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of special type PIII (D7) and PIII(D8)

by

Yousuke Ohyama, Hiroyuki Kawamuko,

Hidetaka Sakai and Kazuo Okamoto

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



Studies on the Painlevé Equations V,
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Abstract

By means of geometrical classification ([22]) of space of initial conditions, it is
natural to consider the three types, PIII(D6), PIII(D7) and PIII(D8), for the third
Painlevé equation. The fourth article of the series of papers [17] on the Painlevé
equations is concerned with PIII(D6), generic type of the equation. The other two
types, PIII(D7) and PIII(D8) are obtained as degeneration from PIII(D6); the present
paper is devoted to investigating them in detail.

Each of PIII(D7) and PIII(D8) is characterized through holonomic deformation of
a linear differential equation and written as a Hamiltonian system. PIII(D7) contains
a parameter and admits birational canonical transformations as symmetry, isomorphic
to the affine Weyl group of type A

(1)
1 . Sequence of τ -functions are defined for PIII(D7)

by means of successive application of the translation of the symmetry of the equation;
they satisfy the Toda equation.

The τ -functions related to algebraic solutions of PIII(D7) are determined explicitly.
The irreducibility of PIII(D7), as well as that of PIII(D8), is established, and there is
no transcendental classical solution of these equations. A space of initial conditions is
constructed for each of PIII(D7) and PIII(D8) by the use of successive blowing-up’s of
the projective plane P2.
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transformation, Differential Galois theory, Space of initial conditions.

2000 Mathematics Subject Classification Numbers. 34M55,34M15,34M45.

∗Graduate School of Information Sciences and Technology, Osaka University, Japan
†Faculty of Education, Mie University, Japan
‡Graduate School of Mathematical Sciences, The Univrsity of Tokyo, Japan

1



Contents

1 Introduction 3

2 Third Painlevé equation 6

2.1 Fundamental transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Hamiltonian system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Hamiltonian for PIII′(D7) . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Hamiltonian for PIII′(D8) . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Transformation group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Holonomic deformation and degeneration 10

3.1 Holonomic deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Degeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Verification of Theorem 8 and Theorem 9 . . . . . . . . . . . . . . . . . . . 14

4 τ-function 18

4.1 Global behavior of τ -function . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Toda equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Bilinear forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Irreducibility Theorem 23

5.1 Proof of Proposition 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Weights on K[p, q] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.2 Highest terms of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.3 Determination of F2r−1 and f2s−1 . . . . . . . . . . . . . . . . . . . . 28

5.1.4 Condition (J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Verification of Proposition 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Decomposition of an invariant divisor . . . . . . . . . . . . . . . . . . 30

5.2.2 Condition (J)′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Algebraic solutions 33

6.1 Algebraic solutions of PIII′(D7) . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Proof of Theorem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Space of initial conditions 39

7.1 D
(1)
7 -surface and D

(1)
8 -surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2 Foliation associated with PIII′(D7) . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3 Space of initial conditions for PIII′(D8) . . . . . . . . . . . . . . . . . . . . . 44

2



1 Introduction

Succeeding to the series of papers [17], we will study in the present article the third Painlevé

equations PIII(α, β, γ, δ)

d2y

dx2
=

1

y

(
dy

dx

)2

− 1

x

dy

dx
+

αy2 + β

x
+ γy3 +

δ

y
, (1)

for γ = 0 and αδ �= 0, and for γ = δ = 0.

The values of complex parameters α, β, γ, δ of the third Painlevé equations can be clas-

sified into the following four cases:

(D6) γδ �= 0.

(D7) γ = 0, αδ �= 0 (or δ = 0, βγ �= 0),

(D8) γ = 0, δ = 0 αβ �= 0

(Q) α = 0, γ = 0 (or β = 0, δ = 0),

In the case (Q), PIII is solvable by quadratures ([10], [17]). Then all of solutions of (Q)

are classical in the sense of [25], so that we exclude the case (Q) from investigation on the

Painlevé equations; we agree with the view point of Gromak ([5]). While the type D6, generic

case of PIII(α, β, γ, δ), has been studied in many articles ([17], [14]), the equations of type

D7 and D8 are put out of main consideration of the third Painlevé equation so far. We cite

[3], where the equation of type D7 has been studied.

The significance of the equation of type D7 and D8 has been pointed out recently by [22];

the spaces of initial conditions for the equations of type D6, D7 and D8 are different from

each other.

Here, a space of initial conditions can be characterized by a pair (X, D) of a rational

surface X and the anti-canonical divisor D of X. Each irreducible component of D is a

rational curve and, in the case of the Painlevé equations, is called as a vertical leaf ([16]).

The intersection diagram of D is given by that of the certain root lattice and in particular,

we have for PIII(α, β, γ, δ) the tree cases, D
(1)
6 , D

(1)
7 and D

(1)
8 ; for details, see [22]. We note

that it is quite natural to classify the Painlevé equations into the following eight types:

PVI(D4), PV(D5), PIII(D6), PIII(D7), PIII(D8),

PIV(E6), PII(E7), PI(E8).

The following equation, which we denote by PIII′(α, β, γ, δ):

d2q

dt2
=

1

q

(
dq

dt

)2

− 1

t

dq

dt
+

αq2

4t2
+

β

4 t
+

γq3

4t2
+

δ

4q
, (2)
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is equivalent to PIII(α, β, γ, δ) through the change of variables:

t = x2, y = xq. (3)

Since a realization of action of transformation group on PIII′ is simpler than that on PIII, we

consider in what follows PIII′ instead of PIII, cf. [17]. For PIII′(α, β, γ, δ), we have thus the

three cases, PIII′(D6), PIII′(D7) and PIII′(D8).

By the change of variables

x = λx1, y = µy1 (λµ �= 0), (4)

we can normalize values of the parameter (α, β, γ, δ). The equation of type D6 has two

complex parameters and that of type D7 has one complex parameter, while the equation of

type D8 contains no complex parameters. For PIII′(D7), we consider the standard form:

d2q

dt2
=

1

q

(
dq

dt

)2

− 1

t

dq

dt
− 2q2

t2
+

β

4t
− 1

q
, (5)

and for PIII′(D8), the following:

d2q

dt2
=

1

q

(
dq

dt

)2

− 1

t

dq

dt
+

q2

t2
− 1

t
. (6)

The aim of the present article is to study Hamiltonian structures, transformation groups,

τ -functions and special solutions, with respect to the equations, PIII′(D7) and PIII′(D8).

We consider also holonomic deformation of a linear differential equation and show that

Hamiltonian structures associated with PIII′(D7) and PIII′(D8) are deduced from holonomic

deformation. Moreover, we give an explicit construction of the space of initial conditions,

for each of the equations. The irreducibility of the equations is also a subject of our studies.

In Section 2, we give Hamiltonian structures considered in the present article for PIII′(D7)

and PIII′(D8). It is known that the birational symmetries of PIII′(D6) are given by W̃a(A1⊕
A1), where W̃a(A) denotes the extended affine Weyl group of type A. We show that the

group of birational symmetries of PIII′(D7) is W̃a(A1) and that of PIII′(D8) is Z2.

Section 3 is devoted to studies on holonomic deformation of a linear differential equation.

We consider mainly an equation of the form:

d2y

dx2
+ p1(x, t)

dy

dx
+ p2(x, t)y = 0; (7)

we say that (7) admits holonomic deformation with respect to a parameter, t, if (7) has a

fundamental system of solutions whose monodromy and Stokes multipliers are not depending

on t. Such deformation has been often named as monodromy preserving or as isomonodromic
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one. In stead of these terminology, we call it holonomic deformation. By considering the de-

formation related to the third Painlevé equation, we have the following degeneration scheme

of the equations:

PVI(D4) → PV(D5) → PIII(D6) → PIII(D7) → PIII(D8)

↘ ↘
PIV(E6) → PII(E7) → PI(E8).

Section 4 concerns τ -functions related to PIII′(D7) and PIII′(D8); a τ -function is defined

by:

d

dt
log τ = H,

up to a multiplicative constant, where H is a Hamiltonian function. By applying birational

transformations successively, we have a sequence, {τn}, of τ -functions related to PIII′(D7),

and see that it satisfies the Toda equation:

d

dt
t
d

dt
log τn = c(n)

τn−1τn+1

τ 2
n

.

Bilinear forms deduced from equation PIII′(D7) and PIII′(D8) are investigated; for example

PIII′(D8) is equivalent to the equation:

D4τ · τ + tτ · τ = 2D2Dτ · τ.

Here D is the Hirota derivative with respect to the derivation:

D = t
d

dt
.

Let y be a solution of the third Painlevé equation, and consider the differential field,

K = C(t) < y >, C(t) being the field of rational functions. If the transcendental degree of

K over C(t) is zero, then y is algebraic. In Section 5, we will show that if y is transcendental,

then

trans.degK/C(t) = 2

for PIII′(D7) and for PIII′(D8). This fact establishes the irreduciblicity of the equation in the

sense of Umemura([24]). By virtue of the irreducibility there is no transcendental classical

solution of PIII′(D7) and PIII′(D8).

The algebraic solutions of Painlevé equations are studied by many authors, and in fact,

many works on this subject have been studied by Belorussian school (see [6]). An algebraic

solution of the third Painlevé equations has been found by Lukashevich ([10]), and then

Gromak ([4], [5]) classified all algebraic solutions of PIII(D6) and those of PIII(D7). On
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the other hand, Murata ([14]) has given the classification of algebraic solution of the third

Painlevé equation, by using the transformation group of the equation. PIII(D8) has the two

rational solutions, y = ±1, and then (6) has the solutions, q = ±√t. Algebraic solutions of

PIII′(D7) are studied in Section 6.

Section 7 is a supplement of [16], where spaces of initial conditions of the Painlevé

equations are constructed. A space of initial conditions of a differential equation is, by

definition, a fiber of a fiber bundle P = (E, π, B) with the following properties: There is a

foliation F on P associated with the differential equation such that

a Each leaf of F intersects with each fiber transversally;

b Each path γ on B can be lifted to a leaf γp that runs through a given point p ∈ π−1(γ(0));

c π|γp : γp → B is surjective and γp is a covering space of B by π.

The special cases of the third Painlevé equation, PIII′(D7) and PIII′(D8), has been settled

out of consideration; they have hidden behind the generic type D6. In [16], only equation

PIII′(D6) is considered and we construct space of initial conditions for PIII′(D7) and PIII′(D8),

in the last section.

2 Third Painlevé equation

In this section we begin with a review of basic facts on the third Painlevé equation ([17]) and

then give explicit forms of Hamiltonian functions considered in what follows. The subject of

our investigation consists of the following three types of the equations:

PIII′(D6) :
d2q

dt2
=

1

q

(
dq

dt

)2

− 1

t

dq

dt
+

αq2

4t2
+

β

4 t
+

γq3

4t2
+

δ

4q
(γδ �= 0), (8)

PIII′(D7) :
d2q

dt2
=

1

q

(
dq

dt

)2

− 1

t

dq

dt
− 2q2

t2
+

β

4t
− 1

q
, (9)

PIII′(D8) :
d2q

dt2
=

1

q

(
dq

dt

)2

− 1

t

dq

dt
+

q2

t2
− 1

t
. (10)

2.1 Fundamental transform

We denote equation (1) by PIII(α, β, γ, δ) and (2) by PIII′(α, β, γ, δ). The third Painlevé equa-

tion contains four complex parameters, and there are essentially two complex parameters;

we see that by means of simple transformation. In fact we have the

Theorem 1 ([17]) (i) By the change of variables:

t = x2, y = xq, (11)
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PIII(α, β, γ, δ) and PIII′(α, β, γ, δ) are equivalent.

(ii) By replacing q by t/q in PIII′(α, β, γ, δ), we obtain PIII′(−β,−α,−δ,−γ).

(iii) By the change of variables:

t = t21, q = q2
1, (12)

PIII′(α, β, 0, 0) is converted to PIII′(0, 0, 2α, 2β) with respect to (t1, q1).

(iv) The change of scales:

t→ λt, q → µq (13)

takes PIII′(α, β, γ, δ) to PIII′(λα, µλ−1β, λ2γ, µ2λ−2δ).

PIII′(D8) is reduced to the special case of PIII′(D6) through the quadratic transformation

given by (iii). For algebraic transformation of the Painlevé equations, see [23]. By (iv),

PIII′(α, β, 0, δ) (αδ �= 0) can be normalized as (9).

2.2 Hamiltonian system

2.2.1 Hamiltonian for PIII′(D7)

The Hamiltonian associated with (9) is

tH = q2p2 + α1qp + tp + q, (14)

and the Hamiltonian system reads:
t
dq

dt
= 2q2p + α1q + t,

t
dp

dt
= −2qp2 − α1p− 1.

(15)

By eliminating p from (15), we obtain in fact PIII′(−8, 4(1−α1), 0,−4), that is, the equation

of the form (9). We denote (15) by H(α1), when considering dependence of the system on a

parameter.

Defining the auxiliary Hamiltonian by:

h = tH + α2
1/4, (16)

we have from (14)–(15) the expression:
q = −t d2h

dt2
+ α1

dh
dt

+ 1

2
(

dh
dt

)2 ,

p = dh
dt

.

(17)

It follows that:
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Proposition 2 h satisfies the differential equation(
t
d2h

dt2

)2

+ 4

(
dh

dt

)2(
t
dh

dt
− h

)
− 2α1

dh

dt
− 1 = 0. (18)

Inversely, for a solution of h(t) of (18), we have a solution (q, p) of (15) by (17), provided

that
d2h

dt2
�≡ 0.

Note that the equation (18) admits a singular solution of the form

h = λt + µ,

4λ2µ + α1λ + 1 = 0.

By means of (15) , we can show easily the

Proposition 3 There exists the one-to-one correspondence between the general solution h

of (18) and a solution (q, p) of (15).

In fact suppose that d2h
dt2
≡ 0. We have from (16)

dh

dt
= p,

and then by the hypothesis p is constant. It follows from the second equation of (15) that q

is constant; we thus arrive at contradiction with the first equation of (15).

2.2.2 Hamiltonian for PIII′(D8)

We consider the Hamiltonian system

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
(19)

with

tH = q2p2 + qp− 1

2

(
q +

t

q

)
. (20)

We obtain from this system equation PIII′(−4, 4, 0, 0), that is, (10).

In this case we have an auxiliary Hamiltonian

h = tH

and then 
q = − 1

2 dh
dt

,

p = td2h
dt2

+ dh
dt

.

(21)

We state the results without entering into details.
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Proposition 4 h satisfies the differential equation(
t
d2h

dt2

)2

−
(

dh

dt

)2(
4h− 4t

dh

dt
+ 1

)
+

dh

dt
= 0, (22)

Proposition 5 There exists the one-to-one correspondence from the general solution h(t)

of (22) and a solution (q, p) of (19).

Equation (22) admits a singular solution of the form

h = λt + µ,

4λµ + λ− 1 = 0.

2.3 Transformation group

We make the list of explicit forms of birational canonical transformation of PIII′(D7). We

have a group of such symmetries, denoted by Cr(D7), and see that this is realization of

the affine Weyl group, W̃a(A1) of type A1. we give below the results without entering into

details; verification is done by means of straightforward computation.

Theorem 6 The birational symmetry of PIII′(D7) is described as:

Cr(D
(1)
7 ) = W̃a(A1) =< s1, σ > .

The transformations are given by the following table:

x α0 α1 p q t tH

s0(x) −α0 α1 + 2α0 p− α0

q
+ t

q2 q −t tH + t
q
− α0

s1(x) α0 + 2α1 −α1 −p −q − α1

p
− 1

p2 −t tH

σ(x) α1 α0 − q
t

tp −t tH − qp

(23)

where α0 = 1− α1.

For example, if (q(t), p(t)) satisfies H(α1), then functions given by

(Q(t), P (t)) =

(
−q(−t)− α1

p(−t)
− 1

p(−t)2
,−p(−t)

)
solve H(−α1). This gives the birational canonical transformation, associated with:

s1 : α1 → −α1.

On the other hand, for a solution (q(t), p(t)) of H(α1),

(Q(t), P (t)) =

(
−tp(−t),

q(−t)

t

)
satisfies H(σ(α1)) = H(α0). The explicit form of the transformation π = σ ◦ s1 will be used

below in Section 4.2; see Proposition 13.
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Remark 1 By means of the table of Theorem 6, we obtain the transformation corresponding

to the transformation:

π = σ ◦ s1 : α1 −→ α1 − 1,

The explicit form of the transformation is of the form

(q, p) −→
(
−tp +

α0t

q
− t2

q2
,
q

t

)
. (24)

A transformation of the form (24) has been found for the first time by Gromak [3], for

equation (9) of the second order.

There is no parameter in PIII′(D8) and we have the

Theorem 7

Cr(D
(1)
8 ) = Z2 =< π >,

where

x p q t

π(x) − q(2qp+1)
2t

t
q

t
. (25)

3 Holonomic deformation and degeneration

Consider a linear differential equation of the form:

L(D6) :
d2y

dx2
+ p1

dy

dx
+ p2y = 0,

p1 =
η0t

x2
+

1− θ0

x
− η∞ − 1

x− q
,

p2 = −tH

x2
+

η∞(θ0 + θ∞)− 2p

2x
+

p

x− q
,

H =
1

t

{
q2p2 − (η∞q2 + θ0q − η0t)p +

1

2
η∞(θ0 + θ∞)q

}
. (26)

It is known ([18]) that the holonomic deformation of this equation is governed by a Hamil-

tonian system

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
. (27)

This system is equivalent to the third Painlevé equation PIII′(α, β, γ, δ) with α = −4η∞θ∞, β =

4η0(1 + θ0), γ = 4η∞2, δ = −4η0
2. Here we assume η0η∞ �= 0; the deformation given above

concerns PIII′(D6).
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To characterize the other equations of the third Painlevé equations, we have to consider

again the linear differential equation,

d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0, (28)

for PIII′(D7) and that for PIII′(D8).

3.1 Holonomic deformation

In this subsection, we study two linear differential equations; L(D7) and L(D8), of the form

(28). First L(D7) is, by definition, equation (28) with the following properties:

1. L(D7) has singularities at x = 0,∞ and x = q,

2. x = 0 is an irregular singular point of Poincaré rank 1,

3. x =∞ is an irregular singular point of Poincaré rank 1/2,

4. x = q is an apparent singular point whose characteristic exponents are 0 and 2.

On the other hand, for L(D8), we demand:

1. L(D8) has singularities at x = 0,∞ and x = q,

2. x = 0 and x =∞ are irregular singular points of Poincaré rank 1/2,

3. x = q is an apparent singular point whose characteristic exponents are 0 and 2.

By means of suitable changes of the dependent variables, the Riemann scheme of L(D7) and

L(D8) read respectively as follows:

L(D7) :


x = 0 x = q x =∞ (1/2)︷ ︸︸ ︷

t 1− α1

0 0

0

2

︷ ︸︸ ︷
1 α1 − 1

2

−1 α1 − 1
2

 ,

L(D8) :


x = 0 (1/2) x = q x =∞ (1/2)︷ ︸︸ ︷√

2t −1/2

−√2t −1/2

0

2

︷ ︸︸ ︷√
2 1/2

−√2 1/2

 .

Hence the coefficients of L(D7) are given by:

p1 =
t

x2
+

1 + α1

x
− 1

x− q
,

p2 = −tH

x2
− p− 1

x
+

p

x− q
,

tH = q2p2 + α1qp + tp + q.
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The explicit form of H is deduced from the property 4 by the use of the Frobenius method.

For L(D8), we have:

p1 =
2

x
− 1

x− q
,

p2 = − t

2x3
− tH

x2
− 2p + 1

2x
+

p

x− q
,

tH = q2p2 + qp− 1

2

(
q +

t

q

)
.

Moreover by putting

Y =

 y

1

x− q

(
−py +

dy

dx

) ,

we can rewrite these linear differential equations as the following systems:

L(D7) :
d

dx
Y = A(1)(x, t, q, p)Y, (29)

A(1)(x, t, q, p) =

 p x− q

−qp2 − α1p− 1

x2
− p2

x
− t

x2
− 1 + α1

x
− p

 ,

L(D8) :
d

dx
Y = A(2)(x, t, q, p)Y, (30)

A(2)(x, t, q, p) =

 p x− q

− t

2qx3
− 2qp2 + 2p− 1

2x2
− p2

x
− 2

x
− p

 .

By viewing q, p as functions of t, we consider holonomic deformation of L(D7) and that of

L(D8). Now we state the theorems:

Theorem 8 The holonomic deformation of (29) is governed by the system of differential

equations:

d

dt
A(1)

1 =
1

2t
[A(1)

0 ,A(1)
2 ], (31)

d

dt
A(1)

2 =
1

2t

(
A(1)

2 + [A(1)
1 ,A(1)

2 ] + [A(1)
0 ,A(1)

3 ]
)

, (32)

d

dt
A(1)

3 =
1

2t

(
2A(1)

3 + [A(1)
1 ,A(1)

3 ]
)

, (33)

12



where

A(1)
0 =

[
1 0

0 −1

]
,

A(1)
1 =

[
−α1 − 5

2
2qp + α1 − 1

2

2qp + α1 − 1
2

−α1 − 5
2

]
,

A(1)
2 =

[
2q + 2tp −2q + 2tp

2q − 2tp −2q − 2tp

]
,

A(1)
3 =

[
4t −4t

−4t 4t

]
.

Theorem 9 The holonomic deformation of (30) is governed by differential equations

d

dt
A(2)

1 =
1

t
[A(2)

0 ,A(1)
2 ], (34)

d

dt
A(2)

2 =
1

t

(
A(2)

2 + [A(2)
1 ,A(2)

2 ]
)

, (35)

where

A(2)
0 =

[
1 0

0 −1

]
,

A(2)
1 =

[
−7

2
2qp + 1

2

2qp + 1
2

−7
2

]
,

A(2)
2 =

[
−q − t

q
q − t

q

−q + t
q

q + t
q

]
.

We will verify these theorems at the end of this section.

It is not difficult to show that the equations (31),(32) and (33) are reduced to the Hamil-

tonian system:

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
, (36)

tH = q2p2 + α1qp + tp + q. (37)

Moreover, we see that the equations (34) and (35) are equivalent to Hamiltonian system:

dq

ds
=

∂H

∂p
,

dp

ds
= −∂H

∂q
(38)

tH = q2p2 + qp− 1

2

(
q +

t

q

)
. (39)

Therefore we have the

13



Theorem 10 The holonomic deformation of L(D7) is governed by Hamiltonian system (36)

with (37) and that of L(D8) is governed by (38) with (39).

3.2 Degeneration

We derive the Hamiltonian systems associated with PIII′(D7) and PIII′(D8) from that of

PIII′(D6) by means of successive process of degeneration.

In Hamiltonian H = HIII′(D6), given by (26), we replace t by t/η0 and H by η0H , and

furthermore, put θ0 = −α1, η∞ = ε and θ∞ = 1/ε. Then the Hamiltonian H is holomorphic

in ε. Letting ε to 0 in H , we arrive at Hamiltonian H = HIII′(D7). For simplicity, we express

this procedure by

(q, p, t, H) −→
(
q, p,

t

η0
, η0H

)
, (40)

θ0 −→ −α1, η∞ −→ ε, θ∞ −→ 1

ε
, (ε −→ 0).

Moreover degeneration from (36) to (38) is given by:

(q, p, t, H) −→
(
−q

2
, −2p− 1

εq
,

ε

2
t,

2

ε
H +

2ε− 1

2ε3t

)
, (41)

α1 −→ 1− 1

ε
, (ε −→ 0).

We do not enter into detail of computation.

Note that (40) causes the degeneration from L(D6) to L(D7). Changing the variables y

and x of L(D7) as

y −→ x(1−α1)/2y, x −→ −x/2,

and then applying the degeneration (41), we obtain L(D8).

3.3 Verification of Theorem 8 and Theorem 9

In this subsection, we verify Theorem 8 and Theorem 9. For L(D7), we show the

Lemma 11 (i) By the change of variables

Y = P Y , x = −ξ2

4
,

(
P =

[
−ξ3/4 −ξ3/4

−pξ − 2 −pξ + 2

])
(42)

14



system (29) is converted to the system:

d

dξ
Y = A(1)(ξ, t, q, p)Y , (43)

A(1)(ξ, t, q, p) = P−1

(
−ξ

2
A(1)(−ξ2/4, t, q, p)P − d

dξ
P

)
= A(1)

0 +
A(1)

1

ξ
+
A(1)

2

ξ2
+
A(1)

3

ξ3
.

(ii) System (43) has formal solutions, Y (∞)(ξ, t) and Y (0)(ξ, t), of the form:

Y (∞)(ξ, t) = Ŷ (∞)(ξ, t) eT (∞)(ξ,t),

T (∞)(ξ, t) =

[
ξ + (α1 + 5

2
) log(1/ξ) 0

0 −ξ + (α1 + 5
2
) log(1/ξ)

]
,

Ŷ (∞)(ξ, t) =

[
1 0

0 1

]
+

[
ω1 ω2

−ω2 −ω1

]
ξ−1 + · · · , (44)

ω1 = −2q2p2 − (2α1 − 1)qp− 2q − 2tp− (2α1 − 1)2

8
,

ω2 = −qp− 2α1 − 1

4
,

Y (0)(ξ, t) = G Ŷ (0)(ξ, t) eT (0)(ξ,t),

G =

[
f g

f −g

]
, T (0)(ξ, t) =

[
−3 log ξ 0

0 − 4t
ξ2 − 2(α1 + 1) log ξ

]
,

Ŷ (0)(ξ, t) =

[
1 0

0 1

]
+

[
0 g

f
q
2t

−f
g

p
2

0

]
ξ +

[
ω3 0

0 −ω3 − qp
4t

]
ξ2 + · · · , (45)

ω3 = − 1

4t
(q2p2 + α1qp + q + tp),

f and g being functions of t.

(iii) The holonomic deformation of (43) is governed by (31)–(33).

Proof. The assertions (i) and (ii) can be established by a straightforward calculation. We

verify the assertion (iii). Let Φ
(∞)
k (t), Φ

(0)
k (t) be matrices defined by

Ŷ (∞) ∂T (∞)

∂t
Ŷ (∞)

−1

=
∞∑

k=0

Φ
(∞)
k (t)ξ−k, Ŷ (0) ∂T (0)

∂t
Ŷ (0)

−1

=
∞∑

k=−3

Φ
(0)
k (t)ξk.

15



By using (44) and (45), we obtain the explicit forms of Φ
(0)
−3(t), Φ

(0)
−2(t), Φ

(0)
−1(t), Φ

(0)
0 (t) and

Φ
(∞)
k (t), as follows:

Φ
(0)
−3(t) =

[
0 0

0 0

]
, Φ

(0)
−2(t) =

[
0 0

0 −4

]
, Φ

(0)
−1(t) =

[
0 −2gq

tf

−2fp
g

0

]
, Φ

(0)
0 (t) =

[
− qp

t
0

0 qp
t

]
,

Φ
(∞)
k (t) =

[
0 0

0 0

]
(k ∈ Z).

Assume that (43) has a fundamental matrix solution Y whose monodromy groups and Stokes

multipliers are independent of t. Then there exist a matrix, Ω′(1)(ξ, t), depending rationally

on ξ, and matrix Θ(t), such that

∂

∂t
Y = Ω′(1)(ξ, t)Y ,

∂

∂t
G = Θ(t) G.

Since the eigenvalues of A(1)
0 and A(1)

3 are mutually distinct, Ω′(1)(ξ, t) and Θ(t) can be

written in the form:

Ω′(1)(ξ, t) =
{

G (Φ
(0)
−3(t)ξ

−3 + Φ
(0)
−2(t)ξ

−2 + Φ
(0)
−1(t)ξ

−1) G−1 + Φ
(∞)
0 (t)ξ

}∣∣∣
q=q(t),p=p(t)

= − 1

tξ

[
q(t) + tp(t) −q(t) + tp(t)

q(t)− tp(t) −q(t)− tp(t)

]
= − 1

2tξ2

(
A(1)

2 ξ +A(1)
3

)
, (46)

Θ(t) = −G Φ
(0)
0 (t) G−1

∣∣∣
q=q(t),p=p(t)

=

[
0 − q(t)

tp(t)

− q(t)
tp(t)

0

]
. (47)

Substituting (46), (47) into the integrability condition of

∂

∂ξ
Y = A(1)Y , (48)

∂

∂t
Y = Ω′(1)Y , (49)

we obtain (31)–(33). Conversely, we assume (31)–(33). Let Y be a matrix solution of (48)–

(49), then the monodromy groups and Stokes multipliers of Y are independent of t because

the entries of Ω′(1) are rational function of ξ, see [7]. We have thus established the lemma.

Proof of Theorem 8. It is sufficient to show that the holonomic deformation of (43) is

equivalent to that of (29). We assume that (43) has a solution whose monodromy groups

and Stokes multipliers are independent of t. Then there exists a function Ω = Ω(x, t),

rational in x, such that the system

∂

∂x
Y = A(1)Y,

∂

∂t
Y = ΩY (50)
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is completely integrable. By (42), equation (50) is converted to the system

∂

∂ξ
Y = A(1)Y ,

∂

∂t
Y = Ω̃Y ,

where Ω̃ = P−1
(
Ω(−ξ2/4, t)P − ∂P

∂t

)
. Since the entries of Ω̃ are rational in ξ, it follows that

(43) admits a holonomic deformation. Conversely, we assume that (43) admits a holonomic

deformation. Then the system (48)-(49) is completely integrable. Changing the variables

Z → Y, ξ → x, we have

∂

∂x
Y = A(1)Y,

∂

∂t
Y = ΩY,

where

Ω = Ω(x, t) =

{
∂

∂t
P + P · Ω′(1)(ξ, t)

}
· P−1

∣∣∣∣
ξ2=−4x

=


q(t) p(t)

t
− 1

4

q(t) x

t

4
q(t) p(t)2 + tdp(t)

dt

tx
− q(t) p(t) + 4t

tx

 .

Since entries of Ω are rational function of x, (29) admits a holonomic deformation.

Next we consider L(D8).

Proof of Theorem 9. By the change of variables

Y =

[
−ξ3/2 ξ3/2

−pξ + 1 −pξ − 1

]
Y , x =

ξ

2
,

the equation (30) is written

d

dξ
Y = A(2)Y , (51)

A(2) = A(2)
0 +

A(2)
1

ξ
+
A(2)

2

ξ2
.

In a way similar to the proof in Lemma 11 and Theorem 8, we can show that the holonomic

deformation of (51) is equivalent to that of (30), and equation (51) admits a monodromy

preserving deformation if and only if the system

∂

∂ξ
Y = A(2)Y ,

∂

∂t
Y = Ω′(2)Y ,

Ω′(2)(ξ, t) = − 1

2tξ
A(2)

2

is completely integrable. By using these fact, we establish Theorem 9.
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4 τ-function

For any solution (q, p) of the Hamiltonian system,

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
(52)

a τ -function τ(t) is defined by

d

dt
log τ(t) = H(t, q, p), (53)

up to multiplicative constant.

4.1 Global behavior of τ-function

By means of the Painlevé property of the equation, H = H(t, q(t), p(t)) has only poles

as movable singularities. As is well-known for the other Painlevé equations we have the

following result also for PIII′(D7), PIII′(D8).

Theorem 12 The τ -function τ(t) is holomorphic on the universal covering of C− {0} and

has simple zeros.

Since the equations we consider are derived from monodromy preserving deformations, we

can verify the theorem by the use of the result obtained by Miwa ([13],[11]). Here we give

direct proof of Theorem 12 for PIII′(D7). In fact, let h be the auxiliary Hamiltonian given

by (16). If h has a pole at t = t0 (t0 �= 0), then we deduce from (18):

h ∼ t0
t− t0

+ O((t− t0)
0),

where O((t− t0)
0) denote the Landau’s symbol. It follows that:

H =
1

t

(
h− α2

1

4

)
∼ 1

t− t0
+ O((t− t0)

0).

By definition, τ(t) has a simple zero at t = t0. We can verify the theorem for PIII′(D8) in a

similar way.

It will useful to give local expression of a solution around a pole, t = t0. Let T = t − t0

be a local coordinate; then we have for PIII′(D7):

q = T [1 +
α1

2t0
T + cT 2 + · · · ], p : holomorphic,

q = T [1 +
2− α1

2t0
T + cT 2 + · · · ], p =

1

T 2
[−t0 + c′T 2 + · · · ],

q = − t20
T 2

[1 +
1

t0
T + cT 2 + · · · ], p =

T

t0
[1 +

α1 − 1

2t0
T + c′T 2 + · · · ].

(54)
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Here c denotes an arbitrary constant and c′ is determined in terms of t0, α1 and c. In the

case of (54) H has a pole at T = 0, while H is holomorphic for the other cases. For PIII′(D8),

we obtain the following expansion:

q = T 2[
1

2t0
+ cT 2 + · · · ], pq =

t0
T

[1 +
1

2t0
T + cT 2 + · · · ],

q =
2t20
T 2

[1 +
1

t0
T + cT 2 + · · · ], pq = −t0

T
[1 +

1

t0
T + cT 2 + · · · ].

A pole of H appears from the former.

4.2 Toda equation

In the present subsection, we concern τ -functions of PIII′(D7). Let H(α1) be Hamiltonian

system (52) with (14), (q, p) a solution of H(α1) and h = h(t, q, p, α1) an auxiliary function

given by (16). We define a new auxiliary function h̄ by

h̄ = h− qp +
−2α1 + 1

4
. (55)

Then, by using the differential equations, we can show
q = tdh̄

dt
,

p =
−1 + dh̄

dt
− α1

dh̄
dt

+ t d2h̄
dt2

2 t
(

dh̄
dt

)2 .
(56)

Let us consider (Q, P ), given by:

(Q, P ) =

(
− t2

q2
+

α0t

q
− tp,

q

t

)
. (57)

We have the

Proposition 13 (Q, P ) is a solution of (52) with Hamiltonian H(t, Q, P, α1 − 1).

This fact follows from Theorem 6; transformation (57) is corresponding to π = σ◦s1. We give

another verification of Proposition, by showing that h̄(t, q, p, α1) coincides with the auxiliary

function, h(t, Q, P, α1 − 1). In fact, we can verify by computation

H(t, Q, P, α1 − 1) = H(t, q, p, α1)− qp

t
, (58)

and it is easy to see the transformation given by (57) and (58) is canonical. Moreover,

h(t, Q, P, α1 − 1) = tH(t, Q, P, α1 − 1) +
(α1 − 1)2

4

= tH(t, q, p, α1)− qp +
(α1 − 1)2

4

= h(t, q, p, α1)− qp +
1− 2α1

4
= h̄(t, q, p, a1).
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Remark 2 Put X = qp. We obtain from (17)

X = −t d2h
dt2

+ α1
dh
dt

+ 1

2 dh
dt

, (59)

and on the other hand (56) results

X =
t d2h̄

dt2
+ (1− α1)

dh̄
dt
− 1

2dh̄
dt

. (60)

Starting from a solution (q, p) of H(α1), arbitrary fixed, we consider now the sequence

(qn, pn) = (πn(q), πn(p)),

of pairs of functions, such that (q0, p0) = (q, p).

Then (qn, pn) solves H(α1 − n). We have a sequence {τn} of τ -functions, defined by:

d

dt
log τn = H(t, qn, pn, α1 − n).

Theorem 14 {τn} satisfies the Toda equation:

d

dt
t
d

dt
log τn = c(n)

τn−1τn+1

τ 2
n

, (61)

c(n) being non zero constants.

Proof. Put Xn = qnpn. From (58) we have

H(t, qn+1, pn+1, α1 − n− 1) = H(t, qn, pn, α1 − n)− Xn

t
.

It follows that:

Xn = t
d

dt
log

τn

τn+1
. (62)

Let hn be the auxiliary Hamiltonian for (qn, pn). From (59), we have

Xn = −t d2hn

dt2
+ (α1 − n) dhn

dt
+ 1

2dhn

dt

.

On the other hand, by defining h̄n in a way similar to (55), we deduce from Lemma 13

h̄n−1 = hn,

and then from (60)

Xn−1 =
t d2hn

dt2
+ (n− α1)

dhn

dt
− 1

2 dhn

dt

.
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Therefore we have

Xn−1 −Xn =
t d2hn

dt2

dhn

dt

= t
d

dt
log

dhn

dt
. (63)

Finally we obtain from (62) and (63)

dhn

dt
= c(n)

τn−1τn+1

τ 2
n

,

which show the theorem.

Since τ -functions are determined up to multiplicative constants, we can normalize the

functions, for example, as c(n) = 1. For algebraic solutions, it is convenient to put c(n) = −3;

see Section 6.1.

4.3 Bilinear forms

In this subsection, we rewrite equations PIII′(D7) and PIII′(D8) in terms of bilinear forms,

by using the method of [19], where a bilinear form of the second Painlevé equation has been

considered. The Hirota derivatives considered in what follows are, by definition, given by

the following expressions:

Dg · f = (Dg)f − g(Df), D2g · f = (D2g)f − 2(Dg)(Df) + g(D2f),

D3g · f = (D3g)f − 3(D2g)(Df) + 3(Dg)(D2f)− g(D3f), . . . ,

where D = t d
dt

. We show the

Theorem 15 PIII′(D7) is equivalent to the bilinear form:

D2τ1 · τ0 − α1Dτ1 · τ0 = τ1 ·Dτ0, (64)

D3τ1 · τ0 − α1D2τ1 · τ0 = Dτ1 ·Dτ0 + 2tτ1 · τ0, (65)

with respect to two τ -functions, τ0 and τ1.

Proof. In general, consider the three functions of t, H , H1 and X, such that

X = H1 −H,

and let f and g be functions defined by

H1 = D log g, H = D log f,

respectively; we have

X = D log
g

f
=
Dg · f
g · f .
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It is easy to verify the following fundamental formulae of differentiation:

DH1 + DH =
D2g · f
g · f −

(Dg · f
g · f

)2

,

D2H1 −D2H =
D3g · f
g · f − 3

D2g · f
g · f

Dg · f
g · f + 2

(Dg · f
g · f

)3

.

Now consider PIII′(D7) and put

H = tH(t, q, p, α1) = t
d

dt
log τ0, H1 = tH(t, Q, P, α1 − 1) = t

d

dt
log τ1,

τ0, τ1 being τ -functions. In this case we have

X = −qp, DH = tp, DH1 = tP = q.

It follows that:

DH + DH1 = tp + q = H − q2p2 − α1qp = H −X2 + α1X,

from which we obtain the first bilinear equation, (64). Moreover, since

D2H1 −D2H = D(q − tp) = (q + tp)(2qp + α1)− tp + 2t

, we have

D2H1 −D2H = (DH1 + DH)(α1 − 2X)−DH + 2t,

from which we deduce (65).

Note that bilinear forms (64)–(65) are corresponding to the transformation α1 �→ α1− 1.

It is easy to verify that (64)–(65) are equivalent to PIII′(D7).

In the case of PIII′(D8), which contains no parameter, we have no sequence of τ -functions.

We obtain instead a bilinear equation of the other form, by using differential equation (22)

satisfied by the auxiliary function. In fact consider (22) and by using

h = Dτ/τ, Dh = D2τ · τ/2τ 2,

D2h + 2hDh = D2Dτ · τ/τ 2, D3h + 6(Dh)2 = D4τ · τ/2τ 2,

we obtain the bilinear equation:

D4τ · τ + tτ · τ = 4D2Dτ · τ. (66)

The same method can be applied also to PIII′(D7), and we have the bilinear equation:

D4τ · τ + (1− α2
1)D2τ · τ − 2α1tτ · τ = 4D2Dτ · τ. (67)
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5 Irreducibility Theorem

In this section we will establish irreducibility of PIII′(D7) and PIII′(D8), that is, we will show

the

Theorem 16 None of PIII′(D7) and PIII′(D8) does have transcendental classical solutions.

By virtue of the theorem, PIII′(D7) and PIII′(D8) may have only algebraic solutions as classical

solutions. We will prove the Theorem 16 by using the method of Umemura and Watanabe

[26], and then determine the algebraic solutions of each equation in the next section.

Let K be a differential extention of C(t) with respect to the derivation: t d
dt

and K[p, q]

the polynimial ring over K. For PIII′(D7) we consider on K[p, q] the Hamiltonian vector

field:

XD7(α1) = t
∂

∂t
+
(
2q2p + α1q + t

) ∂

∂q
− (2qp2 + α1p + 1

) ∂

∂p
. (68)

To establish Theorem 16 for PIII′(D7), we introduce the following condition, (J):

(J) For any differential field extension K/C(t), there exists no principal ideal I of K[p, q]

such that 0 � I � K[p, q] and X(α1)I ⊂ I.

By means of the theory of irreducibility given by [24], Theorem 16 follows from Proposi-

tion 17 given below. In fact, if X = XD7(α1) enjoys condition (J), a transcendental solution

of PIII′(D7) is non classical; see [26].

Proposition 17 The derivation X = XD7(α1) satisfies the condition (J).

For PIII′(D8), Theorem 16 is an immediate consequence of irreducibility of PIII′(D6) by

the use of the transformation given above in Theorem 1 (iii), cf. [27]. On the other hand,

we will give below another proof by considering the vector field:

XD8 = t
∂

∂t
+
(
2q2p + q

) ∂

∂q
−
(

2qp2 + p− 1

2

(
1− t

q2

))
∂

∂p
, (69)

on K[q, p]. Since

XD8(q) = (2qp + 1)q,

we have a principal ideal I = (q) such that X(I) ⊂ I. To establish Theorem 16 for PIII′(D8)

in a way similar to the case of PIII′(D7), we have to introduce instead of condition (J) the

following condition :

(J)′ For any differential field extension K/C(t), there exists no principal ideal I of K[p, q, q−1]

such that 0 � I � K[p, q, q−1] and XI ⊂ I.
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In this section we will verify the

Proposition 18 The derivation X = XD8 satisfies the condition (J)′.

The irreducibility of PIII′(D8) follows from Proposition 18; in fact, we have the

Proposition 19 Let L ⊂ K ⊂ C(t) be a sequence of extensions of differential fields. If

q ∈ L be a solution of PIII′(D8) and trans.deg.KL ≤ 1, then q is algebraic over K.

Proof. Put M = K(q, p), where p = 1
2q2

dq
dt
− 1

2q
, then M is a subfield of L and trans.deg.KM ≤

1. We assume trans.deg.KM = 1. Since q is transcendental, p is algebraic over K(q). Let

F (q, P ) ∈ K[q, P ] be the minimal polynomial of p over K(q).

Differentiating F (q, p) = 0 with respect to t, we obtain

XD8(F )(q, p) = 0.

Therefore XD8(F )(q, P ) is divisible by F (q, P ); and then it follows from condition (J)′ that

F ∈ K · ql for certain l. F being the minimal polynomial of p, we arrive at contradiction;

hence trans.deg.KM = 0, which shows q is algebraic over K.

5.1 Proof of Proposition 17

We prove Proposition 17 by reductio ad absurdum; assume that there would exist a principal

ideal I of K[p, q], invariant under the action of X(α1). Let F ∈ K[p, q] be a generator of I.

Then we have

X(α1)F = GF, (70)

for some G ∈ K[p, q]. Such a polynomial, F , will be called as an invariant divisor in the

following of this section.

5.1.1 Weights on K[p, q]

We can associate a Newton polygon with derivation on K[p, q]; the Newton polygon of X(α1)

is of the form:

Taking the Newton polygon into consideration, we introduce two kinds of weights on K[p, q].

First one, ω1, is defined by:

ω1(q) = −1, ω1(p) = 2;

the weight of aqipj is 2j− i for any a ∈ K, a �= 0. Let Rd be the K-linear subspace of K[p, q]

generated by all the monomials of weight d; we have

R−d = K[q2p]qd, R2d = K[q2p]pd, R2d−1 = K[q2p]qpd
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for a non-negative integer d. Then we obtain the decomposition:

K[p, q] =
⊕
d∈Z

Rd, Rd · Rd′ = Rd+d′ .

Consider three homogeneous derivations, X−2, X0, X1, given by:

X1 =
(
2q2p + t

) ∂

∂q
− 2qp2 ∂

∂p
,

X0 = t
∂

∂t
+ α1q

∂

∂q
− α1p

∂

∂p
,

X−2 = −1

2

∂

∂p
.

Note that each Xi maps Rd to Rd+i and X(α1) = X1 + X0 + X−2.

On the other hand, we introduce the second weight ω2, defined by:

ω2(q) = 2, ω2(p) = −1.

Let Sd be the K-linear subspace of K[p, q] generated over K by all monomials of weight d.

We have, for any non negative integer d,

S−d = K[qp2]pd, S2d = K[qp2]qd, S2d−1 = K[qp2]qdp,

and

K[p, q] =
⊕
d∈Z

Sd, Sd · Sd′ = Sd+d′ .

The three homogeneous derivations Y1, Y0, Y−2 by

Y1 = 2q2p
∂

∂q
− (1 + 2qp2

) ∂

∂p
,

Y0 = t
∂

∂t
+ α1q

∂

∂q
− α1p

∂

∂p
,

Y−2 = t
∂

∂q
,

X(α1) = Y1 + Y0 + Y−2,
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and Yi maps Sd to Sd+i.

Since the weight of X(α) is one with respect to both of the weights, G can be written as:

G = λqp + µ

for some λ, µ ∈ K.

5.1.2 Highest terms of F

We consider the following decompositions of an invariant devisor, F :

F = Fm + Fm−1 + · · ·+ Fm−m0 , Fk ∈ Rk, Fm �= 0, Fm−m0 �= 0, (71)

F = fn + fn−1 + · · ·+ fn−n0, fk ∈ Sk, fn �= 0, fn−n0 �= 0, (72)

corresponding to the weights, ω1 and ω2. The homogeneous part of equation (70) reads:

X1Fk−1 + X0Fk + X−2Fk+2 = λpqFk−1 + µFk, (73)

Y1fk−1 + Y0fk + Y−2fk+2 = λpqfk−1 + µfk, (74)

respectively, where we agree to put Fk = 0 for k < m − m0 or k > m and fk = 0 for

k < n− n0 or k > n. In particular, we have

X1Fm = λqpFm, (75)

Y1fn = λqpfn. (76)

We show the

Lemma 20 (i) If X1F = λqpF for F ∈ K[q, p], then F is not divisible by q.

(ii) If Y1f = λqpf for f ∈ K[q, p], then f is not divisible by p.

Proof. (i) Assume that

X1F = λqpF (77)

and that F = qkF ′, where k ≥ 0, F ′ ∈ K[q, p]: We obtain from (77):

q(X1(F
′) + 2kqpF ′) + ktF ′ = λqpF ′,

and then k = 0. The second assertion of the lemma can be verified in a similar way.

Therefore m, n are non-negative, even integers; we put

m = 2r, n = 2s,

r, s being non-negative integers.
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Remark 3 Put L = q2p + t, M = q2p + 1; we have:

X1(L) = 2qpL, L ∈ R0,

Y1(M) = −2qpM, M ∈ S0.

We can write Fm (m = 2r) as

F2r = pr
∑
j≥0

bjL
j , bj ∈ K.

and since

X1(F2r) = qpr+1
∑
j≥0

2(j − r)bjL
j .

we deduce from (75) that λ = 2(j0 − r) for a non-negative integer j0 and

F2r = bprLr+λ/2 b ∈ K×. (78)

Moreover we obtain from (76)

f2s = cqsMs−λ/2, c ∈ K×. (79)

The highest term of F2r with respect to ω2 is:

q2r+λ/2p2r+λ/2,

and we obtain

2r +
3

2
λ ≤ 2s.

On the other hand, by considering the highest term of f2s with respect to ω1, we have

2s− 3

2
λ ≤ 2r.

It follows that

2r +
3

2
λ = 2s, (80)

and moreover, by comparing the coefficient; we have

b = c.

If F is an invariant divisor, then so is b−1F for any b ∈ K×. Here, without loss of generality,

we assume b = c = 1 in (78)–(79).
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5.1.3 Determination of F2r−1 and f2s−1

By means of (73), F2r and F2r−1 satisfy the equations

X1(F2r−1) + X0(F2r) = λqpF2r−1 + µF2r, (81)

By writing F2r−1 as:

F2r−1 = prq

k1∑
j=0

djL
j , dj ∈ K,

we deduce from (81) that

X1(F2r−1)−λqpF2r−1

= pr
k1∑

j=0

dj

[
(2− λ− 2r + 2j)Lj+1 + (λ− 1 + 2r − 2j)tLj

]
.

(82)

On the other hand we have

µF2r −X0(F2r) =

(
µ− α1λ

2

)
Lr+ λ

2 pr + (α1 − 1)t

(
r +

λ

2

)
Lr+ λ

2
−1pr. (83)

Comparing (83) and (82), we obtain k1 = r + λ/2− 1, and then

µ− α1λ

2
= 0. (84)

Moreover we have

d0 = 0, d1 = 0, ..., dk−1 = 0, dk = (α1 − 1)

(
r +

λ

2

)
.

It follows that:

F2r−1 =
1

2
(α1 − 1) (2r + λ) prqLr+λ/2−1.

We can compute f2s−2 in a way similar to F2r−1; we obtain in fact from (79):

f2s−1 =
1

2
α1 (2s− λ) qspMs−λ/2−1.

F2r−1 contains the monomial:

p2r+λ/2−1q2r+λ−1,

and f2s−1 contains the monomial

q2s−λ/2−1p2s−λ−1.

These two terms coincide each other by (80) and then we have

1

2
(α1 − 1)(2r + λ) =

α1

2
(2s + λ).

It follows again from (80) that:

λ =
4r

α1 − 2
. (85)
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5.1.4 Condition (J)

By taking into consideration the birational canonical transformations given above in Section

2.3, we can assume, without loss of generality,

0 ≤ � α1 < 1.

Since r, s are non-negative integers , 3
4
λ is an integer by means of (80). Then by (85) α1

is rational and 0 ≤ α1 < 1; hence λ is a non-negative integer. We put, for a non-negative

integer l,

λ = −4l.

It follows from (80) and (85) that:

r − 3l = s,

l =
r

2− α1

,

respectively. We obtain:

r

3
≥ l,

r

2
≤ l < r,

which shows

r = l = 0,

and then λ = s = µ = 0. Definitively, if F satisfies (70), then F ∈ K. We have thus arrived

at contradiction.

5.2 Verification of Proposition 18

In this subsection, we establish condition (J)′ for PIII′(D8), in a way similar to the case of

condition (J) for PIII′(D7). Let X be the Hamiltonian vector field given by (69); we suppose

that there exist F, G ∈ K[p, q, q−1] such that

XF = GF. (86)

F is called an invariant divisor, also in this case. To prove Proposition 18, it is sufficient to

show that, if F is an invariant divisor, then F ∈ K[q, q−1]. Note that

X(q) = (2q + 1)q.

By putting

x = q, z = 2qp + 1,
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we have from (69)

X = zx
∂

∂x
+

(
x− t

x

)
∂

∂z
+ t

∂

∂t
. (87)

If F is an invariant divisor, then we can assume F ∈ K[x, z] without a loss of generality; in

fact, if F satisfies (86), then we have for F ′ = x−nF

XF ′ = (G + nx)F ′.

We introduce two kind of weights, ω1 and ω2, as follows:

ω1(z) = 1, ω1(x) = −2,

ω2(z) = 1, ω2(x) = 2.

Let Rd (Sd resp.) be the K-linear subspace of K[x, z] generated by monomials of weight d

with respect to ω1 (ω2 resp.); we have the decompositions:

K[x, z] = ⊕d∈ZRd

= ⊕d≥0Sd.

We have homogeneous derivations Xj (Yj resp.) with respect to ω1 (ω2 resp.) given by:

X1 = zx
∂

∂x
=

t

x

∂

∂z
, Y1 = zx

∂

∂x
+ x

∂

∂z
,

X0 = Y0 = t
∂

∂t
, X−3 = x

∂

∂z
, Y−3 = − t

x

∂

∂z
,

(88)

such that

X = X1 + X0 + X−3

= Y1 + Y0 + Y−3.

Then Xj maps Rd to Rd+j and Yj maps to Sd to Sd+j .

5.2.1 Decomposition of an invariant divisor

We see firstly that G in (86) can be written in the form:

G = λz + µ, λ, µ ∈ K;

in fact, the highest degree of terms of G is at most 1 with respect to both weights.

We rewrite F as a sum of homogeneous polynomials:

F = Fm + Fm−1 + · · · , (89)
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with respect to the weight, ω1. By considering terms of the highest degree in (86), we have

the equation:

X1Fm = λzFm, (90)

where X1 is given by (88).

It is easy to see that Fm is not divisible by z; hence m is a non-positive even integer. If

we put m = −2n, n being a non-negative integer, then Fm = F−2n is written in the form:

F−2n = xnF0, F0 ∈ R0.

We obtain successively

F−2n−1 = xnzF ′
0, F ′

0 ∈ R0,

F−2n−2 = xn+1F ′′
0 , F ′′

0 ∈ R0,

and so on. Then F can be decomposed as

F = xnF ′, F ′ ∈ K[x, z];

we have another invariant divisor F ′. Therefore we can assume in (89) m = 0, and put

F0 =
∑

akL
k, ak ∈ K,

where

L = xz2 − 2t;

note that L ∈ R0 and X1L = zL. It follows from (90) that λ is a non-negative integer and

that:

F0 = aLλ, a ∈ K. (91)

We can assume without a loss of generality a = 1.

On the other hand, let

F = fm + fm−1 + · · ·

be the weighted homogeneous decomposition of F with respect to ω2. We have the equation:

Y1fm = λzfm. (92)

It is easy to show that fm is not divisible by z, and then m is even. Since fm is a homogeneous

polynomial in x and z2, we can put

fm =
∑

2(α+β)=m

bα,βxαMβ , bα,β ∈ K,
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where

M = 2x− z2, M ∈ S2.

By taking Y1M = 0 into consideration, we deduce from (92) that fm can be written in the

form:

fm = bxλMν , b ∈ K, m = 2(λ + ν). (93)

Now we claim that λ = ν. In fact, with respect to ω2, the highest degree of monomials

contained in Lλ is 4λ. Hence,

4λ ≤ 2(λ + ν). (94)

On the other hand, the highest degree of terms of fm is −2λ + 2ν, with respect to ω1, so

that,

−2λ + 2ν ≤ 0. (95)

We deduce from (94)–(95) that λ = ν, and then m = 4λ.

Since both F0 and fm contain xλz2λ, we can put a = b = 1. Therefore we have

F0 = Lλ, (96)

fm = xλMλ, m = 4λ, (97)

for a non-negative integer λ, where

L = xz2 − 2t, M = 2x− z2.

5.2.2 Condition (J)′

To finish the verification of Proposition 18, we compute terms, F−1 and fm−1, following to

F0 and fm, respectively.

We begin with the term, F−1, which is determined by the equation:

XF−1 + X0F0 = λzF−1 + µF0.

It follows from (96) that

XF−1 − λzF−1 = µLλ + 2tλLλ−1. (98)

By putting

F−1 = xz

k1∑
k=0

bkL
λ, bk ∈ K, bk1 �= 0,
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and then by computing the left hand side of (98), we obtain

k1∑
k=0

(1 + k − λ)bkL
k+1 + t

k1∑
k=0

(1 + 2k − 2λ)bkL
k = µLλ + 2tλLλ−1. (99)

We claim that:

µ = 0, F−1 = −2λxzLλ−1.

In fact, we have from (99)

k1 + 1 = λ, (1 + k1 − λ)bk1 = µ,

which shows µ = 0, and then we see

b0 = b1 = · · · = bk1−1 = 0, bk1 = bλ−1 = −2λ.

F−1 contains the term, xλz2λ−1, whose degree is

4λ− 1 = m− 1,

with respect to ω2. So we compute fm−1 by means of the equation:

Y1fm−1 + Y0fm = λzfm−1 + µfm, m = 4λ.

Since Y0fm = 0, µ = 0, we have

Y1fm−1 = λzfm−1.

Since a solution of the equation (92) is given by (93), we have fm−1 = 0, and then λ = 0. It

follows that, if XF = GF , then G = 0 and F ∈ K. We have thus established the proposition.

6 Algebraic solutions

In the present section, we consider algebraic solutions of PIII′(D7) and PIII′(D8). We have

shown in the previous section that these equations do not admit a transcendental classical

solutions, and so all classical solutions of them are algebraic.

We begin with equation PIII′(D8), which reduces to an equation of the type P = III′(D6)

through the quadratic transformation given above in Theorem 1 (iii). The classification of

algebraic solutions of PIII′(D6) is known; see [5] and [14]. By means of the classification, we

have the

Proposition 21 PIII′(D8) has only two rational solutions.

In fact, it is easy to see that PIII(α, β, 0, 0) has the constant solutions:

y = ±
√
−β/α,

and then PIII′(−4, 4, 0, 0) has algebraic solutions:

q = ±√t.
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6.1 Algebraic solutions of PIII′(D7)

Let H(α1) be the Hamiltonian system with the Hamiltonian

H =
1

t
[q2p2 + α1pq + tp + q].

We study algebraic solutions of PIII′(D7); it is known that

Proposition 22 ([10, 4]) If α1 = 1, H(1) has the algebraic solution

q(t) = −1

2
(2t)2/3, p(t) =

1

3(2t)2/3
− 1

(2t)1/3
.

H(α1) has one and only one algebraic solution if and only if α1 is an integer.

The rational solution given above has been found for the first time by Lukashevich [10] for

PIII′(D7) and we have rewritten it in terms of the Hamiltonian structure.

We give below a few of algebraic solutions; when α1 = 0, we have

(q, p) =

(
−1

6
(2t)1/3 − 1

2
(2t)2/3,− 1

(2t)1/3

)
,

and when α1 = −1,

(q, p) =

−5(2t)
1
3 + 24t + 9(2t)

4
3

2
(
1 + 3(2t)

1
3

)2 ,−1 + 3(2t)
1
3

3(2t)
2
3

 .

Starting from the algebraic solution of H(0), we can obtain that of H(−n) by means of the

transformation, πn; see Section 4.2.

The aim of this subsection is to determine τ -functions related to algebraic solutions.

When α1 = 1, the Hamiltonian function associated with the algebraic solutions given by

tH = −3

4
(2t)

2
3 +

1

2
(2t)

1
3 − 5

36
.

Then the τ -function is determined up to a multiplicative constant, c, as:

τ = c exp

(
−9

8
(2t)

2
3 +

2

3
(2t)

1
3

)
t−

5
36 .

Moreover, when α1 = 0, we obtain

tH = −3

4
(2t)

2
3 +

1

36

and then

τ = c′ exp

(
−9

8
(2t)

2
3

)
t

1
36 ,
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c′ being a non zero constant. We put

s = 3(2t)
1
3 ,

and let τn be the τ -function related to the algebraic solution of H(−n). The τ -function

satisfy Toda equation (61); in what follows, we consider the equation

d

dt
t
d

dt
log τn = −3

τn−1τn+1

τ 2
n

,

or equivalently

d

ds
s

d

ds
log τn = −1

2
s2 τn−1τn+1

τ 2
n

. (100)

Moreover we put

τ−1 = exp

(
−1

8
s2 +

1

2
s

)
s−

5
12 ,

τ0 = exp

(
−1

8
s2

)
s

1
12 .

(101)

Remark 4 Let (q0, p0) be the algebraic solution of H(0) and H0 the Hamiltonian function

associated to it. By means of the canonical transformation given by (57), the Hamiltonian

function at α1 = −1 is given by

tH = tH0 − q0p0 = −3

4
(2t)

2
3 − 1

2
(2t)

1
3 − 5

36
.

Hence we obtain

τ1 = c′′ exp

(
−9

8
(2t)

2
3 − 3

2
(2t)

1
3

)
t−

5
36 ,

c′′ being a non zero constant. On the other hand, it follows from (100) for n = 0 and (101)

that:

τ1 = exp

(
−1

8
s2 − 1

2
s

)
s−

5
12 .

The τ -function, τn = τn(s), can be determined by means of (100). In fact we have the

Theorem 23 The τ -functions related to the algebraic solutions are of the form:

τn = exp

(
−1

8
s2 − 1

2
ns

)
s−dn/12Sn(s),

where Sn(s) are monic polynomials in s with integral coefficients, such that Sn(0) �= 0. Here

dn =

9n2 − 1 n is even,

9n2 − 4 n is odd.
(102)
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Remark 5 Sn(s) satisfy the equation:

(s + n)Sn(s)2 − 2sSn(s)Sn(s)′′ + 2sS ′
n(s)

2 − 2Sn(s)S
′
n(s)

=

sSn−1(s)Sn+1(s) n is even,

Sn−1(s)Sn+1(s) n is odd.

(103)

by virtue of Toda equation (100).

We give below the list of Sn(s) for n = 0, 1, 2, 3, 4, 5

S−3 = s2 − 4s + 5,

S−2 = s− 1,

S−1 = 1,

S0(s) = 1,

S1(s) = 1,

S2(s) = s + 1,

S3(s) = s2 + 4s + 5,

S4(s) = s4 + 10s3 + 40s2 + 70s + 35,

S5(s) = s6 + 20s5 + 175s4 + 840s3 + 2275s2 + 3220s + 1925.

Note that, for n ≥ 2, Sn(s) admit only simple zeros, by means of Theorem 12. By comparing

Sn(s) with Yablonskii-Vorob’ev polynomials, which appear in the case of the second Painlevé

equations, we might expect that Sn(s) could be written in terms of the Schur functions; cf.

[9]. This problem remains unsettled.

6.2 Proof of Theorem 23

For any integer n, Sn(s) is determined in a unique way by means of (103) and the initial

condition:

S0(s) = S1(s) = 1.

Moreover it is to see:
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Lemma 24 (103) admits a symmetry of the form:

S−n(s) = (−1)enSn(−s),

where

en =

1
4
n2 n is even,

1
4
(n2 − 1) n is odd.

(104)

Note that d−n = dn, e−n = en. By agreeing that Sn(s) are polynomials, we can show

en = deg Sn(s).

By virtue of Lemma 24 it is sufficient for verification of the theorem to consider only the

case when n is non-negative. Assume that

Sk(s) (0 ≤ k ≤ n)

satisfy the following condition, as a function of s:

(P )k Sk(s) is a monic polynomial with integral coefficients and Sk(0) is an odd integer.

We see that Sk(s) (0 ≤ k ≤ 5) satisfy (P )k and we establish the theorem by showing that

Sn+1(s) also fulfills (P )n+1.

We begin with considering the case when n is an odd integer. Let denote by Tn(s) the left

hand side of (103). By virtue of the assumption of induction, Tn(s) is a monic polynomial

with integral coefficients, so is

Tn(0) = nSn(0)2 − 2Sn(0)S ′
n(0);

in particular, Tn(0) �= 0. We determine Sn+1(s) by

Tn(s) = Sn−1(s)Sn+1(s); (105)

Sn+1(s) is holomorphic at s = 0 and may be rational in s. On the other hand, a τ -function

has to be holomorphic at any point s = s0, such that s0 �= 0. It follows that Sn+1(s) is a

polynomial; Tn(s) can be divided by Sn−1(s). Since Sn−1(s) and Tn(s) are monic polynomials

with integral coefficients, so is Sn+1(s). Moreover, both Tn(0) and Sn−1(0) are odd integers,

and then so is Sn+1(0). We have thus arrived at (P )n+1.

We proceed to study the case when n is even. Recurrence formula (103) reads as follows:

Sn(s)2 − 2Sn(s)Sn(s)
′′ + 2S ′

n(s)
2 − 2Sn(s)

nSn(s)− 2S ′
n(s)

s
= Sn−1(s)Sn+1(s). (106)

Let us denote by Un(s) the left hand side of (106), and we can show that Un(s) is a monic

polynomial with integral coefficients. In fact, we have the
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Lemma 25 If n is even, then

nSn(0)− 2S ′
n(0) = 0.

Proof. Consider the auxiliary function:

h = tHn +
n2

4
, Hn =

d

dt
log τn, (107)

which satisfies the differential equation:(
t
d2h

dt2

)2

+ 4

(
dh

dt

)2(
t
dh

dt
− h

)
+ 2n

dh

dt
− 1 = 0;

see Section 4.2. This equation can be written as:(
s
d2h

ds2
− 2

dh

ds

)2

+ 12

(
dh

ds

)2(
s
dh

ds
− 3h

)
+ ns2dh

ds
− 1

36
s4 = 0, (108)

with respect to s = 3(2t)1/3. On the other hand, we deduce from (107) with

τn = exp

(
−1

8
s2 − 1

2
ns

)
s−

1
12

(9n2−1)Sn(s),

the following expression:

h =
1

36
+ Bs + O(s2),

where O(·) is the Landau Symbol and

B =
2S ′

n(0)− nSn(0)

6Sn(0)
.

Then, by putting s = 0 in (108), we obtain B = 0, which establishes the lemma.

Therefore we can deduce from

Un(s) = Sn−1(s)Sn+1(s) (109)

that Sn+1(s) is a monic polynomial with integral coefficients, in a way similar to the case

studied just above. Since n is even and Sn(0) is odd,

Un(0) = Sn(0)2 − 2Sn(0)S ′′
n(0) + 2S ′

n(0)2 + (nS ′
n(0)− 2S ′′

n(0))Sn(0)

is an odd integer; in particular, Un(0) �= 0. It follows that Sn+1(0) is an odd integer. We

have thus finished up the verification of the theorem.
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7 Space of initial conditions

As is mentioned in Introduction, it is quite natural to distinguish the three types of the third

Painlevé equations from a point of view of geometrical studies on the equations; cf [22]. By

virtue of the Painlevé property, to construct a space of initial conditions, we have only to

determine a compact space X̄ and a set {Dj} of subvarieties of X̄, satisfying the following

properties:

(i) Dj
∼= P1 and Dj contains a leaf of the foliation entirely;

(ii) Dj ∪Dk(j �= k) defines a singularity of the first class of the foliation associated with the

equation;

(iii) Dj ∩Dk ∩Dl = ∅, (j, k, l are distinct).

Given such a space X̄, then X = X̄ − ∪jDj is a space of initial conditions. In fact, by

constructing X̄ and {Dj}, we obtain the fiber space P and the foliation F , with properties,

a, b and c, stated in Introduction. And we have

X ∼= π−1(t0),

for any point t0 ∈ B; cf [16]. We call each Dj a vertical leaf. A singular point of the first

class is defined as a singular point which does not belong to the closure of any leaf except

vertical one. Provided that the Painlevé property would be established, a singular point

b = {(y, z) = (0, 0)} of the following equation is of the first class:

zy′ = λ + f(t, y, z), yz′ = −µ + g(t, y, z). (110)

Here we assume that λ, µ > 0 and f , g are holomorphic near b with f(t, 0, 0) ≡ 0, g(t, 0, 0) ≡
0.

7.1 D
(1)
7 -surface and D

(1)
8 -surface

Such a compact space X̄ for the third Painlevé equations of type D
(1)
i is called D

(1)
i -surface

in [22] (i = 6, 7, 8), in fact this surface contains vertical leaves {Dj}, whose intersection form

is expressed by the Cartan matrix of D
(1)
i type. A D

(1)
6 -surface has been constructed from

the Hirzeburch surface, Σ
(2)
(ε) , by 8 points blowing-ups in [16], and now we begin with P2.

Note that, since Σ
(2)
(ε) and P2 are birational each other, D

(1)
i -surface is determined by this

way.

If we regard X̄ as a blowing-up surface of P2 centered at 9 points, we have only to write

down the positions of the 9 points, including infinitely near points, in P2 to describe X̄. We

can express D
(1)
7 -surface and D

(1)
8 -surface as follows:
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D
(1)
7 -surface:

�
�
�
���

�
�
��

��

��

p7 → p5

p6 → p4

z = 0 x = 0
p1 ← p2 ← p3 ← p8 ← p9

�

←−
�

�
�

�
�

�

� � �
p6 p7 p9

p1 : (0 : 1 : 0) ← p2 :

(
x

y
,
z

x

)
= (0, 0)← p3 :

(
x

y
,
yz

x2

)
= (0, 0)←

← p8 :

(
x

y
,
y2z

x3

)
= (0,−2t)← p9 :

(
x

y
,
y(y2z + 2tx3)

x4

)
= (0, 4α0t),

p4 : (0 : 0 : 1) ← p6 :
(x

z
,
y

x

)
= (0, 0), p5 : (0 : 1 : 1)← p7 :

(
x

z
,
y − z

x

)
= (0, 2α1).

D
(1)
8 -surface:

�
�
�
���

�
�
��

�p7 → p6 → p5 → p4

z = 0 x = 0
p1 ← p2 ← p3 ← p8 ← p9

�

←−
�

�
��
�

��
�

�

�

�

p7

p9

p1 : (0 : 1 : 0) ← p2 :

(
x

y
,
z

x

)
= (0, 0)← p3 :

(
x

y
,
yz

x2

)
= (0, 0)←

← p8 :

(
x

y
,
y2z

x3

)
= (0, 4t)← p9 :

(
x

y
,
y(y2z − sx3)

x4

)
= (0, 8t),

p4 : (0 : 0 : 1) ← p5 :

(
y

z
,
x

y

)
= (0, 0)← p6 :

(
y

z
,
zx

y2

)
= (0, 1)←

← p7 :

(
y

z
,
z(zx − y2)

y3

)
= (0, 0).

Here (x : y : z) denotes a homogeneous coordinate of P2 and pk (k = 1, . . . 9) are the 9 points

in P2; pl ← pk signifies that pk is infinitely near pl.

Each vertical leaf is represented by the positive divisor Dj, which represents a divisor

class Dj ∈ Pic(X̄); here we give the table of Dj:

D
(1)
7 -surface:

D1 = E0 − E1 − E2 − E3, D2 = E3 − E8, D3 = E2 − E3,
D4 = E1 − E2, D5 = E0 − E1 − E4 − E5, D6 = E4 − E6, D7 = E5 − E7,
D0 = E8 − E9,

D
(1)
8 -surface:

D1 = E0 − E1 − E2 − E3, D2 = E3 − E8, D3 = E2 − E3,
D4 = E1 − E2, D5 = E0 − E1 − E4 − E5, D6 = E5 − E6, D7 = E4 − E5,
D8 = E6 − E7, D0 = E8 − E9.
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Here E0 is the class of total transform of a line in P2 and Ek is that of the closed point pk

(k = 1, . . . , 9). These surfaces and vertical leaves satisfy property (iii) given above.

7.2 Foliation associated with PIII′(D7)

We define a foliation induced from the each Painlevé equation on this surface and show that

properties (i) and (ii) are established. We begin with the Painlevé equation of type D
(1)
7 .

For canonical variables, q, p of the Hamiltonian system, we take a homogeneous coordi-

nates as (x : y : z) =
(

p
2

: −qp2 : 1
)
. We have then the following differential equations

tx′
1 = y1 − α1x1 − 1

2
, ty′

1 = −ty1(y1 − 1)

2x1
+ tx2

1 + α1y1, (111)

tx′
2 = − t

y2
− 1

2
x2y2, ty′

2 = y2

(
1

2
y2 − x2 + α1

)
, (112)

tx′
3 =

x3(x3 − 1)

y3
+ ty2

3 + α1x3, ty′
3 =

ty3
3

x3
+

1

2
x3. (113)

with respect to the coordinates (x1, y1) =
(

x
z
, y

z

)
, (x2, y2) =

(
y
x
, z

x

)
, (x3, y3) =

(
z
y
, x

y

)
.

In P2 there are vertical leaves, D1 = {z = 0} and D5 = {x = 0}, and singular points:

p1 = {(x3, y3) = (0, 0)}, p4 = {(x1, y1) = (0, 0)}, p5 = {(x1, y1) = (0, 1)} = {(x3, y3) = (1, 0)}.

By blowing up successively p1, p4 and p5, we will obtain resolution of these singularities.

Since properties, (i) and (ii), are fulfilled apart from these singular points, we have only to

study the foliation around an exceptional divisor, obtained by a blowing-up process at a

singular point.

Put

(f, g) = (x1, y1) =
(x

z
,
y

z

)
, G =

y1

x1
, F =

x1

y1
,

then we have the system:

tf ′ = fG− α1f − 1

2
, tG′ = − G

2f
− tf, (114)

tF ′ =
1

2g
+ tgF 3, tg′ =

g − 1

2F
+ α1g − tg2F 2. (115)

This system appears as result of a blowing-up at the point p4 and we see easily that the total

transform of closed point p4 consists of the vertical leaf, D6, and the singular points:

p6 = {(f, G) = (0, 0)}, b5,6 = {(F, g) = (0, 0)}.

The latter is of the first class; the system can be reduced to a system of the form (110) by

a suitable change of variables.
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Blowing up the point p6, we obtain

tf ′ = f 2G− α1f − 1

2
, tG′ = −fG2 + α1G− t, (116)

tF ′ = F (g + tF − α1) , tg′ =
1

2F
− tgF, (117)

where

(f, g) =
(x

z
,
y

x

)
, G =

yz

x2
, F =

x2

yz
.

The foliation defined by the system (116) is transversal to the fiber, and the total transform

of p6 does never give a vertical leaf. The resolution of singularity, p6, is thus finished up.

We proceed to the blowing-up at singular point p5; we have

tf ′ = fG− α1f +
1

2
, tG′ =

G− 2α1

2f
− tf, (118)

tF ′ =
2α1F − 1

2g
+ tgF 3, tg′ =

g + 1

F
− α1(g + 1) + tg2F 2, (119)

where

(f, g) = (x1, y1 − 1) =

(
x

z
,
y − z

z

)
, G =

y1 − 1

x1
=

y − z

x
, F =

x1

y1 − 1
=

x

y − z
.

The total transform consists of vertical leaf D7 and singular points,

p7 = {(f, G) = (0, 2α1)} = {(F, g) = (1/2α1, 0)}, b5,7 = {(F, g) = (0, 0)}.

The latter is of the first class.

To resolve singular point p7, we put

(f, g) =

(
x

z
,
y − z − 2α1x

x

)
, G =

z(y − z − 2α1x)

x2
, F =

x2

z(y − z − 2α1x)
.

It follows that

tf ′ = f 2G + α1f +
1

2
, tG′ = −fG2 − α1G− 2, (120)

tF ′ = F (g + tF + α1) , tg′ =
1

2F
− tgF. (121)

We next blow up point p1; we have

tf ′ =
f − 1

G
+ α1x + tf 2G2, tG′ =

1

f
− α1G− 1

2
, (122)

tF ′ = −F

f
+

1

2
F (F + 2α1) , tg′ =

g2

F
+

1

2
gF, (123)

with

(f, g) = (x3, y3) =

(
z

y
,
x

y

)
, G =

x

z
, F =

z

x
.
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The total transform of p1 defines vertical leaf D4, and singular points p2 = {(F, g) = (0, 0)}
and b4,5 = {(f, G) = (0, 0)}.

Since b4,5 is of the first class, we blow up p2; putting

(f, g) =

(
z

x
,
x

y

)
, G =

x2

yz
, F =

yz

x2
.

we obtain

tf ′ = − 1

G
+ f

(
1

2
f + α1

)
, tG′ =

1

f
+ G(tG− α1), (124)

tF ′ = −F

g
+

α1t

2
F − t, tg′ =

2g

F
+

1

2
g2F, (125)

We have again vertical leaf D3 and two singular points, p3 = {(F, g) = (0, 0)} and b3,4 =

{(f, G) = (0, 0)}.
By blowing up p3, we obtain the following system:

tf ′ = − 1

G
+ α1f − t, tG′ =

1 + 2tG

f
+ G

(
1

2
f 2 − α1

)
, (126)

tF ′ = −F + 2t

f
−
(

1

2
g2F − α1

)
, tg′ =

t

F
+

1

2
g2F 2, (127)

where

(f, g) =

(
yz

x2
,
x

y

)
, G =

x3

y2z
, F =

y2z

x3
.

The total transform consists of vertical leaf D2 and singular points p8 = {(F, g) = (−2t, 0)} =

{(f, G) = (0,−1/2t)}, b2,3 = {(f, G) = (0, 0)} and b1,2 = {(F, g) = (0, 0)}. Singular points

b2,3 and b1,2 as well as b3,4 are of the first class.

When we blow up p8, we arrive at

tf ′ = − 1

G
− 2t2f 2G2 + 2tf 3G2 + 2tα0 − 1

2
f 4G2 + α1f,

tG′ =
1− 4α0tG

2f
+

1

2(f − 2t)
+ G

(
2t2fG2 − 3tf 2G2 + f 3G2 − α1

)
,

(128)

tF ′ = −F − 4α0t

2g
− F 2

2(gF − 2t)
− g2

(
2t2g − 3tg2F + g3F 2 − α1F

)
,

tg′ =
2t

gF − 2t
− g3

(
1

2
yF − t

)
,

(129)

with

(f, g) =

(
y2z + 2tx3

x3
,
x

y

)
, G =

x4

y(y2z + 2tx3)
, F =

y(y2z + 2tx3)

x4
.

The total transform yields vertical leaf D0, a singular point, p9 = {(F, g) = (4α0t, 0)} =

{(f, G) = (0,−1/4α0t)}, and another one, b0,2 = {(f, G) = (0, 0)}, of the first class.
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We can resolve singular point p9 as follows:

tf ′ = − 1

2G
− (f + 4α0t)

2

2(f 2G + 4α0tfG− 2t)
− 1

2
f 5G3 − 4α0tf

4G3 − 8α2
0t

2f 3G3 +

+
3

2
tf 3G2 + 6t2α0f

2G2 +
1

2
α1f + 2α2

0t,

tG′ =
G(4α2

0tfG + 16α3
0t

2G + f + 6α0t)

2(f 2G + 4α0tfG− 2t)
+

3

2
f 4G4 + 10α0tf

3G4 +

− 16α2
0t

2f 2G4 − 4tf 2G3 − 12α2
0t

2fG3 + 2t2G2 − α1G,

(130)

tF ′ = −gF 2 + 4α2
0tgF + 6tα0F + 16α3

0t
2

2(g2F − 4α0tg − 2t)
+

− 3

2
g3F 4 − 10tα0g

3F 3 − 16α2
0t

2g3F 2 + 4tg2F 2 + 12α0t
2g2F4t2g + α1,

tg′ =
2t

g2F − 4α0tg − 2t
− g3

(
1

2
g2F − 2α0tg − t

)
,

(131)

where

(f, g) =

(
y(y2z + 2tx3)− 4α0tx

4

x4
,
x

y

)
,

G =
x5

y(y(y2z + 2tx3)− 4α0tx4)
, F =

y(y(y2z + 2tx3)− 4α0tx
4)

x5
.

In conclusion, we obtained the foliation satisfying (i), (ii) and (iii), defined by the Painlevé

equation of D
(1)
7 type. The vertical leaves are D0, . . . , D7 with singular points of first class

bj,k = Dj ∩Dk ((jk) = (02), (12), (23), (34), (45), (56), (57)) and all of bj,k.

7.3 Space of initial conditions for PIII′(D8)

We determine foliation on D
(1)
8 -surface in a way similar to the case of D

(1)
7 -surface. If we

take the homogeneous coordinates:

(x : y : z) = (1 : 2qp + 1 : 2q) ,

the differential equations read as follows:

tx′
1 = −y1, ty′

1 = −y2
1

x1

− t2x2
1 +

1

2
, (132)

tx′
2 = −2t

y2

+
1

2
y2, ty′

2 = x2y2, (133)

tx′
3 =

x3

y3
+ 2ty2

3 −
1

2
x2

3, ty′
3 =

2ty3
3

x3
− 1

2
x3y3, (134)

where (x1, y1) =
(

x
z
, y

z

)
, (x2, y2) =

(
y
x
, z

x

)
, (x3, y3) =

(
z
y
, x

y

)
.
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In P2 we have vertical leaves defined by D1 = {z = 0} and D5 = {x = 0} and singular

points, p1 = {(x3, y3) = (0, 0)} and p4 = {(x1, y1) = (0, 0)}. By blowing up p1 and p4, we

arrive at resolution of these singularities.

We can pursue the process of blowing-up’s, obtaining vertical leaves and singular points.

In what follows, we give only results of computations.

By bowing-up at p4, we have:

tf ′ = −fG, tG′ =
1

2f
− 2tf, (135)

tF ′ = − F

2g
+ 2tgF 3, tg′ = − g

2F
− tg2F 2 +

1

2
, (136)

with

(f, g) = (x1, y1) =
(x

z
,
y

z

)
, G =

y1

x1
=

y

x
, F =

x1

y1
=

x

y
,

vertical leaf : D7 = {g = 0},
singular point : p5 = {(F, g) = (0, 0)}.

By blowing-up at p5, we have:

tf ′ = − 1

2G
+ 2tf 2G2, tG′ =

1−G

f
− 4tf 3G2, (137)

tF ′ =
1− F

g
+ 4tg3F 3, tg′ = − 1

2F
− 2tg4F 2 +

1

2
, (138)

with

(f, g) =

(
x

y
,
y

z

)
, G =

y2

zx
, F =

zx

y2
,

vertical leaf : D6 = {g = 0},
singular points : p6 = {(F, g) = (1, 0)} = {(f, G) = (0, 1)},

b5,6 = {(F, g) = (0, 0)}, b6,7 = {(G, f) = (0, 0)}.

By blowing-up at p6, we have:

tf ′ = − 1

G
+ 4tf 3(f + 1)3G3,

tG′ =
1

2f
+

1

f + 1
− 2tf 2(3f 3 + 8f 2 + 7f + 2)G4,

(139)

tF ′ = − F

2g
− F 2

gF + 1
+ 2tg2(3g3F 3 + 8g2F 2 + 7gF + 2),

tg′ = − 1

gF + 1
− 2tg6F 2 − 4tg5F − 2tg4 +

1

2
,

(140)
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with

(f, g) =

(
zx− y2

y2
,
y

z

)
, G =

y3

z(zx − y2)
, F =

z(zx − y2)

y3
,

vertical leaf : D8 = {g = 0},
singular points : p7 = {(F, g) = (0, 0)}, b6,8 = {(f, G) = (0, 0)}.

Definitively by resolution of singularity, p7, we arrive at:

tf ′ = − 1

2G
− f 2

f 2G + 1
+ 2tf 2G2(3f 6G3 + 8f 4G2 + 7f 2G + 2),

tG′ =
2fG

f 2G + 1
− 4tfG3(2f 6G3 + 5f 4G2 + 4f 2G + 1),

(141)

tF ′ = − gF 2

g2F + 1
+ 4tg(2g6F 3 + 5g4F 2 + 4g2F + 1),

tg′ = − 1

g2F + 1
− 2tg8F 2 − 4tg6F − 2tg4 +

1

2
,

(142)

with

(f, g) =

(
z(zx − y2)

y3
,
y

z

)
, G =

y4

z2(zx− y2)
, F =

z2(zx− y2)

y4
.

We have thus separated all leaves passing through singular point p4. Singular points,

b5,6, b6,7, b6,8 are of the first class. We proceed now to what concerns singular point p1.

By blowing-up at p1, we have:

tf ′ = − 1

G
+ 2tf 2G2 − t

2
f 2, tG′ =

1

f
, (143)

tF ′ =
F

g
, tg′ =

2tg2

F
− 1

2
g2F, (144)

with

(f, g) = (x3, y3) =

(
z

y
,
x

y

)
, G =

y3

x3
=

x

z
, F =

x3

y3
=

z

x
,

vertical leaf : D4 = {g = 0},
singular points : p2 = {(F, g) = (0, 0)}, b4,5 = {(f, G) = (0, 0)}.

By blowing-up at p2, we have:

tf ′ =
1

G
, tG′ = −1

f
+ 2tG2 − 1

2
f 2G2, (145)

tF ′ =
F

g
+

1

2
g2F 2 − 2t, tg′ =

2tg

F
− 1

2
g3F, (146)

with

(f, g) =

(
z

x
,
x

y

)
, G =

x2

yz
, F =

yz

x2
,
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vertical leaf : D3 = {g = 0},
singular points : p3 = {(F, g) = (0, 0)}, b3,4 = {(f, G) = (0, 0)}.

By blowing-up at p3, we have:

tf ′ =
1

G
+

1

2
f 4G2 − 2t, tG′ =

4tG− 1

f
− f 3G3, (147)

tF ′ =
F − 4t

g
− g3F 3, tg′ =

2t

F
− 1

2
g4F, (148)

with

(f, g) =

(
yz

x2
,
x

y

)
, G =

x3

y2z
, F =

y2z

x3
,

vertical leaf : D2 = {g = 0},
singular points : p8 = {(F, g) = (4t, 0)} = {(f, G) = (0, 1/4t)},

b2,3 = {(f, G) = (0, 0)}, b1,2 = {(F, g) = (0, 0)}.

By blowing-up at p8, we have:

tf ′ =
1

G
+ 16t2f 3G3 + 8tf 4G3 + f 5G3 − 4t,

tG′ =
8tG− 1

2f
− 1

2(f + 4t)
− f 2G4

(
3

2
f 2 + 10tf + 16t2

)
,

(149)

tF ′ =
F − 8t

2g
+

F 2

2(gF + 4t)
+ g2

(
3

2
g2F 2 + 10tgF + 16t2

)
,

tg′ =
2t

gF + 4t
− g4

(
1

2
yF + 2t

)
,

(150)

with

(f, g) =

(
y2z − 4tx3

x3
,
x

y

)
, G =

x4

y(y2z − 4tx3)
, F =

y(y2z − 4tx3)

x4
,

vertical leaf : D0 = {g = 0},
singular points : p9 = {(F, g) = (8t, 0)}, b0,2 = {(f, G) = (0, 0)}.
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Resolution of singularity, p9, gives the following:

tf ′ =
1

2G
+

(f + 8t)2

2(f 2G + 8tfG + 4t)
+ 96t2f 4G4 + 24tf 5G4 +

3

2
f 6G4 +

+ 80t2f 3G3 + 16t2f 2G2 + 10tf 4G3 − 8t,

tG′ =
G(64t2G + 8tfG− 12t− f)

8tfG + 4t + f 2G
+

− fG3

(
24t2f 2G2 + 20t2fG + 4t2 + 7tf 3G2 + 3tf 2G +

1

2
f 4G2

)
,

(151)

tF ′ =
−64t2 − 8tgF + 12tF + gF 2

8tg + 4t + g2F
+ g

(
24t2g2 + 20t2g + 4t2 + 7tg3F + 3tg2F +

1

2
g4F 2

)
,

tg′ =
2t

8tg + 4t + g2F
− g4

(
4tg + 2t +

1

2
g2F

)
,

(152)

with

(f, g) =

(
y(y2z − 4tx3)− 8tx4

x4
,
x

y

)
,

G =
x5

y(y(y2z − 4tx3)− 8tx4)
, F =

y(y(y2z − 4tx3)− 8tx4)

x5
.

Finally we have vertical leaves,D0, . . . , D8 and singular points bj,k = Dj ∩ Dk ((jk) =

(02), (12), (23), (34), (45), (56), (67), (68)), of the first class.
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