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Abstract: Let Fn be a free group of rank n. An automorphism of Fn is called an

IA-automorphism if it trivially acts on the abelianization H of Fn. We denote by IAn

the group of IA-automorphisms and call it the IA-automorphism group of Fn. For any

integer d ≥ 2, let IAn,d be the group of automorphisms of Fn which trivially acts on

H⊗ZZ/dZ. We call IAn,d the congruence IA-automorphism group of Fn of level d. In

this paper we determine the abelianization of IAn,d for n ≥ 2 and d ≥ 2. Furthermore, for

any odd prime integer p, we give some remarks on the (co)homology groups of IAn,p with

trivial coefficients. In particullar, we show that the second cohomology group of IAn,p

has non-trivial p-torsion elements for n ≥ 9 and, we completely calculate the homology

groups of IA2,p for any dimension.
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1. Introduction

Let Fn be a free group of rank n and AutFn the automorphism group of the group
Fn. It is well known facts that the braid group Bn of index n ≥ 3 is embedded in
AutFn (See [2].) and the mapping class group Mg,1 of a compact oriented surface
Σg,1 of genus g ≥ 2 with one boundary component is embedded in Aut F2g. (See
[10].) Hence it is important to study the structure and the property of AutFn to
study those of these groups.

Our main interests are the (co)homology groups of Aut Fn. There are remark-
able results of the homology groups of AutFn with trivial coefficients. For ex-
ample, Gersten [4] showed that H2(Aut Fn,Z) = Z/2Z for n ≥ 5. Hatcher and
Vogtmann [5] showed that Hi(Aut Fn,Q) = 0 for n ≥ 1 and 1 ≤ i ≤ 6, except for
H4(Aut F4,Q) = Q. The (co)homology groups of Aut Fn are, however, still much
more unknown. In this paper we consider some nomal subgroups of AutFn and
their (co)homology groups. In order to study the (co)homology groups of AutFn,
it is important and useful to know those of them.

Now, let H be the abelianization of Fn. The natural map Fn → H induces
a homomorohism ρ : Aut Fn → GL(n,Z). Clearly, this map is surjective. The
kernel IAn of the map ρ is called the IA-automorphism group of Fn. For any
integer d ≥ 2, let GL(n, d) be the general linear group over Z/dZ. If we compose
the map ρ with the natural reduction map GL(n,Z) → GL(n, d), we obtain a
homomorphism Aut Fn → GL(n, d) whose kernel is denoted IAn,d, the congruence
IA-automorphism group of Fn of level d.
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For the group IAn, there is a known fact that the abelianization IAab
n of IAn,

i.e., the first homology group of IAn with integral coefficients, is a free abelian
group of rank 1

2n2(n− 1). (See [6].) In this paper, our first aim is to determine the
structure of abelianization IAab

n,d of IAn,d. Let Γ(n, d) be the kernel of the natural
map GL(n,Z) → GL(n, d). The group Γ(n, d) is called the congruence subgroup
of GL(n,Z) of level d. Our main result is

Theorem 1.1. For n ≥ 2 and d ≥ 2, we have

IAab
n,d � Γ(n, d)ab

⊕
(IAab

n ⊗Z Z/dZ).

For n ≥ 3 and any prime integer p, Lee and Szczarba [7] determined the structure
of the abelianization of Γ(n, p)ab as a SL(n, p)-module whrer SL(n, p) is the special
linear group over Z/pZ. In particular, they showed that Γ(n, p)ab is a finite p-group.
Hence, from Theorem 1.1, we see that IAab

n,p is a finite p-group.
In section 3 we give some remarks on the (co)homology groups of IAn,p. First,

for n ≥ 9, we show that the second cohomology group H2(IAn,p,Z) has non-trivial
p-torsion elements. Next, we completely calculate the homology groups of IA2,p:

Theorem 1.2. For any prime integer p, we have

Hq(IA2,p,Z) =




Z if q = 0,

Z⊕α(p) ⊕ (Z/pZ)⊕2 if q = 1,

Z⊕(2α(p)−2) if q = 2,

0 if q ≥ 3

where α(p) = 1 + (p−1)p(p+1)
12 .

2. The abelianization of the group IAn,d.

In this section our aim is to prove our main theorem. Before proving Theorem
1.1 we recall generators and the abelianization of IAn. Let x1, . . . , xn be a basis of a
free group Fn. Magnus [8] showed that IAn is finitely generated by automorphisms

Kij :

{
xi �→ xjxixj

−1,

xt �→ xt, (t �= i)

for any distinct members i and j of the set {1, 2, . . . , n} and

Kklm :

{
xk �→ xkxlxmxl

−1xm
−1,

xt �→ xt, (t �= k)

for any distinct members k, l and m of the set {1, 2, . . . , n} such that l < m.
Let H be the abelianization of Fn and H∗ = HomZ(H,Z) the dual group of

H . We denote by X1, . . . , Xn the basis of H as a free abelian group induced by
the free generators x1, . . . , xn of Fn. We also denote by X∗

1 , . . . , X∗
n the dual basis

of H∗. For an IA-automorphism K, let [K] denote the residue class of K in the
abelianization IAab

n of IAn. Then there is a GL(n,Z)-equivariant homomorphism
τn(1) : IAab

n → H∗ ⊗Z Λ2H , called the first Johnson homomorphism of AutFn,
which maps the generators [Kij ] and [Kklm] to X∗

i ⊗ Xi ∧ Xj and X∗
k ⊗ Xl ∧ Xm

respectively. (For details, see [6].) Hence we see that IAab
n is a free abelian group

of rank 1
2n2(n − 1) generated by the residue classes [Kij ] and [Kklm].

Now, we begin to prove Theorem 1.1. First, we see that since the first Johnson
homomorphism τn(1) is GL(n,Z)-equvariant isomorphism, τn(1) induces a surjec-
tive homomorphism

τ̃n(1) : H0(Γ(n, d), IAab
n ) → (H∗ ⊗Z Λ2H) ⊗Z Z/dZ.
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To show τ̃n(1) is an isomorphism, we prepare

Lemma 2.1. For n ≥ 2 and d ≥ 2, we have

d [Kij ] = 0 and d [Kklm] = 0

in H0(Γ(n, d), IAab
n ).

Proof of Lemma 2.1. First we show d [Kij ] = 0. We denote by Eij ∈ AutFn

the Nielsen automorphism which maps xi to xixj and fix xt for t �= i. Then we see
that Eij

d ∈ IAn,d and it holds

Eij
−dKjiEij

d = Kij
dKji

in IAn. Here we note that in AutFn, the composition of two maps E and F ∈
AutFn are defined by (x)(E F ) = ((x)E)F for any x ∈ Fn. Hence if we put
σ = ρ(Eij

−d) ∈ Γ(n, d) then we have

σ · [Kji] − [Kji] = d [Kij ]

in IAab
n . This shows that d [Kij ] = 0 in H0(Γ(n, d), IAab

n ).
Similarly, put τ = ρ(Ekl

−d) ∈ Γ(n, d). Then, we have

Ekl
−dKlmEkl

d

= KlmKklm KklKklmKkl
−1 Kkl

2KklmKkl
−2 · · ·Kkl

d−1KklmKkl
−(d−1)

in IAn and
τ · [Klm] − [Klm] = d [Kklm]

in IAab
n . This shows that d [Kklm] = 0 in H0(Γ(n, d), IAab

n ). This completes the
proof of Lemma.

From this Lemma, we can define a homomorphism

µ : (H∗ ⊗Z Λ2H) ⊗Z Z/dZ → H0(Γ(n, d), IAab
n )

which satisfy µ ◦ τ̃n(1) = id and τ̃n(1) ◦ µ = id. Therefore we see that τ̃n(1) is an
isomorphism. From now on, we identify H0(Γ(n, d), IAab

n ) with (H∗ ⊗Z Λ2H) ⊗Z

Z/dZ using this isomorphism.
Now, since the natural map ρ : Aut Fn → GL(n,Z) is surjective, the restriction

map IAn,d → Γ(n, d) of ρ is surjective. Hence we have an exact sequence

1 → IAn → IAn,d → Γ(n, d) → 1.

Considering the homological five-term exact sequence of this exact sequence, we
have

H2(IAn,Z) → H2(IAn,d,Z) → H0(Γ(n, d), IAab
n ) ι−→ IAab

n,d → Γ(n, d)ab → 0.

Kawazumi [6] showed that the first Johnson homomorphism τn(1) extends a homo-
morphis τn,d : IAab

n,d → (H∗ ⊗Z Λ2H) ⊗Z Z/dZ such that τn,d(1) ◦ ι = id. Hence
we conclude that the map ι is injective and a short exact sequence

0 → (H∗ ⊗Z Λ2H) ⊗Z Z/dZ ι−→ IAab
n → Γ(n, d)ab → 0

splits. This completes the proof of Theorem 1.1. �
At the last of this section, we note the structure of IAn,p for an odd prime integer

p. For n ≥ 3, Lee and Szczarba [7] showed that the abelianization Γ(n, p)ab of the
congruence subgroup Γ(n, p) of leve p is a Z/pZ-vector space of dimension n2 − 1.
Hence we see that IAab

n,p is a Z/pZ-vector space of dimension 1
2 (n−1)(n2 +2n+2).

On the other hand, Frasch [3] showed that the congruence subgroup Γ(2, p) is a free
group of rank α(p) = 1 + (p−1)p(p+1)

12 . Furthermore Nielsen [9] showed that IA2 =
Inn F2, where Inn Fn denotes the group of inner automorphisms of Fn. Namely,
IA2 is a free group of rank 2. Hence we see that IAab

2,p = Z⊕α(p) ⊕ (Z/pZ)⊕ 2.
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3. Some remarks on the (co)homology groups of IAn,p

In this section we give some remarks on the (co)homology groups of IAn,p for
an odd prime integer p.

Frist, we note that the Lyndon-Hochscild-Serre spectral sequence of an exact
sequence

(1) 1 → IAn → IAn,p → Γ(n, p) → 1

induces the cohomological five-term exact sequence

0 → H1(Γ(n, p),Z) → H1(IAn,p,Z)

→H1(IAn,Z)Γ(n,p) tr−→ H2(Γ(n, p),Z) → H2(IAn,p,Z).

Then we have

Proposition 3.1. For n ≥ 2, the inflation map H2(Γ(n, p),Z) → H2(IAn,p,Z) is
injective.

Proof. From Lemma 2.1, we see that H0(Γ(n, p), H1(IAn,Z)) = 0 and hence
the transgression tr is a 0-map. Therefore Proposition 3.1 follows. �

Now, Arlettaz [1] showed that H2(Γ(n, p),Q) � H2(SL(n,Z),Q) = 0 for n ≥ 9.
Namely, any element of H2(Γ(n, p),Z) is a torsion element. Using the univer-
sal coefficients theorem, we obtain that H2(Γ(n, p),Z) � H1(Γ(n, p),Z). Hence,
from Proposition 3.1, we see that H1(Γ(n, p),Z) ⊂ H2(IAn,p,Z). This shows that
H2(IAn,p,Z) has non-trivial p-torsion elements for n ≥ 9.

Next we consider the case where n = 2. We completely calculate the homology
groups of IA2,p with trivial coefficients. First, since the groups IA2 and Γ(2, p) are
free groups, considering the Lyndon-Hochscild-Serre spectral sequence of an exact
sequence

1 → IA2 → IA2,p → Γ(2, p) → 1,

we see that the homological dimension of IA2,p is 2. On the other hand, since the
first homology group H1(IA2,p,Z) is obtained in the previous section, it suffices to
calculate the second homology group H2(IA2,p,Z). Our result is

Proposition 3.2. For any prime integer p, we have

H2(IA2,p,Z) = Z⊕ (2α(p)−2)

where α(p) = 1 + (p−1)p(p+1)
12 .

To prove this Theorem, first, we directly calculate the second cohomology groups
of IA2,p. Then, using the universal coefficients theorem, we obtain the second
homology group of IA2,p.

Proposition 3.3. For any odd prime integer p, we have

H2(IA2,p,Z) = Z⊕ (2α(p)−2) ⊕ (Z/pZ)⊕ 2.

Proof. Considering the spectral sequence of the exact sequence (1), we have

H2(IA2,p,Z) = H1(Γ(2, p), H1(Inn F2,Z)).

Let H be the abelianization of F2 and H∗ the dual group of H . We write any
element x ∈ H as a column vector

x =
(

x1

x2

)
∈ H.
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Then the congruence subgroup Γ(2, p) naturally acts on H and H∗ on the left. By
an easy argument, we see H1(Inn F2,Z) � H∗ as a Γ(2, p)-module. Since H is
SL(2,Z)-equivariant isomorphic to H∗, we obtain

H1(Γ(2, p), H1(Inn F2,Z)) � H1(Γ(2, p), H∗)

� H1(Γ(2, p), H).

Hence it suffices to calculate H1(Γ(2, p), H).
Now we can choose a free basis {γ1, γ2, . . . , γα(p)} of Γ(2, p) such that

γ1 =
(

1 p
0 1

)
.

(See [3].) For any 1-cocycle f ∈ Z1(Γ(2, p), H), if we put

f(γi) =
(

xi1

xi2

)
∈ H

for 1 ≤ i ≤ α(p), then we have an isomorphism

Z1(Γ(2, p), H) → Z⊕ 2α(p),

f �→ (xi1, xi2, . . . , xα(p)1, xα(p)2).
Put

γi =
(

ai bi

ci di

)
for 1 ≤ i ≤ α(p). By the isomorphism above, any 1-coboundary g ∈ B1(Γ(2, p), H)
is mapped to (

(ai − 1)y1 + biy2, ciy1 + (di − 1)y2

)
1≤i≤α(p)

for some

y =
(

y1

y2

)
.

Hence, to calculate H1(Γ(2, p), H), it suffices to find the elementary divisor of a
2 × 2α(p) matrix

(x11 x12 · · · xi1 xi2 · · · xα(p)1 xα(p)2

y1 0 0 · · · ai − 1 ci · · · aα(p) − 1 cα(p)

y2 p 0 · · · bi di − 1 · · · bα(p) dα(p) − 1

)
.

(2)

Lemma 3.1. The greatest common divisor of all entries of the first row of the
matrix (2) is p.

Proof of Lemma 3.1. Let

t = gcd
{
ai − 1, ci

∣∣ 1 ≤ i ≤ α(p)
}
.

We may assume t > 0. Since t divides ci for any i, and {γ1, . . . , γα(p)} is a generator
of Γ(2, p), for any element

σ =
(

a b
c d

)
∈ Γ(2, p),

t divides c. On the other hand, since there exists(
1 0
p 1

)
∈ Γ(p),

it shows that t divides p. Since p|t, we have t = p. This completes the proof of the
lemma.
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By this lemma, we can transform the matrix (2) into

(x11 x12 x21 · · · · · · xα(p)1 xα(p)2

y1 p 0 0 · · · · · · 0 0
y2 0 p 0 · · · · · · 0 0

)

using elementary transformations. This shows H2(IA2,p,Z) = Z⊕ (2α(p)−2)⊕(Z/pZ)⊕ 2.
�

Similarly, we obtain the following results. The proof is left to the reader.

Proposition 3.4. For any odd prime integer p and an integer q ≥ 2, we have

H2(IA2,p,Z/qZ) �
{

(Z/qZ)⊕(2α(p)−2) if (q, p) = 1,

(Z/qZ)⊕(2α(p)−2) ⊕ (Z/pZ)⊕2 if q = pe.

Using Propositions 3.3 and 3.4, we obtain the second homology group H2(IA2,p,Z)
by the universal coefficients theorem. This completes the proof of Theorem 3.2.
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