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Abstract. In this paper we construct new obstructions for the surjectivity of
the Johnson homomorphism of the automorphism group of a free group. We
also determine the structure of the cokernel of the Johnson homomorphism for
degree 2 or 3.

1. Introduction

Let Fn be a free group of rank n ≥ 2 and Fn = Γn(1), Γn(2), . . . its lower central
series. We denote by Aut Fn the group of automorphisms of Fn. For each k ≥ 0,
let An(k) be the group of automorphisms of Fn which induce the identity on the
quotient group Fn/Γn(k + 1). Then we have a descending filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·
of AutFn. This filtration is introduced in 1963 with a remakable pioneer work by
S. Andreadakis [1] who showed that An(1), An(2), . . . is a descending central series
of An(1) and each graded quotient grk(An) = An(k)/An(k + 1) is a free abelian
group of finite rank. He [1] also computed that rankZ grk(A2) for all k ≥ 1 and
rankZ gr2(A3), and asserted rankZ gr3(A3) = 44. But in Section 5, we show that
gr3(A3) = 43. Moreover, by a recent remakable work by A. Pettet [16] we have
rankZ gr2(An) = 1

3n2(n2 − 4) + 1
2n(n − 1) for all n ≥ 3. However, it is difficult to

compute the rank of grk(An).
Let H be the abelianization of Fn and H∗ = HomZ(H,Z) the dual group of H .

Let Ln =
⊕

k≥1Ln(k) be the free graded Lie algebra generated by H . Then for
each k ≥ 1, a GL(n,Z)-equivariant injective homomorphim

τk : grk(An) → H∗⊗Z Ln(k + 1)

is defined. (For definition, see Section 2.) This is called the k-th Johnson homo-
morphism of Aut Fn. The theory of the Johnson homomorphism of a mapping class
group of a compact Riemann surface began in 1980 by D. Johnson [7] and has been
developed by many authors. There are many remarkable and variable results for
the Johnson homomorphism of a mapping class group. (For example, see [6] and
[14].) However, the properties of the Johnson homomorphism of AutFn are far
from being well understood.

Our main interest of this paper is to determine the structure of the cokernel of
the Johnson homomorphism τk as a GL(n,Z)-module. For k = 1, there is well
known fact that the first Johnson homomorphism τ1 is an isomorphism. (See [9].)
For k ≥ 2, the Johnson homomorphism τk is not surjective. In fact, A recent
remarkable work by Shigeyuki Morita indicates that there is a symmetric product
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SkHQ of HQ = H⊗ZQ in the cokernel of τk,Q = τk ⊗ idQ for each k ≥ 2. To show
this, he introduced a homomorphism

Trk : H∗⊗Z Ln(k + 1) → SkH,

called the trace map, and showed that Trk vanishes on the image of τk and is
surjective after tensoring with Q for all k ≥ 2.

The trace maps are introduced in the 1993 with almost simultaneous work by
Morita [13] for a Johnson homomorphism of a mapping class group of a surface.
He called these maps traces because they were defined using the trace of some
matrix representation. Morita’s traces are very important to study the Lie algebra
structure of the target H∗⊗Z Ln = Der(Ln) of the Johnson homomorphisms. Here
Der(Ln) denotes the graded Lie algebra of derivations of Ln. Morita conjectured
that for any n ≥ 3, the abelianization of the Lie algebra Der(Ln) is given by

H1(Der(LQ
n )) � (H∗

Q⊗ZΛ2HQ) ⊕ ( ∞⊕
k≥2

SkHQ

)
where LQ

n = Ln⊗Z Q and the right hand side is understood to be an abelian Lie
algebra. Recently, combining a work of Kassabov [8] with the concept of the traces,
he [15] showed that the isomorphism above holds up to degree n(n − 1).

The subgroup An(1) is called the IA-automorphism group of Fn and denoted by
IAn. The group IAn is the kernel of the natural map AutFn → GL(n,Z) which
is given by the action of AutFn on H . To study the structure of IAn plays very
important roles in the study of that of Aut Fn. W. Magnus [11] showed that IAn

is finitely generated for all n ≥ 3. However, it is not known whether IAn is finitely
presented or not for any n ≥ 4. For n = 3, by a remakable work by S. Krstić and
J. McCool [10], it is known that IA3 is not finitely presented. On the other hand,
the abelianization of IAn is given by

IAab
n � H∗⊗ZΛ2H

as a GL(n,Z)-module. (See [9].)
Now let A′

n(1), A′
n(2), . . . be the lower central series of IAn = An(1) and grk(A′

n)
the graded quotient of it for each k ≥ 1. In Section 2, we define a GL(n,Z)-
equivariant homomorphism

τ ′
k : grk(A′

n) → H∗⊗Z Ln(k + 1)

which is also called the k-th Johnson homomorphism of Aut Fn. It is conjectured
that Coker τ ′

k = Coker τk for k ≥ 1. It is true for 1 ≤ k ≤ 3. In fact, An(1) = A′
n(1)

by definition. We have An(2) = A′
n(2) from the result stated above. (See [9].)

Moreover, Pettet [16] showed An(3) = A′
n(3). Hence, Coker τ ′

k = Coker τk for
1 ≤ k ≤ 3.

In this paper, we construct new obstructions of the surjectivity of the Johnson
homomorphism τ ′

k. Let us denote the tensor products with Q of a Z-module by
attaching a subscript Q to the original one. For example, HQ = H⊗Z Q, LQ

n (k) =
Ln(k + 1)⊗Z Q. Similarly, for a Z-linear map f : A → B we denote by fQ the
Q-linear map AQ → BQ induced by f . Our main result is

Theorem 1.
(1) ΛkHQ ⊂ Coker τ ′

k,Q for odd k and 3 ≤ k ≤ n.

(2) H
[2,1k−2]
Q ⊂ Coker τ ′

k,Q for even k and 4 ≤ k ≤ n − 1.

Here ΛkHQ denotes the k-th exterior product of HQ, and H
[2,1k−2]
Q denotes the

Schur-Weyl module of HQ corresponding to the partition [2, 1k−2].
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In order to prove this, in Section 3, we introduce homomorphisms defined by

Tr[1k] := f[1k] ◦ Φk
1 : H∗⊗ZLn(k + 1) → ΛkH,

Tr[2,1k−2] := (idH ⊗ f[1k−1]) ◦ Φk
2 : H∗⊗ZLn(k + 1) → H⊗ZΛk−1H

and show that these maps vanish on the image of the Johnson homomorphism τ ′
k.

Since these maps are constructed in a way similar to that of Morita’s trace Trk, we
also call these maps traces.

In Section 5, we determine the GL(n,Z)-module structure of the cokernel of the
Johnson homomorphism τk for 2 and 3. Our result is

Theorem 2. We have GL(n,Z)-equivariant exact sequences

0 → gr2(An) τ2−→ H∗⊗Z Ln(3) → S2H → 0

and

0 → gr3Q(An)
τ3,Q−−−→ H∗

Q⊗Z LQ
n (4) → S3HQ ⊕ Λ3HQ → 0

for n ≥ 3.

Thus we have

Corollary 1. For n ≥ 3,

rankZ gr3(An) =
1
12

n(3n4 − 7n2 − 8).
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2. Preliminaries

In this section we review some basic facts. First, we note that the group AutFn

acts on Fn on the right. For any σ ∈ AutFn and x ∈ Fn, the action of σ on x is
denoted by xσ.
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2.1. Commutators of higher weight.
In this paper, we often use basic facts of commutator calculus. The reader is

reffered to [12] and [3], for example. Let G be a group. For any elements x and y
of G, the element

xyx−1y−1

is called the commutator of x and y, and denoted by [x, y]. In general, a commutator
of higher weight is recursively defined as follows. First, a commutator of weight 1
is an element of G. For k > 1, a commutator of weight k is an element of the type
C = [C1, C2] where Cj is a commutator of weight aj (j = 1, 2) such that a1+a2 = k.
The weight of the commutator C is denoted by wt (C) = k. The commutator which
has elements g1, . . . , gt ∈ G in the bracket components is called the commutator in
the components g1, . . . , gt. For elements g1, . . . , gt ∈ G, a commutator of weight k
in the components g1, . . . , gt of the type

[[· · · [[gi1 , gi2 ], gi3 ], · · · ], gik
], ij ∈ {1, . . . , t}

with all of its brackets to the left of all the elements occuring is called a simple
k-fold commutator and is denoted by

[gi1 , gi2 , · · · , gik
].

For each k ≥ 1, the subgroups ΓG(k) of the lower central series of G are defined
recursively by

ΓG(1) = G, ΓG(k + 1) = [ΓG(k), G].

We use the following basic lemma in later sections.

Lemma 2.1. If a group G is generated by g1, . . . , gt, then each of the graded quo-
tients ΓG(k)/ΓG(k + 1) for k ≥ 1 is generated by the cosets of the simple k-fold
commutators

[gi1 , gi2 , . . . , gik
], ij ∈ {1, . . . , t}.

Now, for each k ≥ 1, let Γn(k) be the k-th subgroup ΓFn(k) of the lower central
series of a free group Fn of rank n and grk(Γn) its graded quotient Γn(k)/Γn(k+1).
We denote by gr (Γn) =

⊕
k≥1grk(Γn) the associated graded sum. Then the set

gr (Γn) naturally has a structure of a graded Lie algebra over Z induced from the
commtator bracket on Fn. Let H be the abelianization of Fn and Ln =

⊕
k≥1Ln(k)

the free graded Lie algebla generated by H . It is well known that the Lie algebra
gr (Γn) is isomorphic to Ln as a graded Lie algebra over Z. Thus, in this paper,
we identify gr (Γn) with Ln. For any element x ∈ Γn(k), we also denote by x the
coset class of x in Ln(k) = Γn(k)/Γn(k + 1). Let T (H) be the tensor algebra of H
over Z. Then the algebra T (H) is the universal envelopping algebra of the free Lie
algebra Ln and the natural map Ln → T (H) defined by

[X, Y ] �→ X ⊗ Y − Y ⊗ X

for X , Y ∈ Ln is an injective Lie algebra homomorphism. Hence we also regard
Ln(k) as a submodule of H⊗k for each k ≥ 1.

2.2. IA-automorphism group.
The kernel of the natural map AutFn → GL(n,Z) which is given by the action

of AutFn on H is called the IA-automorphism group of Fn and denoted by IAn.
Let {x1, . . . , xn} be a basis of a free group Fn. Magnus [11] showed that IAn is
finitely generated by automorphisms

Kab :

{
xa �→ x−1

b xaxb,

xt �→ xt, (t �= a)
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and

Kabc :

{
xa �→ xaxbxcxb

−1xc
−1,

xt �→ xt, (t �= a)

for any distinct a, b and c ∈ {1, 2, . . . , n}. It is known that the abelianization IAab
n

of the IA-automorphism group is free abelian group with generators Kab for distinct
a and b, and Kabc for distinct a, b, c and b < c. More precisely, if we denote by
H∗ = HomZ(H,Z) the dual group of H , we have a GL(n,Z)-module isomorphism
IAab

n � H∗⊗ZΛ2H . (For details, see [9].)

2.3. The associated graded Lie algebra.
Here we consider two descending filtrations of IAn. The first one is {An(k)}k≥1

defined as above. Since the series An(1), An(2), . . . is central, the associated graded
sum gr(An) =

⊕
k≥1grk(An) naturally has a structure of a graded Lie algebla

over Z induced from the commutator bracket on An(1). For each k ≥ 1, the
group An(0) = Aut Fn naturally acts on An(k) by conjugation, hence on grk(An).
Since the group An(1) = IAn trivially acts on grk(An), we see that the group
GL(n,Z) � An(0)/An(1) naturally acts on grk(An).

The other is a usual lower central series A′
n(1), A′

n(2), . . . of IAn(1). Let
grk(A′

n) = A′
n(k)/A′

n(k + 1) be the graded quotient for each k ≥ 1. Similarly the
associated graded sum gr(A′

n) =
⊕

k≥1grk(A′
n) has a structure of a graded Lie

algebra structure on Z. Moreover, each graded quotient grk(A′
n) is a GL(n,Z)-

module. We remark that An(k) = A′
n(k) for 1 ≤ k ≤ 3 as mentioned in Section 1.

From Lemma 2.1, for each k ≥ 1, the graded quotient grk(A′
n) is generated by (the

cosets of) the simple k-fold commutators in the components Kab and Kabc.

2.4. Johnson homomorphism.
Here we define the Johnson homomorphism of AutFn. For each k ≥ 1, let

τk : An(k) → HomZ(H,Ln(k + 1)) be the map defined by

(1) σ �→ (x �→ x−1xσ)

for σ ∈ An(k) and x ∈ H . Then the map τk is a GL(n,Z)-equivariant homomor-
phism and the kernel of τk is just An(k+1). Hence, identifying HomZ(H,Ln(k+1))
with H∗⊗Z Ln(k + 1), we obtain an injective homomorphism, also denoted by τk,

τk : grk(An) → H∗⊗Z Ln(k + 1).

This homomorphism is called the k-th Johnson homomorphism of AutFn. Sim-
ilarly, for each k ≥ 1, we can define a GL(n,Z)-equivariant homomorphism τ ′

k :
A′

n(k) → HomZ(H,Ln(k + 1)) as (1). Since A′
n(k + 1) is contained in the kernel of

τ ′
k, we obtain a homomorphism, also denoted by τ ′

k,

τ ′
k : grk(A′

n) → H∗⊗Z Ln(k + 1).

We also call the map τ ′
k the Johnson homomorphism of Aut Fn.

Let {x1, . . . , xn} be a basis of Fn. It defines a basis of H as a free abelian group,
also denoted by {x1, . . . , xn}. Let {x∗

1, . . . , x
∗
n} be the dual basis of H∗. For any

σ ∈ A′
n(k), if we set si(σ) := x−1

i xσ
i ∈ Ln(k + 1) (1 ≤ i ≤ n) then we have

τk(σ) = τ ′
k(σ) =

n∑
i=1

x∗
i ⊗ si(σ) ∈ H∗⊗ZLn(k + 1).

Let Der (Ln) be the graded Lie algebra of derivations of Ln. The degree k part of
Der (Ln) is expressed as Der (Ln)(k) = H∗⊗ZLn(k). Thus we sometimes identify
Der (Ln) with H∗⊗ZLn. Then the Johnson homomorphism τ =

⊕
k≥1 τk is a

graded Lie algebra homomorphism. In fact, if we denote by ∂σ the element of
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Der (Ln) corresponding to an element σ ∈ H∗⊗ZLn and write the action of ∂σ on
X ∈ Ln as X∂σ then we have

(2) τ ′
k+l([σ, τ ]) =

n∑
i=1

x∗
i ⊗ (si(σ)∂τ − si(τ)∂σ).

for any σ ∈ A′
n(k) and τ ∈ A′

n(l).

3. The contractions

For k ≥ 1 and 1 ≤ l ≤ k + 1, let ϕk
l : H∗⊗ZH⊗(k+1) → H⊗k be the contraction

map defined by

x∗
i ⊗ xj1 ⊗ · · · ⊗ xjk+1 �→ x∗

i (xjl
) · xj1 ⊗ · · · ⊗ xjl−1 ⊗ xjl+1 ⊗ · · · ⊗ xjk+1 .

For the natural embedding ιk+1
n : Ln(k + 1) → H⊗(k+1), we obtain a GL(n,Z)-

equivariant homomorphism

Φk
l = ϕk

l ◦ (idH∗ ⊗ ιk+1
n ) : H∗⊗ZLn(k + 1) → H⊗k.

We also call the map Φk
l contraction.

Here we introduce one of methods of the computation of Φk
l (x∗

i ⊗C) for a com-
mutator C ∈ Ln(k + 1) in the components x1, . . . , xn. In this paper, whenever we
compute Φk

l (x∗
i ⊗ C), we use the following method. First, if xi does not appear

in the components of C, then Φk
l (x∗

i ⊗ C) = 0. On the other hand, if xi appears
in the components of C m times, then we distinguish them and write such xi’s as
xi1 , . . . , xim in C. Then Φk

l (x∗
i ⊗ C) is given by rewriting xi1 , . . . , xim as xi in

m∑
j=1

Φk
l (x∗

ij
⊗ C).

Thus it suffices to compute Φk
l (x∗

i ⊗ C) for a commutator C which has only one
xi in its components. Now, C is written as [X, Y ] for some commutators X and
Y . Rewriting the commutator C as −[Y, X ] if xi appears in Y , we may always
consider C = ±[X, Y ] such that xi appears in the components of X . By a recursive
argument, we have C = ±[xi, C1, . . . , Ct] where each Cj (1 ≤ j ≤ t) is a commutator
of weight dj and d1 + · · · + dt = k.

Lemma 3.1. For a commutator [xi, C1, . . . , Ct] ∈ Ln(k + 1) as above,

Φk
1(x∗

i ⊗ [xi, C1, . . . , Ct]) = C1 ⊗ · · · ⊗ Ct.

Proof Since Ct does not have xi in the components, we have

Φk
1(x∗

i ⊗ [xi, C1, . . . , Ct]) = Φk
1(x∗

i ⊗ [xi, C1, . . . , Ct−1] ⊗ Ct)

− Φk
1(x∗

i ⊗ Ct ⊗ [xi, C1, . . . , Ct−1]),

= Φk
1(x∗

i ⊗ [xi, C1, . . . , Ct−1] ⊗ Ct).

Thus by a recursive argument, we have

Φk
1(x∗

i ⊗ [xi, C1, . . . , Ct]) = C1 ⊗ · · · ⊗ Ct. �

Lemma 3.2. For a commutator [xi, C1, . . . , Ct] ∈ Ln(k + 1) as above,

Φk
2(x∗

i ⊗ [xi, C1, . . . , Ct])

= −
∑

wt (Cj)=1

Cj ⊗ C1 ⊗ · · · ⊗ Cj−1 ⊗ Cj+1 ⊗ · · · ⊗ Ct.



SURJECTIVITY OF THE JOHNSON HOMOMORPHISM 7

Proof In

Φk
2(x∗

i ⊗ [xi, C1, . . . , Ct]) = Φk
2(x∗

i ⊗ [xi, C1, . . . , Ct−1] ⊗ Ct)

− Φk
2(x∗

i ⊗ Ct ⊗ [xi, C1, . . . , Ct−1]),

if wt (Ct) ≥ 2, the last term of the right hand side is equal to zero. On the other
hand, if wt (Ct) = 1, it is equal to −Ct ⊗ C1 ⊗ · · · ⊗ Ct−1 from Lemma 3.1. Thus,
by a recursive argument, we have Lemma 3.2. �

Let T (H) =
⊕

k≥1H
⊗k and S(H) =

⊕
k≥1S

kH be the tensor algebra and the
symmetric algebra on H respectively. Then the kernel of a natural map T (H) →
S(H) is a graded ideal of T (H), and denoted by I(H) =

⊕
k≥1I

k(H). For each
k ≥ 2, let Un(k) be the GL(n,Z)-submodule of H⊗k generated by elements type of

[A, B] := A ⊗ B − B ⊗ A

for A ∈ H⊗a, B ∈ H⊗b and a + b = k. If we put Un =
⊕

k≥1Un(k), then Un is the
kernel of the abelianizaton T (H) → T (H)ab as a Lie algebra. We have

Ln(k) ⊂ Un(k) ⊂ Ik(H) ⊂ H⊗k.

3.1. The image of Φk
1 ◦ τ ′

k.
Here we prove

Proposition 3.1. For n ≥ 3 and k ≥ 2, Im (Φk
1 ◦ τ ′

k) ⊂ Un(k).

It suffices to check that the image of any simple k-fold commutator σ in the
components Kab and Kabc is in Un(k). We have

τ ′
k(σ) =

n∑
i=1

x∗
i ⊗ si(σ).

In general, each si(σ) ∈ Ln(k + 1) can not be uniquely written as a sum of com-
mutators in the components x1, . . . , xn. In this paper, each si(σ) is recursively
computed in the following way. First, for σ = Kabc, we can set

sa(Kabc) = [xb, xc], st(Kabc) = 0 if t �= a.

For σ = Kab, we see that

x−1
t xσ

t =

{
[x−1

a , x−1
b ] if t = a,

1 if t �= a

in Fn. Since [x−1
a , x−1

b ] = [xa, xb] in Ln(2), so we can set

sa(Kab) = [xa, xb], st(Kab) = 0 if t �= a.

Next, if σ = [τ, Kab] for k-fold simple commutator τ , following from (2), we can set

si(σ) = si(τ)∂Kab − si(Kab)
∂τ

for each i. Furthermore, since a commutator bracket of weight l is considered as a
l-fold multilinear map from the cartesian product of l copies of Ln(1) to Ln(l), we
can also set

si(σ) =
α(i)∑
p=1

(−1)ei,pCi,p

where ei,p = 0 or 1, and Ci,p is a commutator of degree k + 1 in the components
x1, . . . , xn. Similarly, we can set si([τ, Kabc]) for σ = [τ, Kabc]. Here we show the
computation of τ ′

k(σ) for some σ ∈ A′
n(k)/A′

n(k+1) for example. For distinct a, b, c
and d, we have
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τ ′
2([Kab, Kbac]) = x∗

a ⊗ ([xa, xb])∂Kbac − x∗
b ⊗ ([xa, xc])∂Kab ,

= x∗
a ⊗ [xa, [xa, xc]] − x∗

b ⊗ [[xa, xb], xc]

and

τ ′
3([Kab, Kbac, Kad]) = x∗

a ⊗ ([xa, [xa, xc]])∂Kad − x∗
b ⊗ ([[xa, xb], xc])∂Kad

− x∗
a ⊗ ([xa, xd])∂[Kab,Kbac],

= x∗
a ⊗ [[xa, xd], [xa, xc]] + x∗

a ⊗ [xa, [[xa, xd], xc]]

− x∗
b ⊗ [[[xa, xd], xb], xc]

− x∗
a ⊗ [[xa, [xa, xc]], xd].

Now, for the convenience, for every t ∈ {1, . . . , n}, if each Ci,p has xt in its com-
ponents β(i, p, t) times, we distinguish them and write such xt’s as xt1 , . . . , xtβ(i,p,t)

in Ci,p. We denote by C̄i,p the element Ci,p whose componets are distinguished
as above. If we denote by Φk

1(x∗
iq

⊗ C̄i,p)� the element of H⊗k which is given by
rewriting xt1 , . . . , xtβ(i,p,t) as xt in Φk

1(x∗
iq
⊗ C̄i,p) for all t, then we have

(3) Φk
l ◦ τ ′

k(σ) =
n∑

i=1

α(i)∑
p=1

(−1)ei,p

β(i,p,i)∑
q=1

Φk
l (x∗

iq
⊗ C̄i,p)�.

Then Proposition 3.1 follows from

Lemma 3.3. Let k be an integer greater than 1. According to the notation as
above, for each i, p and q, we have

(i) Φk
1(x

∗
iq
⊗ C̄i,p)� = 0,

(ii) Φk
1(x

∗
iq
⊗ C̄i,p)� = X; a commutator of weight k in Ln(k)

or
(iii) There exist some j, p′ and q′ such that (j, p′, q′) �= (i, p, q),

(−1)ei,pΦk
1(x∗

iq
⊗ C̄i,p)� = ±A ⊗ B,

(−1)ej,p′Φk
1(x∗

jq′ ⊗ C̄j,p′)� = ∓B ⊗ A

where A ∈ H⊗µ, B ∈ H⊗ν and µ + ν = k.

Proof We use induction on k. For k = 2, the result follows. In fact, let us
consider σ = [Kab, Kbac] for example. Then we have

Φ2
1 ◦ τ ′

2(σ) = Φ2
1(x

∗
a ⊗ [xa, [xa, xc]]) − Φ2

1(x
∗
b ⊗ [[xa, xb], xc]),

= Φ2
1(x

∗
a1

⊗ [xa1 , [xa2 , xc]])� + Φ2
1(x

∗
a2

⊗ [xa1 , [xa2 , xc]])�

− Φ2
1(x

∗
b ⊗ [[xa, xb], xc])�,

= [xa, xc] − xc ⊗ xa + xa ⊗ xc.

Hence we obtain the required result in this case. Similarly we can check for the other
simple 2-fold commutators in the components Kab and Kabc. The computations
are left to the reader for exercises. Assume k ≥ 3 and the result follows for k − 1.
Let σ be a simple (k− 1)-fold commutator in the components Kab and Kabc. First,
for τ = Kab we consider [σ, τ ]. Then set

τ ′
k−1(σ) =

n∑
i=1

α(i)∑
p=1

x∗
i ⊗ (−1)ei,pCi,p.
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Here we also set τ ′
1(τ) = x∗

a ⊗ [xa′ , xb′ ] and distinguish a′ and b′ from any a and b
which appear in Ci,p for any i and p respectively. In general, for any l ∈ {1, . . . , n},
we have

Φk
l ◦ τ ′

k([σ, τ ]) =
n∑

i=1

α(i)∑
p=1

(−1)ei,p

β(i,p,i)∑
q=1

β(i,p,a)∑
r=1

Φk
l (x∗

iq
⊗ C̄

∂(x∗
ar

⊗[xa′ ,xb′ ])
i,p )�

+
α(a)∑
p=1

(−1)ea,p

β(a,p,a)∑
r=1

Φk
l (x∗

a′ ⊗ C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

a,p )�

+
α(b)∑
p=1

(−1)eb,p

β(b,p,a)∑
r=1

Φk
l (x∗

b′ ⊗ C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

b,p )�

−
α(a)∑
p=1

(−1)ea,p

β(a,p,a)∑
r=1

Φk
l (x∗

ar
⊗ [C̄a,p, xb′ ])�

−
α(b)∑
p=1

(−1)eb,p

β(b,p,a)∑
r=1

Φk
l (x∗

ar
⊗ [xa′ , C̄b,p])�

−
α(b)∑
p=1

(−1)eb,pΦk
l (x∗

a′ ⊗ [xa′ , C̄b,p])�

(4)

Here we consider the case where l = 1. First we consider each term of the last
sum. Since

Φk
1(x

∗
a′ ⊗ [xa′ , C̄b,p])� = Cb,p ∈ Ln(k)

from Lemma 3.1, it satisfies (ii).
Next, we consider each term of the first sum. By the inductive hypothesis, we

have Φk
1(x

∗
iq
⊗ C̄

∂(x∗
ar

⊗[xa′ ,xb′ ])
i,p )� = 0 if C̄i,p does not have xar in its components,

Φk−1
1 (x∗

iq
⊗ C̄i,p)� = 0 or iq = ar. Suppose C̄i,p has xar in its components. If

Φk−1
1 (x∗

iq
⊗ C̄i,p)� is a commutator X of weight k and iq �= ar, then we have

Φk
1(x∗

iq
⊗C̄

∂(x∗
ar

⊗[xa′ ,xb′ ])
i,p )� is a commutator X∂(x∗

ar
⊗[xa′ ,xb′ ]) of weight k+1. Suppose

(−1)ei,pΦk−1
1 (x∗

iq
⊗ C̄i,p)� = ±A ⊗ B for some A ∈ H⊗µ, B ∈ H⊗ν and µ + ν = k,

and the element xa which corresponds to xar appears in A. If we consider the
element A′ ∈ H⊗µ+1 given by A substituting [xa, xb] into xa which corresponds to
xar , then we have

(−1)ei,pΦk
1(x∗

iq
⊗ C̄

∂(x∗
ar

⊗[xa′ ,xb′ ])
i,p )� = ±A′ ⊗ B.

On the other hand, by the inductive hypothesis, we have

(−1)ej,p′Φk−1
1 (x∗

jq′ ⊗ C̄j,p′ )� = ∓B ⊗ A

for some j, p′ and q′. Hence there exists some r′ corresponding to r and we have

(−1)ej,p′ Φk
1(x∗

jq′ ⊗ C̄
∂(x∗

a
r′

⊗[xa′ ,xb′ ])
j,p′ )� = ∓B ⊗ A′.

Thus in this case, (iii) yields. Similarly we have the required result in the case
where the element xa corresponding to xar appears in B.

Now, for any r (1 ≤ r ≤ β(a, p, a)), if we rewrite C̄a,p as ±[ar, X1, . . . , Xt] stated
as above, we have

Φk
1(x∗

a′ ⊗ C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

a,p )� = ±Φk
1(x∗

a′ ⊗ [[xa′ , xb′ ], X1, . . . , Xt])�

= ±(xb′ ⊗ X1 ⊗ · · · ⊗ Xt)�
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and
Φk

1(x∗
ar

⊗ [C̄a,p, b
′])� = ±Φk

1(x
∗
ar

⊗ [[ar, X1, . . . , Xt], xb′ ])�

= ±(X1 ⊗ · · · ⊗ Xt ⊗ xb′)�.

This shows

(−1)ei,pΦk
1(x∗

a′ ⊗ C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

a,p )� and − (−1)ei,pΦk
1(x∗

ar
⊗ [C̄a,p, xb′ ])�

satisfy (iii). Similarly we see

(−1)eb,pΦk
1(x∗

b′ ⊗ C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

b,p )� and − (−1)eb,pΦk
1(x∗

ar
⊗ [xa′ , C̄b,p])�.

also satisfy (iii).
By an argument similar to above, we can also obtain the required result for

τ = Kabc. This completes the induction. �

3.2. The image of Φk
2 ◦ τ ′

k.
Here we prove

Proposition 3.2. For n ≥ 3 and k ≥ 3, Im (Φk
2 ◦ τ ′

k) ⊂ H⊗ZUn(k − 1).

For each i, p and q in (3), if C̄i,p has xiq , rewriting C̄i,p as ±[xiq , D
1
i,p, . . . , D

γ(i,p,q)
i,p ]

we have,

Φk
2◦τ ′

k(x∗
iq
⊗ C̄i,p)

=
∑

wt (Dt
i,p)=1

∓(Dt
i,p ⊗ D1

i,p ⊗ · · · ⊗ Dt−1
i,p ⊗ Dt+1

i,p ⊗ · · · ⊗ D
γ(i,p,q)
i,p )�.

Set T (C̄i,p) := {t |wt (Dt
i,p) = 1}. If C̄i,p does not have xiq or T (C̄i,p) = 0 then

Φk
2(x∗

iq
⊗ C̄i,p)� = 0. If T (C̄i,p) = 1 and γ(i, p, q) = 2, then

Φk
2(x∗

iq
⊗ C̄i,p)� = ±xs ⊗ Z ∈ H⊗Z Ln(k − 1)

for some commutator Z of weight k − 1. Then Proposition 3.2 follows from

Lemma 3.4. Let k be an integer greater than 2. According to the notation above,
for each i, p and q, we have

(i) C̄i,p does not have xiq or T (C̄i,p) = 0,
(ii) T (C̄i,p) = 1 and γ(i, p, q) = 2,
or

(iii) For each t ∈ T (C̄i,p), there exist some j, p′, q′ and t′, (j, p′, q′, t′) �=
(i, p, q, t), such that if we set

X := ∓(−1)ei,p(Dt
i,p ⊗ D1

i,p⊗
ť· · · ⊗D

γ(i,p,q)
i,p )�,

Y := ∓(−1)ej,p′ (Dt′
j,p′ ⊗ D1

j,p′⊗ ť′· · · ⊗D
γ(j,p′,q′)
j,p′ )�

then X + Y = 0 or

X = ±xs ⊗ A ⊗ B, Y = ∓xs ⊗ B ⊗ A

where A ∈ H⊗µ, B ∈ H⊗ν and µ + ν = k − 1.

Proof We use induction on k. For k = 3, the result follows. The computations
are reft to the reader for exercises. Assume k ≥ 4 and the result follows for k − 1.
Let σ be a simple (k− 1)-fold commutator in the components Kab and Kabc. First,
for τ = Kab we consider [σ, τ ]. Then set

τ ′
k−1(σ) =

n∑
i=1

α(i)∑
p=1

x∗
i ⊗ (−1)ei,pCi,p.
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Here we also set τ ′
1(τ) = x∗

a ⊗ [xa′ , xb′ ] and distinguish a′ and b′ from any a and b
which appear in Ci,p for any i and p respectively.

Now we consider (4) for l = 2. First, since T ([x′
a, C̄b,p]) = 0, each term of the

last sum satisfies (i). For each term of the first sum, since C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

i,p = 0
if C̄i,p does not have xar , so we may assume C̄i,p has xar in its components. If

iq = ar then the element C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

i,p also does not have xiq . Suppose iq �= ar.

If T (C̄i,p) = 0, then T (C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

i,p ) = 0. If T (C̄i,p) = 1, γ(i, p, q) = 2 and
Φk

2(x∗
iq
⊗ C̄i,p)� = ±xs ⊗ Z for some commutator Z of weight k − 1 then we have

Φk
2(x∗

iq
⊗ C̄

∂(x∗
ar

⊗[xa′ ,xb′ ])
i,p )� =

{
0 if s = ar,

±xs ⊗ Z∂(x∗
ar

⊗[xa′ ,xb′ ]) if s �= ar.

So we see that each case above satisfies (i) or (ii). For T (C̄i,p) = 1 and γ(i, p, q) ≥ 3,
or T (C̄i,p) ≥ 2, we have

(−1)ei,pΦk
2(x∗

iq
⊗ C̄

∂(x∗
ar

⊗[xa′ ,xb′ ])
i,p )�

=
∑

wt (Dt
i,p)=1, Dt

i,p �=xar

∓(−1)ei,p

(
Dt

i,p ⊗ (D1
i,p⊗

ť· · · ⊗D
γ(i,p,q)
i,p )∂(x∗

ar
⊗[xa′ ,xb′ ])

)
�
.

Set

X ′ := ∓(−1)ei,p

(
Dt

i,p ⊗ (D1
i,p⊗

ť· · · ⊗D
γ(i,p,q)
i,p )∂(x∗

ar
⊗[xa′ ,xb′ ])

)
�
.

By the inductive hypothesis, for X = ∓(−1)ei,p(Dt
i,p⊗D1

i,p⊗
ť· · · ⊗D

γ(i,p,q)
i,p )�, there

exists Y := ∓(−1)ej,p′ (Dt′
j,p′ ⊗D1

j,p′⊗ ť′· · · ⊗D
γ(j,p′,q′)
j,p′ )� for some j, p′, q′ and t′ such

that X + Y = 0, or X = ±xs ⊗ A ⊗ B and Y = ∓xs ⊗ B ⊗ A for some A ∈ H⊗µ,
B ∈ H⊗ν and µ + ν = k − 1. By an argument similar to that in Lemma 3.3, we
have

Y ′ := ∓(−1)ej,p′
(
Dt′

j,p′ ⊗ (D1
j,p′⊗ ť′· · · ⊗D

γ(j,p′,q′)
j,p′ )∂(x∗

a
r′

⊗[xa′ ,xb′ ])
)

�
,

for some suitable r′ corresponding to r such that X ′+Y ′ = 0, or X ′ = ±xs⊗A′⊗B′

and Y ′ = ∓xs ⊗ B′ ⊗ A′. Here A′ ∈ H⊗µ′
, B′ ∈ H⊗ν′

and µ′ + ν′ = k.
Finally, for any r (1 ≤ r ≤ β(a, p, a)), if we rewrite C̄a,p as ±[ar, X1, . . . , Xu]

stated as above, we have

Φk
2(x∗

a′⊗C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

a,p )�

= ±Φk
2(x∗

a′ ⊗ [[xa′ , xb′ ], X1, . . . , Xu])�,

= ∓
{ ∑

wt (Xt)=1

(Xt ⊗ xb′ ⊗ X1⊗ ť· · · ⊗Xu)�

}
∓(xb′ ⊗ X1 ⊗ · · · ⊗ Xu)�

and

−Φk
2(x∗

ar
⊗[C̄a,p, xb′ ])�

= ∓Φk
2(x∗

ar
⊗ [[xar , X1, . . . , Xu], xb′ ])�

= ±
{ ∑

wt (Xt)=1

(Xt ⊗ X1⊗ ť· · · ⊗Xu ⊗ xb′)�

}
±(xb′ ⊗ X1 ⊗ · · · ⊗ Xu)�.

Hence we see that each term of the equations above satisfies condition (iii). Similarly

we can show that each term of Φk
2(x∗

b′ ⊗ C̄
∂(x∗

ar
⊗[xa′ ,xb′ ])

b,p )� and Φk
2(x∗

ar
⊗ [xa′ , C̄b,p])�

satisfies (iii).
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By an argument similar to above, we can also obtain the required result for
τ = Kabc,. This completes the induction. �

4. The trace maps

In this section, using the contractions defined in Section 3, we define a homo-
morphism called the trace map which vanishes on the image of the Johnson homo-
morphism. Here we use some basic facts of the representation theory of GL(n,Z).
The reader is referred to, for example, Fulton-Harris [5] and Fulton [4].

For any k ≥ 1 and any partition λ of k, we denote by Hλ the Schur-Weyl
module of H corresponding to the partition λ of k. Let fλ : H⊗k → Hλ be a
natural homomorphism. In this paper, we mainly consider the case for λ = [k] or
[1k]. The modules H [k] and H [1k] are the symmetric product SkH and the exterior
product ΛkH respectively. Using the natural map ιkn : Ln(k) → H⊗k, we denote
f[1k] ◦ ιkn(C) by Ĉ for any C ∈ Ln(k).

Lemma 4.1. For any commutator C of weight k ≥ 3, Ĉ = 0 in ΛkH

Proof We use induction on k. For k = 3, the result is trivial. Assume k ≥ 4 and
C = [C1, C2] for commutators C1 and C2. Then

Ĉ = Ĉ1 ∧ Ĉ2 − Ĉ2 ∧ Ĉ1.

Set wt (C1) = a, wt (C2) = b. Then a + b = k. If either a or b is even, the result is
trivial. If both a and b are odd, since k ≥ 3, we have 3 ≤ a < k or 3 ≤ b < k. By
inductive hypothesis, we have Ĉ = 0. This completes the induction. �
Lemma 4.2. For 1 ≤ k ≤ n and any commutator C of weight k + 1 in the
components x1, . . . , xn except for xi, there exists an element σ ∈ A′

n(k) such that

τ ′
k(σ) = x∗

i ⊗ C ∈ H∗⊗ZLn(k + 1).

Proof We use induction on k. For k = 1, considering Kabc, the result holds.
Assume k ≥ 2 and C = [C1, C2] for commutators C1 and C2. Moreover we may also
assume wt (C1) ≥ wt (C2). Since k ≥ wt (C1) ≥ wt (C2) and wt (C1) + wt (C2) =
k + 1 ≥ 3, we have wt (C2) ≤ k − 1. Set a = wt (C1) and b = wt (C2). For any xj

which appears in C1, by the inductive hypothesis, we have two elements σ1 ∈ A′
n(b)

and σ2 ∈ A′
n(a) defined by

τ ′
b(σ1) = x∗

i ⊗ [xj , C2] and τ ′
a−1(σ2) = x∗

j ⊗ C1.

Then, setting σ = [σ1, σ2], we obtain τ ′
k(σ) = x∗

i ⊗ [C1, C2]. This completes the
induction. �
4.1. Morita’s trace (Trace map for SkH).

Here we consider the map

Tr[k] = f[k] ◦ Φk
1 : H∗⊗ZLn(k + 1) → SkH.

By definition, this map coincides with the Morita’s trace Trk. For n ≥ 3 and k ≥ 2,
Morita defined the trace map Trk using the Magnus representation of AutFn and
showed that Trk vanishes on the image of τk. By a recent remakable work, he
showed that TrQk is surjective. Hence we have

Theorem 4.1. (Morita) For n ≥ 3 and k ≥ 2,

SkHQ ⊂ Coker τk,Q.

Corollary 4.1. For n ≥ 3 and k ≥ 2,

rankZ(Coker (τk)) ≥
(

n + k − 1
k

)
.
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4.2. Trace map for ΛkH.
Here we consider the map

Tr[1k] := f[1k] ◦ Φk
1 : H∗⊗ZLn(k + 1) → ΛkH.

Theorem 4.2.

(1) For 3 ≤ k ≤ n, Tr[1k] is surjective,
(2) Im (Tr[1k](k) ◦ τ ′

k) = 0 if k is odd and 3 ≤ k ≤ n,
(3) Im (Tr[1k](k) ◦ τ ′

k) = 2(ΛkH) ⊂ ΛkH if k is even and 4 ≤ k ≤ n − 2.

Proof For 3 ≤ k ≤ n, considering

x∗
i ⊗ [xi, xj1 , xi, xj2 . . . , xjk−1 ] ∈ H∗⊗ZLn(k + 1)

for distinct i, j1, . . . , jk−1, we have

Tr[1k](x
∗
i ⊗ [xi, xj1 , xi, xj2 . . . , xjk−1 ]) = −3 xi ∧ xj1 ∧ · · · ∧ xjk−1 .

Similarly

Tr[1k](x
∗
i ⊗ [[xi, xj1 ], [xi, xj2 ], xj3 . . . , xjk−1 ]) = −4 xi ∧ xj1 ∧ · · · ∧ xjk−1 .

Thus a generator xi ∧xj1 ∧ · · · ∧ xjk−1 of ΛkH is in the image of Tr[1k]. This shows
(1).

For an odd integer k, let us consider an element

[X, Y ] = X ⊗ Y − Y ⊗ X ∈ Un(k)

for X ∈ H⊗a, Y ∈ H⊗b and a + b = k. Since k is odd, either a or b is even. Hence

f[1k]([X, Y ]) = f[1a](X) ∧ f[1b](Y ) − f[1b](Y ) ∧ f[1a](X)

= f[1a](X) ∧ f[1b](Y ) − f[1a](X) ∧ f[1b](Y )
= 0.

Since Un(k) is generated by the elements type of [X, Y ] as above, the map f[1k]

vanishes on Un(k). Hence we obtain (2) from Proposition 3.1.

For an even integer k, Im (Tr[1k](k)◦τ ′
k) ⊂ 2(ΛkH) is shown by a similar argument

as above. Thus it suffices to show Im (Tr[1k](k) ◦ τ ′
k) ⊃ 2(ΛkH). From Lemma 2.1,

there are σ1 ∈ A′
n(k − 1) and σ2 ∈ A′

n(1) such that

τ ′
k−1(σ1) = x∗

i1 ⊗ [xi2 , xj1 , . . . , xjk−1 ] and τ ′
1(σ2) = x∗

i2 ⊗ [xi1 , xjk
]

for distinct i1, i2, j1, . . . , jk ∈ {1, . . . , n}. Then

Tr[1k] ◦ τ ′
k([σ1, σ2]) = f[1k](xjk

⊗ xj1 ⊗ · · · ⊗ xjk−1 − xj1 ⊗ · · · ⊗ xjk−1 ⊗ xjk
),

= xjk
∧ xj1 ∧ · · · ∧ xjk−1 − xj1 ∧ · · · ∧ xjk−1 ∧ xjk

,

= −2 xj1 ∧ · · · ∧ xjk
.

Since 2(ΛkH) is generated by the elements 2 xj1 ∧ · · · ∧ xjk
, we have Im (Tr[1k](k) ◦

τ ′
k) ⊃ 2(ΛkH). This completes the proof of (3). �

Corollary 4.2. For an odd k and 3 ≤ k ≤ n,

ΛkHQ ⊂ Coker τk,Q.

Corollary 4.3. For an odd k and 3 ≤ k ≤ n,

rankZ(Coker (τ ′
k)) ≥

(
n

k

)
.
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4.3. Trace map for H [2,1k−2].
Here we consider the map

Tr[2,1k−2] := (idH ⊗ fk−1
[1k−1]

) ◦ Φk
2 : H∗⊗ZLn(k + 1) → H⊗ZΛk−1H.

Let I be the GL(n,Z)-submodule of H⊗ZΛk−1H defined by

I = 〈x ⊗ z1 ∧ · · · ∧ zk−2 ∧ y + y ⊗ z1 ∧ · · · ∧ zk−2 ∧ x | x, y, zt ∈ H〉.

Theorem 4.3. For an even k and 4 ≤ k ≤ n − 1,

(1) Im TrQ
[2,1k−1]

(k) = IQ,
(2) Im (Tr[2,1k−1](k) ◦ τ ′

k) = 0.

Proof For any distinct i, j1, . . . , jk, considering

x∗
i ⊗ [xi, xj1 , xj2 , [xj3 , xj4 ], . . . , [xjk−1 , xjk

]] ∈ H∗⊗ZLn(k + 1),

we have
Tr[2,1k−2](x

∗
i ⊗ [xi, xj1 , xj2 , [xj3 , xj4 ], . . . , [xjk−1 , xjk

]])

= −2
k−2
2 (xj1 ⊗ xj3 ∧ xj4 ∧ · · · ∧ xjk−1 ∧ xjk

∧ xj2

+ xj2 ⊗ xj3 ∧ xj4 ∧ · · · ∧ xjk−1 ∧ xjk
∧ xj1).

Hence, Im TrQ
[2,1k−2]

(k) ⊃ IQ. To prove Im TrQ
[2,1k−2]

(k) ⊂ IQ, it suffices to show
that the image of the element x∗

i ⊗ [xi, C1, . . . , Ct] ∈ H∗⊗ZLn(k+1), where xi does
not appear in the componets of each of Cj , is contained in IQ. From Lemma 3.2,
we have

Tr[2,1k−2](x
∗
i ⊗[xi, C1, . . . , Ct])

= −
∑

wt (Cj)=1

Cj ⊗ Ĉ1 ∧ · · · ∧ Ĉj−1 ∧ Ĉj+1 ∧ · · · ∧ Ĉt.

If wt (Cj) ≥ 3 for some j, the right hand side is equal to zero from Lemma 4.1.
Hence we may assume wt (Cj) ≤ 2 for all j. Write the Cj ’s satisfying wt (Cj) = 1
as Cj1 , . . . , Cjl

. Then l is even and we have

Tr[2,1k−2](x
∗
i ⊗ [xi, C1, . . . , Ct])

= −2
k−2
2

l/2∑
s=1

(Cjs ⊗ Ĉ1 ∧ · · · j̆s· · · · · ·
˘js+1· · · · · · ∧ Ĉt ∧ Cjs+1

+ Cjs+1 ⊗ Ĉ1 ∧ · · · j̆s· · · · · ·
˘js+1· · · · · · ∧ Ĉt ∧ Cjs)

∈ IQ.

This shows (1).

Let us consider

x ⊗ [X, Y ] = x ⊗ (X ⊗ Y − Y ⊗ X) ∈ H⊗Z Un(k − 1)

for X ∈ H⊗a, Y ∈ H⊗b and a + b = k − 1. Since k − 1 is odd, either a or b is even.
Thus

(idH ⊗ f[1k−1])(x ⊗ [X, Y ]) = x ⊗ (f[1a](X) ∧ f[1b](Y ) − f[1b](Y ) ∧ f[1a](X))

= x ⊗ (f[1a](X) ∧ f[1b](Y ) − f[1a](X) ∧ f[1b](Y ))
= 0.

Since H⊗Z Un(k − 1) is generated by the elements above, the map idH ⊗ f[1k−1]

vanishes on H⊗Z Un(k − 1). Hence we obtain (2) from Proposition 3.2. �
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Now we have HQ⊗ZΛk−1HQ � H
[2,1k−2]
Q ⊕ΛkHQ from the representation theory

of GL(n,Z). For even k, since IQ is contained in the kernel of a natural map
HQ⊗ZΛk−1HQ → ΛkHQ defined by x ⊗ y1 ∧ · · · ∧ yk−1 �→ x ∧ y1 ∧ · · · ∧ yk−1, we

have IQ � H
[2,1k−2]
Q .

Corollary 4.4. For an even k and 4 ≤ k ≤ n − 1,

H
[2,1k−2]
Q ⊂ Coker τ ′

k,Q.

Corollary 4.5. For an even k and 4 ≤ k ≤ n − 1,

rankZ(Coker (τ ′
k)) ≥ (k − 1)

(
n + 1

k

)
.

5. The cokernel of the Johnson homomorphism τk for k = 2 and 3

5.1. the case for k = 2.
In this subsection we consider the case where n ≥ 3. From Theorem 4.1 and

rankZ(Coker (τ ′
2)) =

(
n+1

2

)
by Pettet [16], we have a GL(n,Z)-equivariant exact

sequence
0 → gr2Q(An)

τ2,Q−−−→ H∗
Q⊗Z LQ

n (3) → S2HQ → 0.

In this subsection we show that the exact sequence above holds before tensoring
with Q. Here are some examples of commutators of degree 2 in the components
Kab and Kabc and their images by the Johnson homomorphism τ2.

(C1): [Kab, Kac], x∗
a ⊗ [[xa, xc], xb] − x∗

a ⊗ [[xa, xb], xc],
(C2): [Kab, Kacd], x∗

a ⊗ [[xc, xd], xb],
(C3): [Kab, Kabc], x∗

a ⊗ [[xb, xc], xb],
(C4): [Kab, Kbac], x∗

a ⊗ [xa, [xa, xc]] − x∗
b ⊗ [[xa, xb], xc],

(C5): [Kabc, Kbad], x∗
a ⊗ [[xa, xd], xc] − x∗

b ⊗ [[xb, xc], xd],
(C6): [Kabc, Kbac], x∗

a ⊗ [[xa, xc], xc] − x∗
b ⊗ [[xb, xc], xc].

Theorem 5.1. For n ≥ 3,

0 → gr2(An) τ2−→ H∗⊗ZLn(3) → S2H → 0

is a GL(n,Z)-equivariant exact sequence.

Proof First, we note that for any element δ ∈ H∗⊗ZLn(3), we also denote by δ
the coset class of it in Coker τ2. For any i, p, q, r ∈ {1, . . . , n} and p �= q, set

ai(p, q, r) := x∗
i ⊗ [[xp, xq], xr] ∈ Coker τ2.

From (C2) and (C3), we have ai(p, q, r) = 0 for p, q, r �= i. From Jacobi identity,
we have

ai(p, q, i) = −ai(i, p, q) + ai(i, q, p).
Hence, from (C1), ai(p, q, i) = 0 for p, q �= i. Since ai(p, q, r) = −ai(q, p, r), from
(C1) we can set

αi(q, r) := ai(i, q, r) = ai(i, r, q) = −ai(q, i, r) = −ai(r, i, q)

for q, r �= i and q �= r. Moreover, from (C5) we can also set α(q, r) := αi(q, r) for
q �= r. Similarly, from (C4) and (C6), we can set α(p, p) := ai(i, p, p) = −ai(p, i, p)
for i �= p.

Let A be the free abelian group generated by the elements α(p, q) for p ≤ q.
By the argument above, Coker τ2 is isomorphic to a quotient group of A as an
abelian group. On the other hand, since the rank of the free part of Coker τ2 is
1
2n(n+1) from Corollary 4.1 and rankZ(A) = 1

2n(n+1), we see that Coker τ2 must
be isomorphic to A. Considering the action of GL(n,Z) on A, we verify A � S2H .
This completes the proof of Theorem 5.1. �
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5.2. the case for k = 3.
Next we compute the cokernel of the Johnson homomorphism τ3,Q for n ≥ 3

using the fact that Coker τ3 = Coker τ ′
3. We use commutators of degree 3 in the

components Kab and Kabc:

(C1-1): [[Kab, Kac], Kbd], (C1-2): [[Kab, Kac], Kbc],
(C1-3): [[Kab, Kac], Kba],
(C3-1): [[Kab, Kabc], Kcab], (C3-2): [[Kab, Kabc], Kca],
(C3-3): [[Kab, Kabc], Kbad],
(C4-1): [[Kab, Kbac], Kac], (C4-2): [[Kab, Kbac], Kba],
(C4-3): [[Kab, Kbac], Kcd], (C4-4): [[Kab, Kbac], Kabc],
(C4-5): [[Kab, Kbac], Kcab], (C4-6): [[Kab, Kbac], Kca],
(C4-7): [[Kab, Kbac], Kab], (C4-8): [[Kab, Kbac], Kcb],
(C4-9): [[Kab, Kbac], Kad].

Here are a few examples of their images by τ3:

(C1-1)’: x∗
a ⊗ [[xa, xc], [xb, xd]] − x∗

a ⊗ [[xa, [xb, xd]], xc],
(C3-1)’: x∗

a ⊗ [[xb, [xa, xb]], xb] − x∗
c ⊗ [[[xb, xc], xb], xb],

(C4-1)’: x∗
a ⊗ [[xc, [xa, xc]], xa] + x∗

a ⊗ [[xc, xa], [xa, xc]] + x∗
b ⊗ [[xb, [xa, xc]], xc]

−x∗
a ⊗ [[[xc, xa], xa], xc].

Theorem 5.2. For n ≥ 3,

0 → gr3Q(An)
τ3,Q−−−→ H∗

Q⊗ZLQ
n (4) → S3HQ ⊕ Λ3HQ → 0

is a GL(n,Z)-equivariant exact sequence.

Proof As before, for any element δ ∈ H∗⊗ZLn(4), we also denote by δ the coset
class of it in Coker τ3. For any i, p, q, r, s ∈ {1, . . . , n}, set

ai(p, q, r, s) := x∗
i ⊗ [[[xp, xq], xr], xs] if p �= q,

bi(p, q, r, s) := x∗
i ⊗ [[xp, xq], [xr, xs]] if p �= q and r �= s

in Coker τ3.

First, from Lemma 2.1, we have ai(p, q, r, s) = 0 and bi(p, q, r, s) = 0 for distinct
i, p, q, r and s. Substituting X = [xb, xd], Y = xc and Z = xa into Jacobi identity

(5) [[X, Y ], Z] + [[Z, X ], Y ] + [[Y, Z], X ] = 0,

we see (C1-1)’ is equivalent to x∗
a ⊗ [[[xb, xd], xc], xa]. Thus ai(p, q, r, i) = 0 for

i, p, q and r. Similarly ai(p, q, q, i) = 0 for p, q �= i from (C1-2), and hence
ai(p, q, p, i) = −ai(q, p, p, i) = 0. Substituting X = [xc, xa], Y = xa and Z = xc

into (5) we have [[[xc, xa], xc], xa] = [[[xc, xa], xa], xc]. Thus (C4-1)’ is equivalent
to x∗

b ⊗ [[[xc, xa], xb], xc]. This shows ai(p, q, i, p) = 0, and hence ai(p, q, i, q) =
−ai(q, p, i, q) = 0 for p, q �= i. Similarly, from (C4-2), we have bi(i, p, p, q) = 0 for
p, q �= i.

Next, from (C3-1)’, we have ai(i, p, p, p) = aj(j, p, p, p) for distinct i, j and p.
Thus we can set

β(p) := ai(i, p, p, p) = −ai(p, i, p, p).

If n ≥ 4, from (C4-4) we have ai(i, p, q, q) + ap(q, p, p, q) = 0 and aj(j, p, q, q) +
ap(q, p, p, q) = 0 for any distinct i, j, p and q. So ai(i, p, q, q) = aj(j, p, q, q). Hence
for n ≥ 3 we can set

β(p, q) := ai(i, p, q, q)
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for distinct p and q. Then we can show that
ai(i, p, i, p) = β(i, p),

ai(i, p, p, i) = β(i, p),

ai(i, p, i, i) = β(p, i),

ai(i, p, p, q) = β(q, p),

from (C4-4), (C3-2), (C4-6) and (C4-5) respectively. Furthermore, considering the
Jacobi identity obtained by substituting X = [xi, xp], Y = xq and Z = xp into (5),
we have

ai(i, p, q, p) = β(q, p).
Thus we also have ai(p, i, i, p) = −β(i, p), ai(p, i, p, i) = −β(i, p) and so on.

Now set

β(p, q, i) := ai(i, p, q, i) and γ(p, q, i) := ai(p, q, i, i)

for distinct i, p and q. Clearly, γ(p, q, r) = −γ(q, p, r). We have

ai(i, p, i, q) = β(i, q, p) − γ(i, q, p)

from (C4-7) and considering the Jacobi identity obtained by substituting X =
[xi, xp], Y = xi and Z = xq into (5),

(6) ai(i, p, i, q) = β(p, i, q) − γ(p, i, q) − β(p, q, i).

On the other hand, we see β(p, q, r) = β(r, p, q) from (C1-3), and considering
bi(i, p, i, q) = −bi(i, q, i, p) and (6), we have γ(p, q, r) = γ(r, p, q). Then from (C4-8),
we have β(p, q, r) − β(p, r, q) = γ(r, q, p).

Finally, if n ≥ 4, for distinct i, p, q and r, we obtain
ai(i, p, q, r) = β(p, q, r),

ai(p, q, i, r) = γ(p, q, r),

bi(p, q, i, r) = γ(p, q, r)

from (C3-3), (C4-9) and (C4-3) respectively.
Let B the free abelian group generated by the elements

β(p, q, r) for p < q < r,

β(p, q) for p �= q,

β(p) for any p

γ(p, q, r) for p < q < r.

By the argument above, we see Coker τ3 is isomorphic to a quotient group of
B as an abelian group. On the other hand, from corollaries 4.1 and 4.3, and
rankZ B =

(
n+2

3

)
+

(
n
3

)
, we see that Coker τ3 must be isomorphic to B. To

consider the structure of Coker τ3 as a GL(n,Z)-module, we define a GL(n,Z)-
homomorphism Ψ : H∗⊗ZLn(4) → S3H ⊕ Λ3H by

w �→ (Tr[3](w) , Tr[13](w) ).

Then from Theorem 4.2 and the argument above, we see Im(τ3) = Ker(Ψ). On the
other hand, since we have

Ψ(ai(i, p, q, r)) = (xp · xq · xr , xp ∧ xq ∧ xr),

Ψ(ai(p, q, i, r)) = (0,−2xp ∧ xq ∧ xr),
ΨQ is surjective. This completes the proof of Theorem 5.2. �
Corollary 5.1. For n ≥ 3,

(7) rankZ gr3(An) =
1
12

n(3n4 − 7n2 − 8).
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In particular, substituting n = 3 into (7), we have rankZ gr3(A3) = 43.
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