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Abstract

We explicitly determine the Babuska-Aziz constant, which plays an essential
role in the interpolation error estimation of the linear triangular finite element.
The equation for determination is the transcendental equation ¢ 4+ tant = 0, so
that the solution can be numerically obtained with desired accuracy and verifi-
cation. Such highly accurate approximate values for the constant can be widely
used for a priori and a posteriori error estimations in adaptive computation
and/or numerical verification.
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1 INTRODUCTION

The finite element method (FEM) is now recognized as a powerful numerical method
for wide classes of partial differential equations. Furthermore, it also has sound math-
ematical bases such as highly refined a priori and a posteriori error estimations. In the
classical a priori error analysis of FEM, interpolation errors are essential to derive final
error estimates [4, 5]. In this process, there appear various positive constants besides
the standard discretization parameter h and norms (or seminorms), but it has been
very difficult to evaluate such constants explicitly. For quantitative purposes, however,
it is indispensable to evaluate or bound them as accurate as possible. Thus such evalu-
ation has been attempted for adaptive finite element calculations based on a posteriori
error estimation as well as for numerical verification by FEM. In this paper, we will
determine the so-called Babuska-Aziz constant [2], which appears in the estimation of
the interpolation errors of the linear (P;) triangular finite element.

More specifically, we derive a transcendental equation for the above constant. To
this end, we use the reflection (or symmetry) method to solve analytically an eigen-
value problem for 2D Laplace operator. As we will see later, this constant (C;) gives
an upper bound to the optimal constant (Cy) appearing in the H!'-error estimation



of Pj-interpolation functions for H2-functions over the unit isosceles right triangle.
The P;-finite element is the most classical and fundamental one, but still in frequent
use. Thus precise estimation of C as well as Cy is very important, and a number
of researchers have given bounds for these two constants using various approximation
methods including numerical verification, see e.g. [1, 7, 8, 9, 10, 11]. The relation
between Cj, and C); was pointed out by Babuska and Aziz in conjunction with the
maximum angle condition [2], and later discussed in [8, 11].

The transcendental equation for the required eigenvalue A\(= 1/C?%) is a very simple
one given by v/ A+tan v/ A = 0. Thus the constant can be easily obtained with sufficient
accuracy, and can be effectively used in the quantitative error estimation of finite
element solutions by the P;-element.

2 PRELIMINARIES

Let T be a unit right-angled isosceles triangle defined by T' = {x = (21, 25) € R*; 2, >
0,22 > 0,21 + x5 < 1}, the vertices of which are denoted by @:(0,0), Q2(1,0) and
(3(0,1). Let us define the sets V7 and V5 by

Vi={ve HT); v(Q) = v(Q2) = v(Q3) = 0}, (1)
sz{UEHI(T);/Uv(xl,())dx1:0}, (2)

where H'(T) and H?(T) are respectively the first- and second-order Sobolev spaces of
real square integrable functions over 7. Furthermore, the space Lo(T) equipped with
norm || - ||z will be also used. Notice here that dv/dz; € V, for Vv € V; .

For v € H?(T), the linear interpolation function Iy on T is the (at most) linear
polynomial such that (ITv)(Q;) = v(Q;) for 1 <7 < 3. Then v—1Ilv € V; forv € H*(T),
so that a popular form of the interpolation error for v is ([4, 5])

v = olr < Colvlar, (3)
where | - |;r and | - |7 are the usual seminorms of H'(T') and H?*(T'), respectively :
2 2
vl = ZHav/axiH%, w3, = ZH@QU/&UZ-&UJ-HZT. Moreover, Cj is the (optimal)
i=1

= ij=1
positive constant well-defined by the relation [1, 2, §]

Cy= sup [v
veVi\{0} |U

L ()

2,T

Estimation (3) is effectively used for error analysis for triangular elements of more
general shape by introducing appropriate coordinate transformations|[2, 4, 5, 6].

It is actually difficult to decide Cy exactly. An upper bound for Cy was first given
by Natterer [10]. By numerical computations without verification, it is now known that
Co ~ 0.489, cf. [1, 7, 11]. Moreover, Cy has an upper bound C; given by

Ci= sup vl (5)

veVa\{0} lv]1,r
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This constant was introduced by Babuska and Aziz in [2] to prove the maximum angle
condition for the Pj-element, so that we call it the Babuska-Aziz constant here. The
relation between Cj and C; was fully discussed in [11] and [8], and in certain cases C}
is more essential than Cj itself (see below). In particular, C; was verified numerically
in [8, 9], and it is now known that 0.492 < C} < 0.494. Thus 0.493 or so is a nice
approximation to Cy for most of practical purposes: In fact, 0.5 is recommended in
[11] for use as an upper bound for Cj.

Furthermore, C'; plays its own role of enabling estimation of each partial derivative :

100 — 110) @l < Cr |0o/0mi], (i =1,2). (6)

which is in a sense sharper than (3), cf. [6].
[t is easily seen that C is determined as C; = y/1/Aq, where Ay > 0 is the minimum
eigenvalue of the eigenvalue problem [1, 8]: Find A and u € V,\{0} that satisfy

(Vu, Vo)r = Mu,v)r (Vv € Vh). (7)

Here, (-, -)7 denotes the inner products of both Ly(T) and Ly(T)?, and V is the gradient
operator. The present eigenvalue problem is also expressed as follows in terms of a
partial differential equation, the linear constraint for V3 and boundary conditions [1, 8]:

! ou {0 on edges ()13 and Q23 , (8)

—Au=Au in T, /u(xl,())dxl =0, — =
0 on ¢ on edge Q10

where 3% denotes the outward normal derivative on edges, and ¢ an unknown constant.

3 DETERMINATION OF THE CONSTANT

Our problem of determining C'; now reduces to obtaining the minimum eigenvalue of
(7) or (8). Since T is a triangular domain, it has been not necessarily easy to solve the
associated eigenvalue problem. However, we have the following main results.

Theorem 1. The minimum eigenvalue Ao of (7) is equal to the minimum positive
solution of the transcendental equation for X:

VA +tanVA=0. (9)

The concrete value of Ao can be obtained numerically with verification. For example,

Vo lies in the interval 2.0287 < Vg < 2.0291, and hence C, = 1/\/X0 18 bounded as
0.49282 < (7 < 0.49293. (10)

(Numerical computation without verification gives Cy = 0.49291245- - -.)



Proof. We will prove in several steps, each of which is based on rather well-known
arguments and techniques, and is sometimes described concisely.

1°. Let Q be a unit square domain: Q = {z = (zy,79) € R%0 < zy, 15 < 1}. Let
{\u} € R x V5\{0} be an arbitrary eigenpair of (7), and define the (symmetric)
extension @ of u to 2 by reflection with respect to the line x1 + x5 = 1:

Wy, x9) = u(zy,x0) ifx = (21,29) €T, U(x1,22) =u(l — 29,1 —21) ifx € Q\T.
We can find that {\, 4} is an eigenpair of the eigenvalue problem for €2:

i€ V,\{0} and (Vi,Vi)g = Ma,d)q (Vo€ V), (a)
where (-, -)q denotes the inner products of Ly(Q) and Ly(Q)2, and V; is defined by

f/Q:{ﬂeHl(Q);/O 821, 0) dzy = 0, /0@(1,x2)dx2:o}. (b)

Conversely, any eigenpair of (a) with @ restricted to T satisfies (7), if @ is symmetric
with respect to the line xy + x5 = 1. Notice here the orthogonal decomposition of V;
in H*(Q2) as well as in Ly(Q):

V$ = subspace of symmetric functions in VA
‘/'2 Vs D V'Za , ~2 P Yy ‘ ‘ ' 2 ’
V' = subspace of antisymmetric functions in V5.

Consequently, for the present purpose, it suffices to deal with (a) in V.
2°. As is well known, a complete system of functions for H'(Q) is given by the totality
of (orthogonal) eigenfunctions of (a):

¢mn($1, $2) = COSMTIL1 COSNTILy (m, n=20,1,2,3,-- ) .

Since we are interested in symmetric eigenfunctions only, we should make a com-
plete system of symmetric functions in H'(Q) from the above: for m > n; m,n =
07172737"'7

z/)mn(ﬂﬁ, $2) = ¢)mn(I1, $2) + ¢mn(1 — x2,1 — xl) = ¢mn(I1,I2) + (—1)m+n¢nm($1, $2) .

When restricted to T, these make a complete system of functions for H'(T'). Further-
more, these are orthogonal in Lo(£2), and also orthogonal with respect to the bilinear
form (V:,V-)q (and in H'()).

3°. From (b), the condition for a symmetric & € H'(Q) to belong to V} is expressed by

2a00+2(—1)mam0 =0 for v = Z A Pmn With Z (1+m*+n?)al, < +oo,
= m>n>0 m>n>0

where a,,,’s are real coefficients and the series 22:1 (=1)™ a0 is ShOW~Il to be absolutely
convergent. Eliminating agy by this condition, we can express Vv € V5’ by

U= ¢m0 - _1)m] + Z amndjmn . (C)
m=1 m>n>1



Clearly, ¥pny,’s for m > n > 1 are eigenfunctions of (a) with completely homogeneous
Neumann’s boundary condition, and the minimum of the associated eigenvalues is 272.

4°. Taking notice of (¢), Vi is expressed by the direct sum

~ W, = closure of linear combinations of 9,0 — (—1)™ (m =1,2,3, ...)
‘/2 - WIEB W2 ) . . .
Wy = closure of linear combinations of ¢, (m >n>1).

Here, TV, and W, are orthogonal to each other in both L, (2) and H'(Q), and moreover,
from the observation in 3°, all the eigenfunctions in W, are known. Consequently,
our aim will be attained if we obtain the minimum of eigenvalues associated with
eigenfunctions in W, : If it is smaller than 272, the obtained one is nothing but .

5°. Let us now solve the eigenvalue problem (a) in W; by expressing 4 € W;\{0} as

o= Z A Pm  With Z m?a2, < 4+00 ; Om = Umo — (—1)™ (m € N). (d)
m=1

m=1

More specifically, ¢, (z1, x2) = cos mmzy + (—1)™(cos mmxy — 1). Substituting (d) into
(a) and equating v to each of ¢,,’s, we have the equations for coefficients a,,’s:

oo

(m?*® = N = A(-1)™ > (-1)"a, (m€N). ()

n=1

The series above is absolutely convergent from (d). In addition, Z(—l)”an #0, \#
n=1
m?n? and a,, # 0 (Ym € N), so that a,, = \(— mz )"a,/(m*n? — \). Substi-
n=0
tuting this into (e) and summing up for m € N, we find Z(—l)mam = [Z(—l)”an]
m=1

x Y A/(m*n® = X), that is,

= A - 1
1:Zm27r2—)\’ o n;m?(ﬂ/ﬁ)2—1:0’ V)

m=1

where we have used the fact that A > 0, and the series is absolutely convergent at least
for 0 < A < 72 We have thus shown that the considered eigenvalue A must satisfy
(f). Conversely, for each positive solution A of (f), we can prove in view of (e) the
existence of u € W;\{0} that satisfies (a), although we omit the proof.

6°. Notice here the formula for non-integer a € R.:

m/a "2 2tanna’

m=1



which is for example derived from the Fourier cosine expansion of cos at on the interval
[—, 7] for t. Comparing the above with (f) and taking a as v/A/m, we have (9).
Clearly, the minimum positive solution of (9) lies in the interval (7%/4,7?), and is the
unique solution there. It is surely smaller than 272, and is exactly \o.

7°. To obtain v/ € (/2,7) numerically with verification, we can use various methods.
For example, we can directly use the series in (f). Here we just give another method
based on modification of the equation t+tant = 0 for £ > 0: Let us find the minimum
positive zero of

m2m

(t>0).
2m+1 )

f(t) . cost co s1nt 2)

The series appearing above is an alternating one, and the absolute value of each term
for fixed ¢ converges to 0 as m — oo, monotonically for sufficiently large m. Moreover,
f(t) is monotonically decreasing for 0 < ¢ < w. Thus, as is well known in elementary
calculus, we can compute upper and lower bounds for the minimum zero ¢, by utilizing
appropriate partial sums: f,(¢) := partial sum up to the term of m = n. It should
be noted here that, at least in principle, all the computations can be performed in the
finite-digit binary arithmetic without computer errors, provided that t is a rational
number. For example, by taking n = 4,5, we can bound t, = v/ \g as 2.0287 < ty <
2.0291, since f(2.0291) < f4(2.0291) < 0 (even n) and f(2.0287) > f5(2.0287) > 0
(odd n). O

Remark Eq. (9) can be also derived as follows. The function ¢,, in (d) can be also
expressed by ¢, (z1, z2) = cosmmx; + cosmm (1l — x2) — (—1)™, so that u € Wy in (d)
must be of the form, for an unknown single-variable function g = g(t),

(1, w9) = g(z1) + g(1 — 22) .

Substituting the above into (a), we have

—g"(t) =Ag(t) forO<t<1, ¢(0)=0, g¢(1)+ /lg(t) dt =0. (11)

Notice in this derivation that v can be taken from whole ‘72, since Wi is orthogonal to
W, and V® both in Ly(Q2) and H'(Q). Solving this eigenvalue problem, we obtain (9).
Moreover, an eigenfunction associated to Ay is @(xq, x2) = cos Vo1 + cos \/Xo(l —T3).
Eq. (9) is found for example in vibration analysis of a string with one end fixed and
the other supported elastically, where the governing differential equation is the same
as in (11).

4 CONCLUDING REMARKS

We have succeeded in determining the Babuska-Aziz constant from a very simple
equation. We can effectively utilize this constant to give upper bounds of the P;-
interpolation error constants for triangles of more general shape. That is, we can

6



derive some explicit relations for the dependence of such constants on the geometry
(such as the maximum interior angle and the minimum edge length) of triangles by
simple coordinate transformations. It is to be noted that they are consistent with
the so-called maximum angle condition in [2]. The detailed results will be reported
separately in due course.
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