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1. Introduction. In this paper the question of the uniqueness of the problem of restoring
a Riemannian metric from the distances between the boundary points of the domain in the
metric is investigated. This problem is of interest from the both viewpoints of mathematics
and applications. For example, it appears in geophysics in connection with the study of
distribution of the velocities of propagation of elastic waves inside the terrestial globe. ln the
study of the problem of restoring a Riemannian metric a new type problem (problem 2) of
integral geometry appears. It is known that the integral geometry problem is the mathematical
base of tomography. This problem has many applications in various fields: the problem of the
forecasting of earthquakes, diagnostics of plasma, problem of photometry, fiber optics and etc.
(see [ 1,2,6,7 ]). The connection of the problem of integral geometry for differential forms with
the inverse problems for equations of the hyperbolic type and kinetic equations are described
in the works [ 2-7 ]. The basic results of this article were announced in the work [ 8 ] with one
additional condition on metric g (see also [ 9 ]) .

2. Formulation of the problems and results.
Let D be a closed, bounded domain of variables x = (x1, ..., xn) in the space Rn (n > 1)

with the boundary S of class C5. A domain D is called convex with respect to a metric g, if
any two points x, y ∈ D can be joined by a unique geodesic Γ(x, y) of this metric (see [10]). It
is known (see also the proof of assertion a) of theorem 3) that if there exist a point x0 ∈ D such
that any point x ∈ D can be joined with x0 by a unique geodesic ray of the metric g, then the
metric g has a semigeodesic coordinates in D. So, if the domain D is convex with respect to a
metric g, then for g, a semigeodesic system of coordinates can be introduced in the domain D.
Moreover, in the semigeodesic system of coordinates xi, the components of the metric g = (gij)
satisfy the conditions: g11 = 1, g1i = 0, i = 2, ..., n. Conversly, these conditions are sufficient
for the system with coordinates xi to be semigeodesic for the metric g in D (see [10 ]).

Let Γ(x, y) = ξ(x, y, t) =
{
ξ1(x, y, t), ..., ξn(x, y, t)

}
be a coordinate representation of the

geodesic Γ(x, y) .
Problem 1. For each pair of the points (x, y) ∈ ∂D × ∂D, let integral

∫
Γ(x,y)

(
n∑

i,j=2

aij(ξ(x, y, t))
.

ξ
i
(x, y, t)

.

ξ
j
(x, y, t)) dt,

be known, where t is the natural parameter, and the dot indicates the differentiation with re-
spect to t:

.

ξ = ∂ξ
∂t . Knowing these integrals determine functions aij(x) in D (i, j = 2..., n).
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Theorem 1. Let D be convex with respect to metric g ∈ C6(D), functions aij(x) ∈ C5(Rn)
be zero out of D and g11 = 1, g1i = 0, i = 2, ..., n. Then problem 1 can have only one solution
(aij(x)) ∈ C5(Rn).

lt is worthy to note, that if in the formulation of the problem 1, indexes i, j in the summation
under the integral, run from 1 up to n, then the theorem 1 is not true (see [7]).

Let a function h(x,′ ξ) = (h2(x,′ ξ), ..., hn(x,′ ξ)) ∈ C5(D×(Rn−1 \ {0})) be homogeneous of
the first degree in ′ξ: h(x, l ′ξ) = l h(x,′ ξ), l > 0; and the Jacobian ∂ h(x,′ξ)

∂ ′ξ > 0. Here for each
x ∈ D and for 2 ≤ k ≤ n the function hk(x,′ ξ) depends on ′ξ = (ξ2, ..., ξn) and hk(x, 0) = 0.

Problem 2. For (x, y) ∈ ∂D × ∂D, let the integral
∫
Γ(x,y)

(
n∑

i,j=2

aij(ξ(x, y, t)) hi(ξ(x, y, t), ′
.

ξ(x, y, t)) hj(ξ(x, y, t), ′
.

ξ(x, y, t))) dt

be known.
Knowing these integrals determine functions aij(x) in D (i, j = 2, ..., n).
Theorem 2. Let the conditions of theorem 1 be satisfied and let the function h(x,′ ξ) satisfy

the conditions formulated above. Then problem 2 can have only one solution (aij(x)) ∈ C5(Rn).
For the points x, x0 ∈ ∂D let us denote by Hg(x, x0) the distance between the points x, x0

in metric g.
The function Hg(x, x0) determined on the set ∂D×∂D is called the hodograph of the metric

g.
Problem 3. Determine a metric g in D if the hodograph Hg(x, x0) is known.
It is easy to show the nonuniqueness of a solution of the problem 3. Indeed, let ϕ be the

diffeomorphism of region D to itself of class C1 which is identical on ∂D. It transforms each
metric g1 into g2 = ϕ∗g1 in the sense that for any vectors ξ, η ∈ TxD , 〈ξ, η〉(2)x = 〈ϕ∗ξ, ϕ∗η〉(1)ϕ(x),

holds, where ϕ∗ is the differential of map ϕ, 〈., .〉(i)x is the scalar product on TxD is determined
by the metric gi (i = 1, 2). These two metrics have different families of geodesic, but the same
hodograph.

The following questions naturally arise:
1) when is a metric determined by its hodograph up to isometry and identicality on ∂D?
2) for what classes of metrics, does hodograph determine a metric uniquely?
Let us clarify the formulation of problem 3 as follows:
Problem 4. Let g1, g2 be two metrics which are convex in D. Does the existence of a

diffeomorphism ϕ: D → D follow from the equality H1(x, x0)=H2(x, x0), such that ϕ |∂D = 1,
and g2 = ϕ∗g1. Here Hk(x, x0) is the hodograph of the gk, k = 1, 2 and the equality ϕ |∂D = 1
means that mapping ϕ is identical on ∂D.

A positive answer to the question formulated in problem 4 is obtained only for a few
class of metrics (see [ 11-19 ]). Below (in theorem 3) it is assumed that metric g1and g2

(gk =
(
g
(k)
ij (x)

)
∈ C6(Dε0); k = 1, 2) coincide on Dε0 \ D,where Dε0 is the ε0− neigbourhood

of D, (ε0 > 0) i.e. Dε0 = {x ∈ Rn / d(x,D) < ε} , d(x,D) is the euclidean distance between
the point x ∈ Rn and for a set D, we put d(x,D) = infy∈D |x− y|. Let us note that the last
condition is not, generally speaking, a restriction on metrics gk, in D if their hodographs coin-
cide. Indeed, it is proven in [13] that, if H1 and H2 coincide, then suitably chosen coordinates
g1 and g2 will coincide in the space C2(∂D). Consequently, it is possible to continue g2 from
boundary ∂D ∈ C3 to Dε0 \ D by g2 = g1. Then the metrics g1 and g2 will be from C2(Dε0),
have the same hodograph and coincide on Dε0 \ D, where g2 = g2 when x ∈ D, and g2 = g1
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when x ∈ Dε0 \ D.
Theorem 3. Let Dε0 be convex with respect to metrics gk ∈ C6(Dε0) (k = 1, 2) and for

x, x0 ∈ ∂D, H1(x, x0)=H2(x, x0). Then
a) there exists a diffeomorphism ϕ: D → D such that ϕ |∂D = 1, and g2 = ϕ∗g1, ϕ ∈ C5(D).
b) if g

(k)
11 = 1, g

(k)
1i = 0, where k = 1, 2; i = 2, ..., n;then metrics g1, g2 coincide in D.

3. Auxiliary statements. Let us introduce functions
I(x, ξ) =

∫
γ(x,ξ)

b (z (x, ξ, t))
.
z

i (x, ξ, t)
.
z

j (x, ξ, t) dt, (1)

u(x, ξ) =
n∑

i,j=2

∫
γ(x,ξ)

aij (z (x, ξ, t))
.
z

i (x, ξ, t)
.
z

j (x, ξ, t) dt, (2)

where γ (x, ξ) is the ray of the metric g = (gij) starting from x ∈ D, in the direction ξ ;
functions b(x), aij(x) ∈ C5(Rn) are zero out of the D , in definition of I(x, ξ) indeks i, j are
fixed 2 ≤ i, j ≤ n.

Let us investigate the smoothness of functions I(x, ξ) and u(x, ξ) and their Fourier trans-
forms.

It is known that, γ (x, ξ) =
(
z1 (x, ξ, t) , ..., zn (x, ξ, t)

)
is the solution of following system of

differential equations
d2

dt2 zi = −Γi
jk(z)

.
z

j .
z

k , i = 1, 2, ..., n (3)
with Cauchy data

z(0) = x,
.
z(0) = ξ, (4)

where Γi
jk is the Christoffel symbols of the metric g, z (x, ξ, t) =

(
z1 (x, ξ, t) , ..., zn (x, ξ, t)

)
,

.
z (x, ξ, t) =

(
.
z
1 (x, ξ, t) , ...,

.
z

n (x, ξ, t)
)

,
.
z

i = d
dtz

i, t is the natural parameter of the metric g.
It is easy to prove that, a solution of problem (3)-(4) has the following property :

z (x, ξ, t) = z (x, ν, |ξ| t) ;
.
z (x, ξ, t) = |ξ| .

z (x, ν, |ξ| t) , (5)

where ν = ξ
|ξ| , |ξ|2 =

n∑
i,j=1

gijξ
iξj .

Let us recall that γ (x, ξ) is a projection on the space
(
z1, ..., zn

)
of the solution of the

problem of Cauchy for the following system of differential equations
d
dtz

i =
n∑

j=1

gij(z)pj

d
dtp

i = − 1
2

n∑
j=1

pipj ∂
∂zi g

ij(z) (6)

with the data
zi(0) = xi, pi(0) = pi

0, i = 1, 2, ..., n , (7)

where
(
gij(x)

)
is the inverse of the matrix (gij(x)) , pi

0 =
n∑

j=1

gij(x)ξj .

Let ′G denote the closed, bounded set of variables ′ξ =(ξ2, ..., ξn) in the set Rn−1, 0 /∈′ G
and let G =

{
ξ ∈ Rn | ξ = (ξ1,′ ξ), ξ1 ∈ R1, ′ξ ∈′ G

}
, Ω = {(x, ξ)|x ∈ D, ξ ∈ G} .

Note that by (2) differentiating u(x, ξ) at the point x in the direction ξ and taking into
account (3), (4) we have the following kinetic equation

n∑
j=1

ξjux
j −

n∑
j,k,s=1

Γ
s

jkξkξjuξs =
n∑

j,k=2

ajk(x)ξkξj . (8)

¿From the setting of the problem 1, from formulas (2), (5) and from the fact that ajk(x)
is zero out of D it follows that the function u(x, ξ) is known when (x, ξ) ∈ ∂D × Rn (′ξ 6= 0).
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Since the uniqueness of solution of problem 1 is being investigated we have condition
for (x, ξ) ∈ ∂D×Rn ( ξ 6= 0) , u(x, ξ) = 0. (9)

Lemma 1. Let D be convex with respect to the metric g = (gij(x)) ∈ C6 (D) and g11 = 1,
g1i = 0, i = 2..., n. Then if 1 ≤ s ≤ n,

1) for 0 ≤ |β| ≤ 4, Dβ
ξ I, Dβ

ξ Ixs ∈ C (Ω) ,
2) and for fixed x ∈ D, ′ξ ∈ ′G (′ξ 6= 0) ,

a) if |β| ≤ 2, functions Dβ
ξ I , Dβ

ξ Ixs ∈ L2

(
R1

ξ1

)
,

b) if |β| = 3, functions Dβ
ξ I , Dβ

ξ Ixs ∈ L1

(
R1

ξ1

)
∩ L2

(
R1

ξ1

)
,

c) if |β| = 4 , functions ξ1Dβ
ξ I , ξ1Dβ

ξ Ixs ∈ L1

(
R1

ξ1

)
∩ L2

(
R1

ξ1

)
,

where β = (β1, ..., βn), Dβ
ξ = Dβ1

ξ1 ...Dβn

ξn , |β| = β1 + ... + βn, Dβs

ξs is the derivative in ξs of order
βs ≥ 0.

Proof. Taking into account (5), let us rewrite the function I(x, ξ) in the form
I(x, ξ) =

∫∞
0

b (z (x, ξ, t))
.
z

i (x, ξ, t)
.
z

j (x, ξ, t) dt =
=

∫∞
0

b (z (x, ν, |ξ| t)) |ξ| .
z

i (x, ν, |ξ| t) |ξ| .
z

j (x, ν, |ξ| t) dt = (10)
= 1

|ξ|
∫∞
0

b (z (x, ν, τ)) |ξ| .
z

i (x, ν, τ) |ξ| .
z

j (x, ν, τ) dτ

where , i, j ≥ 2.
Since the function b(x) is finite in D, last integral in (10), actually, is taken on the finite

interval [0, d0] , where d0− the diameter of D, in the metric g. Due to the condition gij ∈
C6 (D) , from the theory of ordinary differential equations it follows that (z (x, ν, t) ,

.
z (x, ν, t))

- solution of the problems (3)− (4) - belong to the space C5 (Ω (d0)) , where Ω (d0) =
{(x, ν, t) |x ∈ D, ν ∈ sn, t ∈ [0, d0]}, sn is the unit sphere in Rn. Hence, taking into account
the conditions b(x) ∈ C5 (Rn) , ξ ∈ G, ′ξ 6= 0 ,and equality (10), from the theorem about the
differentiation of integral on the parameter it follows that for 0 ≤ |β| ≤ 4, 1 ≤ s ≤ n, Dβ

ξ I,

Dβ
ξ Ixs ∈ C (Ω) .

In order to prove the assertion 2) of lemma 1, we investigate the behavior of the expression of
the form |ξ| .

z
k (x, ν, τ) and its derivatives in ξj when ξ1 −→∞,where j = 1, 2, ..., n, k = 2, ..., n.

Let ξ1 = 1
µ , then as ξ1 −→ +∞ , (i.e. when µ −→ +0) the vector ν = ξ

|ξ| , tends to
ν0 = (1, 0, ..., 0) ∈ Rn. Therefore as known from the theory of ordinary differential equations
([ 20 ]), the unique solution of the problem (3) - (4), (it is uniform in [0, d0]) tends to the
solution (z

(
x, ν0, t

)
,
( .
z

(
x, ν0, t

))
when µ −→ +0.Taking into account the facts that the metric

g = (gij) is written down in the semigeodesic coordinates (i.e.Γ1
1k = Γk

11 = 0, k = 1, 2, ..., n ) and
the solution of problem (3) -(4) is unique, we have z

(
x, ν0, t

)
=

(
z1

(
x, ν0, t

)
, ..., zn

(
x, ν0, t

))
,

where z1
(
x, ν0, t

)
= x1 + t, zk

(
x, ν0, t

)
= xk,

.
z

(
x, ν0, t

)
= (1, 0, · · · , 0),

.
z
1 (

x, ν0, t
)

= 1,
.
z

k (
x, ν0, t

)
= 0, k = 2, 3, · · · , n .

For ξ1 > 0 (ξ1 = 1
µ ) we have :

|ξ| .
z

k
(
x, ξ1

|ξ| , · · · , ξn

|ξ| , t
)

= 1
µ |′ξ|µ

.
z

k
(
x, 1

|′ξ|µ , µξ2

|′ξ|µ , · · · , µξn

|′ξ|µ , t
)

, (11)

where |′ξ|µ =
(

1 + µ2
n∑
2

gijξ
iξj

)1/2

.

By the mean value theorem and smoothness of the function
.
z

k (x, ν, t) in set Ω (d0) and
by equality

.
z

k (
x, ν0, t

)
= 0 , for k ≥ 2, we have
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.
z

k
(
x, 1

|′ξ|µ , µξ2

|′ξ|µ , · · · , µξn

|′ξ|µ , t
)

= µ
.
z

k
µ0

, 0 < µ0 < µ ≤ 1, (12)

where
.
z

k
µ0

are the derivatives in µ of the function
.
z

k
(
x, 1

|′ξ|µ , µξ2

|′ξ|µ , · · · , µξn

|′ξ|µ , t
)

at a point
µ = µ0.

Let us note that, since
.
z

k (x, ν, t) ∈ C5 (Ω (d0)) , the function
.
z

k
µis bounded on Ω (d0)

the set Ω (d0) is closed and bounded. Therefore, taking into account the fact that when
ξ1 −→ +∞ , the vector ν = ξ

|ξ| tends to ν0 = (1, 0, ..., 0) ∈ Rn, for k > 2 from (11), (12) in
the set Ω, we have ∣∣∣ |ξ| .

z
k (x, ν, t)

∣∣∣ ≤ K1 , (13)
where K1 > 0 does not depend on (x, ξ) ∈ (D × G ), but depends on the norm of the vector
function

.
z (x, ν, t) =

(
.
z
1 (x, ν, t) , ...,

.
z

n (x, ν, t)
)

in C1 (Ω (d0)) and on the diameter of ′G. By

analogous reasonings, as we proved inequality (13), when ξ1 −→ +∞, we can prove that it
does occur also, in the case when ξ1 −→ −∞.

It is not difficult to verify that

(
|ξ| .

z
k
(
x, ξ

|ξ| , t
))′

ξ1
= ξ1

|ξ|2
(
|ξ| .

z
k
(
x, ξ

|ξ| , t
))

+ |ξ|
(
−

n∑
j=1

.
z

k
νj

ξjξ1

|ξ|3 + 1
|ξ|

.
z

k
ν1

)
,

(
|ξ| .

z
k
(
x, ξ

|ξ| , t
))′

ξi
= 1

|ξ|2
n∑

j=2

gijξ
j
(
|ξ| .

z
k
(
x, ξ

|ξ| , t
))

+

+|ξ|
(
−

n∑
s=1

.
z

k
νs

1
|ξ|3 ξs

n∑
j=2

gijξ
j + 1

|ξ|
.
z

k
νi

)
, when 2 ≤ i ≤ n, ( ν = ξ

|ξ| ). (14)

The following equalities are true :(
|ξ| .

z
k
(
x, ξ

|ξ| , t
))

ξ1ξ1
= 1

|ξ|
.
z

k − (ξ1)2

|ξ|3
.
z

k −
n∑

j=2

.
z

k
νj

ξj

|ξ|2 − 2 ξ1

|ξ|2
.
z

k
ν1+

+2ξ1
n∑

j=1

.
z

k
νj

ξjξ1

|ξ|4 + ξ1

|ξ|2

(
n∑

j=1

.
z

k
νj
−ξjξ1

|ξ|2 + zk
ν1

)
+

n

+
∑

j=1

ξjξ1

|ξ|3

(
n∑

i=1

.
z

k
νjνi

ξiξ1

|ξ|2 −
.
z

k
ν1νi

)
−

n∑
i=1

.
z

k
νjνi

ξiξ1

|ξ|3 + 1
|ξ|

.
z

k
ν1ν1 ,

(
|ξ| .

z
k
(
x, ξ

|ξ| , t
))

ξ1ξi
= − ξ1

|ξ|3 (
n∑

j=2

gijξ
j)

.
z

k −
(

n∑
j=1

.
z

k
νj

ξjξ1

|ξ|4

)(
n∑

j=2

gijξ
j

)
+

.
z

k
νi

ξ1

|ξ|2 +

+2

(
n∑

j=1

.
z

k
νj ξjξ1

)(
1
|ξ|4

n∑
j=2

gijξ
j

)
−

-
.
z

k
νi

ξ1

|ξ|2 +
n∑

j=1

ξiξ1

|ξ|3

(
n∑

m=1

.
z

k
νjνm

1
|ξ|2 ξm

n∑
s=2

gisξ
s − .

z
k
νiνj

)
− (15)

-
n∑

j=1

.
z

k
νjν1

1
|ξ|3 ξj

n∑
j=2

gijξ
j + 1

|ξ|
.
z

k
νiν1 , when 2 ≤ i ≤ n.

(
|ξ| .

z
k
(
x, ξ

|ξ| , t
))

ξjξi
= gij

|ξ|
.
z

k − 1
|ξ|3

(
n∑

r=2
gjrξ

r

)(
n∑

r=2
girξ

r

)
.
z

k−

- 1
|ξ|2

(
n∑

r=2
gjrξ

r

)(
n∑

s=1

.
z

k
νs

1
|ξ|2

(
ξs

n∑
r=2

girξ
r

)
− .

z
k
νi

)
−
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-
.
z

k
νi

1
|ξ|2 (

n∑
r=2

girξ
r)−

n∑
s=1

.
z

k
νs

ξsgij

|ξ|2 + 2
|ξ|4

(
n∑

r=2
girξ

r

)(
n∑

s=1

.
z

k
νsξs

(
n∑

r=2
gjrξ

r

))
+

+
n∑

s=1

1
|ξ|3 ξs(

n∑
r=2

girξ
r)

(
n∑

m=1

.
z

k
νsνm

1
|ξ|2 ξm

n∑
r=2

girξ
r − .

z
k
νiνs

)
−

- 1
|ξ|3

n(
n∑

r=2
girξ

r

)
n∑

m=1
ξm .

z
k
νjνm + 1

|ξ|
.
z

k
νiνj , when 2 ≤ i, j ≤ n.

Since
.
z

k ∈ C5 (Ω (d0)) and the set ′G is bounded, taking into account relations (13), (14),
(15), it is easy to see that in Ω∣∣∣|ξ||α|−1

Dα
ξ

(
|ξ| .

z
k
)∣∣∣ ≤ K2, for 1 ≤ |α| ≤ 4, (16)

where K2 > 0 does not depend on (x, ξ) ∈ (D × G ). Moreover K2 depends on the norm of
the vector function

.
z (x, ν, t) =

(
.
z
1 (x, ν, t) , ...,

.
z

n (x, ν, t)
)

in the space C5 (Ω (d0)) and on the

euclidean distance between the ′G and 0 ∈ Rn−1 (0 /∈′ G) and on the euclidean diameter of
the ′G .

For 0 ≤ |α| ≤ 4, in the set Ω the following inequalities are also true :∣∣∣|ξ||α|+1
Dα

ξ

(
1
|ξ|

)∣∣∣ ≤ K3,
∣∣∣|ξ||α|Dα

ξ (b(z))
∣∣∣ ≤ K4 , (17)

where K3, K4 depend on the same parametres as K2 in (16) .
Using the theorem about the differentiation of integral on the parameter, from (10),

taking into account boundedness of functions |ξ| .
z

k
,
(
|ξ| .

z
k
)

ξj
and by relations (16), (17), we

obtain the proof of item 2) of lemma 1.
Corollary 1. Let conditions of lemma 1 be satisfied.Then

1) for |′β| ≤ 2, D
′β
′ξ Î , D

′β
′ξ Îxj ∈ C

(
D ×∆s

η ×′ G
) ∩ L2

(
R1

η

)
,

2) for |′β| = 3, D
′β
′ξ Î , D

′β
′ξ Îxj ∈ C

(
D ×R1

η ×′ G
) ∩ L2

(
R1

η

)
,

3) ηrD
′β
′ξ Îη, ηrD

′β
′ξ Îxj η ∈ C

(
D ×R1

η ×′ G
) ∩ L2

(
R1

η

)
if r + |′β| = 4, 0 ≤ r ≤ 4

where Î = Î(x, η,′ ξ) is the Fourier transform in the variable ξ1 of the function I(x, ξ), η is dual
to ξ1 variable, ∆s

η =
{
η ∈ R1

η| sη > 0
}

, ′β = (β2, ..., βn), D
′β
′ξ = Dβ2

ξ2 ...Dβn

ξn , |′β| = β2 + ...+βn,
s = −1, 1; 1 ≤ j ≤ n.

Proof. From c) of lemma 1 it does follow that for fixed x ∈ D, ′ξ ∈ ′G (′ξ 6= 0) and with
r + |′β| = 4, 0 ≤ r ≤ 4

ξ1Dr
ξ1

(
D
′β
′ξ I

)
, ξ1Dr

ξ1

(
D
′β
′ξ Ixj

)
∈ L1

(
R1

ξ1

)
∩ L2

(
R1

ξ1

)
.

Then taking into account 1) of lemma 1 and relations (13), (16), (17), from the theorem
about the differentiation of integral on the parameter and from the properties of Fourier trans-
form, we have:

ηrD
′β
′ξ Îη, ηrD

′β
′ξ Îxj η ∈ C

(
D ×R1

η ×′ G
)∩L2

(
R1

η

)
, (18)

where r + |′β| = 4, 0 ≤ r ≤ 4 i.e. 3) of corollary 1 is true.
2) of corollary 1 is ensured by 1) and b) of the lemma 1.
By the assertions 1) and c) of lemma 1, we have that for r+|′β| = 4, 0 ≤ r ≤ 4, x ∈ D, ′ξ ∈

′G (′ξ 6= 0)
Dr

ξ1

(
D
′β
′ξ I

)
, Dr

ξ1

(
D
′β
′ξ Ixj

)
∈ L1

(
R1

ξ1

)
∩ L2

(
R1

ξ1

)
.

Last relations and 1) of lemma 1 show that
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ηrD
′β
′ξ Î , ηrD

′β
′ξ Îxj ∈ C

(
D ×R1

η ×′ G
)∩L2

(
R1

η

)
, (19)

Consequently, for |′β| ≤ 4
D
′β
′ξ Î , D

′β
′ξ Îxj ∈ C

(
D ×∆s

η ×′ G
)
. (20)

Assertion 1) of corollary 1 is ensured by assertion a) of lemma 1 and by (20).
Corollary 1 is proved.
Remark 1. As can be seen from equality (2), u(x, ξ) is a sum of functions of the type I(x, ξ),

therefore, lemma 1 and Corollary 1 are true for u(x, ξ) as well.
By remark 1 for each fixed x ∈ D, ′ξ ∈ ′G, (′ξ 6= 0) , it is possible to apply the generalized

Fourier transform in variable ξ1 to equation (8).Then taking into account the fact that Γ1
1k =

Γk
11 = 0, k = 1, 2, ..., n (because of semigeodesicness of the system of coordinates xi), for

û = û(x, η,′ ξ) - Fourier’s transform of the function u(x, ξ) in variable ξ1− we have :

iûx1η − 2i
n∑

j,k=2

Γj
1kξk ûξjη +

n∑
j=2

ξj ûxj −
n

i
∑

j,k=2

Γ1
jkξkξjη û−

−
n∑

j,k,s=2

Γs
jkξkξj ûξs = 2πδ (η)

n∑
k,j=2

akj (x) ξ
k

ξj , (21)

where i is the imaginary unit, δ (η) is the delta function of Dirac, F (1)=2πδ (η) , F (1) is the
generalized Fourier transform of the unit in the variable ξ1.

Lemma 2. Let the conditions of lemma 1 be satisfied.Then for 0 ≤ |′β| ≤ 2, 1 ≤ j ≤ n,

s = −1, 1 and for fixed (x,′ ξ) ∈ D× ′G, (′ξ 6= 0) D
′β
′ξ ûη, D

′β
′ξ ûηxj ∈ L1

(
∆s

η

) ∩ L2

(
∆s

η

)
.

Proof. By the remark 1 (taking into account corollary 1), for η > 0 (η < 0) functions û ,
ûη are which continuously differentiable on (x,′ ξ) in the region (D ×′ G ).Then from equation
(21), it does follow that the function û for η > 0 (η < 0) satisfies the equation

iûx1η−2i
n∑

j,k=2

Γj
1kξk ûξjη+

n∑
j=2

ξj ûxj−
n

i
∑

j,k=2

Γ1
jkξkξjη û−

n∑
j,k,s=2

Γs
jkξkξj ûξs = 0 (22)

in the classical sense.
Putting û = p + iq, from (22) for η > 0 (η < 0) we have :

px1η − 2
n∑

j,k=2

Γj
1kξkpξjη = z1 (23)

, qx1η−2
n∑

j,k=2

Γj
1kξkqξjη = z2 , (24)

where z1 =
n∑

j,k=2

Γ1
jkξkξjηp−

n∑
j=2

ξjqxj +
n∑

s,.j,k=2

Γs
jkξkξjqξs ,

z2 =
n∑

j,k=2

Γ1
jkξkξjηq +

n∑
j=2

ξjpxj −
n∑

s,j,k=2

Γs
jkξkξjpξs .

In this work the uniqueness of a solution of the problem 1 is investigated. Under the
assumption of existence of the solution, in the region Ω there exists a solution. The solution
u(x, ξ) of the equation (8) (it means there exists the solution û = p + iq of equation (21)) with
the properties indicated in the remark 1 and satisfying the condition (see (9))

for (x, ξ) ∈ ∂D×G ((x,′ ξ) ∈ ∂D×′G) , u = 0 ( û(x, η,′ ξ) = 0 ). (25)
If we examine equation (24) as a differential equation for the function qη then, as it follows

from the theory of differential equations with partial derivatives of the 1st order, the following
equalities holds :

d
dsx1 = 1, d

dsξk = −2
n∑

j=2

Γk
1j ξj , d

dsqη = z2, k = 2, 3, ..., n. (26)
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By remark 1, (see corollary 1) for 0 ≤ |′β| ≤ 2 , j = 1, 2, ..., n,

D
′β
′ξz2, D

′β
′ξz2xj ∈ C

(
D ×∆1

η ×′ G
)∩L2

(
∆1

η

)
. (27)

¿From equalities (25), (26), it follows that

qη(x, η,′ ξ) =
∫ x1

x1
0
z2 (τ,′ x, η,′ ζ(τ,′ ξ)) dτ, (28)

where x1
0− is the first component of boundary-point (x1

0,
′ x) ∈ ∂D of the region D (points

(x1,′ x) ∈D possess the property x1 > x1
0). In equality (28), components of the vector ′ζ(τ,′ ξ) =

(ζ2(τ,′ ξ), ..., ζn(τ,′ ξ)) satisfy the system of the differential equations:
d
dτ ζk = −2

n∑
j=2

Γk
1j ζj , k = 2, 3, ..., n and

Cauchy’s conditions ′ζ(x1) = ′ξ.By the uniqueness of the solution of this Cauchy problem with
the condition ′ζ(x1) = ′ξ 6= 0, it follows that ′ζ(τ,′ ξ) 6= 0, τ ∈ [

x1
0, x

1
0 + d0

]
, x1

0 ≤ x1 ≤ x1
0 +d0.

Since out of D the function z2 (x, η,′ ξ) is zero (this follows from the definition of the function
u(x, ξ) and (25)) and straight lines in Rn

x which are paralel to coordinate axis ox1 are geodesics
of metric (gij) the integral in (28) actually is taken on the finite interval (x1

0, x
1
0 + d0), where

d0 is the diameter of the bounded domain D in the metric (gij).
¿From the relation (10), (16), (17), taking into account remark 1, we have that the integral∫ +∞

−∞ u2(x, ξ) dξ1 uniformly converges with respect to the parameters (x,′ ξ) ∈ (D ×′ G) and is
continuous in the set (D ×′ G). Then from the equality of Plansherel

2π
∫ +∞
−∞ u2(x, ξ) dξ1 =

∫ +∞
−∞ |û(x, η,′ ξ)|2 dη it

follows that the integrals
∫ +∞
0

q2(x, η,′ ξ)dη,
∫ +∞
0

p2(x, η,′ ξ)dη are continuous in the set
(D ×′ G). Note that for |β| ≤ 3, 1 ≤ j ≤ n from relations (10), (16), (17) taking into account
remark 1, we have that the integrals

∫ +∞
−∞ (Dβ

ξ u(x, ξ))2 dξ1,
∫ +∞
−∞ (Dβ

ξ uxj (x, ξ))2 dξ1uniformly
converge with respect to the parameters (x,′ ξ) ∈ (D ×′ G) and are continuous in the set
(D ×′ G).

Then by the analogous reasoning for the continuity of the integrals
∫ +∞
0

q2(x, η,′ ξ)dη,∫ +∞
0

p2(x, η,′ ξ)dη, it may be proved that for |′β| ≤ 3, the integrals
∫ +∞
0

(D
′β
′ξ q(x, η,′ ξ))2dη,∫ +∞

0
(D

′β
′ξ p(x, η,′ ξ))2dη ,

∫ +∞
0

(D
′β
′ξ qxj (x, η,′ ξ))2dη,

∫ +∞
0

(D
′β
′ξ pxj (x, η,′ ξ))2dη are continuous

in the set (D ×′ G ). Consequently, for |′β| ≤ 2, the integrals
∫ +∞
0

(D
′β
′ξz2(x, η,′ ξ))2dη,∫ +∞

0
(D

′β
′ξz2xj (x, η,′ ξ))2dη are continuous in the set (D ×′ G).

From (28), we have

q2
η ≤ (x1−x1

0)
∫ x1

x1
0
z2

2 (τ,′ x, η,′ ζ(τ,′ ξ)) dτ. (29)

On the other hand for x1
0 ≤ x1 ≤ x1

0+d0 there is an integral
∫ x1

x1
0
(
∫ +∞
0

z2
2 (τ,′ x, η,′ ζ(τ,′ ξ)) dη)dτ

and it is bounded by a number M > 0, which does not depend on (x,′ ξ) (since the function∫ +∞
0

z2
2 (x, η,′ ξ) dη is continuous with respect to the parameters (x,′ ξ) ∈ (D×′G) and sets D,

′G are closed and bounded).
Then for each N > 0 from (29) by Fubini- Tonelli theorem, we have∫ N

0
q2
η(x, η,′ ξ)dη ≤ d0

∫ N

0
(
∫ x1

x1
0
z2

2 (τ,′ x, η,′ ζ(τ,′ ξ)) dτ)dη =

= d0

∫ x1

x1
0
(
∫ N

0
z2

2 (τ,′ x, η,′ ζ(τ,′ ξ)) dη)dτ ≤ d0M .

For |′β| ≤ 2, from (28) by analogous reasonings, it may be proved that
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∫ N

0
(D

′β
′ξ qη(x, η,′ ξ))2dη,

∫ N

0
(D

′β
′ξ qηxj (x, η,′ ξ))2dη ≤ d0M1, (30)

where M1 > 0 is the maximum on (D ×′ G ) of the continuous functions∫ x1

x1
0
(
∫ +∞
0

(D
′β
′ξz2(τ, η,′ ζ(τ,′ ξ)))2dη)dτ , and

∫ x1

x1
0
(
∫ +∞
0

(D
′β
′ξz2xj (τ, η,′ ζ(τ,′ ξ)))2dη)dτ.

Inequalities (30) show that for |′β| ≤ 2, D
′β
′ξ qη, D

′β
′ξ qηxj ∈ L2

(
∆1

η

)
.Then from (18),

taking into account remark 1, it follows that D
′β
′ξ qη(x, η,′ ξ), D

′β
′ξ qηxj (x, η,′ ξ) ∈ L1

(
∆1

η

) ∩
C

(
D ×∆1

η ×′ G
)
. By similar reasonings it may be proved that D

′β
′ξ qη(x, η,′ ξ), D

′β
′ξ qηxj (x, η,′ ξ) ∈

L1

(
∆−1

η

) ∩ C
(
D ×∆−1

η ×′ G)
.

Using equation (23), analogous to that as these were proved for the function q(x, η,′ ξ), it
may be showed that for the function p(x, η,′ ξ) for |′β| ≤ 2, s = −1, 1 the following relations
holds :

D
′β
′ξ pη, D

′β
′ξ pηxj ∈ L1

(
∆s

η

) ∩ L2

(
∆s

η

) ∩ C
(
D ×∆s

η ×′ G
)
.

Lemma 2 is proved.
Corollary 2. Let the conditions of lemma 2 be satisfied.Then
D
′β
′ξ û, D

′β
′ξ ûxj ∈ C

(
D ×∆

s

η ×′ G
)

, where |′β| ≤ 2, 1 ≤ j ≤ n; s = −1, 1; ∆
s

η ={
η ∈ R1

η| sη ≥ 0
}

Proof. According to the proof of lemma 2 for |′β| ≤ 2, 1 ≤ j ≤ n

D
′β
′ξ ûη, D

′β
′ξ ûηxj ∈ L1

(
∆s

η

) ∩ L2

(
∆s

η

) ∩ C
(
D ×∆s

η ×′ G
)
.

Then the equality :
D
′β
′ξ q(x, η,′ ξ) = − ∫∞

η
D
′β
′ξ qτ (x, τ,′ ξ)dτ (31)

holds, from which we have that for the point (x,′ ξ) ∈ (D ×′ G )
D
′β
′ξ q(x, +0,′ ξ) = − ∫∞

0
D
′β
′ξ qτ (x, τ,′ ξ)dτ . (32)

Taking into account (30) - (32) we will obtain that∣∣∣D′β
′ξ q(x, η,′ ξ)−D

′β
′ξ q(x,+0,′ ξ)

∣∣∣
2

=
∣∣∣
∫ η

0
D
′β
′ξ qτ (x, τ,′ ξ)dτ

∣∣∣
2

≤
≤ η

∫ η

0
(D

′β
′ξ qτ (x, τ,′ ξ))2dτ ≤ ηd0M1

from which it follows that for η → +0 function D
′β
′ξ q(x, η,′ ξ) tends to D

′β
′ξ q(x, +0,′ ξ) uniformly

with respect to the parameters (x,′ ξ) ∈ (D×′G). Consequently, D
′β
′ξ q(x, +0,′ ξ) ∈ C (D ×′ G) ,

since for η > 0 the function D
′β
′ξ q(x, η,′ ξ) ∈ C (D ×′ G) .

Analogously it may be proved that for |′β| ≤ 2, 1 ≤ j ≤ n the functions D
′β
′ξ qxj (x, +0,′ ξ),

D
′β
′ξ p(x, +0,′ ξ), D

′β
′ξ pxj (x, +0,′ ξ), D

′β
′ξ q(x,−0,′ ξ), D

′β
′ξ qxj (x,−0,′ ξ), D

′β
′ξ p(x,−0,′ ξ), D

′β
′ξ pxj (x,−0,′ ξ)

belong to the space C (D ×′ G).
Corollary 2 is proved.
For the known function v(x) ∈ C5

0 (D̃), we introduce function T v(x, ξ) of variables x =
(x, xn+1) = (x1, ..., xn, xn+1) and ξ = (ξ, ξn+1) = (ξ1, ..., ξn, ξn+1) by formula T v(x, ξ) =
∫

γ(x,ξ)

[
n∑

i,j=2

aij

(
z

(
x, ξ, t

)) .
z

i (
x, ξ, t

) .
z

j(x, ξ, t) + v(z
(
x, ξ, t

)
)

]
dt, where γ(x, ξ) is the ray of

the metric g(x), which emerges from point x = (x, xn+1) ∈ D̃ in the direction ξ = (ξ, ξn+1) ∈ G̃

with element of length (ds)2 =
n∑

i,j=2

gij(x)dxidxj +(dxn+1)2, and D̃ = D × (an+1, bn+1),
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G̃ = G × (1
4 , 3

4 ), 0 < an+1 < bn+1 ≤ d0. Here γ(x, ξ) is solution of the problem of Cauchy
(3) -(4), where x = (x, xn+1), ξ = (ξ, ξn+1), z = (z

(
x, ξ, t

)
, zn+1

(
x, ξ, t

)
) is taken instead of

n, x, ξ, z respectively.
Remark 2. Since functions gij(x) (1 ≤ i, j ≤ n) do not depend on xn+1, the following

equalities hold : Γn+1
ij = Γk

n+1j = Γk
in+1 = 0 (1 ≤ i, j, k ≤ n + 1). Let us note that geodesic

γ(x, ξ) (x ∈ D̃, ξ ∈ Sn+1) is determined from the problem (3) -(4) corresponding to the metric
g(x) with the data z(0) = x, d

dtz(0) = ξ.

İt is easy to see that the function T v(x, ξ) satisfies the equation
n+1∑
j=1

ξjT v
xj −

n∑
i,j,k=1

Γk
ijξ

iξjT v
ξk = v(x) +

n∑
i,j=2

aij(x)ξiξj (33)

Since the function v(x) is known and the function

u(x, ξ) =
n∑

i,j=2

∫
γ(x,ξ)

aij (z (x, ξ, t))
.
z

i (x, ξ, t)
.
z

j (x, ξ, t) dt is given on ∂D × G, for (x, ξ) ∈ Γ̃,

it is possible to calculate the values of function T v(x, ξ), where Γ̃ = ∂D × (an+1, bn+1) × G̃.
lndeed, since functions aij(x) (2 ≤ i, j ≤ n) do not depend on xn+1, T 0

1 (x, ξ)

=
n∑

i,j=2

∫
γ(x,ξ)

aij

(
z

(
x, ξ, t

)) .
z

i (
x, ξ, t

) .
z

j(x, ξ, t)dt (x ∈ D̃, ξ ∈ Sn+1). Here integration is

taken not on γ(x, ξ), but along its projection to Rn
x , i.e. on γ(x, ξ) :

T 0
1 (x, ξ) =

n∑
i,j=2

∫
γ(x,ξ)

aij (z (x, ξ, t))
.
z

i (x, ξ, t)
.
z

j(x, ξ, t)dt, where ξ ∈ Sn+1, ξ = (ξ, ξn+1),

ξ = (ξ1, ..., ξn), (ξ1)2+
n∑

i,j=2

gij(x)ξiξj + (ξn+1)2 = 1. For each fixed (xn+1, ξn+1) (an+1 ≤

xn+1 ≤ bn+1, 0 ≤ ξn+1 ≤ 3
4 ) let us determine the vector ν = (ξ1, ..., ξn)(1− (ξn+1)2)−

1
2 ∈ Sn.

By the condition of the problem 1, for x ∈ ∂D, ν ∈ Sn it is known the function u(x, ν) =
n∑

i,j=2

∫
γ(x,ν)

aij (z (x, ν, t))
.
z

i (x, ν, t)
.
z

j (x, ν, t) dt ; then for x ∈ ∂D, ξ = ν(1− (ξn+1)2)
1
2 and ξ ∈

Sn+1, where 0 ≤ ξn+1 ≤ 3
4 , a function T 0

1 (x, ξ) =
n∑

i,j=2

∫
γ(x,ξ)

aij (z (x, ξ, t))
.
z

i (x, ξ, t)
.
z

j(x, ξ, t)dt

can be calculated by formula (10), using values u(x, ν) on (x, ν) ∈ ∂D× Sn. Therefore, for x ∈
∂D×(an+1, bn+1) and for ξ ∈ Rn+1

0 , when 1
4 ≤ ξn+1 ≤ 3

4 , the function T 0
1(x, ξ) (using it’s values

on Sn+1, when 0 ≤ ξn+1 ≤ 3
4 , x ∈ ∂D × (an+1, bn+1)) can be calculated by analogy of formula

(10) for T 0
1 (x, ξ). On the other hand calculation of the integral T 0

2 (x, ξ) =
∫

γ(x,ξ)
v(z

(
x, ξ, t

)
)dt

is not difficult.
So we can consider the following problem :
Problem 5. Determine a vector function (aij(x))n

2 from equation (33) if T v is known on Γ̃.
It is obvious that the uniqueness of solution to the problem 1 follows from the uniqueness

of solution to the problem 5 in class C5
0 (D̃).

¿From the reasonings connected with calculation of T 0
1 (x, ξ) it is evident that, function

T 0
1 (x, ξ) depends on ξn+1 complexly. In order to explain how T 0

1 (x, ξ) depends on xn+1 let us
note that zn+1 (t) ≡ zn+1

(
x, ξ, t

)
= xn+1 + tξn+1. Then T 0

1 (x, ξ) =
n∑

i,j=2

∫
γ(x,ξ)

aij

(
z

(
x, ξ, t

)) .
z

i (
x, ξ, t

) .
z

j(x, ξ, t)dt =
n∑

i,j=2

∫
γ(x,ξ)

aij (z (x, ν, |ξ| t)) |ξ| .
z

i (x, ν, |ξ| t)
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|ξ| .
z

j(x, ν, |ξ| t)dt =
n∑

i,j=2

∫
γ(x,ξ)

aij

(
z

(
x, ν, ξn+1t( 1

ξn+1 − 1)
1
2

))
|ξ| .

z
i
(
x, ν, ξn+1t( 1

ξn+1 − 1)
1
2

)

|ξ| .
z

j(x, ν, ξn+1t( 1
ξn+1 − 1)

1
2 )dt =

n∑
i,j=2

∫
γ(x,ξ)

aij

(
z

(
x, ν, (zn+1 (t)− xn+1)( 1

ξn+1 − 1)
1
2

))

|ξ| .
z

i
(
x, ν, (zn+1 (t)− xn+1)( 1

ξn+1 − 1)
1
2

)
|ξ| .

z
j(x, ν, (zn+1 (t)− xn+1)( 1

ξn+1 − 1)
1
2 )dt .

It is clear that function T 0 = T v
2− T v

1 = T 0
1 (x, ξ), satisfies the equation

n+1∑
j=1

ξjT 0
xj −

n∑
i,j,k=1

Γk
ijξ

iξjT 0
ξk =

n∑
i,j=2

aij(x)ξiξj (34)

and condition T 0 = 0 on Γ̃, where

T v
k =

∫
γ(x,ξ)

[
n∑

i,j=2

a
(k)
ij

(
z

(
x, ξ, t

)) .
z

i (
x, ξ, t

) .
z

j(x, ξ, t) + v(z
(
x, ξ, t

)
)

]
dt, aij(x) = a

(2)
ij (x) −

a
(1)
ij (x), k = 1, 2.

Remark 3. The analysis of the proof of lemmas 1, 2 and corollaries 1, 2 shows that the
function T 0 satisfies all the assertions of lemmas 1, 2 and corollaries 1,2 on set D̃ × G̃, where
′G contains the origin. Moreover all these assertions for function T 0 (T̂ 0, p0, q0) may be
proved analoguosly as they are proved for the function u (û, p, q), where T̂ 0 = p0 + iq0 is the
Fourier transform of the function T 0 with respect to ξ

1
. We will not repeat here corresponding

reasonings, let us simply note that in the proofs we substantially use the analog of formula (10)
for the function T 0 and the analogs of the equations (23), (24) corresponding to equation (34).

Remark 4. Since the functions aij(x) do not depend on xn+1, taking into account remark
2, from the definition of T 0 and from equality u(x, ξ) = 0 on ∂D × Rn

0 (see (9)) it follows
that for (x, ξn+1) ∈ D̃ × ( 1

4 , 3
4 ) , T 0(x, ξ, ξn+1) + T 0(x,−ξ, ξn+1) = 0. By remark 3, it is

possible to apply the generalized Fourier transform in the variable ξ1 to equation (34). Then
for û = û(x, η,′ ξ, ξn+1) which is the Fourier transform of u(x, ξ) = T 0(x, ξ), we have:

iûx1η − 2i
n∑

j,k=2

Γj
1kξk ûξjη +

n+1∑
j=2

ξj ûxj −
n

i
∑

j,k=2

Γ1
jkξkξjη û−

−
n∑

j,k,s=2

Γs
jkξkξj ûξs = 2πδ (η)

n∑
k,j=2

akj (x) ξ
k

ξj (35)

¿From the definition of the function u(x, ξ) and from the fact that, for ′ξ = 0 and 2 ≤
k ≤ n,

.
z

k
(
x, ξ

1
, 0, ξn+1, t

)
= 0 (see remark 2, taking into account the uniqueness of solution

of problem (3) -(4)) it follows that u(x, ξ
1
, 0, ξn+1) = uξi(x, ξ

1
, 0, ξn+1) = 0 (1 ≤ i ≤ n), then

uξiξ1 (x, ξ
1
, 0, ξn+1) = ux

j
ξiξ1 (x, ξ

1
, 0, ξn+1) = 0(1 ≤ i ≤ n, 1 ≤ j ≤ n + 1). Taking into account

last equalities and analog of formula (10) for the function u(x, ξ), by the same way as we proved
1) of lemma 1, we may prove that

u, uξi , ux
j
ξi , uξ1ξi , uξ1ξix

j → 0 in L2(R1
ξ1). as ′ξ → 0 (36)

uniformly with respect to (x, ξn+1) ∈ D̃ × ( 1
4 , 3

4 )
Corollary 3. As ′ξ → 0, the functions p, px

j , pξi , pξix
j , ηq tend to zero (uniformly with re-

spect to (x, ξn+1)) in space L1(R1
η), where û = û(x, η,′ ξ, ξn+1) = p(x, η,′ ξ, ξn+1)+ iq(x, η,′ ξ, ξn+1),

(2 ≤ i ≤ n, 1 ≤ j ≤ n + 1).
Proof. Since the Fourier transform is continuous in space L2(R1

ξ1), from (36) it follows that as
′ξ → 0 functions û, ûξi , ηû, η2û, ηûξi , ηûx

j , ûx
j
ξi , η2ûx

j , ηûx
j
ξi tend to zero in space L2(R1

η) (2 ≤
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i ≤ n, 1 ≤ j ≤ n+1). Then from the inequalities
∫∞
1

∣∣∣px
j
ξi

∣∣∣ dη ≤
(∫∞

1
η2p2

x
j
ξi

dη
) 1

2
(∫∞

1
1
η2 dη

) 1
2

,

∫ 1

0

∣∣∣px
j
ξi

∣∣∣ dη ≤
(∫ 1

0
p2

x
j
ξi

dη
) 1

2
and from

∫∞
1

η2p2
x

j
ξi

dη → 0,
∫ 1

0
p2

x
j
ξi

dη → 0 it follows that,
when ′ξ → 0, the function px

j
ξi tends to zero in space L1(0,∞) uniformly with respect to

(x, ξn+1).
By the same arguments it can be proved that, when ′ξ → 0, the function px

j
ξi tends to zero

in L1(−∞, 0). The remaining assertions of corollary 3 may be proved analogously.
Now let us prove that, for (x,′ ξ, ξn+1) ∈ D̃×′G×( 1

4 , 3
4 ) and 2 ≤ i, j ≤ n a function ûxn+1ξiξj

belongs to space L1(R1
η). In fact, since uxn+1ξ1ξiξj ∈ L2(R1

ξ1), we have ηûxn+1ξiξj ∈ L2(R1
η).

Then
∫∞
1

∣∣ûxn+1ξiξj

∣∣ dη ≤
(∫∞

1
η2

∣∣ûxn+1ξiξj

∣∣2 dη
) 1

2
(∫∞

1
1
η2 dη

) 1
2

, i.e. ûxn+1ξiξj ∈ L1(1,∞).

Analogously we have: ûxn+1ξiξj ∈ L1(−∞,−1). On the other hand uxn+1ξiξj ∈ L2(R1
ξ1) and

ûxn+1ξiξj ∈ L2(R1
η), which means ûxn+1ξiξj ∈ L1(−1, 1). Thus for (x,′ ξ, ξn+1) ∈ D̃×′G×( 1

4 , 3
4 ),

ûxn+1ξiξj ∈ L1(R1
η), and

uxn+1ξiξj (x, 0,′ ξ, ξn+1) =
∫ ∞

−∞
pxn+1ξiξj (x, η,′ ξ, ξn+1)dη

=
∂2

∂ξi∂ξj

(∫ ∞

−∞
pxn+1(x, η,′ ξ, ξn+1)dη

)
. (37)

Last equalities follow from the theorem of differentiability on parameter of integral. Since the
functions uxn+1ξiξj (x, ξ) are continuous (see remark 3 and lemma 1) as ′ξ → 0 , for (x, ξn+1) ∈
D̃ × ( 1

4 , 3
4 ) we have:

uxn+1ξiξj (x, 0,′ ξ, ξn+1) → uxn+1ξiξj (x, 0, ξn+1). (38)
In [ 21 ] it is proved
Theorem 3.1.3. Let the function U(y), determined on the open set Y ⊂ R, belong to space

C1(Y / {y0}) for some y0 ∈ Y and let the function V (y), which coincides with U ′(y) for y 6= y0,
be integrable on some neighbourhood of the point y0. Then there exists U(y0±0) = lim

y→y0±
U(y)

and U ′(y) = V (y) + (U(y0 + 0)− U(y0 − 0))δy0 .
Let Γk(x, x0) be the ray of the metric gk(x) ∈ C6(D) (k = 1, 2) connecting points x ∈ D

and x0 ∈ ∂Dε0 , x 6= x0 and Γ2(x, x0), Γ1(x, x0) emanate from the point x ∈ D at angles
ξ and ν(ξ), respectively, where ξ = (ξ1, ..., ξn), ν = (ν1, ..., νn), ξi = gij

2 (x) (τ2 (x, x0))xj ,

νk(
′
ξ) =

n∑
s=2

gks
1 (τ1(x, x0))xs , τk (x, x0) be the distance between points x ∈ D and x0 ∈ ∂Dε0

in the metric gk(x). In view of the convexity of the region Dε0 with respect to the metric
gk(x) ∈ C6(D) (k = 1, 2) , for each fixed x ∈ D the functions ξ = ξ(x, x0) and ν = ν(x, x0)
are invertible: x0 = x0(ξ) ∈ C5(S(2)

1 ), x0 = x0(ξ) ∈ C5(S(2)
1 ), where S

(k)
1 is the unit sphere

of metric gk(x) centered at x ∈ D, k = 1, 2. Consequently each vector ξ ∈ S
(2)
1 is assigned

to vector ν ∈ S
(1)
1 such that vectors ξ and ν correspond to the same x0 ∈ ∂Dε0 . lt is evident

that a function ν = ν(ξ) defined in this manner is invertible. In addition, let the Jacobian
det ∂ x0

∂ ν > 0, det ∂ x0
∂ ξ > 0 are positive, and so det ∂ ν

∂ ξ > 0.

The equalities are true : (τ1)x1 = ν1, for 2 ≤ i ≤ n, (τ1)xi =
n∑

j=2

g
(1)
ij νj , and also (ξ1)2 =

12



1−
n∑

i,j=2

g
(2)
ij ξiξj (sign of ξ1 is determined by vector ξ). Recalling the invertibility of the function

ν = ν(ξ) on S
(2)
1 , let us determine the function f(ξ) = (f1(ξ), ..., fn(ξ)) as follows: f1(ξ) =

(τ1)x1 , and for 2 ≤ i ≤ n, f i(ξ) = f i(
′
ξ) =

n∑
j=2

gij
2 (τ1)xj =

n∑
k,j=2

gij
2 g

(1)
kj νk(

′
ξ), where νk(

′
ξ) =

n∑
s=2

gks
1 (τ1(x, x0))xs . Since det ∂ ν

∂ ξ > 0, then det ∂ f
∂ ξ > 0.

Let

ηi =
n∑

j=1

(
∂ξi

∂zj +
n∑

k=1

∂fi

∂ξk
∂ξk

∂zj

)
ζj , 1 ≤ i ≤ n, (39)

where ξi =
n∑

j=1

gij
2 (z) (τ2 (z, x0))zj ; f1 (ξ) = (τ1 (z, x0))z1 ,for 2 ≤ s ≤ n, fs (ξ) = fs (′ξ) =

n∑
j=2

gsj
2 (z) (τ1 (z, x0))zj , ζi = ξi (z, x0) + f i (ξ (z, x0)) .

Let x0 ∈ ∂Dε0 . Let us examine the Cauchy problem for the system
d
dtz

i = ζi, d2

dt2 zi = ηi, 1 ≤ i ≤ n, (40)
with the data

z (0) = x, d
dtz (0) =

·
z (0) = ζ0, (41)

where x ∈ D, ζ0 =
(
ζ1
0 , · · · , ζn

0

)
, ζi

0 =
n∑

j=1

gij
2 (x) (τ2 (x, x0) + τ1 (x, x0))xj .

Under the assumptions of the theorem 3, the conditions of the theorem of existence and
uniqueness of the solution to the Cauchy problem (40)-(41) hold. Hence a solution to problem
(40)-(41) exists on a certain interval. Since the system (40) is t−independent, this solution
γ+ (x, ζ0) can be continued until the point x0 ∈ ∂Dε0 . Moreover this solution is continuously
dependent on the Cauchy data, i.e., γ+ (x, ζ0) is five time differentiable with respect to x, ζ, t,
(see [20]). It is not difficult to see that in the domain Dε0/D, γ+ (x, ζ0) coincides with the ray
of the metric gk =

(
g
(k)
ij

)
, k = 1, 2.

Using these observations, we can prove that, at every fixed x ∈ D , the equation
F (ξ) ≡ ξ + f(ξ) = ζ (42)

can be solved uniquely on S
(2)
1 : ξ = F−1(ζ), where ξ ∈ S

(2)
1 , ζ = F (ξ), F−1(ζ) is five times

continuously differentiable in its domain. In fact, by P12 let us denote 2- dimensional plane
containing vectors ξ1, ξ2 ∈ S

(2)
1 (i.e. the linear span of the vectors ξ1, ξ2 ∈ S

(2)
1 passing through

the point x ∈ D).
Let us construct the orthogonal system of coordinates on P12 (with the origin in x ∈ D )

such that one of the coordinate axis coincides with vector ξ1, and orientation of P12 is the same
with orientation of D ⊂ Rn

(
i.e. det ∂x0

∂ξ > 0
)

.

Let γ+(x, ξ) intersect ∂Dε0 at the point z(ξ, P12), where ξ ∈ S
(2)
1 ∩ P12, γ+(x, ξ) is the

solution of Cauchy problem (40)-(41).
Let C(P12) be a closed curve on ∂Dε0 , consisting of points z(ξ, P12) : C(P12) =

{
z(ξ, P12); ξ ∈ S

(2)
1 ∩ P12

}
,

t is the length of the part of C(P12) between points z(ξ1, P12) and z(ξ, P12) in the metric g2.
Since the function x0 = x0(ξ) is invertible and the Jacobian det ∂x0

∂ξ > 0, the positive direction
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of movement of vector ξ =
(
ξ1(θ), . . . , ξn(θ)

)
on unit circle of P12 centered at x ∈ D (i.e. in-

creasing of θ) corresponds to the positive direction of movement on C(P12) of the point z(ξ, P12)
(i.e. to increasing of t). Then taking into account convexity of domain Dε0 with respect to the
metric g2, we have that θ is an increasing function of t.

Since det ∂f
∂ξ > 0, positive direction of movement of vector ξ (i.e. increasing of θ and

therefore, increasing of t) corresponds to the positive direction of movement of vector f(ξ).
Let ξ2 = ξ (t0) , f (ξ2) = f (ξ (t0)) , where t0 ∈ (0, de) , de is the length of curve C(P12) in
the metric g2. Now we will prove that ξ1 6= ξ2 implies F (ξ1) 6= F (ξ2). Assume the contrary :
F (ξ1) = F (ξ2) ; then ξ2 = ξ1 + f (ξ1)− f (ξ2) and from the continunity of the function f(ξ) at
the point ξ2 6= 0 it follows that as t → t0 (t ∈ (0, de)), ξ(t) = ξ1 + f (ξ1)− f (ξ(t)) + O (t− t0) .
The last relation contradicts the assertion: ” the positive direction of movement of vector ξ(t)
corresponds to the positive direction of movement of vector f(ξ (t)).” Therefore F (ξ1) 6= F (ξ2) ,

i.e. function ζ = F (ξ) is invertible on S
(2)
1 . Obviously if we extend the function f(ξ) by the

formula f(lξ) = lf (ξ)
(
l > 0, ξ ∈ S

(2)
1

)
from the set S

(2)
1 over the set Rn

0 (the functions F (ξ)

and F−1 (ζ) will then also be homogeneous functions), then equation (39) will be uniquely
solvable in Rn

0 , where Rn
0 is Rn without origin. Here, the degrees of smoothness of the functions

ξ = F−1 (ζ) and η = f(ξ) coincide.
Moreover , if

ξi + f i (ξ) = ζi, i = 2, . . . , n (43)

then expressing ξ1 in terms of ξ2, ξ3, . . . , ξn in the equality ‖ξ‖g2
= 1 (the sign of ξ1 is determined

by the vector ξ) and substituting the result in (43), we have

πi (′ξ) = ξi + f i
(
ξ1

(
ξ2, . . . , ξn

)
, ξ2, . . . , ξn

)
= ζi, i = 2, . . . , n. (44)

In the same way as in the case of equation (42) we can prove that in Rn−1
0 system (44) has

a unique solution ′ξ = π−1 (′ζ) , where π−1 ( ′ζ) ∈ C5
(
Rn−1

0

)
.

For ξ ∈ S
(2)
1 , the definition of the function f(ξ) and equality (44) give

ν
(1)
i (x, x0) = f i (ξ) = ζi − ξi = ζi − π−1

i (′ζ) , i = 2, . . . , n. (45)

Let h(ζ) =
(
h2 (′ζ) , . . . , hn (′ζ)

)
, hi (′ζ) = ζi − π−1

i (′ζ) , i = 2, . . . , n, where ζ ∈ S
(2)
2 ,

h(ζ) ∈ S
(2)
1 . Equalities (45) yield h(′ζ) =′ f(′ξ), where ′ξ = π−1 (′ζ) . Then from the uniqueness

of the solution of the equation (44) and from the inequality det ∂′f
∂′ξ > 0 we get that the Jacobian

det ∂′ξ
∂′ζ > 0, therefore, det ∂h

∂′ζ = det ∂′f
∂′ξ det ∂′ξ

∂′ζ > 0.

Note that the conditions g1j
κ = 0; j = 2, 3, . . . , n and g11

κ = 1, the uniqueness of the
ray γκ

(
x, ν0

)
and relations (6), (7), we see that γκ

(
x, ν0

)
= x + tν0, where κ = 1, 2 and

ν0 = (1, 0, . . . , 0) ∈ Rn. Therefore, we get f
(
ν0

)
= ν0 and ζ0 = 2ν0 (see (42)). Thus according

to the theorem about continuous dependence of the solution to the Cauchy problem (which is the
defining ray of the metric g

(x)
κ for κ = 1, 2) on the initial data and the condition f ∈ C5

(
S

(2)
1

)
,

we obtain that f (ξ) and ζ tend to ν0 and 2ν0, respectively, as ξ → ν0
(
ξ ∈ S

(2)
1

)
. Therefore,

as ′ξ → 0, the functions ′f(′ξ) =
(
f2(′ξ), . . . , fn(′ξ)

)
and ′ζ tend to zero; hence, by virtue of
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the smoothness of the function π−1 (′ζ) , we have π−1 (′ζ) → 0, which means that the function
h (x,′ ζ) =

(
h2 (x,′ ζ) , . . . , hn (x,′ ζ)

)
has the same property; namely,

h(x, 0) = 0, h (x,′ ζ) → 0 as ′ζ → 0 (46)

Since the functions f(ξ), F (ξ), F−1(ζ) are homogeneous of the first order, the function h (′ζ)
is also a homogeneous function of the first order.

Remark 5. Since γk(x, ν0) = x + tν0 is the ray of the metric gk(x), k = 1, 2 , then it is not
difficult to see that it is possible to represent f1(ξ) - the first component of vector f(ξ) - in the
form f1(ξ) = ξ1 + f̃(′ξ), where f̃(0) = 0, ξ ∈ S

(2)
1 .

Let ξ = F (ζ) =
(
F

1
(ζ) , · · · , F

n
(ζ)

)
, where F (ζ) is the inverse function of ζ = F (ξ).

Here for 2 ≤ s ≤ n, the function F
s
(ζ) = F

s
(′ζ) = ξs depends on ′ζ and does not depend on

ζ1. Since the functions ζ = F (ξ) , ν = f (ξ) , ξ = F−1 (ζ) = F (ζ) are homogeneous of first
degree in ξ and in ζ accordingly, for a constant α > 0 the equalities hold :

f (αξ) = αf (ξ) , F (αζ) = αF (ζ) , ∂
∂zj F (αζ) = α ∂

∂zj F (ζ) . (47)
¿From the determination of ζi and from the equality (39) it follows that

d
dtζ

i = ηi =
n∑

j=1

ζj

(
∂

∂zj F
i
(ζ) +

n∑
κ=1

∂fi

∂ξκ

∂F
κ
(ζ)

∂zj

)
=

n∑
j=1

aijζ
j , (48)

where aij = ∂F
i
(ζ)

∂zj +
n∑

κ=1

∂fi

∂ξκ

∂F
κ
(ζ)

∂zj .

Since function f (ξ) =
(
f1 (ξ) , · · · , fn (ξ)

)
is homogeneous of first degree in ξ, it is not

difficult to see that, function ∂fi

∂ξκ is homogeneous of zero degree in ξ. Then taking into account
equality (47) and (48) we have, that the function η =

(
η1, · · · , ηn

)
is homogeneous of second

degree in ζ. Consequently, problem (40)-(41) possesses the following property : if we substitute
αt for t and ζ/α for ζ, then the system (40) with the variables z, ζ, t will have the same form as
the initial one, while in the data of Cauchy (41) for ζ instead of ζ0 there will be ζ0/α.Therefore

z (x, ζ0, t) = z (x, ν, |ζ0| t) ,
·
z (x, ζ0, t) = |ζ0| ·z (x, ν, |ζ0| t) , (49)

where ν = ζ0
|ζ0| , |ζ0|2 =

n∑
i,j=1

g
(2)
ij (x) ζi

0ζ
j
0 .

Let us introduce the function:
u+ (x, ζ) =

n∑
i,j=2

∫
γ+(x,ζ)

aij (z (x, ζ, t)) hi
(
z (x, ζ, t) ,′

·
z (x, ζ, t)

)
hj

(
z (x, ζ, t) ,′

·
z (x, ζ, t)

)
dt, (50)

where γ+ (x, ζ) =
(
z1 (x, ζ, t) , · · · , zn (x, ζ, t)

)
is the solution of the problem (40)-(41) with

ζ0 = ζ, the functions aij (z) , hi
(
z,′

·
z
)

possess the same properties with that in the formulation
of theorem 2.

¿From (50) differentiating u+ (x, ζ) at point x in the direction ζ and taking into account
(40), (41), (48), we have

n∑
i=1

ζiu+
xi +

n∑
i,j=1

aijζ
ju+

ζi =
n∑

i,j=2

aij (x) hi (x,′ ζ)hj (x,′ ζ) . (51)

Problem 2’. Determine a vector function (aij(x))n
2 in D from equation (51) if the condition

for (x, ζ) ∈ ∂D × Rn (ζ 6= 0), u+ (x, ζ) = 0 (52)
is given.

As in the study of problem 1, for the known function v(x) ∈ C5
0 (D̃), let us introduce a

function Tν

(
x, ζ

)
of variables x = (x, xn+1) = (x1, ..., xn, xn+1) and ζ =

(
ζ, ζn+1

)
by formula
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Tν

(
x, ζ

)
=

∫
(

γ+(x,ζ)

n∑
i,j=2

aij (z) hi
(
z,′

·
z
)

hj
(
z,′

·
z
)
+v(z))dt,

where γ+
(
x, ζ

)
=

(
γ+

(
x, ζ

)
, γn+1

(
x, ζ

))
is the solution of the following Cauchy problem for

the system of equations
d
dtz

i = ζi, d2zj

dt2 = ηj , d2zn+1

dt2 = 0, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n (53)
with the data

z (0) =
(
z (0) , zn+1 (0)

)
= x, d

dtz (0) = ζ.

Here x ∈ D̃, ζ ∈ G̃, D̃ and G̃ are the same sets we used in the determination of the function
T ν

(
x, ξ

)
.

lt is obvious that function Tν

(
x, ζ

)
satisfies the equation

n+1∑
j=1

ζjTνxj +
n∑

i,j=1

aijζ
jTνζi = v(x) +

n∑
i,j=2

aij (x) hi (x,′ ζ)hj (x,′ ζ) (54)

The function v(x) is given and u(x, ξ) =
n∑

i,j=2

∫
γ(x,ξ)

aij (z (x, ξ, t))
.
z

i (x, ξ, t)
.
z

j (x, ξ, t) dt

is known on ∂D × Rn(ζ 6= 0) ; therefore, as we calculated T ν for (x, ζ) ∈ Γ̃, it is possible to
calculate the values of the function Tν

(
x, ζ

)
for Γ̃, where Γ̃ = ∂D × (an+1, bn+1)× G̃.

Consequently, the uniqueness of solution of problem 2’ in class C5
0 (D) follows from the

uniqueness of solution of the following problem :
Problem 5’. To determine a vector function (aij(x))n

2 from equation (54) if Tν is known on
Γ̃.

It is clear that the function T+ = T2ν − T1ν =
n∑

i,j=2

∫
γ+(x,ζ)

aij (z) hi
(
z,′

·
z
)

hj
(
z,′

·
z
)

dt

satisfies the equation
n+1∑
j=1

ζjT+
xj +

n∑
i,j=1

aijζ
jT+

ζi =
n∑

i,j=2

aij (x)hi (x,′ ζ)hj (x,′ ζ) (55)

and T+ = 0 on Γ̃, where

Tκν =
n∑

i,j=2

∫
(

γ+(x,ζ)
a
(κ)
ij

(
z

(
x, ζ, t

))
hi

(
z

(
x, ζ, t

)
,′
·
z

(
x, ζ, t

))
hj

(
z

(
x, ζ, t

)
,′
·
z

(
x, ζ, t

))
+

v(z
(
x, ζ, t

)
))dt, aij (x) = a

(2)
ij (x)− a

(1)
ij (x) , κ = 1, 2.

Remark 6. The analysis of the proofs of lemma 1 and corollary 1, taking into account
relationships (46), (49), shows that the function T + satisfies all the assertions of those given
in lemmas 1, 2 and of their corollaries in set D̃ × G̃, where ′G contains the origin of Rn−1.

Remark 7. Since the functions aij(x) do not depend on xn+1, from the determination of
function T + and from equality u+ (x, ζ) = 0 on ∂D ×Rn

0 (see (52)) it follows that (as for the
function T0 (see remark 4)) for (x, ζn+1) ∈ D̃× (1

4 , 3
4 ) , T+

(
x, ζ, ζn+1

)
+T+

(
x,−ζ, ζn+1

)
= 0.

Furthermore from the continuity of the function T+
xn+1ζiζj

(
x, ζ

)
(see remark 6 and lemma

1) for (x, ζn+1) ∈ D̃ × ( 1
4 , 3

4 ) as ′ζ → 0 we have:
T+

xn+1ζiζj

(
x, 0,′ ζ, ζn+1

) → T+
xn+1ζiζj

(
x, 0, ζn+1

)
= 0 (56)

Differentiating the equality (ξ1)2 +
n∑

i,j=2

g
(2)
ij (x) ξiξj = 1 with respect to x1 we have :
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∂
∂x1 (ξ1)2+ ∂

∂x1 (
n∑

i,j=2

g
(2)
ij (x) ξiξj) = 0. At the same time, in view of the independence of vari-

ables ζ1 and x1, from the equality ζ1 = ξ1+ f1(ξ) = 2ξ1 + f̃ (′ξ) (see remark 5), it fol-
lows that 2 ∂

∂x1 ξ1 + ∂
∂x1 f̃ (′ξ) = 0, and so ζ1 ∂

∂x1 ξ1 = (2ξ1 + f̃(′ξ)) ∂
∂x1 ξ1 = ∂

∂x1 (ξ1)2 − 1
2 f̃

(′ξ) ∂
∂x1 f̃(′ξ) = − ∂

∂x1 (
n∑

i,j=2

g
(2)
ij (x) ξiξj) − 1

2 f̃ (′ξ) ∂
∂x1 f̃ (′ξ).

Since the function ′ξ ( ′ξ = π−1(′ζ)) does not depend on ζ1 from the above equalities, it
follows that the functions ∂

∂x1 ξ1 and ζ1 ∂
∂x1 ξ1 do not depend on ζ1, and so ∂

∂x1 ξ1 = 0. Then
taking into account that ζ1 = 2ξ1 + f̃ (′ξ) we have:

d
dt ζ1 = η1 = 2( ζ1 ∂

∂x1 ξ1 +
n∑

j=2

ζj ∂
∂xj ξ1) +

n∑
k=2

∂
∂ξk f̃

n∑
j=1

ζj ∂
∂xj ξk = 2

n∑
j=2

ζj ∂
∂xj ξ1+

ζ1
n∑

k=2

∂
∂ξk f̃ ∂

∂x1 ξk +
n∑

j,k=2

ζj ∂
∂ξk f̃ ∂

∂xj ξk = ζ1e11+
n∑

j=2

e1j ζj , where,

e11 =
n∑

k=2

∂
∂ξk f̃ ∂

∂x1 ξk, e1j = 2 ∂
∂xj ξ1 +

n∑
k=2

∂
∂ξk f̃ ∂

∂xj ξk.

Moreover for 2 ≤ i ≤ n, we have: d
dt ζi = ηi = ai1 ζ1 +

n∑
j=2

aijζ
j , where for 1 ≤ j ≤ n,

aij = ∂ξi

∂zj +
n∑

κ=2

∂fi

∂ξκ
∂ξk

∂zj .

Let us prove now that functions e1j (1 ≤ j ≤ n), aij (2 ≤ i ≤ n, 1 ≤ j ≤ n), do not depend
on ζ1 .

lndeed, it suffices to note the following : 1) The function ′ξ does not depend on ζ1 (′ξ =
π−1(′ζ)), 2) and the function ′f (ξ) =

(
f2 (′ξ) , · · · , fn (′ξ)

)
does not depend on ξ1, i.e. ∂fκ

∂ξ1 = 0,

2 ≤ κ ≤ n, 3) ∂ξ1

∂xj = (τ2 (x, x0))x1xj =(τ2 (x, x0))xjx1 . The function ((τ2 (x, x0))x2 , ..., (τ2 (x, x0))xn)
can be expressed by the vector ′ξ where, 2 ≤ j ≤ n.

Let us rewrite now the equation (55) in the form:
n+1∑
j=1

ζjT+
xj + ( ζ1e11 +

n∑
j=2

e1j ζj)T+
ζ1+

n∑
k=2

(ak1ζ
1 +

n∑
j=2

akjζ
j)T+

ζk =
n∑

i,j=2

aij (x)hi (x,′ ζ) hj (x,′ ζ).

By remark 6, for each x ∈ D̃, ζ ∈′ G̃, it is possible to apply the generalized Fourier transform
in ζ1 to the last equation. Then taking into account that the functions e1j (1 ≤ j ≤ n), aij

(2 ≤ i ≤ n, 1 ≤ j ≤ n) do not depend on ζ1, for T̂+ = T̂+
(
x, η,′ ζ, ζn+1

)
- Fourier’s transform

of the function T+
(
x, ζ

)
- we have:

iT̂+
x1η +

n+1∑
j=2

ζj T̂+
xj − e11

∂
∂η (η T̂+) + i

n∑
j=2

e1jζ
jηT̂+ + i

n∑
j=2

aj1T̂
+
ηζj

+
n∑

κ,j=2

aκjζ
j T̂+

ζκ = 2πδ (η)
n∑

κ,j=2

aκjh
κ (′ζ)hj (′ζ) . (57)

Designating T̂+ = p+ + iq+, from (57) for η > 0 (η < 0) we have :
∂
∂η U+

p = F+
1 , ∂

∂η U+
q = F+

2 , (58)

where U+
p = p+

x1+
n∑

j=2

aj1p
+
ζj − e11ηq+ , U+

q = q+
x1+

n∑
j=2

aj1 q+
ζj + e11ηp+ , F+

1 = −
n+1∑
j=2

ζjq+
xj −
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n∑
κ,j=2

aκjζ
jq+

ζκ −ηp+
n∑

j=2

e1jζ
j , F+

2 =
n+1∑
j=2

ζjp+
xj +

n∑
κ,j=2

aκjζ
jp+

ζk − ηq+
n∑

j=2

e1jζ
j .

Then by analogous reasonings by which we proved the continuity of integrals
∞∫
0

(
D
′β
′ξ F2 (x, η,′ ζ)

)2

dη,
∞∫
0

(
D
′β
′ξ F2xi (x, η,′ ζ)

)2

dη on (x,′ ξ) for |′β| ≤ 3 and by D
′β
′ξ qη, D

′β
′ξ qηxi ∈

L1

(
∆s

η

) ∩ C
(
D ×∆s

η ×′ G
)

in the proof of lemma 2, we can prove the continuity of the inte-

grals

∞∫

0

(
D
′β
′ζ F+

2

(
x, η,′ ζ

))2

dη ,

∞∫

0

(
D
′β
′ζ F+

2xi

(
x, η,′ ζ

))2

dη in the set D̃ ×′ G̃ and D
′β
′ζ

U+
q ∈

L1

(
∆s

η

) ∩ C
(
D̃ ×∆s

η ×′ G̃
)
, where s = 1,−1; |′β| ≤ 3, ′ζ =

(′ζ, ζn+1
)
.

Using these facts, (as corollary 2 was proved) we prove, that for |′β| ≤ 3, s = −1, 1
D
′β
′ζ

U+
q ∈ C

(
D̃ ×∆

s

η ×′ G̃
)
, where ∆

s

η =
{
sη ≥ 0 | η ∈ R1

η

}
, (59) and

D
′β
′ζ

U+
q

(
x, +0,′ ζ

)
=

∞∫

0

D
′β
′ζ

F+
2

(
x, η,′ ζ

)
dη,

D
′β
′ζ

U+
q

(
x,−0,′ ζ

)
= −

0∫

−∞
D
′β
′ζ

F+
2

(
x, η,′ ζ

)
dη. (60)

¿From determination of the function T+
(
x, ζ

)
and from the fact that for ′ζ = 0 and 2 ≤ k ≤

n, d
dtz

k
(
x, ζ1, 0

)
= 0, and also from equality hk (x, 0) = 0 (taking into account the uniqueness

of solution of the problem (40), (41)) it follows that T+
(
x, ζ1, 0, ζn+1

)
= T+

ζi

(
x, ζ1, 0, ζn+1

)
= 0

(1 ≤ i ≤ n) and T+
ζiζ1

(
x, ζ1, 0, ζn+1

)
= T+

xjζiζ1

(
x, ζ1, 0, ζn+1

)
= 0, (1 ≤ i ≤ n, 1 ≤ j ≤ n + 1).

The last equalities and the analog of formula (10) for the function T+
(
x, ζ

)
show that by similar

reasoning by which 1) of lemma 1 was proved, it is possible to prove that
as ′ζ → 0, T+, T+

ζi , T+
xjζi , T+

xjζiζ1 → 0 in L2

(
R1

ζ1

)
. (61)

uniformly with respect to (x, ζn+1) ∈ D̃ × ( 1
4 , 3

4 ).
Using relationships (56), (61) by analogous reasonings by which corollary 3 proved we can

prove
Corollary 4. Functions p+, p+

xj , p+
xjζi , p+

ζi , p+
ζiζj , ηq+, ηq+

ζi as ′ζ → 0 tend to zero (uni-

formly with respect to (x, ζn+1) ∈ D̃ × ( 1
4 , 3

4 )) in space L1

(
R1

η

)
, where T̂+ = p+

(
x, η,′ ζ

)
+

iq+
(
x, η,′ ζ

)
, (2 ≤ i ≤ n, 1 ≤ j ≤ n + 1) .

4. Proofs of the theorems.
Recalling that û = p + iq, from equation (35) we have:

∂
∂η ( qx1 − 2

n∑
j,k=2

Γj
1kξkqξj ) = −2πδ(η)

n∑
k,j=2

ajk (x) ξ
k

ξj + z2, (62)

where z2 =
n∑

j,k=2

Γ1
jkξkξjηq +

n+1∑
j=2

ξjpxj −
n∑

s,j,k=2

Γs
jkξkξjpξs .

Lemma 2 shows that (taking into account the corollary 2 and remark 3) for fixed (x,′ ξ, ξn+1) ∈
D̃ ×′ G× (a0

n+1, b
0
n+1) the functions U = qx1 − 2

n∑
j,k=2

Γj
1kξkqξj and V = z2 , for y0 = 0 satisfy
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the conditions of theorem 3.1.3, if in the expressions for U and V variable y is replaced by η.
Then from equality (62), for ′ξi ∈′ G we have :

∂
∂η

(
qx1(x, η,′ ξi, ξ

n+1)− 2ε
n∑

j=2

Γj
1i(x)qξj (x, η,′ ξi, ξ

n+1)

)
=

−2πδ (η) aii(x) ε2+F2i(x, η,′ ξi, ξ
n+1) (63)

where ′ξi = ε ′ξi(1), ′ξi(1) = (0, · · · , 0,︸ ︷︷ ︸
i−2

1, 0, · · · , 0) ∈ Rn−1, ε ∈ R1, ′ξ =
(
ξ2, ξ3, · · · , ξn

)
,

F2i(x, η,′ ξi, ξ
n+1) = ε2Γ1

ii(x)ηq(x, η,′ ξi, ξ
n+1) + ε pxi (x, η,′ ξi, ξ

n+1)

−ε2
n∑

s=2
Γs

ii(x)pξs(x, η,′ ξi, ξ
n+1) +ξn+1pxn+1(x, η,′ ξi, ξ

n+1), index i fixed (2 ≤ i ≤ n) .

In view of equality (63), according to the theorem 3.1.3, for ε ∈ R1 we will obtain
U+q(x,′ ξi, ξ

n+1) − U−q(x,′ ξi, ξ
n+1) = −2πaii(x)ε2, (64)

where U±q(x,′ ξi, ξ
n+1) = qx1

(
x,±0,′ ξi, ξ

n+1
)− 2ε

n∑
j=2

Γj
1i(x)qξj

(
x,±0,′ ξi, ξ

n+1
)
.

On the other hand from (63), by corollaries 1,2, it is not difficult to obtain for ε ∈ R1,

U+q(x,′ ξi, ξ
n+1) = −

∞∫
0

F2i(x, η,′ ξi, ξ
n+1)dη, U−q(x,′ ξi, ξ

n+1) =
0∫
−∞

F2i(x, η,′ ξi, ξ
n+1)dη.

Consequently, for ε ∈ R1

U+q(x,′ ξi, ξ
n+1)−U−q(x,′ ξi, ξ

n+1) =

=
∞∫
−∞

(ε2
n∑

s=2
Γs

ii(x)pξs(x, η,′ ξi, ξ
n+1)− ε2Γ1

ii(x)ηq(x, η,′ ξi, ξ
n+1)−

- εpxi (x, η,′ ξi, ξ
n+1)− ξn+1pxn+1(x, η,′ ξi, ξ

n+1))dη. (65)
By corollary 3,

∞∫
−∞

pxi (x, η, 0, ξn+1)dη =
∞∫
−∞

pxn+1 (x, η, 0, ξn+1)dη =
∞∫
−∞

pξixn+1 (x, η, 0, ξn+1)dη = 0 and

according to corollaries 1, 2, 3 (taking into account remark 3) we have, that pxiξi , pxn+1ξiξi ∈
L1

(
R1

η

)∩L2

(
R1

η

)∩C
(
D̃ ×∆s

η ×′ G× (a0
n+1, b

0
n+1)

)
(s = −1, 1). Consequently, for each fixed

(x, ξn+1) ∈ D̃ × (a0
n+1, b

0
n+1), from the mean value theorem it follows that

∞∫
−∞

pxi (x, η,′ ξi, ξ
n+1)dη = ε

∞∫
−∞

pxiξi(x, η,′ ξiθ1, ξ
n+1)dη,

∞∫
−∞

pxn+1 (x, η,′ ξi, ξ
n+1)dη = ε2

∞∫
−∞

pxn+1ξiξi(x, η,′ ξiθ2, ξ
n+1)dη, (66)

where 0 < θ1(x,′ ξi, ξ
n+1), θ2(x,′ ξi, ξ

n+1) < 1.
Taking into account (66) in (65), we have :

U+q(x,′ ξi, ξ
n+1) − U−q(x,′ ξi, ξ

n+1) = qi(x,′ ξi, ξ
n+1)ε2 , (67)

where qi(x,′ ξi, ξ
n+1) =

∞∫
−∞

(
n∑

s=2
Γs

ii(x)pξs(x, η,′ ξi, ξ
n+1)− Γ1

ii(x)ηq(x, η,′ ξi, ξ
n+1)−

− pxi ξi(x, η,′ ξiθ1, ξ
n+1)− ξn+1pxn+1ξiξi(x, η,′ ξiθ2, ξ

n+1))dη.
Equalities (64) and (67) show that −2πaii(x) = qi(x,′ ξi, ξ

n+1), (2 ≤ i ≤ n).
By remark 4, the function u(x, ξ) (uxn+1ξiξj (x, ξ)) is odd with respect to ξ and from

continuousness of uxn+1ξiξj (x, ξ) in D̃ × G̃ it follows that uxn+1ξiξj (x, 0, ξn+1) = 0. Then by
corollary 3 and by relations (37), (38) we have: as ε → 0, qi(x,′ ξi, ξ

n+1) → 0, so aii(x) = 0,
(2 ≤ i ≤ n).
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Let ′ξij(1) = (0, · · · , 0︸ ︷︷ ︸
i−2

, 1, 0, · · · , 0,︸ ︷︷ ︸
j−i−1

1, 0, · · · , 0︸ ︷︷ ︸
n−j

) ∈ Rn−1, i 6= j, ′ξij = ε ′ξij(1) ∈′ G.

Taking into account equalities aii (x) = 0, aij (x) = aji (x) from (44) for ′ξij we have :

∂
∂η

(
qx1

(
x, η, ′ξij , ξ

n+1
)− 2ε

n∑
s=2

∑
κ=i,j

Γs
1κ(x)qξs

(
x, η, ′ξij , ξ

n+1
)
)

=

−4πδ (η) aij(x)ε2+F2ij

(
x, η, ′ξij , ξ

n+1
)
, (68)

where F2ij

(
x, η, ′ξij , ξ

n+1
)

= ε2
∑

s,κ=i,j

Γ1
sκ(x)ηq

(
x, η, ′ξij , ξ

n+1
)

+ ε
∑

s=i,j

pxs

(
x, η, ′ξij , ξ

n+1
)

−ε2
∑

s,κ=i,j

n∑
r=2

Γr
sκ(x)pξr

(
x, η, ′ξij , ξ

n+1
)

+ ξn+1pxn+1(x, η,′ ξij , ξ
n+1), indexs i, j fixed ( 2 ≤ i,

j ≤ n).
Now we repeat the same arguments which we used when we proved the equality aii (x) = 0.
By (68), taking into account the theorem 3.1.3, for ε ∈ R1 we obtain

U+q(x, ′ξij , ξ
n+1) − U−q(x, ′ξij , ξ

n+1) = −4πaij(x)ε2, (69)

where U±q(x, ′ξij , ξ
n+1) = qx1

(
x,±0, ′ξij , ξ

n+1
)− 2ε

n∑
s=2

∑
κ=i,j

Γs
1κ(x)qξs

(
x,±0, ′ξij , ξ

n+1
)

¿From (68), taking into account corollaries 1,2, for ε ∈ R1, we have

U+q(x, ′ξij , ξ
n+1) = −

∞∫
0

F2ij

(
x, η, ′ξij , ξ

n+1
)
dη, U−q(x, ′ξij , ξ

n+1) =
0∫
−∞

F2ij

(
x, η, ′ξij , ξ

n+1
)
dη.

Hence, for ε ∈ R1

U+q(x, ′ξij , ξ
n+1)−U−q(x, ′ξij , ξ

n+1) =

=
∞∫
−∞

( ε2
∑

s,κ=i,j

n∑
r=2

Γr
sκ(x)pξr

(
x, η, ′ξij , ξ

n+1
)− ε

∑
s=i,j

pxs

(
x, η, ′ξij , ξ

n+1
)−

− ε2
∑

s,κ=i,j

Γ1
sκ(x)ηq

(
x, η, ′ξij , ξ

n+1
)−ξn+1pxn+1(x, η, ′ξij , ξ

n+1))dη. (70)

Recalling that
∞∫
−∞

pxi (x, η, 0, ξn+1)dη =
∞∫
−∞

pxn+1 (x, η, 0, ξn+1)dη =
∞∫
−∞

pξixn+1 (x, η, 0, ξn+1)dη =

0 by the mean value theorem,
∞∫
−∞

pxs(x, η,′ ξij , ξ
n+1)dη =

ε
∑

κ=i,j

∞∫
−∞

pxsξk(x, η,′ ξijθ
s
1, ξ

n+1)dη, where s = i, j; 0 < θs
1

(
x,′ ξij , ξ

n+1
)

< 1,

∞∫
−∞

pxn+1 (x, η,′ ξij , ξ
n+1)dη = ε2

∑
s,κ=i,j

∞∫
−∞

pxn+1ξsξk(x, η,′ ξijθ2, ξ
n+1)dη, where 0 < θ2

(
x,′ ξij , ξ

n+1
)

<

1. Taking into account last equalities in (70) we have :
U+q(x, ′ξij , ξ

n+1)− U−q(x, ′ξij , ξ
n+1) = qij(x, ′ξij , ξ

n+1)ε2, (71)

where qij(x, ′ξij , ξ
n+1) =

∞∫
−∞

(
∑

s,κ=i,j

n∑
r=2

Γr
sκ(x)pξr

(
x, η, ′ξij , ξ

n+1
)− ∑

s,κ=i,j

Γ1
sκ(x)ηq

(
x, η, ′ξij , ξ

n+1
)−

− ∑
s,κ=i,j

(pxs ξk(x, η,′ ξijθ
s
1, ξ

n+1)− ξn+1pxn+1ξsξk(x, η,′ ξijθ2, ξ
n+1)))dη.

Equalities (69) and (71) show that, −4πaij (x) = qij

(
x,′ ξij , ξ

n+1
)
, and since ε → 0 and

qij(x, ′ξij , ξ
n+1) → 0, it follows that, aij (x) = 0, (2 ≤ i, j ≤ n).

Theorem 1 is proved.

The proof of theorem 2. Since the function h(x,′
.
z) is homogenuos in ′ .z as in formula (10),
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let us rewrite the function
Ih(x, ξ) =

∫
γ(x,ξ)

b (z (x, ξ, t)) hi(′
.
z (x, ξ, t))hj(′

.
zx, ξ, t))dt

in the form
Ih(x, ξ) = 1

|ξ|
∫∞
0

b (z (x, ν, τ)) |ξ| hi(′
.
z (x, ν, τ)) |ξ| hj(′

.
z (x, ν, τ))dτ. (72)

Using the smoothness of the function h(x,′ ξ) ∈ C5(D ×Rn−1
0 ) and the condition h(x, 0) =

(h2(x, 0), ..., hn(x, 0)) = 0 and the homogeneity of the function h(x,′ ξ) on ′ξ, with the same
arguments by which inequalities (13) and (16) were proved, the following inequalities∣∣|ξ|hk(x,′

.
z (x, ν, τ))

∣∣ ≤ K1h,∣∣∣|ξ|α−1
Dα

ξ ( |ξ|hk(x,′
.
z (x, ν, τ)))

∣∣∣ ≤ K1h, for 1 ≤ |α| ≤ 4 , (73)
can be proved in the set Ω, where the number K1h > 0 does not depend on (x, ξ) ∈ (D × G).
Moreover K1h does differ from the numbers K1,K2 in (13), (16) by the fact that K1h it depends
also on the norm of the function h(x,

.
z) in the space C4(Ω(d0)).

Relations (17), (72)-(73) and proof of lemma 1 (corollary 1) show that the following assertion
is true :

Assertion 1. For the functions Ih(x, ξ) (Îh(x, η,′ ξ)) lemma 1 (corollary 1) is true, where
Îh = Îh(x, η,′ ξ) is the Fourier transform of the function Ih(x, ξ) in the variable ξ1, η is the dual
variable to ξ1.

From assertion 1, it follows that for the function

uh(x, ξ) =
n∑

i,j=2

∫

γ(x,ξ)

aij (z (x, ξ, t)) hi(z (x, ξ, t) , ′ .z (x, ξ, t))hj(z (x, ξ, t) ,′
.
z(x, ξ, t))dt

Lemma 1 is true. It is obvious that uh(x, ξ) satisfies equation (8), and ûh(x, η,′ ξ) = ph(x, η,′ ξ)+
iqh(x, η,′ ξ) is the Fourier transform in the variable ξ1 of the solution uh(x, ξ) to equation (21)

with the right sides
n∑

i,j=2

aij(x)hi(x,′ ξ)hj(x,′ ξ) and 2πδ (η)
n∑

k,j=2

ajk (x)hk(x,′ ξ)hj(x,′ ξ) corre-

spondingly. Then the functions ph and qh satisfy equations (23) and (24) respectively with

the right sides of the form zh1 =
n∑

j,k=2

Γ1
jkξkξjηph −

n∑
j=2

ξjqhxj +
n∑

s,.j,k=2

Γs
jkξkξjqhξs , zh2 =

n∑
j,k=2

Γ1
jkξkξjηqh+

n∑
j=2

ξjphxj−
n∑

s,j,k=2

Γs
jkξkξjphξs , respectively

Furthermore for the functions uh(x, ξ) and ûh(x, η,′ ξ) conditions (9) and (25) are true
respectively . Therefore, analogously as lemma 2 and corollary 2 were proven for û(x, η,′ ξ), it
may be proved that they are true for the function ûh(x, η,′ ξ).For each fixed x ∈ D, the mapping
′η =′ f(′ξ) it is one-to-one in Rn−1. (Let us recall that ′f(0) = 0); therefore for the right
side ′ηi(1) = (0, · · · , 0︸ ︷︷ ︸

i−2

, 1, 0, · · · , 0) ∈ Rn−1, the equation ′f(′ξ) = ′ηi(1) has a unique solution

′∼ξ i(1) =
(
ξ2
i (1), · · · , ξn

i (1)
)

where index i (2 ≤ i ≤ n) is fixed. On the other hand, from equality
(45), we get h(′ζ) =′ f(′ξ), consequently, from the invertibility mapping ′η = h(′ζ) it follows

that there is a unique vector ζi(1) such, that h (ζi(1)) = ′f
(
′∼ξ i(1)

)
= ′ηi(1). Then from the

homogeneity of the first degree of the functions ′f(′ξ), h(′ζ) with respect to ′ξ, ′ζ accordingly,

it follows that ′f
(
′∼ξ i

)
= h (′ζi) where ′ζi = ε′ζi(1) =

(
εζ2

i (1), εζ3
i (1), · · · , εζn

i (1)
)
, ′
∼
ξ i =
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ε′
∼
ξ i(1) =

(
εξ2

i (1), , · · · , εξn
i (1)

) ≡ (
ξ2
i , · · · , ξn

i

)
, ε ≥ 0.

As in the study of problem 1, the auxiliary function T 0
h of variables (x, ξ),

T 0
h =

n∑
i,j=2

∫
γ(x,ξ)

aij

(
z

(
x, ξ, t

))
hi(z

(
x, ξ, t

)
,′

.
z

(
x, ξ, t

)
hj(z

(
x, ξ, t

)
,′

.
z(x, ξ, t))dt, can be

introduced.
If we denote T 0

h (x, ξ) again by uh(x, ξ) and its Fourier transform in terms of the variable
ξ1 by ûh(x, η, ′ξ, ξn+1) = ph(x, η, ′ξ, ξn+1)+ iqh(x, η, ′ξ, ξn+1), then taking into account that
as ′ζ −→ 0,′ h(x,′ ζ) −→ 0 and ′h(x, 0) = 0 (see (46)) with the arguments for corollary 3 for
the functions q(x, η, ′ξ, ξn+1), p(x, η, ′ξ, ξn+1), the analogous assertions can be prove for the
functions qh(x, η, ′ξ, ξn+1), ph(x, η, ′ξ, ξn+1) respectively. In this case the analog of equation
(62) for the function qh(x, η, ′ξ, ξn+1) takes the form:

∂
∂η (qhx1(x, η, ′

∼
ξ i, ξ

n+1)− 2ε
n∑

j,κ=2

Γj
1κ(x)ξκ

i (1)qhξj
i
(x, η, ′

∼
ξ i, ξ

n+1)) =

−2πδ (η) aii(x) ε2 +F2hi(x, η, ′
∼
ξ i, ξ

n+1),

where F2hi(x, η, ′
∼
ξ i, ξ

n+1) = ε2
n∑

j,κ=2

Γ1
jκ(x)ξκ

i (1)ξj
i (1)ηqh(x, η, ′

∼
ξ i, ξ

n+1)+

ε
n∑

j=2

ξj
i (1)phxj (x, η, ′

∼
ξ i, ξ

n+1)−ε2
n∑

s,j,κ=2

Γs
jκ(x)ξκ

i (1)ξj
i (1)phξs

i
(x, η, ′

∼
ξ i, ξ

n+1)+

ξn+1phxn+1(x, η, ′
∼
ξ i, ξ

n+1).
By the similar arguments, with the help of which equalities aii(x) = qi(x, ′ξi, ξ

n+1) = 0 were

established in the proof of theorem 1, we can prove that the equalities aii(x) = qhi(x,′
∼
ξ i, ξ

n+1)
= 0 are true, where

qhi(x, ′
∼
ξ i, ξ

n+1) =
n∑

j,κ=2

∞∫
−∞

(ξj
i (1)ξκ

i (1)
n∑

s=2
Γs

jκ(x)phξs
i
(x, η, ′

∼
ξ i, ξ

n+1)−

−Γ1
jκ(x)ξj

i (1)ξκ
i (1)ηqh(x, η, ′

∼
ξ i, ξ

n+1)− phxjξκ
i
(x, η, ′

∼
ξ iθj , ξ

n+1)−
− ξn+1phxn+1ξjξk(x, η,′

∼
ξ iθn+1, ξ

n+1))dη, 0 < θs(x,′
∼
ξ i, ξ

n+1) < 1, s = j, n + 1.
For the proof of equality aij(x) = 0 (i 6= j), it is necessary to take the vectors ηij(1) =

(0, · · · , 0︸ ︷︷ ︸
i−2

, 1, 0, · · · , 0,︸ ︷︷ ︸
j−i−1

1, 0, · · · , 0︸ ︷︷ ︸
n−j

) ∈ Rn−1, ′
∼
ξ ij(1), ′ζij(1), ′

∼
ξ ij ,

′ζij instead of the vectors

ηi(1),′
∼
ξ i(1),′ ζi(1),′

∼
ξ i,

′ ζi respectively and (taking into account equality aii(x) = 0) to repeat

arguments given above for the proof of equality aii(x) = 0 in the case when ′ξ =′
∼
ξ i.

Here ′∼ξ ij(1) =
(
ξ2
ij(1), · · · , ξn

ij(1)
)

(′ζij(1)) is a unique solution of equation ′f(′ξ) = ηij(1)

(h (′ζij) = ηij(1)) and ′∼ξ ij = ε ′∼ξ ij(1) (′ζij = ε′ζij(1)), ε ≥ 0.
Theorem 2 is proved.

Lemma 3. Let the conditions of theorem 2 be satisfied. Then problem 2’ can have only one
solution (aij(x)) ∈ C5(Rn).

Proof. As it was noted above, the uniqueness of the solution problem 2’ follows from the
uniqueness of solution of problem 5’. Consequently, for the proof of lemma 3 it suffices to show
that if fulfills equation (55) and T+ = 0 on Γ̃, then aij(x) ≡ 0.

¿From equation (57) we have :
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∂
∂η

(
U+

q

)
= −2πδ (η)

n∑
k,j=2

akj (x)hk(x,′ ζ)hj(x,′ ζ) + F+
2 . (74)

Let ′νi(1) = (0, · · · , 0︸ ︷︷ ︸
i−2

, 1, 0, · · · , 0), and let ′ξi(1) =
(
ξ2
i (1), · · · , ξn

i (1)
)

be a unique solution

of equation ′f(′ξ) = ′νi(1), while ′ζi(1) is a unique solution of equation h(′ζi(1))
=′ f(′ξi (1)). From the homogeneity of the the first degree of the functions f(ξ) and h(′ζ)
it follows that ′f(′ξi) = h(′ζi), where ′ζi = ε′ζi(1) =

(
εζ2

i (1), · · · , εζn
i (1)

)
=

(
ζ2
i , · · · , ζn

i

)
,

′ξi = εξi(1) =
(
εξ2

i (1), , · · · , εξn
i (1)

)
, ε > 0. Then for ′ζ =′ ζi, equation (74) will take the

form
∂
∂η

(
U+

q

)
= −2πδ (η) aii(x) ε2 + F+

2i , (75)

where F+
2i (x, η, ′ζi, ζ

n+1) = ε
n∑

j=2

(
p+

xj +
n∑

κ=2
aκjp

+
ζk − ηq+e1j

)
ζj
i (1) + ζn+1pxn+1 .

In view of equality (75), taking into account theorem 3.1.3 for ε ∈ R1
+ we obtain:

U+
q

(
x, +0,′ ζi, ζ

n+1
)− U+

q

(
x,−0,′ ζi, ζ

n+1
)

= −2πaii(x) ε2 (76)
On the other hand, from (75), taking into account (60), it is not difficult to obtain that for

ε ∈ R1
+,

U+
q

(
x, +0,′ ζi, ζ

n+1
)− U+

q

(
x,−0,′ ζi, ζ

n+1
)

=

ε
n∑

j=2

∞∫

−∞
((p+

xj +
n∑

κ=2
aκjp

+
ζk − ηq+e1j)ζ

j
i (1) + ζn+1pxn+1)dη. (77)

By corollary 4 and remark 6
∞∫

−∞
p+

xj (x, η, 0, ζn+1)dη =

∞∫

−∞
p+

ζk

(
x, η, 0, ζn+1

)
dη =

∞∫

−∞
p+

xjζk

(
x, η, 0, ζn+1

)
dη =

∞∫

−∞
ηq+

ζk

(
x, η, 0, ζn+1

)
dη =

∞∫

−∞
ηq+

(
x, η, 0, ζn+1

)
dη =

∞∫

−∞
p+

ζkζr

(
x, η, 0, ζn+1

)
dη = 0, (78)

and p+
xj , p

+
ζk , p+

xjζk , ηq+
ζk , ηq+

ζk , p+
ζkζr ∈ L1

(
R1

η

) ∩ L2

(
R1

η

) ∩ C
(
D̃ ×∆s

η ×′ G× ( 1
4 , 3

4 )
)
, where

2 ≤ k, r ≤ n, 1 ≤ j ≤ n + 1, s = −1, 1. Consequently, from mean value theorem, for each fixed
(x, ζn+1) ∈ D̃ × ( 1

4 , 3
4 ) we have :

∞∫
−∞

p+
xj (x, η,′ ζi, ζ

n+1)dη = ε
n∑

r=2

∞∫
−∞

p+
xj ζr (x, η,′ ζiθ

+
j , ζn+1)ζr

i (1) dη,

∞∫
−∞

ηq+(x, η,′ ζi, ζ
n+1)dη = ε

n∑
r=2

∞∫
−∞

ηq+
ζr (x, η,′ ζiθ

+, ζn+1)ζr
i (1) dη,

∞∫
−∞

p+
ζk(x, η,′ ζi, ζ

n+1)dη = ε
n∑

r=2

∞∫
−∞

p+
ζkζr (x, η,′ ζiθ

+

k , ζn+1)ζr
i (1) dη, (79)

∞∫
−∞

pxn+1(x, η,′ ζi, ξ
n+1)dη = ε2

n∑
r,j=2

∞∫
−∞

pxn+1ζrζj (x, η,′ ζiθ
+
n+1, ξ

n+1)ζr
i (1) ζj

i (1) dη,

where 0 < θ+
j (x,′ ζi, ζ

n+1), θ+(x,′ ζi, ζ
n+1), θ

+

k (x,′ ζi, ζ
n+1), θ+

n+1(x,′ ζi, ζ
n+1) < 1.

Taking into account (79) in (77) we will obtain
U+

q

(
x, +0,′ ζi, ζ

n+1
)−U+

q

(
x,−0,′ ζi, ζ

n+1
)

= q+
i

(
x,′ ζi, ζ

n+1
)
ε2 , (80)

where q+
i

(
x,′ ζi, ζ

n+1
)

=
n∑

r,j=2

∞∫
−∞

((p+
xjζr (x, η,′ ζiθ

+
j , ζn+1)− ηq+

ζr

(
x, η,′ ζiθ

+, ζn+1
)
e1j +
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n∑
k=2

akjp
+
ζkζr (x, η,′ ζiθk, ζn+1))ζr

i (1) + ζn+1 pxn+1ζrζj (x, η,′ ζiθ
+
n+1, ζ

n+1)ζr
i (1) ζj

i (1))dη.

Equalities (76) and (80) show that −2πaii(x) = q+
i

(
x,′ ζi, ζ

n+1
)
, (2 ≤ i ≤ n). Then from

corollary 4 and from (78) it follows that for ε → +0, q+
i

(
x,′ ζi, ζ

n+1
) → 0. Therefore, aii(x) =

0, (2 ≤ i ≤ n).

For the proof of equality aij(x) = 0 (i 6= j) it is necessary to take vectors ′νij(1) =
(0, · · · , 0︸ ︷︷ ︸

i−2

, 1, 0, · · · , 0,︸ ︷︷ ︸
j−i−1

1, 0, · · · , 0︸ ︷︷ ︸
n−j

) ∈ Rn−1,
′
ξij(1), ′ζij(1), ′ξij ,

′ζij instead of the vectors ′νi(1),

′ξi(1),′ ζi(1), ′ξi,
′ ζi respectively and (by taking into account equality aii(x) = 0) to repeat the

reasoning given above for the proof of equality aii(x) = 0 in the case when ′ζ =′ ζi. In this
case ′ξij(1) =

(
ξ2
ij(1), · · · , ξn

ij(1)
) (′ζij(1) = ζ2

ij(1), · · · , ζn
ij(1)

)
is a unique solution of equation

′f(′ξ) =′ νij(1) (h (′ζ) =′ f(′ξij(1))) and ′ξij = ε ′ξij(1) (′ζij = ε ′ζij(1)), ε > 0.
Lemma 3 is proved.
Let us prove the assertion b) of theorem 3. Let τk(x, x0) be the distance between the

points x0 ∈ ∂Dε0 and x ∈ D in the metric gk =
(
g
(k)
ij (x)

)
; k = 1, 2; ζi =

n∑
j=1

g
(2)
ij (x)pj

0,

pi
0 = (τ1(x, x0) + τ2(x, x0))xi , i = 1, 2, ..., n.

It is known that the function τk(x, x0) satisfies the equation
n∑

i,j=1

gij
k (x)τkxiτkxj = 1 , (81)

where
(
gij

k (x)
)

is inverse of the matrix
(
g
(k)
ij (x)

)
.

Substracting equation (81) for k = 1 from the same equation for k = 2, and transforming
the obtained equality correspondingly, for the functions d(x, x0) = τ2(x, x0) − τ1(x, x0) and
bij(x) = gij

2 − gij
1 , we have

n∑
i,j=1

gij
2 (x) pi

0 dxj +
n∑

i,j=2

bijτ1xiτ1xj = 0. (82)

Since g
(k)
1i = 0 for i = 2, 3, ..., n and g

(k)
11 = 1 for k = 1, 2, we have g1j

k = 0 for j = 2, 3, ..., n

and g11
k = 1; therefore, b1j = 0 for j = 1, 2, ..., n. lt can be seen that the expression

n∑
i,j=1

gij
2 (x)

pi
0 dxj is the derivative of d(x, x0) along γ+(x, ζ). Integrating equality (82) along γ+(x, ζ) and

taking into account the fact that for the points x, x0 ∈ ∂D, d(x, x0) = 0, we obtain

d(x, x0) =
∫

γ+(x,ζ)

n∑
i,j=2

bij(z)τ1xi(z, x0)τ1xj (z, x0)dt = 0 , (83)

From τ1zi (z, x0) = g
(1)
ij (z)νj , f i (ξ) = gij

2 (z) g
(1)
kj (z)νk, νk = gks

1 (z)g(2)
is (z)f i (ξ) and h (′ζ)

=′ f(′ξ), we get
n∑

i,j=2

bij(z)τ1zi(z, x0)τ1zj (z, x0) =
n∑

m,k=2

cmk (z) hm (′ζ)hk (′ζ) , (84)

where cmk (z) =
n∑
2

bij (z) g
(1)
ir (z)g(1)

js (z)grl
1 (z)g(2)

ml (z)gst
1 (z)g(2)

kt (z) and in the last sum indixes

i, j, r, s, l, t changes from 2 till n.
Therefore, taking into account the homogeneity of the function h (x,′ ζ) in ′ζ, for x ∈ ∂D ,

ζ ∈ Rn
0 from (83), (84) we have :
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n∑
m,k=2

∫
γ+(x,ζ)

cmk (z (x, ζ, t)) hm(z (x, ζ, t) ,′ z (x, ζ, t))hk(z (x, ζ, t) ,′ z (x, ζ, t))dt = 0.(85)

lt was proved that the uniqueness of solution of problem 1 in the space C5
0 (D̃) follows from

the uniqueness of solution of the problem 5. By the same way, we can prove that the uniqueness
of solution of the problem of determination of vector-function (cmk (x)) from equalities (85),
follows from the uniqueness of solution of the problem 2’. Then from lemma 3 we get : cmk (x) =
0, 2 ≤ m, k ≤ n, i.e. bij (x) = 0 , so gij

2 = gij
1 .

The assertion b) of the theorem 3 is proved.
Proof of the assertion a) of the theorem 3. In the region D for the metric gk, k = 1, 2,

we introduce semigeodesic coordinates as follows: Let us select any point V0 ∈ Dε0/D and
let us consider the geodesics outgoing from it. We take the ends of the segments of constant
length sk = r on the geodesics, outgoing from V0.These ends form the hypersurface, which
is called the geodesic hypersphere of radius r with center V0 of the metric gk. Let a number
r > 0 be so small that the hypersphere lies outside of D. Let us examine a certain region
on the hypersphere with the parameters u1

k, u2
k, . . . , un−1

k . We will carry the geodesics to the
same parameters, connecting center of hypersphere V0 with the points of region D. We will
characterize position of an arbitrary point L on the geodesic with arc length sk = V0L. Then
it is obvious that in view of the condition on the metric gk the variables u1

k, u2
k, . . . , un−1

k , sk

form the semigeodesic coordinate system for the region D for the metric gk (see [10]). Let Dk

be the domain of semigeodesic coordinates of the metric gk that we introduced for the region
D, k = 1, 2.

We build a diffeomorphism ϕ as follows: let us assign to a point x(2) ∈ D with the semi-
geodesic coordinates

(
u1

2, u
2
2, . . . , u

n−1
2 , s2

) ∈ D2 in the metric g2, the point x(1) ∈ D with the
semigeodesic coordinates

(
u1

1, u
2
1, . . . , u

n−1
1 , s1

) ∈ D1 in the metric g1 if the equalities ui
2 = ui

1,
i = 1, 2, . . . , n − 1, and s2 = s1 hold. It is not difficult to see that ϕ|S = 1. Actually, taking
into account equalities H1 = H2 and g1 = g2 outside D and condition gk ∈ C2(Dε0), it may be
proved that, for the point x ∈ S the rays Γ1(x, V0), Γ2(x, V0) outside of the region D coincide,
where Γk(x, V0) is the geodesic of the metric gk connecting points x ∈ S and V0, k = 1, 2. Here
in construction of semigeodesic coordinates for the metrics g1 and g2 we take the same geodesic
hypersphere with the center at the point V0 which lies outside D. Then by the uniqueness of
the ray Γk(x, V0) and the definition of the coordinates u1

1, u
2
1, . . . , u

n−1
1 , the first (n − 1) com-

ponents of the semigeodesic coordinates of the point x ∈ S in the metrics g1 and g2 coincide,
i.e ui

2 = ui
1, 1, 2, . . . , n− 1. Moreover the equality of last components (s2 = s1) follows from the

equality H1 = H2 and from the fact that rays Γ1(x, V0) and Γ2(x, V0) outside of D coincide.
Consequently, we have:

1) for x ∈ S, ϕ(x) = x,
2) the regions D1 and D2 coincide.
Then taking into account 2), the convexity of domain D with respect to gk, k = 1, 2 and

determination of ϕ, we obtain that ϕ transforms D to itself. According to the theorem about
continuous differentiability, the dependence of the solution to the Cauchy problem (determining
the ray of the metric g(k) ∈ C6(Dε0), k = 1, 2) on the initial data, ∂D ∈ C5 and also from the
determination of ϕ, we have that ϕ ∈ C5(D).

Now let us define the mapping Ψk : Dk → D (k = 1, 2) as follows: it assigns to the point(
u1

k, u2
k, . . . , un−1

k , sk

) ∈ Dk the point x(k) ∈ D.From determination of ϕ we have : ϕ = Ψ1◦Ψ−1
2 ,

and equality H1 = H2 implies that g̃1 = Ψ∗1g1 and g̃2 = Ψ∗2g2 have the same hodograph. Then
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from assertion b) of theorem 3, we get g̃1 = g̃2, therefore, g2 = ϕ∗g1. Theorem 3 is proved.
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A.Kh. Amirov
Boundary Rigidity For Riemannian Manifolds

Abstract. In the work, the uniqueness of the solution of the problem of restoring the
Riemannian metric by the distances between the pairs of the points of boundary of the region
is investigated.The uniqueness of solution of the problem, up to the diffeomorphism identical
on the boundary of the region is proved within a sufficiently wide class of the metrics.

Key words: hodograph, semigeodesic coordinates, inverse kinematic problem, integral
geometry problem, special kinetic equation.

27



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2005–1 Takao Satoh: The abelianization of the congruence IA-automorphism group of
a free group.

2005–2 Keita Oshima: Hankel operators on harmonic Bergman spaces.

2005–3 Miki Hirano, Taku Ishii and Takayuki Oda: Confluence from Siegel-Whittaker
functions to Whittaker functions on Sp(2, R).

2005–4 Toshio Oshima: Completely integrable systems associated with classical root
systems.

2005–5 Takashi Kato: A limit theorem for solutions of some functional stochastic dif-
ference equations.

2005–6 Naoki Heya: Hypoelliptic stochastic differential equations in infinite dimensions.

2005–7 Teruaki Kitano and Masaaki Suzuki: A partial order in the knot table.

2005–8 Yoko Mizuma: Ribbon knots of 1-fusion, the Jones polynomial and the Casson-
Walker invariant.

2005–9 Yasuyuki Shimizu: On the solution formula of the dirichlet problem for the
Stokes equations in the strip domain.

2005–10 Fumio Kikuchi and Liu Xuefeng : Determination of the Babuska-Aziz constant
for the linear triangular finite element.

2005–11 Takao Satoh: New obstructions for the surjectivity of the Johnson homomor-
phism of the automorphism group of a free group.

2005–12 A. Kh. Amirov: Boundary rigity for Riemannian manifolds.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


