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Abstract. In this paper we consider an inverse boundary value
problem of determining three dimensional unknown inclusions in
an elliptic equation in a bounded domain Ω ⊂ R3 from finite
boundary measurements on ∂Ω. We will show that polyhedral in-
clusions in Ω can be uniquely determined up to their convex edges
from a single boundary measurement on ∂Ω.

1. Introduction

Let Ω ⊂ R3 be a simply connected bounded domain with smooth
boundary, let D be a subdomain of Ω with Lipschitz boundary, and let
us denote by χD the characteristic function of D, that is, χD(x) = 1 if
x ∈ D and χD(x) = 0 otherwise. In this paper, we consider an elliptic
equation

−∆u(x) + q(x)χD(x)u(x) = 0, x ∈ Ω (1.1)

with a Dirichlet boundary condition

u(x) = f(x), x ∈ ∂Ω. (1.2)

The function q ∈ C2(Ω) is assumed to be a positive function: q(x) > 0
for all x ∈ Ω. For any given f ∈ H

1
2 (∂Ω) and a subdomain D of Ω

the Dirichlet boundary value problem (1.1), (1.2) has a unique solution
u in H1(Ω). Hence its outward normal derivative ∂u

∂ν = ∇u · ν to the
boundary ∂Ω belongs to H− 1

2 (∂Ω).
In this paper, we discuss an inverse boundary value problem where

we are requested to determine the discontinuous boundary of the lower
order term of equation (1.1) or the subdomain D of Ω from the bound-
ary measurements ∂u

∂ν on ∂Ω. This inverse boundary value problem
1
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appears in many applications. For example, we can mention the re-
construction problem of the metal-to-semiconductor contact and its
resistivity inside electric devices [2, 6, 7, 10], the support of a heat
source [9], and absorbing inclusions in optical tomography [1]. We are
interested in the uniqueness problem for this inverse boundary value
problem in three dimensions with a single measurement. The purpose
of this paper is to establish the uniqueness within three dimensional
polyhedra D from a single boundary measurement ∂u

∂ν on ∂Ω. Kim
and Yamamoto [9] proved the global uniqueness for convex hulls of
polygons D ⊂ R2 from a single measurement of ∂u

∂ν on ∂Ω. For this
uniqueness result in two dimensions, they make essential use of the
following imbedding theorem: if D is a polygon in R2 and p > 2, then

W 3,p(D) −→ C2,λ(D), 0 < λ < 1− 2
p
. (1.3)

If the dimension is 3, however, then this imbedding theorem (1.3) does
not hold, and therefore the proof in [9] does not mean any uniqueness
result for polyhedra D ⊂ R3.

As a similar inverse problem, we can refer to the inverse conductivity
problem [3, 5, 8, 13] of determining piecewise continuous γ = γ(x) =
1 + kχD(x) in an elliptic equation ∇ · (γ∇u) = 0 in Ω. Here k is
supposed to be a non-zero constant. In particular, the papers [5, 13]
consider the uniqueness problem for two dimensional polygons D by
one (or two) boundary measurement(s). They basically use the index
theory, and so this idea cannot be applied to the three dimensional case
too.

In this work, roughly speaking, we will prove that we can determine
uniquely polyhedrons D up to their convex edges from a single mea-
surement of ∂u

∂ν on ∂Ω. Here a convex edge of D means a line segment
where two adjacent faces of D meet and the interior angle of D is less
than π. Before stating our main theorem, we will give some notations.
Let x, P1, P2, P3 ∈ R3, r > 0, and let A be a subset of R3. In the
sequel we will use the following notations:

x̄ = (x1, x2) = (x1, x2, 0) for x = (x1, x2, x3) ∈ R3,

∇ = (∂x1 , ∂x2 , ∂x3),

∆ = ∂2
x1

+ ∂2
x2

+ ∂2
x3

,

∇x̄ = (∂x1 , ∂x2) = (∂x1 , ∂x2 , 0),
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∆x̄ = ∂2
x1

+ ∂2
x2

,

B(P1, r) = {x ∈ R3 : |x− P1| < r},

d(x,A) = inf{|x− z| : z ∈ A}.
Furthermore let us denote by co(A) the convex hull of A, that is, the
smallest convex set containing A and by 4P1P2P3 the triangular do-
main which has three vertices P1, P2, P3. We always assume that a
polyhedron is a three dimensional solid which is composed of a finite
number of polygonal faces, all the faces meet on their edges, and the
edges meet at points, which are called vertices. In the sequel by a poly-
hedron, its faces, and its edges we mean relatively open sets respectively
in R3, R2, and R. In other words, we understand, for example, that the
edge does not contain the both end points. Let D be a polyhedron, let
` be an edge of D, and let α1, α2 be adjacent faces to ` of D. Then by
θ(`) we denote the interior angle of D between α1 and α2, and define `
as a convex edge if θ(`) is less than π.

Here is the first main theorem concerning the uniqueness up to con-
vex edges of a polyhedron.

Theorem 1.1. We assume that f ∈ H
1
2 (∂Ω) is non-negative, not iden-

tically zero, and that q ∈ C2(Ω) is positive on Ω. Let Dj, j = 1, 2,
be a polyhedron in Ω so that Dj ⊂ Ω and Ω \ D1 ∪D2 is simply con-
nected. Let uj be the corresponding solution of the Dirichlet problem
(1.1) and (1.2) with Dj and f . If ∂u1

∂ν = ∂u2
∂ν on ∂Ω, then D1 \D2 and

D2 \D1 do not contain any point lying on a convex edge of D1 and D2,
respectively.

The next theorem is a uniqueness result within convex hulls of poly-
hedra D ⊂ Ω. Theorem 1.2 can be proved in the same way as Theorem
1.1, and so we will skip its proof. The rest of this paper is devoted to
the proof of Theorem 1.1.

Theorem 1.2. Let us assume the same assumptions as in Theorem
1.1 except for that Ω \ D1 ∪D2 is simply connected. Then ∂u1

∂ν = ∂u2
∂ν

on ∂Ω implies co(D1) = co(D2).

The uniqueness for convex polyhedra is a corollary of Theorem 1.2.

Corollary 1.3. Under the same assumptions as in Theorem 1.1, if D1

and D2 are convex polyhedra, then ∂u1
∂ν = ∂u2

∂ν on ∂Ω implies D1 = D2.
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2. Proof of Theorem 1.1

Since D1, D2 ⊂ Ω, we can take a subdomain Ω′ of Ω so that D1∪D2 ⊂
Ω′ ⊂ Ω′ ⊂ Ω. Then it can be shown that

uj ∈ C1(Ω′) ∩H2(Ω′) (2.1)

and moreover
uj ∈ C2(Ω′ \ ∂Dj). (2.2)

For regularity (2.1) and (2.2), see [4, 11]. Owing to non-negative and
positive , respectively, a priori assumptions on f and q, the maximum
principle applied to uj shows that

uj(x) > 0 for all x ∈ Ω′. (2.3)

First we will show that D1 \D2 contains no point lying on a convex
edge of D1. Otherwise there exist a convex edge `0 of D1 and a point
P0 ∈ `0 such that P0 ∈ D1 \ D2. Since Laplace’s operator is rotation
and translation invariant, if necessary, we may assume that P0 is the
origin O of R3 and `0 lies on the x3-axis. Let α1, α2 be adjacent faces
to `0 of D1 and let ε0 := 1

4 min{d(P0, D2), d(P0, α) | α is a face of D1

except for α1, α2}. For any positive ε < ε0 let E(ε) := {x = (x1, x2, 0) ∈
D1 | x2

1 + x2
2 < ε2} and E(ε)× (0, ε0) := {(x1, x2, t) ∈ R3 | (x1, x2, 0) ∈

E(ε) and 0 < t < ε0}. Our choice of ε0 implies that E(ε) is a sector
with angle θ0 := θ(`0) about the origin and

E(ε)× (0, ε0) ⊂ D1 \D2. (2.4)

In fact, by using the potential argument [4, 12] we can prove that

∂x3uj ∈ C1(E(ε)× [0, ε0]), j = 1, 2. (2.5)

For completeness, we will give a proof of (2.5) in Appendix.
Let Qε

1, Qε
2 be two points on ∂E(ε) satisfying

|Qε
1| = |Qε

2| = ε and OQε
1, OQε

2 ⊂ ∂E(ε). (2.6)

Let us define two functions u on Ω and ω on E(ε) as follows:

u(x) = u1(x)− u2(x), x ∈ Ω, (2.7)

and

ω(x) = ω(x1, x2, 0) =
∫ ε0

0
u(x1, x2, t) dt, x ∈ E(ε). (2.8)

From (2.1) and (2.2) it is easy to show that

∂xjω(x) =
∫ ε0

0
∂xju(x1, x2, t) dt, x ∈ E(ε) and j = 1, 2, (2.9)
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∂xi∂xjω(x) =
∫ ε0

0
∂xi∂xju(x1, x2, t) dt, x ∈ E(ε) and i, j = 1, 2,

(2.10)
and

||∂xi∂xjω||L2(E(ε)) ≤
√

ε0||u||H2(Ω′), i, j = 1, 2. (2.11)

We will just give a brief proof of (2.11) here. Owing to (2.1), (2.2) and
(2.10), we have

∫

E(ε)
|∂xi∂xjω(x̄)|2 dx̄ ≤

∫

E(ε)

[∫ ε0

0
|∂xi∂xju(x̄, t)| dt

]2

dx̄

≤ ε0

∫

E(ε)

∫ ε0

0
|∂xi∂xju(x̄, t)|2 dt dx̄

≤ ε0||u||2H2(Ω′). (2.12)

Since u1, u2 have the same Cauchy data on ∂Ω and Ω \D1 ∪D2 is
simply connected, the unique continuation means that

u(x) = 0 for all x ∈ Ω \D1 ∪D2, (2.13)

and, remembering the definition of ω, we now obtain

ω(x) = |∇x̄ω(x)| = 0 for all x ∈ OQε
1 ∪OQε

2 ∪ {O}. (2.14)

Next we will show that the function ω satisfies in weak sense the
following elliptic equation in E(ε)

∆x̄ω(x) = ∆x̄ω(x̄)

=
∫ ε0

0
q(x̄, t)u1(x̄, t) dt− ∂x3u(x̄, ε0) + ∂x3u(x̄, 0),(2.15)

x = (x1, x2, 0) ∈ E(ε).

Fix any ψ ∈ C∞
0 (E(ε)), for any δ ∈

(

0, ε0
4

)

take a cut-off function ηδ

satisfying 0 ≤ ηδ ≤ 1, ηδ ∈ C∞(R), and

ηδ(t) =

{

1 if x ∈ (δ, ε0 − δ),
0 if x ∈ (−∞, 0) ∪ (ε0,∞),

and let ψδ(x1, x2, x3) := ψ(x1, x2)ηδ(x3), x = (x1, x2, x3) ∈ R3. It is
clear that ψδ ∈ C∞

0 (Ω). Since u1, u2 are the weak solutions to (1.1)
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and u = u1 − u2, we have

∫

E(ε)

∫ ε0

0
q(x̄, t)u1(x̄, t) dt ψ(x̄) dx̄

=
∫

E(ε)×(0,ε0)
q(x̄, t)u1(x̄, t)ψ(x̄) dtdx̄

= lim
δ↓0

∫

Ω
q(x̄, t)u1(x)ψδ(x) dx

= − lim
δ↓0

∫

Ω
∇u(x) · ∇ψδ(x) dx (2.16)

= − lim
δ↓0

∫

Ω
∇u(x) · [(∇ψ(x̄))ηδ(x3) + ψ(x̄)(∇ηδ(x3))] dx

= − lim
δ↓0

∫

Ω
[∇x̄u(x) · ∇x̄ψ(x̄)]ηδ(x3) dx

− lim
δ↓0

∫

Ω
∂x3u(x)∂x3ηδ(x3)ψ(x̄) dx

:= I + J.

We will deal with the terms I and J :

I = − lim
δ↓0

∫

E(ε)×(0,ε0)
[∇x̄u(x) · ∇x̄ψ(x̄)]ηδ(x3) dx

= − lim
δ↓0

∫

E(ε)

∫ ε0

0
[∇x̄u(x̄, t) · ∇x̄ψ(x̄)]ηδ(t) dtdx̄

= −
∫

E(ε)

∫ ε0

0
∇x̄u(x̄, t) · ∇x̄ψ(x̄) dtdx̄ (2.17)

= −
∫

E(ε)
∇x̄

∫ ε0

0
u(x̄, t) dt · ∇x̄ψ(x̄) dx̄

= −
∫

E(ε)
∇x̄ω(x̄) · ∇x̄ψ(x̄) dx̄,
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and

J = − lim
δ↓0

∫

E(ε)×(0,ε)
∂x3u(x̄, t)∂x3ηδ(t) ψ(x̄) dx

= − lim
δ↓0

∫

E(ε)

∫ ε0

0
∂x3u(x̄, t)∂x3ηδ(t) dt ψ(x̄) dx̄

= lim
δ↓0

∫

E(ε)

∫ ε0

0
∂2

x3
u(x̄, t)ηδ(t) dt ψ(x̄) dx̄ (2.18)

=
∫

E(ε)

∫ ε0

0
∂2

x3
u(x̄, t) dt ψ(x̄) dx̄

=
∫

E(ε)
[∂x3u(x̄, ε0)− ∂x3u(x̄, 0)]ψ(x̄) dx̄.

Equations (2.16), (2.17), (2.18) imply

−
∫

E(ε)
∇x̄ω(x̄) · ∇x̄ψ(x̄) dx̄ (2.19)

=
∫

E(ε)

[∫ ε0

0
q(x̄, t)u1(x̄, t) dt− ∂x3u(x̄, ε0) + ∂x3u(x̄, 0)

]

ψ(x̄) dx̄,

which completes our claim (2.15).
From (2.1) and (2.5) it follows that

∫ ε0

0
q(·, t)u1(·, t) dt− ∂x3u(·, ε0) + ∂x3u(·, 0) ∈ C1(E(ε)) (2.20)

and by (2.3), (2.13) and (2.20) there exists a positive ε1 ≤ ε0 such that
∫ ε0

0
u1(x̄, t) dt− ∂x3u(x̄, ε0) + ∂x3u(x̄, 0) > 0, x = (x1, x2, 0) ∈ E(ε1).

(2.21)
Therefore (2.11), (2.14), (2.15), (2.20) and (2.21) imply that

∫ ε0
0 q(·, t)

u1(·, t) dt −∂x3u(·, ε0) + ∂x3u(·, 0) ∈ C1(E(ε)) is strictly positive in the
triangle 4OQε1

1 Qε1
2 and ω is an H2-solution of the following Poisson

problem
{

∆ω =
∫ ε0
0 u1(·, t) dt− ∂x3u(·, ε0) + ∂x3u(·, 0) in 4OQε1

1 Qε1
2 ,

ω = |∇x̄ω| = 0 on OQε1
1 ∪OQε1

2 ∪ {O},
(2.22)

which is a contradiction to Proposition 2.2 in [9], a non-existence propo-
sition about an H2-solution of a Cauchy problem for Poisson’s equation.

Proposition 2.2 Let 4P1P2P3 be the interior of a triangle which
has three vertices Pj ∈ R2, j = 1, 2, 3. Let G ∈ W 1,∞(4P1P2P3)
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be strictly positive in 4P1P2P3. Then there exists no solution v ∈
H2(4P1P2P3) to

{

∆v = G in 4P1P2P3

v = |∇v| = 0 on P1P2 ∪ P1P3.

Notice that 4OQε1
1 Qε1

2 ⊂ E(ε1), because 0 < θ0 = θ(`0) < π or `0 is
convex. Therefore we can conclude that D1\D2 contains no point lying
on a convex edge of D1. In the same way we can prove that D2 \ D1

contains no point lying on a convex edge of D2, and so the proof of
Theorem 1.1 is completed.

Appendix. Proof of (2.5)

Since E(2ε)× (−ε0, 2ε0) is still contained in D1 \D2, we deduce from
(2.2)

u2 ∈ C2(E(2ε)× (−ε0, 2ε0)), (1)

which enables us to focus on u1. Let Φ(·, ·) be the fundamental solution
of Laplace’s operator in R3:

Φ(x, y) = − 1
4π

1
|x− y|

, x, y ∈ R3, (2)

and let us define a function H on Ω as follows

H(x) :=
∫

∂Ω

[

f(y)
∂Φ
∂ν

(x, y)− Φ(x, y)
∂u1

∂ν
(y)

]

dσy, x ∈ Ω. (3)

It follows from Green’s representation formula that the solution u1 to
the Dirichlet problem (1.1), (1.2) can be represented as

u1(x) = H(x) +
∫

D1

Φ(x, y)q(y)u1(y) dy, x ∈ Ω. (4)

Since the function H is smooth in Ω, it is sufficient to show that

∂x3

∫

D1

1
| · −y|

q(y)u1(y) dy ∈ C1(E(2ε)× (−ε0, 2ε0)). (5)

In fact, it is well known that for all x ∈ R3 and k = 1, 2, 3

∂xk

∫

D1

1
|x− y|

q(y)u1(y) dy =
∫

D1

∂xk

1
|x− y|

q(y)u1(y) dy

= −
∫

D1

∂yk

1
|x− y|

q(y)u1(y) dy.
(6)
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Hence by the integration by parts we have

∂x3

∫

D1

1
|x− y|

q(y)u1(y) dy

=−
∫

∂D1

1
|x− y|

q(y)u1(y)ν3(y) dσy

+
∫

D1

1
|x− y|

∂y3 [q(y)u1(y)] dy, x ∈ R3,

(7)

where ν3(y) is the third component of the outward normal vector to
∂D1. Here remember that q and u1 are C1 functions in Ω′. Since
ν3(y) = 0 for all y ∈ (OQ2ε

1 ∪OQ2ε
2 )× (−ε0, 2ε0), we get for all x ∈ R3

∂x3

∫

D1

1
|x− y|

q(y)u1(y) dy =

−
∫

∂D1\[(OQ2ε
1 ∪OQ2ε

2 )×(−ε0,2ε0)]

q(y)u1(y)ν3(y)
|x− y|

dσy +
∫

D1

∂y3 [q(y)u1(y)]
|x− y|

dy,

(8)
which implies our claim (5).
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