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Abstract

From our previous paper, it is known that the Magnus representa-
tion of the Torelli group is not faithful. In this paper, we characterize
the kernel of its representation for a certain kind of elements.

1 Introduction

The linearity of the mapping class group of a surface of genus g > 2 has been
one of the well-known open problems. A group is called linear if it admits
a finite dimensional faithful representation. Recently, Korkmaz [K], Bigelow
and Budney [B-B] proved that the mapping class group of a closed surface
of genus 2 is linear. However, it still remains open for higher genera. Then
it is significant to discuss whether some representations of the mapping class
groups are faithful and to determine the kernel.

Let ¥, be an oriented surface obtained from a closed surface of genus g
by removing an open disk. We denote by M, ; the mapping class group of
Y41 relative to the boundary, that is the group of path components of the
group of orientation preserving diffeomorphisms of 3, ; which restrict to the
identity on the boundary. Let Z,; be the Torelli group of >, , namely the
normal subgroup of M, ; consisting of all the elements which act trivially on
the first homology group of X ;.

The Magnus representations of various subgroups of the automorphism
group of a free group are defined making use of the Fox derivation [F], see
[Bir] for details. The Magnus representation for the Torelli group

T ZIg,l — GL(29§Z[H])



Figure 1: Generators of I'y and base points b, O/

was introduced in [M1], where H = H;(X,1;Z). From our previous paper
[S1], the representation 7 is not faithful for ¢ > 2. Thus it makes sense to
study the kernel of r;. In this paper, we characterize the kernel of r; for
the commutator of two BSCC maps, where the Dehn twist along a bounding
simple closed curve is called BSCC map. The following is one of the main
result of this paper.

Corollary 4.4 The commutator of two BSCC maps 1, @2 belongs to the
kernel of r1 if and only if the characteristic polynomial of the Magnus matrix
of the product s is trivial. Here the Magnus matriz means the image of
r1 for a mapping class.

In Section 2, we will recall the definitions of the Magnus representation
of the mapping class group and the Torelli group.

In Section 3, we will give a certain pairing for two curves on Y ; and
show the relationship with the pairing and the kernel of 7.

In Section 4, we will introduce another pairing for two curves on ¥, in
order to obtain additional information of the kernel of r;.

2 Definition of the Magnus representation of
the Torelli group

In this section, we recall the definitions of the Magnus representation for the
mapping class group and the Torelli group from [M1], [S1] and [S4].

Let Z[I'y] be the integral group ring of I'y = m(X,,1,b). We fix a system
of generators ay, ... ,aq, B1,... , 3, of the free group I'y as shown in Figure
1. Let us simply write 71, ... , 72, for them.



Definition 2.1 We call the mapping

r: Mgi — GL(2¢;Z[I))

o,

the Magnus representation for the mapping class group, where % : Z[To) —

Z[To| is the Fox derivation and ~ : Z[T'o] — Z[To] is the antiautomorphism
induced by the mapping v — v~ 1.

This mapping is not a homomorphism but a crossed homomorphism.

Proposition 2.2 (Morita [M1]) For any two elements ¢, € My1, we
have

() =r(p) - 1Y)

where ?r (1)) denotes the matriz obtained from r(1) by applying the automor-
phism ¢ : Z[Ty] — Z[[y] on each entry.

It follows that if this mapping r is restricted to the Torelli group Z,; and
are reduced the coefficients to Z[H], then we obtain the following genuine
representation:

r Ly — GL(2g; Z[H]).

Here the reduction is induced by the abelianization a : I'y — H and ry
denotes the composition r* of the mapping r by the abelianization a. We
call r; the Magnus representation of the Torelli group. R

We have another definition of this representation (see [S4]). Let p : ¥ —
24,1 be the universal abelian covering, that is, the regular covering corre-
sponding to the abelianization. An arbitrary element of the Torelli group
induces an automorphism of Hy(X,p~1(b);Z) as a free Z[H]-module of rank
2g. Therefore we get the following representation:

r Ly — GL(2g; Z[H]).



3 A higher intersection number of two loops
and the kernel of r;

The non-triviality of the kernel of r; for g > 2 is proved in [S1]. Moreover, it
is proved in [S2] that none of the terms of the lower central series of Z,; is
contained in the kernel. Then it is interesting to characterize and determine
the kernel.

First, we define a pairing of two loops on Y ;. This pairing is useful to
give information about the kernel of 7. Choose base points b and o' on 9%,
as depicted in Figure 1. Fix a point b which is a lift of b to the universal
abelian covering 5. The point I is determined as follows, which is a lift of ¥'.
We denote by bb' the path on 0%, from b to b’ with the orientation which

is opposite to that of X, ;. Let W be the lift of b to % starting at b. Then
we set I/ for the endpoint of bb'.

Definition 3.1 Let ¢, ¢y be two oriented loops on X, based at b, b' respec-
tively. We define

<Cl, CQ>H = Z (hél, 62) h

heH

Here ¢, 1s the lift of ¢ to 5 starting at I;, Co 18 the lift of co to 5 starting
at V' and (+,) denotes the algebraic intersection number of two arcs. We
write héy for the curve which is acted on ¢1 by an element h of the covering
transformation group H.

Suppose that ¢; and ¢y are bounding simple closed curves on Y, 1, where
bounding means 0-homologous. If we regard c;, co as oriented loops based at b,
b’ respectively, then we can compute the pairing (cy, ¢o) g up to multiplication
by £1 and by an element of H. That is to say, the pairing (c1, ¢2) iy depends
on how ¢y, ¢y are represented as loops. However, whether (c1, ¢o) g is zero or
not does not depend on the choices, and we will use this fact.

Proposition 3.2 Suppose that c¢; and co are two bounding simple closed
curves on Yg1, and @1 and @y the Dehn twists along ci and cy respectively.
If (c1,co)g = 0, then [p1, pa] € kerr.



C1 ¢ Co

Cll CQ’

Figure 2: geometric intersection number 2

Proof. We denote by @, the automorphism of the first homology group
Hy(X,p7(b); Z) induced by a diffeomorphism ¢ of ¥,; representing an el-
ement of M. Let ¢, ¢ be lifts of ¢1, ¢ to 5 respectively. Then [¢4], [éo]
belong to Hy(S,p ' (b):Z). Since (c1,c3)y = 0, the intersection number
(¢1,¢2) equals zero. For a loop ¢ based at b, we denote by ¢ a lift of ¢ to 5.
Then we have an element [¢] of Hy(3, p~2(b): Z) and

eile]) =l + (&, ¢)[e]  i=1,2

Then we obtain

e o@2(ld) = Pr.(ld+ (&, 0)[e])
= H + (1, @) [01] (€2, )2
= 2. 0pL([9).
It follows that ;, commutes with p5, and this completes the proof. 1

Corollary 3.3 Suppose that ¢, and cy are two bounding simple closed curves.
If the geometric intersection number of ¢; and ¢y is two, then [p1, o] € kerry.

Proof. Let t1,t5 be the intersection points. Also, let ¢;’ be the subarcs of
¢; from t; to t9, ¢;” from t5 to ¢, see Figure 2. The number of the terms of
(c1, o) g is two. Each value of the terms is decided by the value at ¢; and o
respectively. We consider loops ¢;'¢y”, c'cs’ ™t eo'er” and ¢yc1” ", where ¢
is the same arc as ¢ with the opposite orientation. All of these are bounding
simple closed curves. It follows that the value at t; is —1 times that of ¢,.
Then (cy,co)g = 0. By Proposition 3.2, this completes the proof. 1



4 Another pairing of bounding simple closed
curves and the kernel of

We define another pairing for two bounding simple closed curves:

<<01,C2>> = _<01702>H'<02701>H-

The pairing (-, -) y depends on the way to assigning orientations and attaching
basepoints to two bounding simple closed curves. However, the way does not
have an effect on the pairing ((-,-)). That is, we obtain the following lemma.

Lemma 4.1 Let ci, ¢y be two bounding simple closed curves on ¥,1. Then
we have

1. {{c1,¢2)) = ({c2, 1))
2. ({(yery™, c2)) = ({e1, e2))
3. ({e17! c2)) = ({e1, 2))

where v is a loop based at b and c; ™! is the same loop as ¢, with the opposite
orientation.

We recall the following before proving Lemma 4.1.

Theorem 4.2 (Morita [M1]) There exists a matriz J such that for any
element f € My, the following equality holds:

() Jr(f)="17.

This means that the Magnus representation of the mapping class group
is symplectic in a sense. The explicit expression of J can be found in [M1]
and [S4] and is not included into this paper.

In this section, @ denotes * (a <8B—C> L ...,a <aac ))

Y1 Y29
Proof.

1. It is obvious from the definition of the pairing ((-,-)).



2. We can consider v as an element of I'y naturally. Because
eyt [y dey !
a ( o = a o +a(y)a 7 +a(y)a(cy)a o

then we get

By [S4, Lemma 4.4], we have (c1, )y = —'¢5 Ji &1, where a(j) = Ji,
therefore
(verv o)) = =" Jra(y) Tlaly)er L@

= g hata e

= ((c1,2)).

661_1 - ( 71) 661 _ 661
a 6% = alcy a (9’}/1 = —a 8% s

we deduce this lemma.

3. Since

1
The relation between the pairing ((-,-)) and the Magnus representation

ry of the Torelli group can be expressed as the following formula.

Theorem 4.3 Suppose that ¢, and co are two bounding simple closed curves
on Xg1. Then we obtain

((c1,c2)) = tr(lyy — r1(p102)) = 29 — tr(r1(p102))
where p1, o are the Dehn twists along cy, co respectively.

Proof. Any bounding simple closed curve can be written as f(dy) for a
certain element f € M, and for a bounding simple closed curve dj, which
is shown in Figure 3. First, we will prove the statement in the case ¢; =
f(di),c2 = d;. That is, we will consider the case p1 = fihif ™, p2 = ¥,

7



Figure 3: bounding simple closed curve

where 1, is the Dehn twist along di. By Lemma 4.1, we can assume that c;
and cy have expressions as

e = f([Bai] -+ [Br,aa]), 2 =[085, 5] [Br, 0.
We see from [S3] that
ry(tr) = Ing + agby. (4.1)
Here

a = ‘-1 g—1 0---0 1-F - 1-7 0---0 )

S—— ——
g — k times g — k times
b = =2y - 1=2, 0---0 1—7 -~ 1—=7 0---0 ),
g — k times g — k times

and z;, y; are the homology classes of «;, (; respectively. Note that tr(agby) =
brar = 0. We denote by r* the composition of the mapping r by the abelian-
ization a : Z[I'g] — Z[H]. If we consider elements of the Torelli group, we
write r; for r® as before. By the abelianization, Theorem 4.2 can be stated
as

t?"u(f> Jl Ta(f) = fJ1 (42)
The following equalities can be checked easily:

bkjlil - %, %Jl - bk (43)



We will compute ¢ by an explicit calculation. Since
a (3cl>
oal

_ Z(M)

—1 o

= kZ{ o (P520) atsa o (5

o o

+a(f(Br) - a(f(ax)) - a (afgii‘l)) Talflax)-a (3f§;1)) }

- e () o (%)

= S {uwr- 0o (Z) w0 sy o (ZE)

we obtain

o =7(f) . (4.4)
Similarly, ¢; = @;. Therefore

tr([2g —r1(p192))

= tr(lyg = (f) - Tra (i) - () ()

= tr(lyy — r°(f) - (Iog +Ta; 7)) - r*(f) 7" - (Iog + a;jb;)) Because (4.1)

= to(—r"(f) - Tai Tbi - (f) "t —ajbj — r°(f) - Tai Thi - (F) 7 - ayby)

= —te(r*(f) - Ta; Tbi - (f) 7 - asby)
—tr(r*(f) - Ta; o - T () - - ajb;) Because (4.2)
—tr(r*(f) - Ta; Fa; - tro(f) - i - ajta; - ) Because (4.3)

= —Ha; - ro(f) - Jiag (e (f) - Tagtag - )

= e lag Jir(f) - Ta Because (4.4)

t— —-— t—= =
= —'cric ey i

= ({2, c1)) = {{c1, ).



Next, we consider the general case o199 = g ftb;f ' 1p; g7 for g € My ;. The
pairing ((:, -)) is M, i-equivariant by [S4, Lemma 4.3], that is,

{{g(cr), g(e2))) = g({{er; c2)))-

Moreover, we see from [S3, Proposition 3.2] that

tr(ri(ge1p29")) = gltr(ri(pi2))).

This means that tr(ri(-)) is also M ;-equivariant. Therefore this completes
the proof. 1

The Dehn twist along a bounding simple closed curve is called a BSCC
map. From our previous paper [S3], it is known that any BSCC map ¢ does
not lie in the kernel of r1, and the characteristic polynomial of the Magnus
matrix of ¢ is trivial:

det(Ayy — 1r1(p)) = (A — 1)%.

It follows that Ky ; is not contained in the kernel of r1, where Ky ; denotes the
subgroup generated by the BSCC maps. We remark that the characteristic
polynomial of the Magnus matrix on /C;; is not always trivial (see [S4] for
details).

Theorem 4.3 gives a characterization of the kernel of r; for the commu-
tator of two BSCC maps.

Corollary 4.4 The commutator of two BSCC maps 1, belongs to the
kernel of r1 if and only if the characteristic polynomial of the Magnus matrix
of the product 12 s trivial. Here the Magnus matriz means the image of
r1 for a mapping class.

Proof. In general, if the characteristic polynomials of two matrices A, B
are trivial and A commutes with B, then the characteristic polynomial of
AB is also trivial.

Suppose that the commutator of two BSCC maps ¢1, @2 belongs to the
kernel of rq, that is, r1(¢1) commutes with r1(¢2). Because the characteristic
polynomial of the Magnus matrix for any BSCC map is trivial, we get

det(May — 11 (p192)) = (A —1)%.
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Conversely, suppose that the characteristic polynomial is trivial. Then
we have

—tr(ri(p1p2)) = —29.

By Theorem 4.3, we conclude that ((c;,c)) = 0. This means (¢;, co)g = 0 or
(ca,c1)y = 0, because Z[H] is an integral domain. In virtue of Proposition
3.2, {e1,¢0)y = 0 gives [p1,pa] € kerry and (o, ¢1)y = 0 gives [p2, p1] €
ker 1. This completes the proof. 1
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