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ABsTRACT. We consider the two dimensional inverse scattering problem of deter-
mining a sound-hard obstacle by the far field pattern. We establish the uniqueness
within the class of polygonal domains by two incoming plane waves without fur-
ther geometric constraints on the scatterers. This improves the uniqueness result by
Cheng and Yamamoto [3].

§1. Introduction and the main result.
Let D C R? be a polygonal bounded domain such that R? \ D is connected, and
let £ € R. By a polygonal domain, we mean that the boundary 90D is composed of
a finite number of segments. We note that polygonal domains under consideration
are not necessarily convex.

For x = (z1,72) € R?, we set 7 = |z|. We consider the scattering problem with

a sound-hard obstacle:

(1.1) Au+ E*u =0 in R*\D,
Ju

1.2 — = D

(1.2) 5 0 on 0
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and

(1.3) lim /7 (%U,S(aj) — ik‘us(aj)> = 0.

r—00

Condition (1.2) corresponds to a sound-hard obstacle and (1.3) is the Sommerfeld
radiation condition.

Throughout this paper, we always assume that D, D, Dy are bounded polygonal
open domains whose complements are connected. Moroever D denotes the closure

of a domain D. We set i = /—1,d € S' = {x € R?; |z| = 1}, and we call u and
u’(z) = u(x) — eF* e,

respectively the scattered field and the total field. We consider d € S! and k € R

respectively as the direction of the incoming plane wave (i.e., e*%'%) and the wave
number given by the medium in R? \ D.

Then, for k > 0 and d € S*, there exists a unique H'-solution u(z) = u(D;d)(r) €
1

loc

(R2\ D) to (1.1) - (1.3) (e.g., Chapter 9 in McLean [16]). Furthermore u(D;d)
is smooth in any compact subset in R? \ D. We can define the far field pattern

Uoo (D3 d) (%)

ikr

1.4)  WS(D;d)(z) = 67 {uoo(D;d) (;) +0 G)} as T — 0.

As for the scattering problem, we refer to Colton, Coyle and Monk [5], Colton and
Kress [6], Ghosh Roy and Couchman [9], Kirsch [12], Potthast [17] for example.
Henceforth we fix k£ > 0 arbitrarily. The main purpose of this article is to prove

the uniqueness in

Inverse scattering problem. Determine D from the far field pattern us, (D;d)

for given k and d (possibly by changing d).
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By the uniqueness, we mean :
(1.5) Uoo (D15 d)(2) = oo (Da; d)(z),  |z[=1

(for possible several d) implies D1 = Do ?

In the case of sound-hard obstacles, there are a few results on the uniqueness.

(1) For smooth domains Dy, Do, if (1.5) holds for infinitely many d € S*, then
Dy = D, follows. The proof is based on Schiffer’s idea (see Lax and Phillips
[14]) and see Theorem 5.6 in Colton and Kress [6].

(2) Yun [20] proved the uniqueness of sound-hard balls with a single incident
direction.

(3) Cheng and Yamamoto [3] proved the uniqueness within polygonal domains
under an extra "non-trapping” assumption by two incident directions. See
also Cheng and Yamamoto [4] for a similar uniqueness result for the impedance

boundary condition.
In this paper, we get rid of the extra "non-trapping” assumption in [3] to establish

the uniqueness in determining polygonal domains by two incident directions, which

is stated as follows.

Theorem. Let D; and D be bounded polygonal domains whose complements are
connected. Let k > 0 and let d*,d?> € S* be arbitrarily fixed linearly independent
vectors. If

Uoo (D13 d*)(x) = oo (D23 d*)(z), 2z € S', a=1,2,

then D1 = DQ.

In the sound-soft case where the boundary condition (1.2) is replaced by u = 0

on 0D, Alessandrini and Rondi [2] proved that the far field pattern uq, (D;d) for a
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single incident direction d € S determines polygonal domains uniquely. As for the
uniqueness with smooth domains in the sound-soft case, we can refer to Theorems
5.1 and 5.2 in [6], Colton and Sleeman [7], Kirsch and Kress [13], Liu [15], Sleeman

[19]. Moreover see Chapter 6 in Isakov [11], and Isakov [10], Rondi [18].

Our proof of the main result is a combination of a modification of an idea in the
proof of Lemma 3.7 in Alessandrini and Rondi [2] and an argument in Cheng and
Yamamoto [3] which asserts the finiteness of the number of segments where normal
derivatives of the total field vanish. Moreover if we apply our argument here to the
sound-soft case, then we can obtain the uniqueness result in the sound-soft case
within polygonal obstacles by a single incident direction which was already proved
in [2].

The paper is composed of three sections. In Section 2, we show key lemmata

and in Section 3, we complete the proof of the main theorem.

§2. Preliminaries.

In this section, we will show key lemmata. Let k£ > 0, and linearly independent
vectors d!,d? € S' be arbitrarily fixed. Henceforth, for two distinct points P,Q €
R?, we understand that PQ is an open segment (not including the end points P and
Q). Moreover for a polygonal domain D and P ¢ D, Q € 0D such that PQ € R?\D,
by Z(PQ,0D) we denote the least angle among the two angles in R? \ D formed by
PQ and 0D. We note that the polygonal domains under consideration are always

the complements of unbounded domains. Henceforth AABC' denotes the interior

of the triangle ABC.

Lemma 1. Let Q C R? be a polygonal domain, and let OA be one of its sides such
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that Q is located on one side of OA. Let Il denote the symmetric transform in R?

with respect to the extended straight line OA. Let v € H'(Q) satisfy

0 _
8—3 =0 on OA
and
Av+Ev=0 in €.
We set
v(z1,22), (1, 22) € Q,
V(CEl,CUQ) =
v(Il(x1, x2)), (1, 22) € TIQ.
Then
Ve HY(QUIIQUOA)
and

AV +Ek2V =0 inQUIIQUOA.

Moreover, if % = 0 on other side BC of X, then % =0 on IIBC.

The proof is directly done by the definition of H'-solutions.
We can prove the following lemma exactly in the same way as Lemma 9 in Cheng

and Yamamoto [3].

Lemma 2. Letd!,d? € S! be linearly independent and let u(D;d*) € H. .(R*\D),
a = 1,2, satisfy (1.1) - (1.3). Then there does not exist an infinite straight half line

L C R2\ D where

Furthermore we show two lemmata.
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Lemma 3. Let E C R? be a domain and let v € H}. (E) satisfy Av + k*v =0 in

E. Let Lo C L C E be two segments. Then % = 0 on Ly implies % =0on L.

Proof. Since v satisfies the Helmholtz equation, the function v is real analytic in £
(e.g., [6]). Therefore $2|z is an analytic function in one variable and so the lemma,

follows.

Lemma 4. Let E C R? be a domain such that there exists po > 0 with
(2.1) E > {z e Rz > po}.

Moreover let (x1,22) = (rcosp,rsinp) with r > 0 and 0 < p < 27 be the polar

coordinate. Let v € H'(E) satisfy

(2.2) Av+kv=0 inE
and
. ~ v .
(2.3) there exists an open subset U C E such that 9= 0inU.
0

Then for any d € S, the function v(z) — e***¢ does not satisfy the Sommerfeld

radiation condition (1.3).

Proof. Without loss of generality, we may assume that
UD{(r,p;0<r<e 0<u<b}

with some € > 0 and 6 € (0,27). Then, by (2.3), we obtain
v(xy,2) = v(r), (x1,22) € U.

Since
0? 10 1 9?2

Ao e T e
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by (2.2), we have

0%v 1 0v

w(r) + ;E(T) +E(r)=0, 0<r<e.

Therefore, in terms of the Bessel functions .Jy of the first kind and Y} of the second

kind (e.g., Abramowitz and Stegun [1]), we represent v as
v(r) = CrJo(kr) + CoYy(kr) in U,

where C', C5 are constants. By the singularity of % at r =0 (e.g., pp.360-361 in

[1]) and v € H(F), noting that Jy is smooth near r = 0, we see that Cy = 0:
(2.4) v(r) =CiJo(kr) inU.

Hence the classical unique continuation yields that (2.4) holds also in E. Direct

calculations and the asymptotic behaviour of Jo and £ at r = oo (e.g., [1]), imply

Jr <3 _ zk) o(z)

or
(2.5) = —\/%Cl {cos (kr - g - %) + icos (kr - %)} +0 <%>
and
(2.6) NG <% — zk‘) ehrd — Ltk d, /r(d; cos p + dysinp — 1)

as r — 00, where we set d = (dq,d2) and x = (z1,2) = (r cos p, rsin u).
By (2.1), we can choose some #; and sufficiently large p; > 0 such that dy cos 6+

dysinfy —1# 0 and L = {x = z¢ + p(cosfy,sinby); p > p1} C E. Therefore (2.6)

implies
lim \/F — —gkle = lim |k|\/F|d1C0891+d251n91_1| = o0,
r—o0,rEL or r—oo,xEL
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which with (2.5) yields

lim
r—o00,rEL

= Q.

Jr <% - zk) (v(z) — etk d)

Therefore the Sommerfeld radiation condition does not hold. Thus the proof of
Lemma 4 is complete.
We will further state two lemmata, which are proved similarly to Lemmata 6

and 7 in Cheng and Yamamoto [3]. We omit the proofs.

Lemma 5. Let A = (¢,0), O = (0,0), B = (ecosf,esinf), E = {z € R*;0 <
argr < 0, |z| <e} fore >0 and 0 < 0 < 2m. We take P € FE and set ¢ = LAOP €

(0,0). We assume

¢
LeQ

Moreover let E C R? be an unbounded domain such that (2.1) holds and E C E.

If v € HE _(E) satisfies

(2.7) Av+ k%0 =0 inE

(2.8) % _ ) onOAUOB
. ov

(2.9) % =0 onOP,

then v(z) — e**® does not satisfy the Sommerfeld radiation condition (1.3).

Lemma 6. Let the sector E and the points A, B, O be defined as in Lemma 5,
and let P € E and ¢ = ZAOP € (0,0). Let v € H'(E) satisfy (2.7) - (2.9) and let

us assume that
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where m,n € N, 1 < n < m — 1 and the greatest common divisor of m and n is
one. Then:

(i) There exist m — 1 points P7 € E, 1 < j < m — 1, such that ZAOP7 = %9 and

9v =0 on OPJ.

(ii) There exists a point () € F such that ZAOP = ZBOQ and % =0 on OQ.
§3. Proof of Theorem.

First Step. Assume contrarily that D, # Ds. For simplicity, we set
ugy = u(Dj;d®), a=1,2,7=1,2.

By the Rellich theorem (e.g., Lemma 2.11 in [6]), we see from wu,(D1;d%) =

Uso (D2; d®) that
(3.1) uf = u§ in unbounded connected components of R* \ (D; U D)

(e.g., Theorem 2.13 in [6]).

Since Dy # Do, there exists a segment A; A5 which is on 9Dy N (R? \ D3) or on
0Dy N (R?\ Dy).
In fact, if there does not exist such a segment, then 0D; C Dy and 0Dy C Dj.
Consequently D; C Dy and Dy C D; by the connectedness of the complements of
Dy and D». Indeed, let us assume contrarily that D; C Dy does not hold. Then
there exists a point P € Dy such that P € R? \ Dy. Let Q € (R*> \ D1) N (R? \ Dy)
be arbitrarily fixed. Since R? \ Dj is connected by the assumption, there exists a
continuous curve « connecting P and @, and v C R? \ Dy. Moreover, by P € D,
and Q € D1, noting that 0D is a simple closed curve, we see that v intersects 9D

at some point R. Hence R € 9Dy Ny C dD1 N (R% \ Ds), which contradicts that
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0D, C Dy. Thus D; C D, follows. Similarly we can see that Dy C D;. Therefore
D1 = D», that is, D; = D,. Hence such a segment A; A, exists.

Without loss of generality, we may assume that
A1As C 0Dy N (R2 \D_l)

By (3.1), we see that

% =0 on A1A2.
v

Hence, setting
g = {S’ ; S is a (finite or infinite) open segment such that
S C R?\ Dy, at least one end point of S is on 9D,
ouf

(3.2) and a—1|5:0, a:1,2},
14

we see that G # ().

Next, in terms of Lemma 2, we can prove that
(3.3) G does not contain an infinite segment.

Henceforth we extend each S € G to maximal length in R? \D—1 Then, in view of

Lemma 3, we see that

g= {S; S is a finite open segment such that
S C R? \ Dy, the both end points of S are on 9D,

ous
3.4 d =Lls=0 =1,2.
( ) an v |S y o ) }
Second Step. In this step, we will prove that

(3.5) G contains only a finite number of finite segments.
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Proof of (3.5). The proof is similar to [3]. Assume on the contrary that G contains
infinitely many segments. Henceforth let o vary over {0,1}. Then we can choose

sequences of points {P;};en and {Q;} en such that

(3.6) Pi# Py ifj#j, P.Q;cdDy, BQ, e R\ Dy
and

ouf = .
(3.7) — =0 on PQ;, jeN a=12

ov

Here we note that {Q;}en may not be mutually distinct.
Since the length |0D;| of the curve dD; is finite and P; # Pj if j # j', we can
choose subsequences {P;};en and {Q;};jen, which are denoted by the same letters,

such that

J—o0
Without loss of generality, by further taking subsequences of { P; }jen and {Q;}jen,

we may assume that

P;, Q;, 7 € N, are located at one side of P, () respectively

(3.9) and Pj, j € N are not vertices of D;.

Then we note that

(3.10) PiPji1, QjQj41 CODy, jeN

Moreover we see that

Z(Q;P;,0D)

™

(3.11) ,€Q, jeN,

[N

”
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provided that we extract subsequences if necessary.

In fact, let M ¢ Q for some j € N. Then, by Lemma 5, uf(x) —

e*d” cannot satisfy (1.3), which is a contradiction. Next let us assume that

£(Qj, Pj,,0D1) _
T

5 for infinitely many ji, ¥ € N. Then, since

ou _
8—;:0 Onijij,kEN,

and limy_, o |Pj, ., Pj, | = 0, we repeat applications of Lemma 1 with respect to the

k+1
symmetric axes P;, Q;,, k € N, so that there exists dgp > 0 such that for any ¢ > 0

and any point P with dist (P,0D;) < g, we can choose points P’ and @’ such that

P 10D, Q' € R2\ Dy, [P'Q7| = by, dist (P,P'Q) < ¢ and 2L — 0 on PIQ).
ov

Since A is invariant with respect to a rotation, without loss of generality, we may

ouy
ov

ouy
8$1

take 0D on the x{-axis. Then

on any segment which is perpendicular

oY

. 0 . . . = . .
to 0D;. Hence, since 81;11 is continuous in R? \ Dy and ¢ > 0 is arbitrary, we see

0

that 31;? =0, @ = 1,2, in an open set in R2\ D;. Therefore, by the classical unique

continuation, we see that u$(xy,z2) = v(ws) for (r1,72) € R? \ D;. By (1.2), we

have 3871’2(352) = 0 on 0D;. Consequently u{ is a constant function, which yields
u$ = 0 in R2 \ Dy by (1.1) and k¥ # 0. Hence Lemma 4 yields a contradiction
because u§ — e?*%'?" satisfies (1.3). Thus the proof of (3.11) is complete.

By [3], under condition (3.11), we can construct AP;Pj.1R; C R*\ Dy, j € N,

which satisfy

(312) A’U,? —f— kzu? = 0 iIl APij+1Rj,

(3.13) %LVI =0 ond(AP;Pj1R))
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and

AP;Pj 1 R; is included in a rectangle ; whose side lengths are

(3.14)
|Pij+1| and Pj such that lim P = 0.

j—o0

For completeness, we will give the construction of the triangles in the appendix.

Then we can arrive at a contradiction as follows, which completes the proof
of (3.5). If uf identically vanishes in AP;PjyiR; for some j € N, then Lemma
4 immediately yields a contradiction. Next we assume that u{ does not vanish
identically in AP;P;1R; for any j € N. Then k2 is an eigenvalue of —A in
AP;Pj 1 R; with the homogeneous Neumann boundary condition.

By A2(€©2) > 0 we denote the second smallest eigenvalue of —A in Q with the
homogeneous Neumann boundary condition. Note that the smallest eigenvalue in
the Neumann case is always 0. By a comparison property of eigenvalues (e.g.,

Courant and Hilbert [8]), we have
)\Z(Apjpj+1Rj) > )\z(Qj), j €N

Here 2; is a rectangle whose side lengths are |P;Pj41| and p;. We can directly see

that

1 1
)\Q(QJ) = 7T2 min :2, ) .
|PjPia|? pj
Since k # 0, properties (3.12) and (3.13) yield k? > Ay(AP;Pj11R;). Consequently
2 2 . 1 1 -
(315) k Z T 1min :2, - y ] € N.
|PjPia]? pj

By (3.8) and (3.14), the right hand side tends to co as j — 00, so that (3.15) is

impossible. Thus the proof of (3.5) is complete.



Jo mLSCHNER AND M. YANMANMO10O
Third Step. In this step, we will complete the proof of the main theorem, by an
idea in the proof of Lemma 3.7 in Alessandrini and Rondi [2]. By the second step,

we can set G = {S1,..., SN}, where S;, 1 < j < N, are finite segments. We note

that
S; C R? \ Dy, the both end points are on 9D; and
ouf .

(3.16) WZO onS;,1<j<N,a=1,2.

Since S; connects two points on 9D,

every Sj, 1 < j < N, divides R* \ Dy into
an unbounded domain and a bounded polygonal domain

(3.17) which is bounded by S; and 0D;.

In fact, let S; = m with A;, B; € 0D;. Then, by noting that 0D, is a Jordan
closed curve because D, is connected, the points A;, B; divide 0D; into two parts
A1 and As, and either Ay or Ay, say Ay and m form a Jordan closed curve. That
is, A; and A;B; limit a bounded polygonal domain. Thus (3.17) is seen.

Hence 0D and S, ..., Sy divide R?\ D; into a finite number of parts Qq, 21, ...,
Qs such that Q. is an unbounded domain and 24, ..., {23, are bounded polygonal
domains. Let us choose one bounded polygonal domain, say €21, among €24, ..., Qns
whose boundary shares one open segment S* with 0Q.

By (3.16) and the definition of Qq, ..., Qas, we see that

(3.18) Qe VUS| =0
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By II, we denote the reflection transform with respect to the extended straight line
of S*. We set

Ot = Q, NTIQ;, QO = QNI

Then we have

Q- =1Q".

In fact, we have IIQT = I1(Qu, NIIQ) = 110 NII%(Q1) = Q1 NN because 11
is injective and II? is the identity transform.
By (1.2) and the construction of Q% and Q~, we apply Lemma 1 to see that

(3.19) %1 =0 ondQTUINT, a=1,2

Moreover 9QF \ S* contains a segment which is not on 9D;.

In fact, since QT C Q., we can choose a continuous curve vy = y(t) C Qo C
R? \ D; such that {y(t);t > 0} N QT # 0, lim,0ov(t) = oo and (0) € S*.
Furthermore, € is bounded and so Q% is bounded. Therefore, v must intersect
00T at some point which is not in S* U dD;.

Let us choose a segment S** from (9Q1 \ S*)\ dD;. We extend S** in R? \ Dy,
so that we can assume that its both end points are on 0D;. In fact, otherwise we
can extend S** to oo in R? \ D;. We denote the extension by S$** again. Then
(3.19) and Lemma 3 imply that

8 «
U on S™ a=1,2.
v

This is impossible by Lemma 2. Thus after necessary extension, S** is a segment,

connecting two points on 0D;. Therefore

(3.20) S** e {51,...,51\[}.
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Since QT C Q.,, we have
(3.21) S** € Q.
By (3.18), we see that (3.20) and (3.21) are not compatible. This contradiction

leads us to the completion of the proof of the theorem.

Appendix. Construction of AP;P; i R; satisfying (3.12) - (3.14).
We consider the following two cases separately.
Case a. Py, = Q.
Case b. Py, # Q.
Case a. Then, by extracting a subsequence if necessary, we can assume that

Q; # Qj if j # j'. Otherwise Q; = Qo for j € N, which is impossible because

P;P, =P;Q; CR?> C D;.

By (3.9) and (3.10), we have P; Py, Q;Qo C dD1. Hence, since P;Q; C R?\ Dy
by (3.6), we see that the three points P;, ), Ps are not on one line, that is, they
form a triangle. Moreover AP;Q; Py C R? \D—1 Therefore, setting R; = Py, for
j € N, we see that AP;Q; Py satisfies (3.12) - (3.14). In fact, (3.12) and (3.13) are
straightforward from (3.6) - (3.8). Since lim;j_ e [PjPoo| = limj_ 00 |Q;Pso| = 0 by
(3.8), the lengths of all the sides of AP;jQ; Py tend to 0 as j — oo, so that (3.14)
follows.

Case b. Let L be the side of D, including P P;, j € N. With (3.8) and (3.9),

by further taking subsequences, we can assume that
(1) |Pj Pso| and |Q;Q ]| are monotonically decreasing in j € N.
In terms of (3.8), if we choose the minor angle or the major angle suitably, then

(2) lim £(Q;P;,L) = £(QooPoo, L)-

Jj—o0
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By (3.11), there exist m;,n; € N such that the greatest common divisor of m; and

n; is one, 1 <mn; <m; — 1 and

(3) £@Q;P;, L) =L, jeN

In view of (2), the sequence %, j € N, converges. We have the two cases:
Case b-(i). sup,cym; = 0.
Case b-(ii). sup;cym; < 0.
Case b-(i). We choose a subsequence if necessary, so that lim;_,.o m; = oo.
Since D; is a polygon, we can choose AP, AP; such that AP, AP, C R? \D—1
Henceforth j € N are arbitrary but sufficiently large. We can apply Lemma 6
twice, setting O = Pj, P = @Q; and O = Pj, P = Q41 respectively. Then there

exist pOiIltS Rj € Rz \D_1 such that AR]'P]'_Fle = ﬁﬁ, lePij%—l = %ﬂ'
J J

and 24 = 0 on R; P41 UR;P;. Since PjPj4; C PPy and ZR;Pjy Pj — 0,

ZR;jPjPj1 — 0 as j — oo, we see that AP;Pj . 1R; C AP AP, C R? \D—1

for large j € N. Therefore (3.12) and (3.13) follow. Let p; be the length of the

perpendicular to P;Pj41 from Rj;, that is, p; = |H;R;| where H; € PjPjy; and

RjHjJ_Pij+1. Then

1 _— 1
pPj = |PjHj|tan—7r < |Pij+1|tan—7r.
j My

Since lim;_, o |PjPjy1| = 0 by (3.8) and lim;_, m; = 0o, condition (3.14) follows.
Case b - (ii). If necessary, we can again choose subsequences, so that we can

assume that for some m,n € N,

(4) l(QJP],L) = m, j€N

n
m

in terms of (2).
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In this case, PjQ;Qj+1Pj+1 forms a quadrilateral, because P;Q; || Pj+1Qj+1-
Henceforth P;Q;Q;4+1Pj+1 means the interior of the quadrilateral. Then we can

prove that

(5) PjQ;Qj+1Pj41 C R*\ Dy.

In fact, if not, then there exists a point P € P;Q;Q;4+1Pj4+1 such that P € Dy.

Since D; is connected, we can choose a continuous curve < such that + connects

P and Pj+1, and vy \ {P, Pj+1} C D;. Since Pij+1, Qij+1 are sides of D by

(3.10) and P;Q;, Pj+1Q;+1 C R? \ Dy by (3.6), the existence of such a curve v is
a contradiction. Thus (5) follows.

Let L; be the infinite straight line passing P; such that L; is not parallel to
P;Q; and the angle between L; and L is Zx. Since Z(Q;P;,0D1) = %m,# Z by
(3.11), such a straight line L; exists. Let R; be the intersection point of L;;; and

the infinite straight line passing P; and @;. By (3.8) and P, # s, we have
(6) inf [1;Q5] > 0.
Moreover, we see that /R;P;1P; = ZR;P;Pj 1 = .-, so that

P.P: -1
[P P41l (COS ﬁﬂ) 0

(7) lim |PjR;| = lim -

J—o0 Jj—o0

by hmj_mo |Pjpj+1| =0.
It follows from (6) and (7) that R; is on the segment P;();. Therefore (5) implies

a

Ouy
ov

that AP;Pj1R; C R\ Dy, j € N. Then Lemma 6 yields =0on Pj41R;, and
so (3.12) and (3.13) follow. Finally, by (3.8) and (7), condition (3.14) is seen. Thus

the construction of AP;Pj 1 R; satisfying (3.12) - (3.14) is complete.
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