i,j)\in\lambda} \left(1-q^{h(i,j)}\right) \prod_{(k,l)\in\mu} \left(q^{h(k,l)}-1\right) R_{[\lambda,\mu]}(a,b),$$

associated with the algebraic solutions. Here we denote by h(i, j) the *hook-length*, that is, $h(i, j) = \lambda_i + \lambda'_j - i - j + 1$ (see [Mac95]); we let $v = (v_1, v_2, ...)$ be a sequence of integers defined by $v_i = \max\{0, \mu'_i - \lambda_i\}$. It is interesting that $P_{[\lambda,\mu]}(a, b; q)$ forms a polynomial whose coefficients are all positive integers. A few examples of the special polynomials are given below:

λ	μ	$P_{[\lambda,\mu]}(a,b;q)$
Ø	Ø	1
(1)	Ø	$a + b + a^2 b^2$
(2)	Ø	$a^{2} + b^{2} + a^{4}b^{4} + (1+q)ab(1+a^{2}b+ab^{2})$
(1,1)	Ø	$q(a^2 + b^2 + a^4b^4) + (1+q)ab(1+a^2b+ab^2)$
Ø	(1)	$1 + a^2b + ab^2$
Ø	(2)	$q(1 + a^4b^2 + a^2b^4) + (1 + q)ab(a + b + a^2b^2)$
(1)	(1)	$(1+q+q^2)a^2b^2 + qab(a^2+b^2) + q(a+b)(1+a^3b^3)$
(1)	(2)	$(1+q+2q^2+q^3)a^2b^2(1+a^2b+ab^2)+q(1+q)ab(a^2+b^2+a^4b^4)$
		$+q^{2}(a+b+a^{2}b^{2}(a^{3}+b^{3})+a^{4}b^{4}(a^{2}+b^{2}))$

8 Verification of Proposition 2.2

Take an $(l + l' + 2) \times (l + l' + 2)$ matrix of the form:

$$X = (X_{a,b})_{1 \le a,b \le l+l'+2} = \left(\begin{array}{c|c} -t_i^{-1}T_j(H_{\mu_{l'-a+1}+a-1}) & -t_j^{-1}T_i(H_{\mu_{l'-a+1}+a-1}) & T_{ij}(H_{\mu_{l'-a+1}+a-b+2}) \\ \hline T_j(h_{\lambda_{a-l'-2}-a+2}) & T_i(h_{\lambda_{a-l'-2}-a+2}) & T_{ij}(h_{\lambda_{a-l'-2}-a+b}) \\ \hline \end{array} \right) \begin{array}{c} l & l'+1 \\ l+1 \end{array} .$$
(8.1)

Let $D = \det X$ and denote by $D[i_1, i_2, \ldots; j_1, j_2, \ldots]$ its minor determinant removing rows $\{i_a\}$ and columns $\{j_a\}$. We put $\lambda_0 = k$ and $\mu_0 = k'$.

$$(t_i - t_j) s_{[(k,\lambda),(k',\mu)]}(t) = (t_i t_j)^{l'+1} D,$$
(8.2a)

$$T_{ij}(s_{[\lambda,\mu]}(t)) = D[l'+1, l'+2; 1, 2],$$
(8.2b)

$$T_i(s_{[(k,\lambda),\mu]}(t)) = (-t_j)^{l'} D[l'+1;1],$$
(8.2c)

$$T_{j}(s_{[\lambda,(k',\mu)]}(t)) = (-t_{i})^{l'+1}D[l'+2;2],$$
(8.2d)

$$T_j(s_{[(k,\lambda),\mu]}(t)) = (-t_i)^{l'} D[l'+1;2],$$
(8.2e)

$$T_i(s_{[\lambda,(k',\mu)]}(t)) = (-t_j)^{l'+1} D[l'+2;1].$$
(8.2f)

Proof. Let us prove only (8.2a) in the following; the others (8.2b)–(8.2f) can be verified in a similar manner. It is easy to see that

$$T_i(h_n) = h_n - t_i h_{n-1},$$
 (8.3a)

$$T_i(H_n) = H_n - t_i^{-1} H_{n-1}.$$
 (8.3b)

We shall apply elemantary transformations successively to the row vector $(h_n, h_{n+1}, ..., h_{n+r-1})$ of size r = l + l' + 2. First we add the *b*-th column multiplied by $(-t_i)$ to the (b + 1)-th column for $1 \le b \le r - 1$, we then obtain by (8.3a),

$$(h_n, T_i(h_{n+1}), T_i(h_{n+2}), \ldots, T_i(h_{n+r-1})).$$

Secondly adding the *b*-th column multiplied by $(-t_j)$ to the (b + 1)-th column for $2 \le b \le r - 1$, we get

$$(h_n, T_i(h_{n+1}), T_{ij}(h_{n+2}), \ldots, T_{ij}(h_{n+r-1})).$$

Add the second column multiplied by $(t_i - t_j)^{-1}$ to the first column, we finally obtain the vector:

$$((t_i - t_j)^{-1}T_j(h_{n+1}), T_i(h_{n+1}), T_{ij}(h_{n+2}), \ldots, T_{ij}(h_{n+r-1})).$$

By the same procedure as above, the low vector $(H_n, H_{n-1}, \ldots, H_{n-r+1})$ is also converted to

$$\left(-(t_i-t_j)^{-1}t_jT_j(H_n), -t_iT_i(H_n), t_it_jT_{ij}(H_n), \dots, t_it_jT_{ij}(H_{n-r+3})\right),$$

via (8.3b).

Therefore, remembering (2.9), we arrive at the expression: $(t_i - t_j)s_{[(k,\lambda),(k',\mu)]}(t) = (t_i t_j)^{l'+1}D.$

Proof of Proposition 2.2. By applying Jacobi's identity:

$$DD[l' + 1, l' + 2; 1, 2] = D[l' + 1; 1]D[l' + 2; 2] - D[l' + 1; 2]D[l' + 2; 1],$$

then (2.7) follows immediately from Lemma 8.1.

A Reductions to *q*-Painlevé equations of types $A_{2g+1}^{(1)}$ and $D_5^{(1)}$

Recall that the *q*-Painlevé equations of types $A_{2g+1}^{(1)}$ and $D_5^{(1)}$ can be derived as reductions from the *q*-UC hierarchy; see [Tsu04c] and [TM04], respectively. Accordingly, it is obvious that they can be derived also from the lattice *q*-UC hierarchy, as the latter hierarchy includes the former one; see Remark 2.4 (i). We verify that the equations of types $A_{2g+1}^{(1)}$ and $D_5^{(1)}$ are, in fact, similarity reductions of the lattice *q*-UC hierarchy together with periodic conditions of order (*g* + 1, *g* + 1) and (2, 2), respectively. In this appendix, we shall demonstrate how to obtain the *q*-Painlevé equation only for the case of type $D_5^{(1)}$; the other case is simpler, so it may be left to the reader; see [Tsu04c].

Let $I = \{1, 2\}$ and $J = \{-1, -2\}$. Suppose that $\sigma_{m,n} = \sigma_{m,n}(t)$ is a solution of the lattice q-UC hierarchy (2.4), satisfying the periodic condition: $\sigma_{m,n} = \sigma_{m+2,n} = \sigma_{m,n+2}$ and the similarity condition: $\sigma_{m,n}(ct) = c^{d_{m,n}}\sigma_{m,n}(t)$. Here $d_{m,n}$ are constants balanced as $d_{m,n} + d_{m+1,n+1} = d_{m+1,n} + d_{m,n+1}$. Now let us introduce the function $\rho_{m,n}(\alpha,\beta;x)$ in x, equipped with constant parameters α and β , defined by $\rho_{m,n}(\alpha,\beta;x) = \sigma_{m,n}(t)$ under the substitution $t = (t_1, t_2, t_{-1}, t_{-2}) = (\alpha, \alpha^{-1}, -q^{-1}\beta x, -q^{-1}\beta^{-1}x)$. Let

$$\Phi_{i}^{(-)}(x) = \rho_{i,i}(\alpha,\beta;x), \qquad \Phi_{i}^{(+)}(x) = \rho_{i,i}(q^{1/2}\alpha,q^{1/2}\beta;x),
\Psi_{i}^{(-)}(x) = \rho_{i,i+1}(\alpha,q^{1/2}\beta;q^{1/2}x), \qquad \Psi_{i}^{(+)}(x) = \rho_{i,i+1}(q^{1/2}\alpha,\beta;q^{1/2}x),$$
(A.1)

for $i \in \mathbb{Z}/2\mathbb{Z}$. As similar to the case of $E_6^{(1)}$ (see Section 6), we therfore obtain from (2.4), together with the above constraints, the following system of bilinear equations:

$$\begin{aligned} \alpha^{\pm 1} q^{(d_{i,i}-d_{i,i+1})/2} \Phi_{i}^{(\pm)}(x) \Phi_{i+1}^{(\mp)}(x) + \beta^{\pm 1} x q^{(d_{i+1,i}-d_{i,i})/2} \Phi_{i}^{(\mp)}(x) \Phi_{i+1}^{(\pm)}(x) \\ &= \left(\alpha^{\pm 1} + \beta^{\pm 1} x\right) \Psi_{i}^{(\pm)}(q^{-1} x) \Psi_{i+1}^{(\mp)}(x), \qquad (A.2a) \\ \alpha^{\pm 1} q^{(d_{i,i+1}-d_{i,i})/2} \Psi_{i}^{(\pm)}(x) \Psi_{i+1}^{(\mp)}(x) + \left(q^{1/2} \beta\right)^{\mp 1} \left(q^{1/2} x\right) q^{(d_{i+1,i}-d_{i,i})/2} \Psi_{i}^{(\mp)}(x) \Psi_{i+1}^{(\pm)}(x) \\ &= \left(\alpha^{\pm 1} + \left(q^{1/2} \beta\right)^{\mp 1} q^{1/2} x\right) \Phi_{i}^{(\pm)}(x) \Phi_{i+1}^{(\mp)}(qx), \qquad (A.2b) \end{aligned}$$

where $i \in \mathbb{Z}/2\mathbb{Z}$. Take the variables

$$f(x) = \frac{\Phi_1^{(+)}(x)\Phi_2^{(-)}(x)}{\Phi_1^{(-)}(x)\Phi_2^{(+)}(x)}, \quad g(x) = \frac{\Psi_1^{(+)}(x)\Psi_2^{(-)}(x)}{\Psi_1^{(-)}(x)\Psi_2^{(+)}(x)};$$
(A.3)

set $\gamma = q^{(d_{1,1}-d_{1,2})/2}$ and $\delta = q^{(d_{2,1}-d_{1,1})/2}$. Hence, it follows from (A.2) that

$$\overline{f}f = \frac{(g + \alpha^{-1}\beta^{-1}\gamma\delta x)(g + \alpha\beta\gamma^{-1}\delta^{-1}qx)}{(xg + \alpha\beta\gamma\delta)(qxg + \alpha^{-1}\beta^{-1}\gamma^{-1}\delta^{-1})},$$
(A.4a)

$$\underline{g}g = \frac{(f + \alpha^{-1}\beta\gamma^{-1}\delta x)(f + \alpha\beta^{-1}\gamma\delta^{-1}x)}{(xf + \alpha\beta^{-1}\gamma^{-1}\delta)(xf + \alpha^{-1}\beta\gamma\delta^{-1})},$$
(A.4b)

where the symbols \overline{f} and \underline{g} stand for f(qx) and $g(q^{-1}x)$, respectively. This system is equivalent to the *q*-Painlevé equation of type $D_5^{(1)}$, known as the *q*-Painlevé VI equation; see [JS96].

Acknowledgements. The author wishes to thank Tetsu Masuda, Masatoshi Noumi, Yasuhiro Ohta, Tomoyuki Takenawa, and Yasuhiko Yamada for valuable discussions. This work is partially supported by a fellowship of the Japan Society for the Promotion of Science (JSPS).

References

- [DO88] I. Dolgachev and D. Ortland, *Point sets in projective spaces and theta functions*, Astérisque **165** (1988).
- [JS96] M. Jimbo and H. Sakai, A q-analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145–154.
- [Kac90] V. G. Kac, *Infinite dimensional Lie algebras*, 3rd ed. (Cambridge University Press, Cambridge, 1990).
- [KMNOY03] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, ₁₀E₉ solution to the elliptic *Painlevé equation*, J. Phys. A: Math. Gen. **36** (2003), L263–L272.
- [KNY01] K, Kajiwara, M. Noumi and Y. Yamada, A study on the fourth q-Painlevé equation, J. Phys. A: Math. Gen. 34 (2001), 8563–8581.
- [KNY02] K. Kajiwara, M. Noumi and Y. Yamada, q-Painlevé systems arising from q-KP hierarchy, Lett. Math. Phys. 62 (2002), 259–268.
- [Koi89] K. Koike, On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters, Adv. Math. **74** (1989), 57–86.
- [Mac95] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed. (Oxford Mathematical Monographs, Oxford University Press Inc., New York, 1995).
- [Mas03] T. Masuda, On the rational solutions of q-Painlevé V equation, Nagoya Math. J. 169 (2003), 119– 143.
- [MJD00] T. Miwa, M. Jimbo and E. Date, Solitons: Differential equations, symmetries and infinite dimensional algebras, Cambridge Tracts in Mathematics 135 (Cambridge University Press, Cambridge, 2000).
- [Nou04] M. Noumi, Painlevé equations through symmetry, Translations of Mathematical Monographs 223 (American Mathematical Society, Providence, RI, 2004).
- [NY98] M. Noumi and Y. Yamada, Affine Weyl group, discrete dynamical systems and Painlevé equations, Comm. Math. Phys. 199 (1998), 281–295.
- [Sak01] H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165–229.
- [Sat81] M. Sato, Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold, RIMS Koukyuroku 439 (1981), 30–46.
- [Tsu04a] T. Tsuda, Universal characters and an extension of the KP hierarchy, Comm. Math. Phys. 248 (2004), 501–526.
- [Tsu04b] T. Tsuda, Universal characters, integrable chains and the Painlevé equations, Adv. Math., in press.
- [Tsu04c] T. Tsuda, Universal characters and q-Painlevé systems, Comm. Math. Phys., in press.
- [TM04] T. Tsuda and T. Masuda, *q-Painlevé VI equation arising from q-UC hierarchy*, Preprint: UTMS 2004–39.

Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

- 2005–11 Takao Satoh: New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group.
- 2005–12 A. Kh. Amirov: Boundary rigity for Riemannian manifolds.
- 2005–13 Sungwhan Kim: An inverse boundary value problem of determining three dimensional unknown inclusions in an elliptic equation.
- 2005–14 Yoshihiro Sawano and Hitoshi Tanaka: Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures.
- 2005–15 Atsushi Matsuo, Kiyokazu Nagamoto and Akihiro Tsuchiya: Quasi-finite algebras graded by Hamiltonian and vertex operator algebras.
- 2005–16 Yoshihiro Sawano: Vector-valued sharp maximal inequality on the Morrey spaces with non-doubling measures.
- 2005–17 Yousuke Ohyama, Hiroyuki Kawamuko, Hidetaka Sakai and Kazuo Okamoto: Studies on the Painlevé equations V, third Painlevé equations of special type $P_{III}(D_7)$ and $P_{III}(D_8)$.
- 2005–18 Nariya Kawazumi: Cohomological aspects of Magnus expansions.
- 2005–19 Masaki Suzuki: Spaces of initial conditions of the two dimensional Garnier system and its degenerate ones.
- 2005–20 Kenichi Ito: Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric.
- 2005–21 Teruhisa Tsuda: Universal character and q-difference Painlevé equations with affine Weyl groups.

The Graduate School of Mathematical Sciences was established in the University of Tokyo in April, 1992. Formerly there were two departments of mathematics in the University of Tokyo: one in the Faculty of Science and the other in the College of Arts and Sciences. All faculty members of these two departments have moved to the new graduate school, as well as several members of the Department of Pure and Applied Sciences in the College of Arts and Sciences. In January, 1993, the preprint series of the former two departments of mathematics were unified as the Preprint Series of the Graduate School of Mathematical Sciences, The University of Tokyo. For the information about the preprint series, please write to the preprint series office.

ADDRESS:

Graduate School of Mathematical Sciences, The University of Tokyo 3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN TEL +81-3-5465-7001 FAX +81-3-5465-7012