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1. Introduction. In this paper the question of the uniqueness of the problem of restoring
a Riemannian metric from the distances between the boundary points of the domain in the
metric is investigated. This problem is of interest from the both viewpoints of mathematics
and applications. For example, it appears in geophysics in connection with the study of
distribution of the velocities of propagation of elastic waves inside the terrestial globe. In the
study of the problem of restoring a Riemannian metric a new type problem (problem 2) of
integral geometry appears. It is known that the integral geometry problem is the mathematical
base of tomography. This problem has many applications in various fields: the problem of the
forecasting of earthquakes, diagnostics of plasma, problem of photometry, fiber optics and etc.
(see [ 1,2,6,7 ]). The connection of the problem of integral geometry for differential forms with
the inverse problems for equations of the hyperbolic type and kinetic equations are described
in the works [ 2-7 ]. The basic results of this article were announced in the work [ 8 | with one
additional condition on metric g (see also [ 9]) .

2. Formulation of the problems and results.

Let D be a closed, bounded domain of variables z = (x!,...,2") in the space R" (n > 1)
with the boundary S of class C°. A domain D is called convex with respect to a metric g, if
any two points x,y € D can be joined by a unique geodesic I'(x,y) of this metric (see [10]). It
is known (see also the proof of assertion a) of theorem 3) that if there exist a point 2° € D such
that any point z € D can be joined with 2° by a unique geodesic ray of the metric g, then the
metric g has a semigeodesic coordinates in D. So, if the domain D is convex with respect to a
metric g, then for g, a semigeodesic system of coordinates can be introduced in the domain D.
Moreover, in the semigeodesic system of coordinates z*, the components of the metric g = (g;;)
satisfy the conditions: ¢g11 = 1, g1; = 0, i = 2,...,n. Conversly, these conditions are sufficient
for the system with coordinates z* to be semigeodesic for the metric g in D (see [10 ]).

Let T'(z,y) = &(x,y,t) = {fl(x,y,t), ...,§"(x,y,t)} be a coordinate representation of the
geodesic I'(x,y) .

Problem 1. For each pair of the points (x,y) € 9D x 9D, let integral

Jrtey (S o€y @) € @v.0)
i,j=

be known, where ¢ is the natural parameter, and the dot indicates the differentiation with re-
spect to t: £ = %. Knowing these integrals determine functions a;;(x) in D (4, j = 2...,n).



Theorem 1. Let D be convex with respect to metric ¢ € C%(D), functions a;;(z) € C5(R")
be zero out of D and ¢g11 =1, g1;, =0, ¢ = 2,...,n. Then problem 1 can have only one solution
(ai5(2)) € C3(R™).

It is worthy to note, that if in the formulation of the problem 1, indexes 4, j in the summation
under the integral, run from 1 up to n, then the theorem 1 is not true (see [7]).

Let a function h(z,”€) = (h%(z, €),...,h"(z, €)) € C3(D x (R"~* \ {0})) be homogeneous of
the first degree in '&: h(z,1'¢) =1 h(z, €),1 > 0; and the Jacobian 2 %(gfg"lg) > 0. Here for each
x € D and for 2 < k < n the function h*(z,¢) depends on ’¢ = (£2,...,£") and h*(z,0) = 0.

Problem 2. For (x,y) € 9D x 0D, let the integral

fl"(m,y) ‘(égaij (g(x’ Y, t)) hl (6(1'7 Y, t)7 ,é(xa Y, t)) hj (g(ZC, Y, t)a /é(xa Y, t))) dt

be known.

Knowing these integrals determine functions a;;(z) in D (4,5 = 2,...,n).

Theorem 2. Let the conditions of theorem 1 be satisfied and let the function h(z,’ £) satisfy
the conditions formulated above. Then problem 2 can have only one solution (a;;(z)) € C5(R").

For the points z,z9 € 0D let us denote by Hy(x, o) the distance between the points x, z¢
in metric g.

The function Hy(z, zo) determined on the set 0D x 9D is called the hodograph of the metric

g.

Problem 3. Determine a metric g in D if the hodograph Hy(z, o) is known.

It is easy to show the nonuniqueness of a solution of the problem 3. Indeed, let ¢ be the
diffeomorphism of region D to itself of class C! which is identical on D. It transforms each
metric g1 into go = p*g; in the sense that for any vectors ,n € T, D , (£, 7]>f) = (@&, @*U)fal()m)a
holds, where ¢, is the differential of map ¢, (., .>§;’) is the scalar product on T, D is determined
by the metric g; (¢ = 1,2). These two metrics have different families of geodesic, but the same
hodograph.

The following questions naturally arise:

1) when is a metric determined by its hodograph up to isometry and identicality on dD?

2) for what classes of metrics, does hodograph determine a metric uniquely?

Let us clarify the formulation of problem 3 as follows:

Problem 4. Let g1, g2 be two metrics which are convex in D. Does the existence of a
diffeomorphism ¢: D — D follow from the equality Hi(x,z¢)=Ha(z,x0), such that ¢ |sp = 1,
and go = p*g1. Here Hy(z,x0) is the hodograph of the gi, k = 1,2 and the equality ¢ |sp =1
means that mapping ¢ is identical on dD.

A positive answer to the question formulated in problem 4 is obtained only for a few
class of metrics (see [ 11-19 ]). Below (in theorem 3) it is assumed that metric giand go
(9x = (gfjk)(x)) € C%(D.,); k = 1,2) coincide on D., \ D,where D, is the eg— neighourhood
of D,(eg > 0) i.e. D,y = {z € R"/d(x,D)<ce},d(z,D) is the euclidean distance between
the point x € R™ and for a set D, we put d(z, D) = inf cp |z — y|. Let us note that the last
condition is not, generally speaking, a restriction on metrics gi, in D if their hodographs coin-
cide. Indeed, it is proven in [13] that, if H; and Hs coincide, then suitably chosen coordinates
g1 and go will coincide in the space C?(9D). Consequently, it is possible to continue g, from
boundary 0D € C3 to D, \ D by g2 = g1. Then the metrics g; and gz will be from C?(D.,),
have the same hodograph and coincide on D., \ D, where gz = g2 when z € D, and g3 = ¢1



when z € Dy \ D.
Theorem 3. Let D, be convex with respect to metrics g, € C°(D,,) (k = 1,2) and for
x,x9 € 0D, Hi(x,x9)=Ha(x,xp). Then
a) there exists a diffeomorphism ¢: D — D such that ¢ |gp = 1, and g2 = ¢*g1, p € C?(D).
b) if g(k) 1, gi) =0, where k = 1,2; ¢ = 2,...,n;then metrics g, g2 coincide in D.
3. Aux1llary statements. Let us introduce funotlons

uo o= 0 60 2 (6002 (0 6,0) (1)
u(, ZJw@% 2@, 6 0) F (2,6, 2 (0,6,) dt (2)

where v (z,§) is the ray of the metric ¢ = (g;;) starting from x € D, in the direction & ;
functions b(z), a;;(z) € C?(R™) are zero out of the D , in definition of I(z,&) indeks 4, j are
fixed 2 < i,j5 <n.

Let us investigate the smoothness of functions I(z,§) and u(z,§) and their Fourier trans-
forms.

It is known that, v (z,&) = (zl (z,6,t), ..., 2" (x,&, t)) is the solution of following system of

differential equations
2

o
az?

' 2(0) =z, 2(0) =¢, (4)
where I'}; is the Christoffel symbols of the metric g, z(z,&,t) = (zl (,&,t) . 2" (x,ﬁ,t)) ,

= Ti(2)¥:", i=1,2,..n (3)

with Cauchy data

z(z,&t) = (zl (z,&,t),..., 2" (;v,f,t)) , 2= 4 ,i ¢ is the natural parameter of the metric g.

dt
It is easy to prove that, a solution of problem (3)-(4) has the following property :
2.6 t) =2z |t); 2(x,& ) = [¢] 2 (v, [€]1), (5)
where v = I%I’ €] = Zlgug &,
i,j

Let us recall that v (z,€) is a projection on the space (z,...,2") of the solution of the
problem of Cauchy for the following system of differential equations

%f=iwww

Mﬁﬁ'

= TR (e) (©)
]:
with the data
210) = 2%, pi(0)=p}, i=1,2,..,n, (7)
where (g% (z)) is the inverse of the matrix (g;;(z)) , ph= D gi;(2)&
j=1

Let G denote the closed, bounded set of variables ‘¢ =(£2,...,£") in the set R*~ 1, 0 ¢’ G
andlet G ={£€ R" [ £ =(¢'/¢€), &' € RY, '€ € G}, Q={(z,9|r e D, £ G}.
Note that by (2) differentiating u(z,£) at the point x in the direction £ and taking into

account (3), (4) we have the following kinetic equation

Zﬁju i ;Z IR eues = ;;Lﬂe(fv)fkﬁj : (8)
Jik,s=1 Jik=
(From the setting of the problem 1, from formulas (2), (5) and from the fact that a;x(x)
is zero out of D it follows that the function u(z, §) is known when (z,&) € 9D x R™ ('§ #0).



Since the uniqueness of solution of problem 1 is being investigated we have condition
for (x,§) € 0D x R" (£#0), u(z,§) =0. (9)

Lemma 1. Let D be convex with respect to the metric g = (g;;(z)) € C® (D) and g11 = 1,

g1 =0,7i=2...,n. Then if 1 < s <mn,
1) for 0 < |8 <4, DI, D{ I, € C(Q),
2) and for fixed z € D, '€€’'G ('¢#0),
a) if |4] < 2, functions D’GI DﬁI s € Ly (Rl ),
b) if |8] = 3, functions DT, DY, € Ly (R )mL2 (Rll),

c)if |B|=4 functlons §1DBI le Is € Ly (R ) N Lo (Rgl),
where 8= (61,..., 0n), D f = D?l. D?,’[, Bl = P14+ ...+ B, D? is the derivative in £° of order
Bs > 0.

Proof. Taking into account (5), let us rewrite _the function I(z, &) in the form

=Jy b 33575)) N(z,6,1) 2 (36 §t)dt =
:fo z(z,v, Iflt))lfl NEAAD) |€\ (z,v,[€]t) dt = (10)
- %fo"%(z (0,0, 7)) € 2" (@0, 7) 1] (a0, 7) dr

where , 4,5 > 2.

Since the function b(z) is finite in D, last integral in (10), actually, is taken on the finite
interval [0, dp], where do— the diameter of D, in the metric g. Due to the condition g;; €
C% (D), from the theory of ordinary differential equations it follows that (z (x,v,t), 2 (m v, t))
- solution of the problems (3)— (4) - belong to the space C°(2(dp)), where Q(dy) =
{(z,v,t) |z € D,v € s",t € [0,dp]}, s™ is the unit sphere in R"™. Hence, taking into account
the conditions b(x) € C° (R"), £ € G, '€ # 0 ,and equality (10), from the theorem about the
differentiation of integral on the parameter it follows that for 0 < |3 < 4,1 < s < n, D? 1,
D{IL. € C(Q).

In order to prove the assertion 2) of lemma 1, we investigate the behavior of the expression of

the form |¢| P (x,v,7) and its derivatives in & when €' — co,where j =1,2,...n, k=2,...,n
Let &' = i, then as ¢! — 4oo , (i.e. when u — +0) the vector v = I%I’ tends to
Y = (1,0,...,0) € R". Therefore as known from the theory of ordinary differential equations
([ 20 ]), the unique solution of the problem (3) - (4), (it is uniform in [0,dp]) tends to the
solution (z (z,1°,t) , ( (z,1°,t)) when p — +0.Taking into account the facts that the metric
g = (gi;) is written down in the semigeodesic coordinates (i.e.I'l, =T% =0,k =1,2,...,n ) and
the solution of problem (3) -(4) is unique, we have z (x, Vo,t) = (z1 (x7 z/O,t) sy 2T (x, Vo,t)) ,
where 2! (Jc,z/o,t) =gl +t zF (a:,uo,t) = gk, Z(sc,uo,t) = (1,0,---,0), it (m,uoﬂf) =1,
P (x,l/o,t) =0,k=2,3,---,n
For ' >0 (¢ = l) we have :

L ) = Ly SR 1 opg? o pgt )
NE ( o) = 216 (o e ) (11)
1/2
where ['¢], = (1 +N229z’j525]) .
2

By the mean value theorem and smoothness of the function i (z,v,t) in set Q(dp) and

by equality P (:1:, Vo,t) =0, for k > 2, we have



R 1 opg? o pgn )_ LK
z (.’L’, el ‘IE‘M, ) |/§‘N7t = Z;L(]?O <o < p < 1, (12)

where Zﬁoare the derivatives in p of the function P ( T 1‘ ‘“ 5| Ty "fén ,t) at a point
w I
K= Ho- . .
Let us note that, since 2" (x,v,t) € C°(Q(dp)) , the function Z,is bounded on € (do)

the set € (dy) is closed and bounded. Therefore, taking into account the fact that when
&' — 400, the vector v = % tends to 1% = (1,0,...,0) € R", for k > 2 from (11), (12) in
the set 2, we have

| lel 2 )| < Ko (13)
where K7 > 0 does not depend on (x,£) € (D x G ), but depends on the norm of the vector
function z (z,v,t) = (,'zl (z,v,t), ..., 2" (z,v, t)) in C* (Q(dp)) and on the diameter of 'G. By

analogous reasonings, as we proved inequality (13), when &' — +o00, we can prove that it
does occur also, in the case when &' —s —oc.
It is not difficult to verify that

(161" (s 81))., = & (11 (o .0)) + € (—éz’iﬁ;;+§%§1>,
(lflf(f»éwt))fféwfﬂ( o)+

+[¢l (Zﬁzﬁs;ggs > 9i&0 + |§1|Z’Z> , when 2<i<n, (v={) (14)
s=1 j=2
The following equalities are true :

k(€ _ak (€Y ik SNk ol ok
('ﬂz (x’lsl’t))glgl— 2T e ? Ejﬂlslz 2 At

K -k Pk ogigl o .k
Z ‘5‘3 ZZVJVZ ‘5‘2 - Zyll,i - Zzlljl/i’ ‘5‘3 + ﬁzl’lVl’

J=1

_ilzij1ﬁ§ Zn: ]§ + \€| yyl, when 2 <7 <n.

i= i=2

(1612 (o §11)) o = 58" = e () (S wer) -
- <2i:29jrgr> zi: l]f % (5 Egzrfr> . >_

£

1
lel®



i (") - S e+ e ( Sowtr ) (Sale (St ) )+
5 ‘E‘ \E\ r=2 s=1 r=2
+3 \5\358(29"67') ( > Zyoym ™ > gink” — z1§v> -
s=1 r=2 m=1 r=2

-ﬁ <;n:29z'rﬁr> milfméimm + %é’iiym when 2 <1, j <n.
Since 3" € €5 (©(dp)) and the set ‘G is bounded, taking into account relations (13), (14),
(15), it is easy to see that in
€7 D (1€ 2*)| < Ko, for 1< al <4, (16)
where Ky > 0 does not depend on (x,£) € (D x G ). Moreover K5 depends on the norm of
the vector function z (z,v,t) = (,'zl (z,v,t), ..., 2" (z,v, t)) in the space C° (Q(dp)) and on the
euclidean distance between the ‘G and 0 € R*~' (0 ¢’ G) and on the euclidean diameter of

the 'G .
For 0 < |a] < 4, in the set §2 the following inequalities are also true :

16114 Dg ()| < K, i€l D (2| < (7)

where K3z, K4 depend on the same parametres as K2 in (16) .
Using the theorem about the differentiation of integral on the parameter, from (10),

taking into account boundedness of functions |¢] ,'zk, <\§| fzk)g and by relations (16), (17), we
J

obtain the proof of item 2) of lemma 1.
Corollary 1. Let conditions of lemma 1 be satisfied. Then

1) for '8 <2, Q,g I, Q,f Li e C(Dx Ay x'G)NLs (R,

2) for '8 =3, DI, DI, eC(DxRLx G)NLy(RL),

3) D I WD Iy € C(Dx Ry G)N Ly (Ry) it r4|fl =4, 0<r<4
where I = I(z,n,’ §) is the Fourier transform in the variable 51 of the function I(z,§), nis dual
to &' variable, A3 = {n € RL| sn > 0},'8 = (Ba, ... Bn), D = DZ..Dgx, ['B| = B+ ... + B,
s=-1,1;1<j5<n.

Proof. From c) of lemma 1 it does follow that for fixed x € D, '€ € 'G ('§ #0) and with
r+|'8l=4, 0<r<4

&0z (DET), €pp (DL ) € Ly (R ) N La (R

Then taking into account 1) of lemma 1 and relations (13), (16), (17), from the theorem
about the differentiation of integral on the parameter and from the properties of Fourier trans-
form, we have:

0" D.f Iy, 0" Df Ty, € C (D x RY x" G)N Ly (RL) (18)
where 7+ '8 =4, 0<r <4 ie. 3) of corollary 1 is true.

2) of corollary 1 is ensured by 1) and b) of the lemma 1.

By the assertions 1) and ¢) of lemma 1, we have that for r+|'8| =4, 0<r <4,z €D, €€
‘G ('§#0)

DL, (Dﬁ?l) , DL, (Df?lm-) €L (R ) N Ly (R ) .

Last relations and 1) of lemma 1 show that



npgf, D) Iy € C (D x R, x' G)NLz (RL), (19)
Consequently, for | 6 | <4
DYT, DY Iy eC(Dx Ay x'G). (20)

Assertion 1) of corollary 1 is ensured by assertion a) of lemma 1 and by (20).

Corollary 1 is proved.

Remark 1. As can be seen from equality (2), u(z, §) is a sum of functions of the type I(z, &),
therefore, lemma 1 and Corollary 1 are true for u(z,&) as well.

By remark 1 for each fixed x € D, '€ € 'G, (¢ #£0), it is possible to apply the generalized
Fourier transform in variable ¢! to equation (8).Then taking into account the fact that F1 =
% =0, k = 1,2,....,n (because of semigeodesicness of the system of coordinates ), for
u=1u(z,n, ¢ - Fourler s transform of the function u(z, &) in variable ¢!'— we have :

iawln — 2 E F fk a&m + ijum - erl fkgjn U—
J,k=2

n

) F?kfké”ugs =275 (n) X an; (2)€ &, (21)

J.k,s=2 k,j=2

where i is the imaginary unit, d () is the delta function of Dirac, F(1)=27d (n), F(1) is the
generalized Fourier transform of the unit in the variable &1

Lemma 2. Let the conditions of lemma 1 be satisﬁed Then for 0 < |'8] < 2,1 <j <n,
s =—1,1 and for fixed (z,/¢) € Dx 'G, (6 #£0) D’E U, D,g Upgi € Ln (Af,) N Lo (A;"]) .

Proof. By the remark 1 (taking into account corollary 1), for >0 (n < 0) functions u ,
U, are which continuously differentiable on (z,”§) in the region (D x’ G ).Then from equation
(21), it does follow that the function u for n >0 (n<0) satisﬁes the equation

Ugry—21 Z I‘lk§ Uiy —&—ijux] - ZZ r kf’“@n u— Z Fskgkffugs =0 (22)
J,k=2 7,k,s=2

in the classical sense.

Putting @ = p+ ig, from (22) for n >0 (n < 0) we have :

Prin—2 3 F{kgkpijn =F (23)
7,k=2
) qzin -2 %:2F1k€ qgﬂn =Fa2 s (24)
where f = Z Ih.65¢inp — Zﬁjqw oy 18650 ges
s, .]k)72
Z L5.65¢0ng + ijpy - Zk: 0565 pee.
3k 8,5,k=

In this work the unlqueness of a solutlon of the problem 1 is investigated. Under the
assumption of existence of the solution, in the region {2 there exists a solution. The solution
u(z, ) of the equation (8) (it means there exists the solution & = p + ig of equation (21)) with
the properties indicated in the remark 1 and satisfying the condition (see (9))

for (£,£) €D xG ((z,/€) €dD x'G), uw=0 (u(z,n/ & =0). (25)

If we examine equation (24) as a differential equation for the function ¢, then, as it follows
from the theory of differential equations with partial derivatives of the 1st order, the following
equalities holds :

Al =1, %k:—zzzr ¢, Lg,=ro k=273,..n (26)
=



By remark 1, (see corollary 1) for 0 < |'5] <2, 5=1,2,...,n,
DF2, DFa, € C(Dx AL x'G)NLy (A}). (27)
(From equalities (25), (26), it follows that
.’_L‘l
qn(x7nal g) = fzfl) Fa (Ta/ 33’77,/ C( ?l 5))d7—’ (28)

where x{— is the first component of boundary-point (zj,/z) € 9D of the region D (points

(z1,' ) € D possess the property x! > z}). In equality (28), components of the vector '((7,/ §) =
(C%(7,€),...,C" (1, €)) satisfy the system of the differential equations:

k= —222F’fj G, k=23,..n
=

Cauchy’s conditions '¢(z') = '£.By the uniqueness of the solution of this Cauchy problem with
the condition '¢(x') ='£ # 0, it follows that '¢(, &) # 0, 7 € [a§, 2 + do] , 2§ < & < xf+do.

Since out of D the function f 5 (z,n,’ £) is zero (this follows from the definition of the function
u(z, &) and (25)) and straight lines in R? which are paralel to coordinate axis ox! are geodesics
of metric (g;;) the integral in (28) actually is taken on the finite interval (z8,z{ + do), where
do is the diameter of the bounded domain D in the metric (g;;).

(From the relation (10), (16), (17), taking into account remark 1, we have that the integral
fj;o u?(z,€) dét uniformly converges with respect to the parameters (z,”¢) € (D x’ G) and is
continuous in the set (D x’ G). Then from the equality of Plansherel

om 13 %xﬁﬁ%l— 3 Nt ) dn
follows that the integrals fo (z,n," &)dn, +°° p?(z,n,’ €)dn are continuous in the set
(D x’" G). Note that for |5] < 3, 1 < j <n from relatlons (10), (16), (17) taking into account
remark 1, we have that the integrals fj;o(Dgu(x,f)) d§1 f+°°(DBux] (2,€))? d¢'uniformly
converge with respect to the parameters (z,¢) € (D x’ G) and are continuous in the set
(D x' G).
Then by the analogous reasoning for the continuity of the integrals f0+°° 2(x,m, )dn,
+oo 9

o Pix,m,&)dn, it may be proved that for |'8| < 3, the integrals 0+°O(D,£ q(x,m, €))3%dn,

f+0°(D,£p(x n, €))%dn , f D, B i (z,m, €))2dn, O+OO(D:?ij (x,m,€))%dn are continuous
in the set (D x’' G ). Consequently, for |'8] < 2, the integrals f0+OO(D:BF2(:C,n,’§))2dn,
f0+oo(D:ﬁF2wj (x,m, €))?dn are continuous in the set (D x’ G).
From (28), we have
G < (@' —ad) [ F3(r) 2/ C(r/ ©)) dr. (29)
On the other hand for ) < z! < z{+dy there is an integral ffg (f0+°° F2(r)z,n/ () &) dn)dr
and it is bounded by a number M > 0, which does not depend on (z,’&) (since the function

OJFOO F3(x,m, &) dn is continuous with respect to the parameters (z,'€) € (D x’ G) and sets D,
'G are closed and bounded).
Then for each N > 0 from (29) by Fubini- Tonelli theorem, we have

I q?,(xm,’@dn <do [3( le F3 () z,n/¢(r)€))dr)dn =
=do [, (Y F3(r) 2/ () €)) dn)dr < doM

For |'8| < 2, from (28) by analogous reasonings, it may be proved that



N ’
f(] '5 Q'r? T 777 )ana fo (D'?quj (%777' 5))2d77 < dOMlv (30)
where M; > 0 is the maximum on (D x’ G ) of the continuous functions
1 + ’ 1 ’
i (o S (DEF2(ron) ¢(r €))Pdn)dr, and [y (Jg"™ (DLF 20i (.0, C(7/ €)))?dn)dr.
Inequalities (30) show that for |'8] < 2, P,?qn, D,ganj ,6 Ly (A}) .Then from (18),
taking into account remark 1, it follows that D,?qn(x,n,/f), D,gqmj (z,n, &) € Iy (A}?) N

C (D x A} x’ G) . By similar reasonings it may be proved that D,lfqn(x, n, £), D:?qmﬂ (z,n,/&) €
Ly (A7) NnC (D x AT %' G)

Using equation (23), analogous to that as these were proved for the function ¢(z,n,’ ), it
may be showed that for the function p(z,n, &) for |'8] < 2, s = —1,1 the following relations
holds : , ,

D.fpy, D pnes € L1 (A3) N Lo (A3) NC (D x A3 x' G).

Lemma 2 is proved.

Corollary 2. Let the conditions of lemma 2 be satisfied. Then

D:? u, D:? Uy € C’(DXZ; X’G), where |'8] < 2,1 < j <mn;s=-1,1; A, =

{ne€ Ry sn>0}
Proof. According to the proof of lemma 2 for |'5] <2,1<j<n

D} a,,,fo Upes € L1 (A3) N Lo (A3)NC (D x AL X' G).
Then the equality :

D/g Q(l’ﬂ% - _f D/E q‘f‘ x T7/§)d7— (31)
holds, from which we have that for the point (z, f) (Dx'"@G)
DE q(x,40, &) = — ;7 D,g gr(z, 7, &)dr . (32)
Taking into account (30) - (32) we will obtain that
D2afa.n! €) — Dia(a, 40/ 6)] = \fo Larte 7/ )| <

< nf/(D e qT(x 7, €)2dr < ndoM;
from which it follows that for 1 — +0 function D:gq(x, n,’ €) tends to D,g q(z,+0,” &) uniformly
with respect to the parameters (x,’§) € (D x’ G). Consequently, D,/?q(x, +0,/¢) e C(D x' G),
since for n > 0 the function D:gq(x, n'&) e C(Dx'G).
Analogously it may be proved that for |'8] < 2, 1 < j < n the functions D:fqu (x +0,” &),
D p(x, 40, €), D pas (.40, €), D,g(x, =0, €), D, gz (x, -0,/ €), D,fp(z, ~0, €), D,fpys (x
belong to the space C' (D x’ G).

Corollary 2 is proved. 3
For the known function @(E) € C3(D), we introduce function T ¥(Z,€) of variables T =
(

(z, 2"t = (2%, .., 2™, 2" ) and € = (£,&,01) = (€F,...,€7, €7 by formula T9(7,¢) =

n

fﬁ(ig) l > aiy (2 (7,6,t)) 5 (z.€ ) (T,&t) +v(z (7,€,t)) | dt, where ¥(Z,£) is the ray of
’ i,j=2
the metric g(Z), which emerges from pomt T = (2, Zn41) € D in the direction € = (¢,6") € G

with element of length (ds)? = Z gij(x)dzidz? +(dz"t1)?, and D = D x (ans1,bng1),
1,j=2

) _07, g)



G =G x (%, %), 0 < any1 < bpy1 < do. Here 5(7, &) is solution of the problem of Cauchy
(3) -(4), where T = (z,2"*), £ = (£,§"™), 2 = (2 (7,&, 1), 2" (T,€, 1)) is taken instead of
n, x, &, z respectively.

Remark 2. Since functions g¢;;(z) (1 < 4,3
equalities hold : FZTH = FfLH] = an+1 =01
5(z,8) (T e D, € € S™Y) is determined from the problem (3) -(4) corresponding to the metric
(%) with the data z(0) =z, £2(0) = &.

It is easy to see that the function T V(T, £) satisfies the equation

n+1l | n o .
Z?le - % PiEETh =0(T) + Z a;(x)§'¢7 (33)
.7, i,j=2
Slnce the function T(Z) is known and the function

u(z, Z fv(®€ ai; (2 (z,6,8)) 2 (2,6,1) 2 (2,€,t) dt is given on OD x G, for (,€) € T

it is pos&ble to calculate the values of function T%(Z,€), where I' = dD X (@py1,bn11) X G.
Indeed, since functions a;;(x) (2 <i,7< n) do not depend on 2"+, TP(Z, £)

= En: fﬁ(i{) aij (2 (7,€, t)) (z,&,t) 2 (x &t)dt (T € D, ¢ e Sn+1). Here integration is
i,j=2 ’

n) do not depend on z"*!, the following

<
< i,5,k < n+1). Let us note that geodesic

taken not on J(%, ), but along its projection to R?, i.e. on (&) :
T@E) = 3 [ @i (@60) 5 (2,6,) F (0,6, t)dt, where € € S™HL, € = (£,¢"H),
i,j=2

€= (€8, (€)% Y gm( )§'¢ + (§"+1)? = 1. For each fixed (2", ") (ap41 <

Z]—
2™ < by, 0 < €7 < 3 let us determine the vector v = (€1,...,€")(1 — (£71)2)73 € S,
By the condition of the problem 1, for x € 0D, v € S™ it is known the function u(z,v) =

3 oo @3 (2 (@ 0,) 2 (w0, 8) 27 (@, v,t)dt ; then for x € 9D, £ = v(1— (£"*1)2)% and € €

1,j=2
n

57t where 0 < "1 < 2 afunction TP(Z,€) = Y Sy @i (2 (2,€,1)) 2 Y, &, 1) 2 (2, €, t)dt
i,j=2 ’

can be calculated by formula (10), using values u(z,v) on (z,v) € D x S™. Therefore, for T €
OD x (ant1,bn+1) and for £ € Ry, when 1 < ¢7+1 < 3 the function T 9(z, §) (using it’s values
on S"*1, when 0 < ¢! <3 3 T€oDx (anﬂ7 bnt1)) can be calculated by analogy of formula
(10) for T (7, €). On the other hand calculation of the integral T9(%,¢) = - (T, t))dt
is not difficult.

So we can consider the following problem : B

Problem 5. Determine a vector function (a;;(x))5 from equation (33) if T' ¥ is known on I'.

It is obvious that the uniqueness of solution to the problem 1 follows from the uniqueness
of solution to the problem 5 in class C§ (D).

JFrom the reasonings connected with calculation of T(%,&) it is evident that, function
T (7, &) depends on £"*! complexly. In order to explain how T9(7, £) depends on z"*! let us
note that 2" () = 2"+ (7,&,t) = 2" + tf”“ Then TV (z, g) =

S Jepw @) @E) S @E z fooey @iy (= (@, €] 0)) €] 2 (2, v, €] 0
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65 @ lelndt= 3 [z ai (2 (0me i =1 )) 8 (20,6 (e — 1))
=
€157 i — DD = 3 L g e (= (57 0 -2 (ke - 1)2))

€15 (5741 0 — 27) e — 1) 169004 (7 () — 27 e — 1))
It is clear that function T'° = T §— TP = TY(T, £), satisfies the equation

SOTO, - 3 THEOTY = 3 ay(0)ie (34)

j=1 i,5,k=1 ij=2
and condition T'% = 0 on T, where

Iy = fW(E,E)

agjl»)(x), k= 1,2.
Remark 3. The analysis of the proof of lemmas 1, 2 and corollaries 1, 2 shows that the
function T © satisfies all the assertions of lemmas 1, 2 and corollaries 1,2 on set D x G, where

W=

Z oy (@EN)F @6 F @& +7( (:v»élt)>] dt, ay(z) = aif (x) -

'G contains the origin. Moreover all these assertions for function 7" ° (ﬁ,po,qo) may be
proved analoguosly as they are proved for the function w (4, p,q), where TO = pg + iqo is the
Fourier transform of the function T © with respect to & " We will not repeat here corresponding
reasonings, let us simply note that in the proofs we substantially use the analog of formula (10)
for the function 79 and the analogs of the equations (23), (24) corresponding to equation (34).

Remark 4. Since the functions a;;(z) do not depend on z"!, taking into account remark
2, from the definition of 7' ° and from equality u(z,£) = 0 on 9D x R§ (see (9)) it follows
that for (7,&""1) € D x (3, 3) | T %z, &™) + T O(7, —¢,£"+1) = 0. By remark 3, it is
possible to apply the generalized Fourier transform in the variable £ to equation (34). Then

for u = u(z,n, ¢, f"“‘l) which is the Fourier transform of u(z,£) = T °(%, £), we have:
n+1

iUt n—2z Z Flkﬁk Ugip + Zf Ugi — 121—\1 §rein i—

S Y TR =2 (n) X any (1)E°E (35)

7,k,s=2 k,j=2
JFrom the definition of the function u(Z,£) and from the fact that, for 'é¢ = 0 and 2 <

k <mn, P (f,gl,o,gnﬂ,t) = 0 (see remark 2, taking into account the uniqueness of solution

of problem (3) -(4)) it follows that u(Z, ¢ ,0,E" 1) = uei (T, &',0,6"+1) = 0 (1 < i < n), then
Ugigr (Z, 51,0,5"“‘1) = Uyigigt (m,§l,O,§”+1) =0(1 <i<n,1<j<n+1). Taking into account
last equalities and analog of formula (10) for the function u(Z, §), by the same way as we proved
1) of lemma 1, we may prove that

Uy Ugi, Uy iy Ugrgi, Ugrgig — 0 0 Lg(Rél). as '€ — 0 (36)
uniformly with respect to (z,£"1) € D x (1,3)

Corollary 3. As '§ — 0, the functions p,p_;, pei, Peiyi -4 tend to zero (uniformly with re-
spect to (7,£"")) inspace Ly (R)), where u = (%, 7, £, ") = p(z, 0, £, ")+ iq(T, 0, &, "),
2<i<n,1<ji<n+1).

Proof. Since the Fourier transform is continuous in space Lo (R}, ), from (36) it follows that as
'¢ — 0 functions @, Tgi, nU, N>, Ngi, MU, , U, g n*u 7,77%75, tend to zero in space Lg(Rl) (2<
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1 1
i <n,1 < j <n+1). Then from the inequalities [ Piei| dn < (floo nzpijgidn) ’ (floo n%dn) °,

1
1 1 3 1 .

IN dn < (fo pijgi dn) and from [ nQpijéidn — 0, [, pijgi dn — 0 it follows that,
when ¢ — 0, the function Pyigi tends to zero in space L1(0,00) uniformly with respect to
(7, £m+1).

By the same arguments it can be proved that, when '{ — 0, the function p_; ¢ tends to zero
in Li(—00,0). The remaining assertions of corollary 3 may be proved analogously.

Now let us prove that, for (Z,’ ¢, f."“) € Dx'Gx (i, %) and2 <1,5 < na function Uyn+1gigs
belongs to space L;(R;). In fact, since an,+151£i€j1€ Lg(Rél), \1zve have Nign+1eies € La(R)).

~ ~ 2 2 2, ~

Then [ [tynirgigi| dn < (floo 02 [Upnsrgies | dn) (floo nizdn) , Le. Ugnrigigs € Ly(1,00).
Analogously we have: Uynt1¢ig; € Li(—00,—1). On the other hand uynt1¢ig; € Lg(Rél) and
Ugn+1giei € La(Ry), which means Uyn1¢ig; € Li(—1,1). Thus for (z,&,£") € Dx'Gx (1,2,
ﬂInJrlgiéj S Ll(RTl,), and

pzj gl

oo

uz"Jrlfigj (f’ 07/ g? £n+1) = / px"+1§i§j (Ev "7’/ 5) an)dU
o)

2 oo
= 85?85] </oo Pgn+1 (Ea 777, 57 fnﬂ)dﬁ) . (37)

Last equalities follow from the theorem of differentiability on parameter of integral. Since the
functions uyn+1gig; (T, £) are continuous (see remark 3 and lemma 1) as '¢ — 0 , for (7,£"+!) €
D x (1, 2) we have:

Ugntigigi (E, 0,/¢&, £n+1) — Ugn+igig (f, 0, §n+1). (38)

In [ 21 ] it is proved

Theorem 3.1.3. Let the function U(y), determined on the open set Y C R, belong to space
CH(Y /{yo}) for some yy € Y and let the function V (y), which coincides with U ’(y) for y # yo,
be integrable on some neighbourhood of the point yo. Then there exists U(yg+£0) = ygg.liU(y)

and  U'(y) = V(y) + (U(yo +0) = Ulyo — 0))dy,

Let T'y(x,20) be the ray of the metric gi(x) € C%(D) (k = 1,2) connecting points x € D
and zg € 0D,,, v # xo and I's(z,20), I'1(x,29) emanate from the point x € D at angles
¢ and v(€), respectively, where & = (¢1,...,€"), v = (v}, .., v"), & = g7 (2) (2 (@, 20)), »
vE(E) = 3 gb* (r1(x, 20))e., Tk (2, 20) be the distance between points z € D and o € 8D,

s=2
in the metric gi(x). In view of the convexity of the region D., with respect to the metric
gr(z) € C%(D) (k = 1,2) , for each fixed x € D the functions & = £(x,2¢) and v = v(x,z0)
are invertible: z¢ = zo(§) € C5(S£2)), xo = xo(€) € C5(S§2)), where SYC) is the unit sphere
of metric gx(x) centered at x € D, k = 1,2. Consequently each vector £ € S§2) is assigned

to vector v € Sil) such that vectors £ and v correspond to the same xg € 9D, . It is evident
that a function v = v(§) defined in this manner is invertible. In addition, let the Jacobian
det 8;3 > 0, det 68”20 > 0 are positive, and so det g—z > 0.

n .
The equalities are true : (71),0 = v, for 2 <i <, (11)p = > gz(;)u], and also (£1)? =
j=2
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1- > gg)gi{j (sign of ¢! is determined by vector £). Recalling the invertibility of the function
i,j=2

=v(§) on 552), let us determine the function f(¢) = (f1(€),..., f(€)) as follows: f1(¢) =

14
(T1)qr, and for 2 < i < n, fi(¢) = f(¢) = igéﬂ'm)ﬁ = kizg;jg,i?uk(s), where v¥('¢) =
J= )=

3
%g’fs(n (z,20))s. Since det g—z > 0, then det g—é > 0.
o=

Let

m::i<$}+zgig)@, 1<i<n, (39)
where £ = ilgéj (2) (12 (2,m0))5 5 f1(€) = (11 (2,m0)) 1 sfor 2 < s < m, f2(€) = f(€) =
=
ZQ ggj (Z) (Tl (Z7x0))zj7 Cl = gi (Z, 1‘0) + fi (5 (27550)) :
i=

Let zp € 0D,,. Let us examine the Cauchy problem for the system

%zi = (, %zi =7, 1<i<n, (40)
with the data .
z(0) = =z, %z (0) = z(0) = <o, (41)

where z € D, (o = (¢, , (), ¢h = anl g3 () (12 (z,20) + 71 (2, 20)) 5 -
=

Under the assumptions of the theorem 3, the conditions of the theorem of existence and
uniqueness of the solution to the Cauchy problem (40)-(41) hold. Hence a solution to problem
(40)-(41) exists on a certain interval. Since the system (40) is t—independent, this solution
~T (z,(o) can be continued until the point zg € dD,,. Moreover this solution is continuously
dependent on the Cauchy data, i.e., v (z,(p) is five time differentiable with respect to x, ¢, t,
(see [20]). It is not difficult to see that in the domain D.,/D, v (z, (o) coincides with the ray

of the metric g, = (gl(f)) , k=1,2.

Using these observations, we can prove that, at every fixed x € D , the equation
FE) =&+ /() =¢ (42)
can be solved uniquely on 552): & = F71(¢), where ¢ € S§2), ¢ = F(&), F71(Q) is five times
continuously differentiable in its domain. In fact, by P2 let us denote 2- dimensional plane
containing vectors &1,&s € S%Q) (i.e. the linear span of the vectors &;,& € Siz) passing through
the point x € D).
Let us construct the orthogonal system of coordinates on Pjo (with the origin in € D)
such that one of the coordinate axis coincides with vector &7, and orientation of P;s is the same

with orientation of D C R" (i.e. det 88—”20 > O) .

Let y1(z,€) intersect D, at the point z(, Pia), where & € S?) N Pio, v (x,€) is the
solution of Cauchy problem (40)-(41).

Let C(P12) be a closed curve on 9D, , consisting of points z(§, Py2) : C(P2) = {z(§, Pypy); € S%Q) n Plg} ,
t is the length of the part of C(Pj2) between points z(&;, Pi2) and z(€, P12) in the metric go.

Since the function xg = x¢(&) is invertible and the Jacobian det 88—”20 > 0, the positive direction
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of movement of vector & = (51(9), ... ,5"(9)) on unit circle of Py centered at x € D (i.e. in-
creasing of #) corresponds to the positive direction of movement on C'(Py2) of the point z(&, Pi2)
(i.e. to increasing of ¢). Then taking into account convexity of domain D., with respect to the
metric go, we have that 6 is an increasing function of ¢.

Since det g—é > 0, positive direction of movement of vector ¢ (i.e. increasing of 6 and
therefore, increasing of t) corresponds to the positive direction of movement of vector f(€).
Let & = € (to), f (&) = f(&(to)), where to € (0,de), de is the length of curve C(Pi2) in
the metric go. Now we will prove that & # & implies F (&) # F (&2). Assume the contrary :
F (&) =F(&); then & =& + f (&) — f (&2) and from the continunity of the function f(€) at
the point & # 0 it follows that as t — to (t € (0,de)), £E(t) =& + f (&) — fF (@) +O (t —to).
The last relation contradicts the assertion: ” the positive direction of movement of vector £(t)
corresponds to the positive direction of movement of vector f(£ (¢)).” Therefore F' (&) # F (&2),

i.e. function ¢ = F (&) is invertible on S%Q). Obviously if we extend the function f(£) by the
formula f(I&) =1f (€) (l >0, &€ SP) from the set S%Q) over the set R (the functions F ()

and F~!(¢) will then also be homogeneous functions), then equation (39) will be uniquely
solvable in R{, where Rjj is R"™ without origin. Here, the degrees of smoothness of the functions
E=F71(¢) and n = f(£) coincide.

Moreover , if

S+ =¢, i=2,...,n (43)

then expressing &' in terms of €2, €3, ..., €™ in the equality 1€1l,, = 1 (the sign of &1 is determined
by the vector &) and substituting the result in (43), we have

Wz(/é-)zfz'i_fl(gl(ngvgn)7£2775n)2417 122,,7L (44)

In the same way as in the case of equation (42) we can prove that in Ry~ ' system (44) has
a unique solution ' = 7~1 ('¢), where 771 (’¢) € C° (Ry ™).
For ¢ € 552), the definition of the function f(£) and equality (44) give

v (a0 = F(©) = ¢~ =¢ —m (), i=2...m, (5)

Let h(¢) = (A2 (Q),....h" (), W (¢) = ¢ — a7 (¢), i=2,...n, where ( € 55,

h(¢) € S£2). Equalities (45) yield h('¢) =" f(’€), where '¢ = 7= ('¢) . Then from the uniqueness
of the solution of the equation (44) and from the inequality det g/,’g > 0 we get that the Jacobian

det g:C > 0, therefore, det g,}z = det g’,g det g:g > 0.

Note that the conditions g}/ = 0; j = 2,3,...,n and g}' = 1, the uniqueness of the
ray i (x,uo) and relations (6), (7), we see that -, (m,uo) = 2 + t°, where kK = 1,2 and
V0 =(1,0,...,0) € R". Therefore, we get f (1°) =1 and ¢y, = 2v° (see (42)). Thus according
to the theorem about continuous dependence of the solution to the Cauchy problem (which is the

defining ray of the metric gff) for k = 1,2) on the initial data and the condition f € C° <S£2)> ,

we obtain that f (£) and ¢ tend to vy and 2vyp, respectively, as & — 1/° (§ € S{Q)) . Therefore,
as '€ — 0, the functions 'f(’¢) = (f2(’§), .. .,f"(’{)) and ‘¢ tend to zero; hence, by virtue of
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the smoothness of the function 7! (’¢), we have 7! (‘¢) — 0, which means that the function
h(z,¢) = (h?(x/(),...,h" (x/()) has the same property; namely,

hz,0)=0, h(z,/¢{)—0 as '(—0 (46)

Since the functions f(&), F(€), F~1(¢) are homogeneous of the first order, the function h ('¢)
is also a homogeneous function of the first order.

Remark 5. Since v (2, %) = x +t° is the ray of the metric gi(x), k = 1,2, then it is not
difficult to see that it is possible to represent f!(¢) - the first component of vector f(€) - in the
form /() = &' + J('€), where  J(0) =0, 6 € S

Let £ = F(¢) = (Fl ), ,F" (Q)), where F (¢) is the inverse function of ( = F ().

S

Here for 2 < s < n, the function F~ Q)=F (¢)=¢° depends on ‘¢ and does not depend on
¢t. Since the functions ¢ = F(§), v = f(§), £ = F71(¢) = F(¢) are homogeneous of first
degree in § and in ¢ accordingly, for a constant o > 0 the equalities hold :

fag) =af(©). F(a¢) =aF (¢), 35 F (a0) = azLF ((). (47)

JFrom the determination of ¢* and from the equality (39) it follows that

tww—z<@1<wz%ﬁ@)—z%au&

_ 9 OF
where @;; = 8zJ<) + Z agfﬁ azJO'
Since function f(f) (f1 &), -, f" (f)) is homogeneous of first degree in &, it is not
equality (47) and (48) we have, that the function n = (n',---,7™) is homogeneous of second

degree in (. Consequently, problem (40)-(41) possesses the follovvlng property : if we substitute
af for t and ¢/a for ¢, then the system (40) with the variables z, ¢, ¥ will have the same form as
the initial one, while in the data of Cauchy (41) for ¢ instead of (y there will be (y/a.Therefore

(f CO; ) = Z(xaVa‘COH)v 2(%(0775) = ‘C0|;Z(£L'7l/, |CO|t)a (49)
where v = Ig—gl, |C0\ Z gl ( )Cégg'

i,j=1
Let us intgoduce the function:
W)= 2 [ ay @G (2@ G0 2@ GD) (2 @G 2 (@6 1) dby (50)
1J=2 yH(2,0)
where vV (2,¢) = (2 (z,{,t), -+, 2" (z,(,t)) is the solution of the problem (40)-(41) with
Co = ¢, the functions a;; (z), A’ (z,’ 2) possess the same properties with that in the formulation

of theorem 2.
i From (50) differentiating ™ (z,() at point x in the direction ¢ and taking into account
(40), (41), (48), we have

ZC’U + Z aszJuc = Z;Lij ()W (z, Q)R (z,/C). (51)
ij=1 ij=
Problem 2. Determlne a vector function (a;;())5 in D from equation (51) if the condition
for (z,{) € 9D x R™ (¢ # 0), ut (z,{) =0 (52)
is given.
As in the study of problem 1, for the known functlon o(T) € 005( D), let us introduce a
function T, (%, () of variables T = (z,2"*1) = (2!, ...,2",2"™!) and ¢ = (¢, (") by formula
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T,@) = [ ay@ni(=/2) 0 (=) +a()d,
7+ (z,0)4I=2
where 7+ (E, Z) = (7+ (E, Z) L (E, Z)) is the solution of the following Cauchy problem for
the system of equations .

with the data 3

D E(0) = (2 (0), 2 (0) =7 £7(0) = C.
Here 7 € D, ( € G, D and G are the same sets we used in the determination of the function
T (7,8) .

It is obvious that function T, (f Z) satisfies the equation

n+1 .
%ﬂﬂi¥¢mwmwz%u N QR (2 ¢) (54)
J 1,7= 7J—

The function T(T) is given and u(z,§) = Z f (@.6) a;j (2 (z,6,1)) 2 (x £ t) % (x & t)dt

is known on @D x R™(¢ # 0) ; therefore, as we calculated T" for (z,¢) € T, it is possible to
calculate the values of the function T, (:L' () for F where T = 9D x (ant1,bnt1) X G.

Consequently, the uniqueness of solution of problem 2’ in class C§ (D) follows from the
uniqueness of solution of the following problem :

Problem 5°. To determine a vector function (a;;(x))% from equation (54) if T, is known on
P )

It is clear that the function TT = Ty, — Ty, = > [ aij(z) R (z,’ fz) hi (z,’é) dt

LI=2 5t (7,7
satisfies the equation
n+1 n
> OTS + > agdTE = Y ay @) b @/ QW (/) (55)
j=1 i,j=1 i,j=2
and Tt = O on I, where
=3 [P @) (@80 2 @8N W (= (@30 2 @ 80) +
1,J=2 5+ ($ C)
o(z (Z,(,1)))dt, a;; (z) = ag) (z) — ag;) (), k=1,2.

Remark 6. The analysis of the proofs of lemma 1 and corollary 1, taking into account
relationships (46), (49), shows that the function T' T satisfies all the assertions of those given
in lemmas 1, 2 and of their corollaries in set D x é, where G contains the origin of R* 1.

Remark 7. Since the functions a;;(z) do not depend on z"*!, from the determination of
function T'* and from equality ut (z,{) = 0 on dD x R (see (52)) it follows that (as for the
function Ty (see remark 4)) for (7,¢" ) € Dx (1,3), TF (7,¢, ") + T+ (7, -¢, ") = 0.

Furthermore from the continuity of the function 777, en1ica ( ,C) (see remark 6 and lemma

1) for (z,¢(") € D x (1,3) as ¢ — 0 we have:

T;H—l( ici (E 0 lg CnJrl) - T;;L+1< ici (I707<n+1) =0 (56)
Differentiating the equality (¢£1)? + Z gz ( )€i¢d = 1 with respect to z! we have :

1,j=2
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2 (€1)2+ 52 ( Z g(Q) () £¢7) = 0. At the same time, in view of the independence of vari-
,J 2

ables ¢! and !, from the equality ¢! = &'+ f1(¢) = 2¢! +f ('¢) (see remark 5), it fol-
lows that 231151 + amlf (f) 0, and so Clamlgl = (251 + f(/f))%fl = %(51)2 - %f
(€) 2 fUE) =~ (3 9 @) =3 (O3 f (€).

i,j=2
Since the function '€ (’¢ = 77 1(’¢)) does not depend on (! from the above equalities, it

follows that the functions %51 and (¢! 82151 do not depend on ¢!, and so 62151 = 0. Then
taking into account that ¢! = 26! + £ (’¢) we have:

=t =20 %+ ZCJ'%G) > 52 f Zﬁ%s’f = 22;%5#
=2 Jj= j=

Clz aékf3x1§k+ > Cj@fkfdaﬂgk C1611+i€1j ¢,
=

J,k=2

en =Y phef bt e1j = 25556 + Z oo f 50 €".
=2

n
Moreover for 2 < i < n, we have: E =0 =ay ¢ + > @;;¢7, where for 1 < j < n,
i=2

_ o 2 oft og”
@ij = 527 + };23@ 927

Let us prove now that functions ey; (1<j<n), a;j (2<i<n,1<j<n),donot depend
on (! .

Indeed, it suffices to note the following : 1) The function '¢ does not depend on C ! (5 =
771(’()), 2) and the function ' f (&) = (f2('€),---, f™ ('€)) does not depend on &', i.e. aTl =0,

2<k<n,3) % = (12 (%, 20)) y1,5 =(T2 (2, 20)) 4i,1- The function ((12 (x,20)) 2 , ..., (T2 (2, %0)),

can be expressed by the vector '¢é where, 2 < j < n.
Let us rewrite now the equation (55) in the form:

n+1l n .
S ETE + (e + Z e1j C])TJE-F
j=1

> (@ + Z%C]) o= 2 aij (@) (z QW () Q).

k=2 i,j=2

By remark 6, for each = € D7 e G, it is possible to apply the generalized Fourier transform

in ¢! to the last equation. Then taking into account that the functions eq; (1 < j < n), @

(2<i<mn,1<j<n)donot depend on (!, for T+ =T+ (z,n,/ ¢, ¢")- Fourier’s transform
of the function T (E E) we have:

i), + ZQCJT+ —engg(1 T+ BTt iy an T,
J= = -

+ 3 @ TE =2m6 () 3 awh® ()W (C). (57)
H,j:2 K,j=2
Designating T+ = p* +ig™", from (57) for n >0 (n < 0) we have :

DUt = Ff aUs =F5 (58)

n n+l
where U = pfi+ Zajlpzj —eung™, Uf=q¢h+ Y au qzrj +ennpt, F ==Y g, -
=2 =2 i—2
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n

22%4 4 —np+ZeleJ Z ¢pl; + Z awC Pl — nq+ZeuC7
5, K,j=2
Then by analogous reasonings by Whlch we proved the contlnmty of 1ntegrals

o0 ’ 2 o0 ’ 2 ’
(j)‘ (D/?FQ (%77»/ C)) d777 t{ (D/?F2zl (Iﬂ?a/ C)) d77 OH( )fOI‘ | ﬂ| < 3 and by 'E qﬁa D’?qnzi S
L

1 (Af]) nc (D x Ap <! G’) in the proof of lemma 2, we can prove the continuity of the inte-
o0 oo

, 2 N2 - ,
grals / (D,?F;r (33777’/4')) dn , /(D/?FML (1"777/ C)) dn in the set D x’ G and D,?U;' €
0 0
L (A3)nC (15 x A8 X! é), where s =1, —1; /8] < 3, 'C = ('¢,¢"*).
Using these facts, (as corollary 2 was proved) we prove, that for '8 <3, s =—1,1
’ ~ - s ~ s
D/?Ut;1r eC (D x A, x' G), where A, = {sn>0[ne R}}, (59)

D:?Uq+ (:v +0, i) = 7D:fF2+ (i,m’ i) dn,

5U+ (x Y g / D 5F+ (a: n, g) dn. (60)

LFrom determination of the function T+ (:c, ¢ ) and from the fact that for ' =0and 2 < k <
n, 42k (2,¢1,0) =0, and also from equality h* (z,0) = 0 (taking into account the uniqueness
of solution of the problem (40), (41)) it follows that T (z,¢*,0,¢{"!) = Tct (z,¢%,0,¢") =0
(1<i<n)and Tgcl (z,¢%,0,¢") = T;JC i (2,¢4,0,¢") =0, (1<i<n,1<j<n+1).
The last equalities and the analog of formula (10) for the function T+ (f, Z) show that by similar
reasoning by which 1) of lemma 1 was proved, it is possible to prove that

as '( — 0, T+, T7, T;]C” Theo —0 in Ly (RCI). (61)

uniformly with respect to (Z, (") € D x (3,2).
Using relationships (56), (61) by analogous reasonings by which corollary 3 proved we can
prove

Corollary 4. Functions p*, pf;, p;'jc,,, pZZ, pZZ,Cj, nq*,nqé} as ‘¢ — 0 tend to zero (uni-

formly with respect to (z,(") € D x (3.2)) in space Ly (R}), where T+ = pt+ (i,n,’&) +

(/) @<i<n1<j<n+1),
4. Proofs of the theorems.
Recalling that u = p + igq, from equation (35) we have:

n

& (gn =2 Z I &Fqe) = —27T5(77)k22%‘k (@) €€ + I, (62)
sJ=
n+1
where f o = Z Ih.65¢0nq + ijpm - Zk 0565 pes.
j=2 8,],kR=

Lemma 2 shows that (taking into account the corollary 2 and remark 3) for fixed (7,’ &, &7 €

D x'G x (af 41,09 1) the functions U = g1 — 2 Z I’ kf qes and V = [, for yo = 0 satisfy
Jik=2
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the conditions of theorem 3.1.3, if in the expressions for U and V variable y is replaced by 7.
Then from equality (62), for '¢; € G we have :

ain (qwl (jv 77;, gi) €n+1) -2 Z2F312('r)q51 (Ea 77/ fia §n+1)> =
j=
—2mo (77) Q5 (1") 52+F2i (f7 ’r]a/ gia §n+1) (63)
where /gi = £ ,51(1)7 ,El(l) = (07 ,0,1,0,- - 70) € Rnila € € Rla /€ = (527533"' 7£n)7
~———
i—2
Foi(T, ) &,6"1) = 2T} (x)nq(T,n) &, €™ + € poi (T, &, €™FY)
n
—e2 3 T5i(x)pes (T,m) &0y €7F1) HE"  pansa (T, &5, €771), index i fixed (2 <i<n).
s=2

II’;ViGW of equality (63), according to the theorem 3.1.3, for ¢ € R! we will obtain
Usg(T, &, ") = U—g(3) &, €™ = —2may(2)e?, (64)

where Uyy(T, &, 6" ) = g (7,20, &,61) — 2¢ fj I, (2)qes (7,40, &,€1) .
On the other hand from (63), by corollaries 1,2, 13‘5_128, not difficult to obtain for € € R!,
Uso(@, &, €711 = —Ofo Foy(@,n) &, 6" )dn, U_g(7)&,6"H) = } Foy (T, &, € )dn.
Consequently, for e GORl h
o Usg(T &, ") -U_o(T/ &, 6™H) =

= | (€@ X Th)pe (@06, €777) = ST ()na (@0 6,677 -

= EPgxi (E7 777/ Siv §n+1) - €n+lpw"+1 (fv 777/ fiv §n+1))d77 (65)
By corollary 3,
o0

o0 oo
f Dxi (fy T]a 07 §n+1)d,r] = f Pxn+1 (Ea 777 07 §n+l)dn = f pgix"‘"l (E? 777 07 §n+l)dn = 0 a‘nd

— 00 — 00 —0o0

according to corollaries 1, 2, 3 (taking into account remark 3) we have, that p,i¢i, Dyn+1gigi €
Li (R) N Ly (RY)NC (/5 x AL X' G x (a0 4, bgH)) (s = —1,1). Consequently, for each fixed

(z,¢&"t1) € D x (a2 1,09, ), from the mean value theorem it follows that
oo

f Pxi (T, 77/ Eiv ﬁnH)dW =€ f Paigi (fv 777/ &01, £n+1)d777

f Pxnt1 (Evnalgia£n+l)dn = 52 f pw"+1§i§i(fanvl£i927£n+1)dnv (66)

where 0 < 01(?,’ £i7£n+1)’ 02(5,’ gi,gnJrl) < 1.
Taking into account (66) in (65), we have :

U+g§§7/£ia§n+1) - U*q(fxgiagn-‘rl) = Qi<§/§ia§n+1)52 ’ (67)
WheI‘G Qi(fa/ 5ia€n+1) = _f ( 72F%(£L’)p£s (5777,/ gi,gnJrl) - lez(x)WQ(T,ﬁ,' fi,fnJrl)*

— Paigi(T,n, 01, €M) = €M ppigigi (T, €602, €71 dn.
Equalities (64) and (67) show that —2ma;;(x) = ¢;(T, &,6"), 2 <i<n).

By remark 4, the function u(Z,&) (ugntigiei (T,€)) is odd with respect to ¢ and from

continuousness of u,n+1¢i¢i (7, €) in D x G it follows that Ugn+rgies (T,0,€"T1) = 0. Then by
corollary 3 and by relations (37), (38) we have: as e — 0, ¢;(Z, &, ") — 0, so ai(x) = 0,
2<i<n).
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Let '¢;;(1) = (0,---,0,1,0,---,0,1,0,--- ,0) € R*™', i #£4, &5 =¢'&;(1) € G
—_——  —— ——
i—2 j—i—1 n—j
Taking into account equalities a;; (x) = 0, a;; (x) = a;; (x) from (44) for '€;; we have :

& <qz (@ 7./, 64) 263 T Ta(@)ae (x,n,’gij,gnﬂ)) =

s=2K=1,]
—476 (n) aij(x)e2+Faij (T,m,"&5, 6", (68)
Where FQij (E,n,’é}g,f"“) - 52 Z Pim(w)nq <E7n7/€ij7€n+1) +e Z _pl’s (E’n7/§ij’§n+l)
S$,K=1,] s=1,j

2 Z ZF ( )pfr (f7’r]a /Eij7£n+1) + £n+1pz"+1 (fa 777/ fija§n+1)7 indexs iv .7 fixed ( 2 S iv

S,K=1,jr=

j<n).
Now we repeat the same arguments which we used when we proved the equality a;; (z) = 0.
By (68), taking into account the theorem 3.1.3, for ¢ € R! we obtain

U+q (fv lfija §n+1) U—q(i /§ZJ7 §n+l) = _47Ta1_} ($)€2, (69)
where Uiq(f7 /éijv £n+1) = ({1 (x +0 15”’ §n+1) — 2 22 Z F ( ) (Ea io) lgija §"+1)
s=2Kk=1,j

;From (68), taking into account corollaries 1,2, for e € R, we have

U+q( glj’gnJrl - _f Fsz (m m, 52]7£n+1) d777 U, (7 /&]’gnJrl f F2z] ({E 1, gzj’gnJrl)

Hence, for € € R!
Uso(@, "€ €M) —U—g(T, 635, €™ =

oo

= f Z F ( )pfr (fv m, /é-ijv §n+1) — € Z .pxs (fv ;s /gijv §n+l) -
s,Kk=1 jr— 5=1,)
2 Z F ( )77‘] (fa m, /gijv £n+1) - §n+1px”+1 (f, n, /fija é-nJrl))dn (70)
s,k=1,]

Recalhng that f Pxi (Tv UB Oa £n+1)dn = f Pantt (fa B 07 £n+1)d77 = f Pgign+1 (Tv m, 0, §n+1)dn =
—o0 —o0 —o0

oo
0 by the mean value theorem, [ pg«(Z,n, &;j, Entl)dn =

— 00

€ Z f pwsgk z,n, 51]917€n+1)d77 where s =1 .]7 0< 91 ( 7l§ija§n+1) < la

K=1,j —o0

f Pans1 (T,1, &5, T )dn = €2 Y0 f Punt1gsen (T,n, &ij02, £ )dn, where 0 < 6 (T, &;5,6") <

—o0 S,K=1,] —
1. Taking into account last equahtles in (70) we have :

U+q( 57(‘]’577/"!'1) (7 /£Zj7§n+1) = Qij(§7 I€ija£n+1)52 (71)
where q?](fv /fija§n+1) f ( Z ZFGK,( )pf’ (fvnalgij7£n+1) Z F ( )Uq (f7n7/§ij7£n+1) -
—00  8,k=1,jT=2 8,Kk=1,7
- E (pasiﬁk (%77’ 51391a§n+1) _€n+1pa:"+1§5£k (fﬂ% 51]927£n+1)))d77'
$,k=1,]

Equalities (69) and (71) show that, —47a;; (z) = g5 (2, &;,€™™), and since € — 0 and
4§ (T, &5, £") — 0, it follows that, a;; (x) =0, (2 <1i,j < n).
Theorem 1 is proved.

The proof of theorem 2. Since the function h(z,’ ) is homogenuos in 'z as in formula (10),
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let us rewrite the function

fh<x,s>=f<x5) (= (2.6, ) (2 (. &, ) (2, €, 1)

In(@,8) = g Jy~ bz (@0, 7)) €] (% (2,0, 7)) €] B ("2 (2,0, 7))drT. (72)

Using the smoothness of the functlon h(z, &) € C°(D x Ry™) and the condition h(x,0) =
(h?(z,0), ..., h"(z,0)) = 0 and the homogeneity of the function h(z,’¢) on ’¢, with the same
arguments by which inequalities (13) and (16) were proved, the following inequalities

1€ h* (@) 2 (2, v, 7))| < Kin,
€17 D2 el 1* () 2 (0,0, 7)) < K for 1< ol <4, (73)

can be proved in the set €2, where the number K7;, > 0 does not depend on (z,&) € (D x G).
Moreover K1y, does differ from the numbers K7, Ko in (13), (16) by the fact that Ky, it depends
also on the norm of the function h(z, 2) in the space C*(Q(dy)).

Relations (17), (72)-(73) and proof of lemma 1 (corollary 1) show that the following assertion
is true :

Assertion 1. For the functions Iy(z, &) (In(z,n, €)) lemma 1 (corollary 1) is true, where
Iy, = I (x,m, €) is the Fourier transform of the function I (z,€) in the variable &', 7 is the dual
variable to ¢!

From assertion 1, it follows that for the function

in the form

(z:8)

@)=Y [y GEennE@an, ! e

Lemma 1 is true. It is obvious that uy(z, §) satisfies equation (8), and up(x,n,’ &) = pr(x,n,’ &)+

ign(x,n, €) is the Fourier transform in the variable £ of the solution uy(z, £) to equation (21)

with the right sides >~ a;;(z)hi(z, &)W (x, &) and 278 (1) Y. ajk (z) hF(z) &R (2, €) corre-
1,j=2 k,j=2

spondingly. Then the functions pj, and qn satisfy equatlons (23) and (24) respectively with

the right sides of the form [, = Z r kﬁkfjnph —ZﬁJthJ + Z Fskfkgthgs Fho =
J,k=2 Jj=2 5,.5,k=2

Z r kﬁkfjnqh+Z§Jphma > T%.65¢ ppes, respectively

j=2 5,5,k=2

Furthermore for the functions uy(x,€) and up(z,n,§) conditions (9) and (25) are true
respectively . Therefore, analogously as lemma 2 and corollary 2 were proven for u(z,n,’ §), it
may be proved that they are true for the function @y, (z,n,” £).For each fixed 2 € D, the mapping
'n =" f('€) it is one-to-one in R"!. (Let us recall that 'f(0) = 0); therefore for the right
side 'n;(1) = (0,---,0,1,0,---,0) € R, the equation ' f(’¢) = 'n;(1) has a unique solution
——

i—2
’zi(l) = (£(1),---,£7(1)) where index i (2 < i < n) is fixed. On the other hand, from equality
(45), we get h('¢) =" f(’€), consequently, from the invertibility mapping 'n = h(’¢) it follows
that there is a unique vector (;(1) such, that h((;(1)) ='f ’51(1)> = 'n;(1). Then from the
homogeneity of the first degree of the functions ' f(’¢), h(’¢) with respect to ¢, ¢ accordingly,

it follows that ’f <’zl) = h('¢) where ¢ = €/G(1) = (e¢Z(1),e¢3(1), -+ ,eCR (1)), /Ei =

21



6/61(1) = (5522(1)77 755?(1)) = ( R ’gn) £ Z 0. _
As in the study of problem 1, the auxiliary function T} of variables (T, £),

1) = i’j2232 fW(E,E) aij (2 (Z,&,1)) (2 (7,6, 1) /2 (T, &,t) W (2 (7, &, 1) [ 2(T, & 1))dt, can be
introduced.

If we denote T (7, &) again by uy (%, &) and its Fourier transform in terms of the variable
51 by ah(fﬂ?a /§a€n+1) = ph(fﬂ% /£’§n+1)+ iq,l(fan7/€7§n+1)’ then taklng into account that
as ' — 0,/h(z,¢) — 0 and "h(x,0) = 0 (see (46)) with the arguments for corollary 3 for
the functions q(Z,n,’¢, "), p(T,n,’E, €L, the analogous assertions can be prove for the
functions qp, (%, n,’E, "), pu(T,n,’E, €71 respectively. In this case the analog of equation
(62) for the function ¢, (T, n,’E, §"+1) takes the forrn

on (th (‘T , gmfn+1) -2 Z Fln( )Ezn(l)thz (Ean7,€i,£n+l)) -

J,k=2

—2md (77) a“( )52+F2hi(fa777 gi,gnJrl)’
where Fii(F,1, €, €"1) = €2 3 L (2)&8 ()& (Vnan(@,n,"€,, )+

J,k=2
e Ll (pns (771,661~ 3 T3 ()& (0] Wprgs (71,64, 6 1)+
J= 8,7,Kk=

€n+1phz”+1 (f7 , /é-ia £n+1).
By the similar arguments, with the help of which equalities a;; (z) = ¢;(%,’&;, ") = 0 were

established in the proof of theorem 1, we can prove that the equalities a;; (z) = qn: (T, &;, ")
= 0 are true, where

th( Ezagn_‘—l) i

Oj) ZF]I{( )phﬁf(f7nalgiv§n+l)_
]7 —00
*Fgln(x)fzj(l)ﬁf(l)UQh(falegwfnﬂ) — Phaigr (Tﬂ?a Eieja§n+1)7

- £n+1phz"+1§j§k (f77’a/ £i9n+17§n+1))dna 0< GS(E,/ gi’§n+1> < 17 §= j,’ﬂ + 1.
For the proof of equality a;;(x) = 0 (i # j), it is necessary to take the vectors 7;;(1) =

0,---,0,1,0,---,0,1,0,---,0) € R* 1, ’Zij(l), 'Gii (1), ’zij, '¢;; instead of the vectors

i—2 G—i—1 n—j

2

n; (1), gi(l),’ ¢i(1)) Ei,’ (i respectively and (taking into account equality a;;(x) = 0) to repeat
arguments given above for the proof of equality a;;(z) = 0 in the case when ’'§ = §
Here '&,;;(1) = (£5(1),---,&5(1 )) ('G;j(1)) is a unique solution of equation 'f(’¢) = n;;(1)
(h("Cij) = mij(1)) and &j =e €ij(1) ("Gij = €'¢ij(1)), e > 0.

Theorem 2 is proved.

Lemma 3. Let the conditions of theorem 2 be satisfied. Then problem 2’ can have only one
solution (a;;(x)) € C°(R").

Proof. As it was noted above, the uniqueness of the solution problem 2’ follows from the
uniqueness of solution of problem 5’. Consequently, for the proof of lemma 3 it suffices to show
that if fulfills equation (55) and Tt =0 on I, then a;;(z) = 0.

(From equation (57) we have :
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2 (UF) = =278 (n) 30 an (@) W () Qb (2 ) + Fy . (74)

k.j=2
Let v;(1) = (0,---,0,1,0,---,0), and let ‘& (1) = (£2(1),---,£"(1)) be a unique solution
i—2

of equation ' f(’¢) = 'v;(1), while '¢;(1) is a unique solution of equation h(’¢;(1))
=’ f(’¢ (1)). From the homogeneity of the the first degree of the functions f(f) and h('¢)
it follows that 'f('¢;) = h(’¢;), where '¢; = £'¢;(1) = (E(f(l),n- ,5(?(1)) = ( 2 ,C")
6 =e&i(1) = (e€2(1),,---,e€(1)), € > 0. Then for '¢ =' (;, equation (74) will take the
form

77 (UF) = =216 (n) aii(z) € + F (75)
where Fy: (z,n,'¢, (") = &‘Z ( t+ Zzﬁnjpgk - nq+elj> ¢ (1) + ¢ .
j=2 "=

) =
In view of equality (75), taking into account theorem 3.1.3 for ¢ € R}F we obtain:
U (2,40, G, ¢ = UF (2, -0, ¢, (") = —2may(x) €2 (76)
On the other hand, from (75), taking into account (60), it is not difficult to obtain that for
e €RY,
UF (2,40, ¢, ¢ ) = UF (2,-0, G, (") =

o3 [ (8 + S aaph — maten)d] ()4 p)dn (77)
By corollary 41 o;nd remark 6
o0 o0 o0
/p;%(in,()@"“)dn = /pjk (T,n,0,¢" ) dn = /p;i-(k (,n,0,¢" ) dn =
- —o0 - —o0 - —00
/nqgi (@.7,0,¢"*) dn = /nfﬁ (7.7,0,¢" ) dn = /pjw (@,1,0,¢"+) dn = 0, (78)

and p, ples Dy ens 145 1005 Pl € Li (Ry) N Lz (Ry) N C(D x Ay x' G x (1, 4)), where
2<kr<nl1<j<n+1,5=-1,1. Consequently, from mean value theorem, for each fixed
(z,¢"T1) € D x (1,2) we have :

101
f p;i-] (T7na/ Cia(nJrl)dn = 622 f p:jcr(‘ianal 410+3Cn+1)CZT (1) d77»
f ng* (T, n, G, " )dn = > i nale (T, GOT, ¢ (1) dn,

o0

J pa@n! Gy =23 ] ph @/ GOLCHG D dn, (79

o] n oo .
f Dyr+1 (57 ’I’},/ Cia §n+1)d’r] = 52 ZQ f px7’+1g’"Cj (fa 777, Cie;‘;-lv gn—l—l)gbr (1) CZ (1) dnv
—o0 rj=2 —oo
-+
where 0 < Hj_(fa/ Cia Cn—&-l)’ 6+ (Ea/ Cia Cn—&-l), Hk; (ia/ Cia Cn+1) 0;—-}-1(77/ Cia Cn+1) <1
Taking into account (79) in (77) we will obtain

Uf (z,+0 'C C"“) Ut (-0, ¢, ¢" ) = ¢ (2 G, ¢mHY) €2, (80)
where qj( Cn+1 Z f :EJCT {L' » 15 CZ Cn-‘rl) _’r]qz; (jjaq%l Ci9+7<n+1) elj +
7 j=2"
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Z akypgkcr(f , CzolenJrl))Cr( )+<n+ pz"+1CTCJ (17 , <19n+1,<-n+1)<-ir (1) Czj (1))d7’

Equahtles (76) and (80) show that —2ma;(z) = ¢;" (2, ¢, ¢"™), (2 <i < n). Then from
corollary 4 and from (78) it follows that for ¢ — +0, ¢;- (i,’ Cis (”“) — 0. Therefore, a;;(z) =
0,(2<i<n).

For the proof of equality a;;(z) = 9 (i # j) it is necessary to take vectors 'v;;(1) =
0,---,0,1,0,---,0,1,0,---,0) € R, "&;(1), "¢;;(1), '&j, 'y instead of the vectors 'v;(1),
—_——  ———  ——

i—2 j—i—1 n—j
6 (1), ¢i(1), &, ¢ respectively and (by taking into account equality a;;(z) = 0) to repeat the
reasoning given above for the proof of equality a;;(z) = 0 in the case when '¢ =’ ;. In this
case '&i;(1) = (§5(1),---,€5(1)) ("G (1) = ¢Z(1),- -+ ,¢/4(1)) is a unique solution of equation
fUE) ="vii(1) (h('Q) =" f(’&i;(1))) and '&;; = & '§;5(1) (G =€ "Gz (1)), € > 0.

Lemma 3 is proved.

Let us prove the assertion b) of theorem 3. Let 74(z,z¢) be the distance between the

points xg € 0D, and & € D in the metric g, = (gf?(m)), k=12 ¢ =Y gg)(x)pé,
j=1

ph = (11(z, 20) + T2(2,20)) i ;i =1,2,...,n
It is known that the function 74 (x, z¢) satisfies the equation
n ..
Z gllc] (:E)TkwiTka;j =1 ) (81)
ij=1
i
Substracting equation (81) for & = 1 from the same equation for k¥ = 2, and transforming
the obtained equality correspondingly, for the functions d(x,z¢) = 72(x,z9) — 71(x,20) and
b (x) = g5 — g7, we have

where (g;ﬁj(az)) is inverse of the matrix (g@ (x))

> g5 (x) ply dps + D bIT T = 0. (82)

i,j=1 i,j=2
Since gY;) =0 fort=2,3,...,n and g11 =1 for k = 1,2, we have g,ij =0forj=2,3,...n
and g,ﬁl = 1; therefore, b9 = 0 for j = 1,2,...,n. It can be seen that the expression > g5 ()
ij=1
ph d,i is the derivative of d(z, ) along vT(x, (). Integrating equality (82) along v (x, () and
taking into account the fact that for the points x,z9 € 0D, d(x,z¢) = 0, we obtain

Aas20) = [y 32 T o) (2o z0)dt =0, (89)
From 71.: (z,20) = g\}) ()07, £ (€) = g¥ (= >g£}< Yk, vk = gh*(2)g2) (2)f (€) and A (C)
=/ f(€), woget )
3 W9 ()i (2, 0) i (30 00) = 33 ek ()7 (R (C), (84)

4,j=2
= S (2) 0D ()0 () (2) 0P (2) a5t (2) 02 - indi
where ¢, (2) = D207 (2) g;,°(2)9;5 (2)971° (2) g1 (2)977 (2) gy, (2) and in the last sum indixes
2

1,4,7,8,1,t changes from 2 till n.
Therefore, taking into account the homogeneity of the function h (z,’¢) in ’¢, for x € 9D ,
¢ € Ry from (83), (84) we have :
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%2 f'y‘*’(w,() Cmk (Z (l’, ¢, t)) hm(z (IL’, ¢, t) ) 2 (l’, ¢, t))hk(z (IL’, ¢, t) ) 2 (l’, ¢, t))dt - 0(85)

It was proved that the uniqueness of solution of problem 1 in the space C§ (5) follows from
the uniqueness of solution of the problem 5. By the same way, we can prove that the uniqueness
of solution of the problem of determination of vector-function (¢ (x)) from equalities (85),
follows from the uniqueness of solution of the problem 2’. Then from lemma 3 we get : ¢y () =
0,2<m,k<mn,ie b7 (x)=0,s0 gy =g;.

The assertion b) of the theorem 3 is proved.

Proof of the assertion a) of the theorem 3. In the region D for the metric g, k = 1,2,
we introduce semigeodesic coordinates as follows: Let us select any point Vy € D, /D and
let us consider the geodesics outgoing from it. We take the ends of the segments of constant
length s = r on the geodesics, outgoing from Vj.These ends form the hypersurface, which
is called the geodesic hypersphere of radius r with center V, of the metric gi. Let a number
r > 0 be so small that the hypersphere lies outside of D. Let us examine a certain region
on the hypersphere with the parameters uk,u% . ,qul. We will carry the geodesics to the
same parameters, connecting center of hypersphere V) with the points of region D. We will
characterize position of an arbitrary point L on the geodesic with arc length s = VL. Then
it is obvious that in view of the condition on the metric gx the variables u},u2,...,u} ™", sy
form the semigeodesic coordinate system for the region D for the metric g (see [10]). Let Dy
be the domain of semigeodesic coordinates of the metric g, that we introduced for the region
D, k=1,2.

We build a diffeomorphism ¢ as follows: let us assign to a point 22 € D with the semi-
geodesic coordinates (u3,u3,...,us" ", s3) € Dy in the metric go, the point 2 € D with the
semigeodesic coordinates (u%, u?,. .. ,u?_l, 31) € D; in the metric g; if the equalities ub = u?,
i=1,2,...,n— 1, and s; = s; hold. It is not difficult to see that ¢|s = 1. Actually, taking
into account equalities H; = Hj and g1 = g2 outside D and condition g, € C?(Dy,), it may be
proved that, for the point « € S the rays I'1 (z, Vo), I'2(x, Vj) outside of the region D coincide,
where T (x, Vp) is the geodesic of the metric g; connecting points = € S and Vy, k = 1,2. Here
in construction of semigeodesic coordinates for the metrics g; and g we take the same geodesic
hypersphere with the center at the point Vi which lies outside D. Then by the uniqueness of
the ray T'y(z, Vo) and the definition of the coordinates ui,u?, ..., u""*, the first (n — 1) com-
ponents of the semigeodesic coordinates of the point x € S in the metrics g; and go coincide,
ieub =ul, 1,2,...,n— 1. Moreover the equality of last components (sy = s1) follows from the
equality H; = Hs and from the fact that rays I';(x, Vh) and T's(x, Vp) outside of D coincide.
Consequently, we have:

1) for x € S, p(z) = =,

2) the regions D; and Dy coincide.

Then taking into account 2), the convexity of domain D with respect to gi, k = 1,2 and
determination of ¢, we obtain that ¢ transforms D to itself. According to the theorem about
continuous differentiability, the dependence of the solution to the Cauchy problem (determining
the ray of the metric g € C%(D,), k = 1,2) on the initial data, 9D € C® and also from the
determination of ¢, we have that ¢ € C5(D).

Now let us define the mapping ¥y, : Dy, — D (k = 1,2) as follows: it assigns to the point
(u}c, u% ... ,uzfl, sk) € Dy, the point () € D.From determination of ¢ we have : =" o\Ilgl,
and equality H; = H, implies that g1 = Uig; and g2 = VU3go have the same hodograph. Then
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from assertion b) of theorem 3, we get g1 = gs, therefore, go = p*g;. Theorem 3 is proved.
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Abstract. In the work, the uniqueness of the solution of the problem of restoring the
Riemannian metric by the distances between the pairs of the points of boundary of the region
is investigated.The uniqueness of solution of the problem, up to the diffeomorphism identical
on the boundary of the region is proved within a sufficiently wide class of the metrics.
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