
UTMS 2004–5 February 5, 2004

The Magnus representation for the group

of homology cylinders

by

Takuya Sakasai

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



UTMS 2004–5 February 5, 2004

The Magnus representation for the group

of homology cylinders

by

Takuya Sakasai

UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



THE MAGNUS REPRESENTATION FOR THE GROUP OF HOMOLOGY
CYLINDERS

TAKUYA SAKASAI

Abstract. We define and study the Magnus representation for homology cylinders generalizing
the work of Kirk, Livingston and Wang [KLW] which treats the case of string links. Using
this, we give a factorization formula of Alexander polynomials for three dimensional manifolds
obtained by closing homology cylinders. We also show a relationship between the Gassner
representation for string links and the Magnus representation for homology cylinders.

1. Introduction

Let Pg be the pure braid group of g strands. The braid group appears in various contexts of
mathematics as well as in the knot theory, so that it is important to understand this group. In
general, we can obtain a lot of informations about the structure of a given group by considering
its representations. As for the braid group, a series of Magnus representations such as the
Burau representation and the Gassner representation, are well known. We refer to Birman’s
book [Bi] for the general theory of the Magnus representation. The Gassner representation has
the following form:

g : Pg −→ GL(g, ZH1Dg)

where Dg is the unit disk in the Euclidean plane with g punctures.
As a generalization of braids, we have string links whose difference from braids are typically

seen in the following Figure 1.

An example of string linksAn example of braids

Figure 1

We will recall the precise definition of string links in the next section. The set of isotopy classes
of pure string links Lg has a natural monoid structure by defining its product as in the case of the
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2 TAKUYA SAKASAI

braid group. Moreover, the equivalence relation of concordances gives Lg the group structure.
We denote this group by Sg. Pg can be considered to be a subgroup of Lg and Sg:

Pg ↪→ Lg
↪→ �

Sg
This enlargement of braids to string links leads the enlargement of Gassner and Burau repre-
sentations. For example, the enlarged Gassner representation has the following form:

g : Sg −→ GL(g, (ZH1Dg)S)

where (ZH1Dg)S denotes some local ring obtained from ZH1Dg. It was first done by Le Dimet
in [LD] by using some algebraic devices, such as the algebraic closure of groups and the universal
localization of rings with augmentations. After that, a simpler description of this representation
was done by Kirk, Livingston and Wang in [KLW] by using the cohomology of some local
coefficient system.

On the other hand, let Σg,1 be a compact connected oriented surface of genus g with one
boundary component and letMg,1 be the mapping class group of Σg,1 relative to the boundary.
NamelyMg,1 is the group of all isotopy classes of orientation preserving diffeomorphisms of Σg,1

which fix the boundary pointwise. The mapping class group has also been studied by many
people in various fields of mathematics.

When we consider the counterpart of the enlargement of braids in the context of the mapping
class group, homology cylinders over Σg,1 give its answer. Homology cylinders over Σg,1, which
we simply call them homology cylinders from now on, are some kinds of three manifolds with
boundary. We refer to [Ha], [GL] and [Le] for their origin and generalities. We recall their
definitions in Section 3. The set of diffeomorphism classes of them has a natural semi-group
structure. We denote this semi-group by Cg,1. We can shift Cg,1 to the group Hg,1 by taking
a quotient with respect to the equivalence relation of homology cobordisms. Then we have an
embedding of Mg,1 into Cg,1 and Hg,1:

Mg,1 ↪→ Cg,1
↪→ �

Hg,1
In this paper, we define the Magnus representation for the group of homology cylinders and

study their applications by generalizing the work of Kirk, Livingston and Wang [KLW]. The
Magnus representation for the mapping class group:

r0 :Mg,1 −→ GL(2g, Zπ1Σg,1)

was first used by Morita in his theory of characteristic classes of surface bundles. Note that
this representation is not a homomorphism but a crossed homomorphism. To obtain a genuine
homomorphism, we need to restrict it to the Torelli group Ig,1, which is a subgroup of Mg,1,
and reduce the coefficients to ZH1Σg,1. Then we have the Magnus representation for the Torelli
group

r0 : Ig,1 −→ GL(2g, ZH1Σg,1),
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which is the counterpart of the Gassner representation. We generalize this representation and
obtain a representation of the following form:

r : Hg,1 −→ GL(2g, (ZH1Σg,1)S)

which is a crossed homomorphism.
Below we describe the organization of this paper.
In Section 2, we quickly review the theory of the enlarged Gassner representation for the

group of string links by Kirk, Livingston and Wang.
In Section 3, we first recall definitions of homology cylinders and related groups. Then we

define the Magnus representation for the group of homology cylinders and show that it actually
generalizes the one for the mapping class group.

In Section 4, some fundamental properties of the representation are mentioned. This section
contains the way of computing the representation. The operation of closing the homology
cylinder is also given. This corresponds to the operation which makes a link from a braid by
closing .

In Section 5, we restrict our attention to the semi-group ICg,1 of Torelli homology cylinders,
which is a sub semi-group of Cg,1. Then we define the Alexander rational function of the Torelli
homology cylinder by using the Magnus representation and show a factorization formula of
Alexander polynomials for manifolds obtained by closing homology cylinders.

In Section 6, we see a connection between the Gassner representation for string links and
the Magnus representation for homology cylinders. We show that the Magnus representation
contains the information of the Gassner representation completely. From this, we see thatMg,1

is not normal in Hg,1 by using the example of string links given in [KLW].
In Section 7, we give some examples of calculations which contain the proof of the non-

triviality of Alexander rational functions defined in Section 5.
The author would like to express his gratitude to Professor Shigeyuki Morita for his en-

couragement and helpful suggestions. He also would like to thank Masaaki Suzuki for variable
discussions and advice.

2. The brief review of the Gassner representation for string links

We begin by reviewing the definition of the Gassner representation for string links by Kirk,
Livingston and Wang. We refer to Sections 2, 4, 5 in [KLW] for details. For simplicity, we only
treat the case of pure string links. Let D be the unit disk in the Euclidean plane. Given a
positive integer g, we take g points p1, . . . , pg in D, where pi = (−1/(i+ 1), 0). We denote by
Dg the unit disk with g punctures, namely Dg = D \{p1, . . . , pg}. We fix a system of generators
β1, . . . , βg of π1Dg as shown in Figure 2 where we take p = (0,−1) ∈ ∂Dg as a base point. A
pure string link L of g strands is a smooth proper embedding

L :
g∐
i=1

I(i) −→ D × I
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which maps 0 in I(i) to (pi, 0) and 1 in I(i) to (pi, 1) where I(i) is a copy of the unit interval
I = [0, 1]. We denote by Lg the set of isotopy classes of pure string links. Lg has a natural
monoid structure by defining the product L1 · L2 of two string links L1, L2 as shown in Figure
3.

Figure 3

βgβ2β1

Figure 2

L2

=

L1 L1 ·L2

1

0

Let Pg be the pure braid group of g strands. For the general theory of braids, we refer to
[Bi]. We also refer to it for the Fox’s free calculus. Pg is naturally embedded into Lg as a unit
subgroup.

Given a string link L of g strands, let X denote its complement D× I \L. Then we have two
inclusion maps

i0, i1 : Dg −→ X

defined by i0(x) = (x, 0) and i1(x) = (x, 1). i0 and i1 induce the same isomorphism between
homology groups H1Dg and H1X so that we can identify them. Abelianization maps π1Dg →
H1Dg and π1X → H1X induce actions on the field F = Frac(ZH1Dg) = Frac(ZH1X) by
multiplications. Here, in general, we denote by FracA the fraction field of an integral domain A
and we write the additional operation of an abelian group G multiplicatively in the group ring
ZG or its fraction field Frac(ZG). These actions are compatible with i0∗ and i1∗ so that we can
consider F to be a locally coefficient system on Dg and X .

Let P ⊂ X denote the arc {p}× I . We often identify the first ordinary cohomology of a given
space with the group cohomology of its fundamental group. As for the group cohomology, we
use the standard complex (C∗(π,M), δ) for a group π and a left Zπ module M .

Lemma 2.1. (1) H1(Dg, p;F ) ∼= H1(π1Dg, {1}; F ) ∼= Z1(π1Dg;F ) ∼= F g where the correspon-

dence is given as follows:

Z1(π1Dg;F )
∼=−→ F g

∈ ∈

f �−→


f(β1)

...

f(βg)


(2) i∗0, i

∗
1 : H1(X, P ;F )→ H1(Dg, p;F ) are both isomorphisms.

Proof. (1) Note that 1-cocycles Z1(π1Dg;F ) are given by crossed homomorphisms

f : π1Dg −→ F
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and determined by images of free generators of π1Dg by f .

(2) See Lemma 2.1 and Proposition 2.1 in [KLW]. �

Using these isomorphisms, we define the Gassner representation g. Notice that our convention

for the definition of the Gassner representation is slightly different from the one in [KLW]. For

later use, we first define an anti-homomorphism g̃.

Definition 2.2. (1) The Gassner anti-representation is an anti-homomorphism which assigns

the representation matrix g̃(L) ∈ GL(g, F ) of the isomorphism

F g ∼= H1(Dg, p;F )
∼=−−−−→

(i∗0)−1
H1(X, P ;F )

∼=−−−→
i∗1

H1(Dg, p;F ) ∼= F g

to a string link L ∈ Lg.
(2) The Gassner representation g : Lg −→ GL(g, F ) is a homomorphism which assigns g̃−1(L)

to a string link L ∈ Lg.

The monoid Lg can be shifted to a group Sg by taking a quotient with respect to the con-

cordance. Here we omit the details about this equivalence relation. An important result of Le

Dimet [LD] is that g̃ and g factor through Sg so that we have a group anti-homomorphism g̃

and a group homomorphism g:

g̃, g : Sg −→ GL(g, F ).

The Gassner representation for string links can be computed as follows. Given a string link

L ∈ Lg, we can calculate the fundamental group of its complement X = D × I \ L by the

Wirtinger presentation. This presentation has the following form:

π1X ∼= 〈i1(β1), . . . , i1(βg), z1, . . . , zl, i0(β1), . . . , i0(βg) | r1, . . . rg+l〉.

We simply write γ1, . . . , γ2g+l for these ordered generators. Let A, B and C be matrices of sizes

(g + l)× g, (g + l)× l and (g + l)× g defined by the equality

(A B C) =
ρ( ∂ri
∂γj

)
i,j

where the right hand side is obtained by applying the map ρ induced from the composite of the

quotient map and the abelianization map a:

F2g+l = 〈γ1, . . . , γ2g+l〉 −−−→ π1X
�−−−→ H1X

on each entry of the matrix given by the Fox calculus. Then we have the following proposition:

Proposition 2.3. (1) There exists a (l × g) matrix Z which satisfies the equality

(A B)

(
g̃(L)

Z

)
= −C.
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(2) (A B) ∈ GL(g + l, (ZH1Dg)S) where (ZH1Dg)S is the localization of ZH1Dg obtained

by inverting all elements in the set

S = {f ∈ ZH1Dg | t(f) = ±1 ∈ Z{1}} .

(3) g̃(L) ∈ GL(g, (ZH1Dg)S).

Proof. We only give the sketch of the proof. We refer to Section 4 in [KLW] for details.

(1) f ∈ C1(π1X, F ) is a 1-cocycle if and only if

2g+l∑
j=1

ρ( ∂ri
∂γj

)
f(γj) = 0

for all i = 1, . . . , g + l. Then (1) follows from the correspondence of 1-cocycles

Z1(π1Dg;F )
∼=←−
i∗0

Z1(π1X ;F )
∼=−→
i∗1

Z1(π1Dg;F )

∈ ∈ ∈
g̃(L)·j �−→


g̃(L)·j
Z·j
ej

 �−→ ej

where g̃(L)·j = t(g̃(L)1j, . . . , g̃(L)gj), Z·j = t(Z1j, . . . , Zlj) and ej is the unit column vector

whose j-th entry is 1 and the others are 0.

(2) This follows from the form of relations obtained by the Wirtinger presentation.

(3) This follow from (1) and (2). �

This proposition gives a way to compute the Gassner representation for string links.

3. The definition of the Magnus representation for homology cylinders

In this section, we define the Magnus representation for the group of homology cobordism

classes of homology cylinders. First we recall some definitions. Let Σg,1 be a compact connected

oriented surface of genus g with one boundary component. We fix a system of generators
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α1, . . . , αg, β1, . . . , βg of π1Σg,1 as shown in Figure 4. Let ai (resp. bi) be the image of αi (resp.

βi) by the abelianization map π1Σg,1 → H where H = H1Σg,1.

Figure 4

α1 α2 αg

β1 β2 βg

A homology cylinder over Σg,1 is a compact connected oriented 3-manifold M equipped with

two embeddings i+, i− : Σg,1 → ∂M satisfying that

1. i+ is orientation-preserving and i− is orientation-reversing,

2. ∂M = i+(Σg,1) ∪ i−(Σg,1) and i+(Σg,1) ∩ i−(Σg,1) = i+(∂Σg,1) = i−(∂Σg,1),

3. i+, i− : Σg,1 →M are homology isomorphisms.

We refer to [Ha], [GL] and [Le] for the origin and generalities of homology cylinders. We take

a common base point p on i+(Σg,1) ∩ i−(Σg,1). We write a homology cylinder by (M, i+, i−) or

simply M if any confusion will not occur.

Given two homology cylinders M = (M, i+, i−) and N = (N, j+, j−), we define the multipli-

cation M ·N of M and N by identifying i+(Σg,1) and j−(Σg,1), namely

M ·N = (M ∪j−◦(i+)−1 N, j+, i−).

Then the set Cg,1 of orientation-preserving diffeomorphism classes of homology cylinders becomes

a monoid with an identity element defined by (Σg,1 × I, i+ = id×1, i− = id×0) where collars of

i+(Σg,1) and i−(Σg,1) are stretched half-way along ∂Σg,1 × I .
We can inject the mapping class group Mg,1 into Cg,1 so that Mg,1 can be considered to be

a unit subgroup of Cg,1 when we define a homology cylinder Mϕ ∈ Cg,1 by Mϕ = (Σg,1 × I, ϕ×
1, id×0) for ϕ ∈Mg,1.

For a homology cylinder (M, i+, i−), the composite (i−∗)−1 ◦ i+∗ gives an isomorphism of H

which preserves the intersection form on H . This correspondence gives a homomorphism

‖ · ‖ : Cg,1 −→ Sp(2g, Z)

∈ ∈

(M, i+, i−) �−→ (i−∗)−1 ◦ i+∗

which coincides with the classical representationMg,1 → Sp(2g, Z) when we restrict the domain

of this homomorphism toMg,1. For later use, we denote by ICg,1 the kernel of ‖ · ‖. An element

of ICg,1 is called a Torelli homology cylinder.
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We can convert the monoid Cg,1 into a group Hg,1 of homology cobordism classes of homology

cylinders as follows. Two homology cylinders M = (M, i+, i−) and N = (N, j+, j−) are homology

cobordant if there exists a compact 4-manifold W satisfying

∂W = M ∪ (−N )/(i+(x) = j+(x), i−(x) = j−(x)) x ∈ Σg,1

and inclusions M ↪→ W , N ↪→ W which are homology isomorphisms. This manifold W are

called the homology cobordism between M and N . It is easily checked that the homomorphism

‖ · ‖ factors through Hg,1.
Now we define the Magnus representation for homology cylinders. Given a homology cylinder

M = (M, i+, i−), we denote by F the field Frac(ZH1M). The abelianization map a : π1M →
H1M induces an action on F by multiplications. This action defines a locally coefficient system

F on M . Through i±, We also have locally coefficient systems i∗±F on Σg,1. In general, π1Σg,1

acts on F differently, so that i∗+F and i∗−F are different locally coefficient systems on Σg,1. As

in the case of string links, we obtain the following lemma.

Lemma 3.1. (1) H1(Σg,1, p; i∗±F ) ∼= H1(π1Σg,1, {1}; i∗±F ) ∼= Z1(π1Σg,1; i∗±F ) ∼= F 2g where the

correspondence is given as follows:

Z1(π1Σg,1; i∗±F )
∼=−→ F 2g

∈ ∈

f �−→



f(α1)
...

f(αg)

f(β1)
...

f(βg)


(2) i∗± : H1(M, p; i∗±F )→ H1(Σg,1, p; i∗±F ) are both isomorphisms.

Proof. The proof is the same as that of Lemma 2.1. �

Definition 3.2. (1) The Magnus anti-representation for homology cylinders is a map which

assigns a matrix r̃(M) ∈ GL(2g, Frac(ZH)) to a homology cylinder M = (M, i+, i−) ∈ Cg,1
where the matrix r̃(M ) is obtained from the representation matrix r̂(M) ∈ GL(2g, F ) of the

isomorphism

F 2g ∼= H1(Σg,1, p; i∗−F )
∼=−−−−→

(i∗−)−1
H1(M, p;F )

∼=−−−→
i∗+

H1(Σg,1, p; i∗+F ) ∼= F 2g

by applying (i−∗)−1 : F → Frac(ZH) on each entry.

(2) The Magnus representation for homology cylinders r : Cg,1 −→ GL(2g, Frac(ZH)) is a

map which assigns tr̃(L) to a homology cylinder M = (M, i+, i−) ∈ Cg,1 where tA means the



THE MAGNUS REPRESENTATION FOR THE GROUP OF HOMOLOGY CYLINDERS 9

transpose of a matrix A and · : Frac(ZH) → Frac(ZH) is the anti-automorphism induced by

the map x �→ x−1.

The reader may feel the above definition clumsy. However, this definition makes it easier to

see that it is a generalization of the Magnus representation for the mapping class group Mg,1.

We refer to [Mo] for this representation.

Proposition 3.3. Let Mϕ = (Σg,1 × I, ϕ× 1, id× 0) be a homology cylinder contained in the

mapping class groupMg,1 which is considered to be a subgroup of homology cylinder semi-group

Cg,1. Then

r(Mϕ) = r0(ϕ)

where r0 is the Magnus representation for the mapping class group.

Proof. It is easily checked when we use Proposition 4.4 (2) mentioned later. �

Note that the Magnus representation for homology cylinder is not a homomorphism. The

following proposition shows that it is actually a crossed homomorphism.

Theorem 3.4. Let M1 = (M1, i1+, i1−) and M2 = (M2, i2+, i2−) be homology cylinders. Then

r(M1 ·M2) = r(M1) · ‖M1‖r(M2)

where ‖M1‖r(M2) is the matrix obtained from r(M2) ∈ GL(2g, Frac(ZH)) by applying the map

induced from ‖M1‖ : H → H on each entry.

Proof. Let j1 : M1 ↪→ M1 · M2 and j2 : M2 ↪→ M1 · M2 be natural inclusions. We denote

H1(M1 ·M2) by F and denote j∗1F (resp. j∗2F ) by F1 (resp. F2). Then

r̂(M1 ·M2) = j2 r̂(M2) · j1 r̂(M1)

=⇒ (j1i1−)−1
r̂(M1 ·M2) = (j1i1−)−1j2 r̂(M2) · (j1i1−)−1j1 r̂(M1)

=⇒ (j1i1−)−1
r̂(M1 ·M2) = i−1

1−j
−1
1 j2 r̂(M2) · i

−1
1− r̂(M1)

=⇒ r̃(M1 ·M2) = i−1
1−i1+i

−1
2− r̂(M2) · r̃(M1)

=⇒ r̃(M1 ·M2) = ‖M1‖r̃(M2) · r̃(M1)

=⇒ r(M1 ·M2) = r(M1) · ‖M1‖r(M2)

where matrices of the form ϕA are ones obtained from A by applying the homomorphism ϕ on

each entry. �

Theorem 3.5. The Magnus representation r : Cg,1 → GL(2g, FracZH) factors through the

group Hg,1 of homology cobordism classes of homology cylinders.

Proof. Let M1 = (M1, i1+, i1−) and M2 = (M2, i2+, i2−) be homology cylinders and assume

that they are homology cobordant. We denote the homology cobordism by W and write j1 :

M1 ↪→ W and j2 : M2 ↪→ W for natural inclusions. From the definition, j1 ◦ i1+ = j2 ◦ i2+ and
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j1 ◦ i1− = j2 ◦ i2− hold and we denote these homomorphisms by I+ and I−, for short. Using j1
and j2, we identify H1M1, H1M2 and H1W . Then we have the following commutative diagram

F 2g ∼= H1(Σg,1, p; I∗−F ) H1(Σg,1, p; I∗−F ) H1(Σg,1, p; I∗−F ) ∼= F 2g

(i∗1−)−1

� (I∗−)−1

� �(i∗2−)−1

H1(M1, p; j∗1F ) H1(W, p;F ) H1(M2, p; j∗2F )

i∗1+

� I∗+

� �i∗2+
F 2g ∼= H1(Σg,1, p; I∗+F ) H1(Σg,1, p; I∗+F ) H1(Σg,1, p; I∗+F ) ∼= F 2g

where F = Frac(ZW ). The left vertical map gives r̂(M1) and the right one gives r̂(M2). Hence

we obtain r(M1) = r(M2). �

From above arguments, we obtain the Magnus representation for Hg,1:

r : Hg,1 −→ GL(2g, Frac(ZH))

which is a crossed homomorphism.

4. Some fundamental properties of the Magnus representation for homology

cylinders

In this section, we will give some fundamental properties of the Magnus representation for

homology cylinders containing a method for computations. Suzuki showed in [Su] that the

Magnus representation for the Torelli group:

r0 : Ig,1 −→ GL(2g, ZH1Σg,1)

is not faithful for g ≥ 2. Hence our representation is not injective for g ≥ 2. One of big differences

between string links and homology cylinders is the existence of the Wirtinger presentation. We

need a substitute for this presentation to have the argument similar to the one in [KLW]. Since

homology cylinders are all compact manifolds, their fundamental groups are finitely presentable.

Definition 4.1. A finite presentation of π1M of a homology cylinder M is called admissible

if this presentation is given by a system of ordered generators i+(α1), . . . , i+(βg), z1, . . . , zl,

i−(α1), . . . , i−(βg) and (2g + l) relations.

Note that i+(α1), . . . , i+(βg) means i+(α1), . . . , i+(αg), i+(β1), . . . , i+(βg). We often use this

notation for simplicity.

Lemma 4.2. There exists an admissible presentation for every homology cylinder.
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We will give two different proofs of this lemma. One is given by using the deficiency of finitely

presentable groups as mentioned below and the other is given by studying the homotopy type

of homology cylinders.

Proof. First we recall about the deficiency of finitely presentable groups. The deficiency of a

finite presentation P = {x1, . . . , xn | r1, . . . , rm} of a group G is defined to be n − m. Then

we define the deficiency of G to be the maximum of the deficiency of P over all possible finite

presentations. From Epstein’s results [Ep], we can easily see that the deficiency of π1M is 2g.

Hence there exists a finite presentation of the form

π1M = {z1, . . . , z2g+k | r1, . . . rk}.

Then we have an admissible presentation by adding 4g generators i+(α1), . . . , i+(βg), i−(α1), . . . ,

i−(βg) and 4g relations to introduce them. �

Definition 4.3. An admissible presentation is called standard if it is constructed as in the

proof of Lemma 4.2.

Now we deduce a formula for computing the Magnus representation for homology cylinders as

in the case of the Gassner representation for string links. Given a homology cylinder M ∈ Cg,1
and an admissible presentation

π1M ∼= 〈i+(α1), . . . , i+(βg), z1, . . . , zl, i−(α1), . . . , i−(βg) | r1, . . . r2g+l〉,

we simply write γ1, . . . , γ4g+l for these ordered generators. Let A, B and C be matrices of sizes

(2g + l)× 2g, (2g + l)× l and (2g + l)× 2g defined by the equality

(A B C) =
ρ( ∂ri
∂γj

)
i,j

where ρ is the composite of

F4g+l = 〈γ1, . . . , γ4g+l〉 −−−→ π1X
�−−−→ H1X.

Then we have the following proposition where t : H1M → {1} is the trivialization map.

Proposition 4.4. (1) (A B) ∈ GL(2g + l,ZH1MS) ⊂ GL(2g + l, F ) where ZH1MS is the

localization of ZH1M obtained by inverting all elements in the set

S = {f ∈ ZH1M | t(f) = ±1 ∈ Z{1}}.

(2) There exists a (l × 2g) matrix Z which satisfies the equality

(A B)

(
r̂(M)

Z

)
= −C.

(3) r̂(M) ∈ GL(2g, ZH1MS).
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Proof. From the general theory, �(A B C) gives a presentation matrix of H1M , namely we

have an exact sequence

Z
2g+l

�(A B C)·−−−−−−−−−→ Z
4g+l −−−→ H1M −−−→ 0 .

Then �(A B) gives a presentation matrix of H1M/I− where I− is a subgroup of H1M gener-

ated by i−∗(a1), . . . , i−∗(bg). The reader can consult [Fo] for this fact through the concept of

presentations of a pair of groups. By definition, H1M/I− = 0. Hence we have an exact sequence

Z
2g+l

�(A B)·−−−−−−→ Z
2g+l −−−→ H1M/I− = 0 .

From the Hopfian property of Z
2g+l, we see that det �(A B) = ±1. Therefore (1) follows. (2)

follows from the same argument as Proposition 2.3. (3) follows from (1) and (2). �

This proposition gives a way to compute the Magnus representation for homology cylinders.

Some examples will be given in Section 7.

As a corollary of this proposition, we see that the group of homology cobordism classes of

homology 3-spheres is in the kernel of the Magnus representation. This group can be embedded

in Hg,1 by considering the connected sum X
(Σg,1 × I) for a homology 3-sphere X . Then

π1(X
(Σg,1× I)) has an admissible presentation of the form

〈 i+(α1), . . . , i+(βg)

z1, . . . , zl

i−(α1), . . . , i−(βg)

i+(αj) = i−(αj)

i+(βj) = i−(βj)

r1, . . . , rl

〉
∼= π1(Σg,1 × I) ∗ π1X

which shows that the corresponding Magnus matrix is equal to I2g.

Next we consider the operation on homology cylinders similar to the one which gives a link

by closing a braid. Let M ∈ Cg,1 be a homology cylinder with an admissible presentation

π1M ∼= 〈i+(α1), . . . , i+(βg), z1, . . . , zl, i−(α1), . . . , i−(βg) | r1, . . . r2g+l〉

of π1M and let (A B C) be the matrix constructed from this presentation as above.

Definition 4.5. For a homology cylinder M = (M, i+, i−) ∈ Cg,1, we define its closing M̂ by

M̂ = M/(i+(x) = i−(x)) x ∈ Σg,1

which is a closed manifold.

Let q : M → M̂ be the natural quotient map. Using van-Kampen’s theorem, we can easily

compute π1M̂ from an admissible presentation. Namely if

π1M = 〈i+(α1), . . . , i+(βg), z1, . . . , zl, i−(α1), . . . , i−(βg) | r1, . . . r2g+l〉,
then

π1M̂ = 〈i(α1), . . . , i(βg), z1, . . . , zl | r′1, . . . r′2g+l〉
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where i(αj) = q∗i+(αj) = q∗i−(αj), i(βj) = q∗i+(βj) = q∗i−(βj) and r′i are obtained from ri

by replacing i±(αj) (resp. i±(βj)) by i(αj) (resp. i(βj)). We simply write γ1, . . . , γ2g+l for these

ordered generators. Then we assign to this presentation the Alexander matrix defined by

V
�M

=
ρ( ∂r′i
∂γj

)
i,j

where ρ is the composite of

F2g+l = 〈γ1, . . . , γ2g+l〉 −−−→ π1M̂
�−−−→ H1M̂ .

As in [KLW], we obtain the following equalities.

Proposition 4.6. The Alexander matrix for the manifold M̂ obtained by closing M can be

written by using the matrix (A B C) as follows:

V
�M

= q(A+C B) = q(A B)

q(
I2g − r̂(M) O

−Z Il

)
.

where Z is the matrix obtained from (A B C) as in Proposition 4.4 (2).

Proof. Recall that C = −(A B)

(
r̂(M )

Z

)
. The proposition follows from this. �

5. Alexander polynomials for Torelli homology cylinders

In this section, we restrict our attention to the monoid of Torelli homology cylinders ICg,1
and examine a relationship with the Alexander polynomial. The goal of this section is to deduce

a factorization formula for the Alexander polynomial by using our Magnus representation. Note

that for every Torelli homology cylinder (M, i+, i−), two inclusions i+ and i− induce the same

isomorphism between homology groups H1Σg,1 and H1M so that we can naturally identify them.

We can also identify H1M with H1M̂ . In the argument below, the following lemma which is

slightly extended from the one in [KLW] has an important role. For an n × n matrix A, we

denote by A(i,j) the matrix obtained from A by removing its i-th row and j-th column.

Lemma 5.1. Let A be an n × n matrix over a domain R. Let u = (u1, . . . , un) and w =
t(w1, . . . , wn) be a row and column vector so that

uA = 0 and Aw = 0.

Then

(1) If ui = 0 or wj = 0, then detM(i,j) = 0.

(2) The element in the fraction field

(−1)i+j
detM(i,j)

uiwj

is independent of the choice of i and j satisfying ui �= 0 and wj �= 0.
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Proof. We can prove it by the same argument as Lemma 6.2 in [KLW]. �

From this lemma, we can define some invariant from the Magnus matrix r̃(M) if we find two

vectors u and v satisfying the above condition. The following lemma gives an answer to it.

Lemma 5.2. Let M be a Torelli homology cylinder of genus g ≥ 1.

(1) (I2g − r̃(M ))



1− a1

...

1− ag
1− b1

...

1− bg


= 0.

(2) (b1 − 1, . . . , bg − 1, 1− a1, . . . , 1− ag)(I2g − r̃(M)) = 0.

Proof. For simplicity, we put u = t(1−a1, . . . , 1−ag, 1−b1, . . . , 1−bg) and w = (b1−1, . . . , bg−
1, 1− a1, . . . , 1− ag).

(1) Take a 0-cochain f = 1 ∈ F ∼= C0(π1M ;F ). By definition, δf(x) = 1− [x] holds for every

x ∈ π1M where [x] is the homology class of x. Then we see the correspondence of 1-cocycles

Z1(π1Σg,1; i∗−F ) ∼= Z1(π1M ;F ) ∼= Z1(π1Σg,1; i∗+F )

∈ ∈ ∈
u ↔ δf ↔ u = r̃(M )u

so that (1) follows.

(2) Let ζ be the Dehn twist map along the simple closed curve which is parallel to the

boundary of Σg,1. It is easy to see that

r̃(ζ) = I2g + uw.

When we see ζ as an element of Hg,1, it is in the center of Hg,1. Therefore for every Torelli

homology cylinder M , we have

r̃(ζ)−1r̃(M)r̃(ζ) = r̃(M )

=⇒ r̃(M)r̃(ζ) = r̃(ζ)r̃(M)

=⇒ r̃(M)(I2g + uw) = (I2g + uw)r̃(ζ)

=⇒ r̃(M )uw = uwr̃(M).

From (1), we obtain that uw = uwr̃(M). When we compare first rows, we have the equality

(1− a1)w = (1− a1)wr̃(M). (2) follows from this. �

Lemmas 5.1, 5.2 allow us to define the following rational function.

Definition 5.3. Let M be a Torelli homology cylinder of genus g ≥ 1, the Alexander rational

function of M is the rational function

∆M(a1, . . . , bg) = −det
(
(I2g − r̃(M)(1,1)

)
(1− a1)(1− b1) ∈ F
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where r̃(M) is the Magnus matrix of M .

Note that ∆M is a homology cobordism invariant since r̃(M) is. We need not use the matrix

r̃(M)(1,1) but we can use r̃(M)(i,j) for arbitrary i and j because ∆M are independent of the

choice of them by Lemma 5.1. Now u and w in the above lemma do not have their entries which

are equal to 0.

Next we briefly recall the definition of the Alexander polynomial for finitely presentable

groups. Given a finitely presentable group G with a finite presentation 〈x1, . . . , xn | r1, . . . , rm〉,
we can obtain an Alexander matrix A defined by

A =
ρ( ∂ri
∂xj

)
i,j

∈M(m× n,ZH)

where ρ is the composite of

Fn = 〈x1, . . . , xn〉 −−−→ G
�−−−→ H = H1G .

Note that ZH is a UFD. Then the Alexander polynomial of G is

∆G
.= gcd(E1(A)) ∈ ZH

where E1(A) is the first elementary ideal of A generated by all n−1 minors of it. ∆G is uniquely

determined up to units in ZH and it is independent of the choice of finite presentations of G,

so that we use .= in equalities of Alexander polynomials.

For a Torelli homology cylinder M , we define ∆
�M

= ∆
π1
�M

. Now we deduce an explicit

formula of the Alexander polynomial ∆
�M

.

Proposition 5.4. Let M be a Torelli homology cylinder of genus g ≥ 1 and V
�M

be the Alexander

matrix for the presentation of π1M̂ obtained from a standard admissible presentation of π1M .

Then

∆
�M

(a1, . . . , bg)
.= −

det
(
V
�M (1,1)

)
(1− a1)(1− b1) ∈ ZH1M̂.

Proof. Recall that a standard admissible presentation of π1M is an admissible presentation

which has the following form

π1M ∼=
〈
i+(α1), . . . , i+(βg), z1, . . . , z2g+k, i−(α1), . . . , i−(βg)

i+(α1)ϕ1, . . . , i+(βg)ϕ2g

r1, . . . rk

i−(α1)ψ1, . . . , i−(βg)ψ2g

〉

where ϕi, ri and ψi are words in z1, . . . , z2g+k. Let V
�M

be the Alexander matrix for the presen-

tation of π1M̂ obtained from this. Then V
�M

= (A+ C B) has the form of

V
�M

=


I2g ∗
O ∗
I2g ∗

 .
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Now we seek a non-zero row vector u and a non-zero column vector w satisfying uV
�M

= 0 and

V
�M
w = 0. By the fundamental formula of free calculus in [Bi], we obtain

V
�M
t(1− a1, . . . , 1− bg, 1− ρ(z1), . . . , 1− ρ(z2g+k), 1− a1, . . . , 1− bg) = 0

so that we can take t(1 − a1, . . . , 1 − bg, 1 − ρ(z1), . . . , 1 − ρ(z2g+k), 1 − a1, . . . , 1 − bg) as the

vector w. To seek the vector u, we recall Lemma 5.2 and Proposition 4.6 that

V
�M

= (A B)

(
I2g − r̃(M) O

−Z I2g+k

)
,

(b1 − 1, . . . , bg − 1, 1− a1, . . . , 1− ag)(I2g − r̃(M )) = 0.

Therefore we obtain

(b1 − 1, . . . , bg − 1, 1− a1, . . . , 1− ag, 0, . . . , 0)(A B)−1V
�M

= 0.

Thus we can take (b1−1, . . . , bg−1, 1−a1, . . . , 1−ag, 0, . . . , 0)(A B)−1 as the vector u. From

the form of (A B) with respect to a standard admissible presentation, we have

u = (b1 − 1, . . . , bg − 1, 1− a1, . . . , 1− ag, ∗, . . . , ∗).

Now we deduce the greatest common divisor of the first elementary ideal of V
�M

which gives the

Alexander polynomial ∆
�M

. By Lemma 5.1,

h = (−1)i+j
det
(
V
�M (i,j)

)
uiwj

∈ F

is independent of the choice of i and j satisfying ui �= 0 and wj �= 0. If h is in ZH1M̂ , it

gives the greatest common divisor. To show that suppose h = h1/h2 where h1 ∈ ZH1M̂ and

h2 ∈ ZH1M̂−{0} are relatively prime. When (i, j) = (g+1, 1), we have (−1)g det
(
V
�M (g+1,1)

)
=

h1(1− a1)2/h2 ∈ ZH1M̂ . When (i, j) = (1, g + 1), we have (−1)g+1 det
(
V
�M (1,g+1)

)
= h1(b1 −

1)2/h2 ∈ ZH1M̂ . Hence h2 is a common divisor of (1− a1)2 and (b1 − 1)2 which are relatively

prime so that h2 is in units of ZH1M̂ . Therefore the proposition follows. �

Finally, we show the relationship between the Alexander rational function and the Alexander

polynomial. We use the Milnor torsion of a homology cylinder to describe it. For this torsion,

we refer to [Tu].

Let M = (M, i+, i−) be a Torelli homology cylinder and Σ− be the image of Σg,1 by the

embedding i−. By Lemma 3.1 (2), we obtain H1(M,Σ−;F ) = 0, so that the cochain complex

C∗(M,Σ−;F ) with respect to some cell structure is acyclic. We write τ(M) for the torsion of

this complex. τ(M) ∈ F ∗ is well defined up to multiplication by units H in ZH . One important

property of this torsion is that it is invariant under homotopy equivalences. In particular, it

does not depend on the choice of the cell structure on M .
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Theorem 5.5. Let M be a Torelli homology cylinder and M̂ be its closing. Then the Alexander

polynomial of M̂ is the product of the torsion τ(M) and the Alexander rational function ∆M of

the homology cylinder:

∆
�M

.= τ(M) ·∆M .

The proof of this theorem is divided into three parts, Lemmas 5.6, 5.7 and 5.8. Given a Torelli

homology cylinder M = (M, i+, i−) and an admissible presentation of π1M , we calculate the

matrix (A B C) as before.

Lemma 5.6. ∆
�M

.= det(A B) ·∆M .

Proof. Note that det(A B) up to units in ZH is independent of the choice of admissible pre-

sentations. Indeed when we consider the admissible presentation to be a presentation of the pair

of groups

( π1M , 〈i−(α1), . . . , i−(βg)〉 /R )

with distinguished generators i−(α1), . . . , i−(βg) where R is the normal closure of relations

r1, . . . , rl, then det(A B) gives the generator of 0-th elementary ideal, which is principal, so

that it is invariant under Tietze transformations. We refer to [Fo] for the presentation of a pair

of groups.

The rest of the proof of this lemma is almost the same as in [KLW]. Since ∆
�M

, det(A B) and

∆M are independent of the choice of admissible presentations, so that we can take a standard

admissible presentation

π1M ∼=
〈
i+(α1), . . . , i+(βg), z1, . . . , z2g+k, i−(α1), . . . , i−(βg)

i+(α1)ϕ1, . . . , i+(βg)ϕ2g

r1, . . . rk

i−(α1)ψ1, . . . , i−(βg)ψ2g

〉

to calculate them. Then

(A B) =

(
I2g ∗
O ∗

)
.

Recall that det(A B) �= 0. Therefore by making use of the following row operations

• Add a multiple by an element of F of the i-th row to the j-th row for 2 ≤ i, j ≤ 4g + k

• Interchange the i-th row and the j-th row 2 ≤ i, j ≤ 4g + k

we can transform (A B) into the matrix

D̃ =


1 0 ∗
0 I2g−1 O

0 O D


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where D is a diagonal matrix whose determinant is equal to ± det(A B). Then the transfor-

mation matrix E is of the form

E =

(
1 0

0 X

)

where X is a (4g + k − 1)× (4g + k − 1) matrix whose determinant is equal to ±1. Thus

det
(
V
�M (1,1)

)
= ± det

(
X · V

�M (1,1)

)
= ± det

(
(E · V

�M
)(1,1)

)
= ± det


(
E · (A B)

(
I2g − r̃(M) O

−Z I2g+k

))
(1,1)


= ± det

(
I2g−1 · (I2g − r̃(M ))(1,1) O

Z ′ D

)
= ± detD · det

(
(I2g − r̃(M ))(1,1)

)
= ± det(A B) · det

(
(I2g − r̃(M))(1,1)

)
.

Hence the lemma follows after dividing them by (1− a1)(1− b1). �

Lemma 5.7. (M,Σ−) is homotopy equivalent to (M ′, R′
2g) as the pair of CW-complexes where

M ′ is a certain two dimensional CW-complex with only one 0-cell and R′
2g is a one dimensional

CW-subcomplex of M ′ with 2g 1-cells.

Proof. We deform (M,Σ−) into (M ′, R′
2g) step by step.

Step 1. First we give a standard cell structure to ∂M ∼= Σ2g as in Figure 5, where we draw

pictures only in the case of g = 1 since the cases of higher genera are similar. Let R2g be the

CW-subcomplex of ∂M whose 1-cells are given by i−(α1), . . . , i−(βg).

Figure 6Figure 5 Figure 7

i+(α1)

i+(β1)

i+(α1) i+(β1)

i−(β1) i−(α1)

i−(β1)

i−(α1)

αs
1+

αt
1+

βs
1+

βt
1+

βs
1−

αs
1−

αt
1−

βt
1−

Take a triangulation which is a refinement of the cell decomposition as in Figure 6. By this

refinement, for example, i+(αj) is divided into two edges αsj+ and αtj+. Then we can extend

this triangulation to the whole of M by a theorem of Cairns and J. H. C. Whitehead. It is easy

to see that we can deform (M,Σ−) into (M,R2g) by some homotopy equivalence which is not

necessary a cell map.
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Step 2. Starting from a 3-simplex of M facing the boundary, we can deform M onto a 2-

dimensional subcomplex M ′′. In this process, 1-skeleton of M is kept invariant, so that the pair

(M,R2g) is homotopy equivalent to (M ′′, R2g).

Step 3. Take a maximal tree T of the 1-skeleton of M ′′ containing αt1+, . . . , β
t
g+, αt1−, . . . , β

t
g−

as in Figure 7, where T is drawn by thick lines, and collapse T to a point. Then we obtain a

pair of CW-complexes (M ′, R′
2g) = (M ′′/T, R2g/T ) which is homotopy equivalent to (M ′′, R2g).

Notice that (M ′, R′
2g) has all the property we want. Hence the lemma follows. �

As a corollary of this lemma, we see the existence of a standard admissible presentation of

π1M from the cell structure of M ′.

Lemma 5.8. τ(M) .= det(A B).

Proof. Consider the exact sequence

0 −−−→ C∗(M ′, R′
2g;F ) −−−→ C∗(M ′;F ) −−−→ C∗(R′

2g;F ) −−−→ 0

of cochain complexes. Counting the number of cells, we have the following diagram

0 0 0� � �
0 −−−→ Fn −−−→ Fn −−−→ 0 −−−→ 0

δ

� � �
0 −−−→ Fn −−−→ F 2g+n −−−→ F 2g −−−→ 0� � �
0 −−−→ 0 −−−→ F −−−→ F −−−→ 0

where we use the fact that the Euler characteristic of M ′ is equal to 1−2g. By definition, τ(M)

is the determinant of the differential δ. Then we see that δ = (A B) from the construction of

M ′. Thus the lemma follows. �

From Lemmas 5.6, 5.7 and 5.8, Theorem 5.5 follows. �

6. String links and homology cylinders

It is known that the pure braid group Pg can be embedded into the mapping class groupMg,1

through the embedding of the disk with g holes denoted by D0
g . In fact, Pg is a subgroup of the

framed pure braid group Pfrg ∼= Pg×Z
g , which is naturally isomorphic to the mapping class group

of D0
g , and we have an injective homomorphism Pfrg → Mg,1 for each suitable embedding of

D0
g . Now we fix an embedding of D0

g as in Figure 8. In [Le], these homomorphisms are extended
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to the whole of the group of pure string links, so that we have an injective homomorphism

Φ : Sg →Hg,1 which is a composite of injective homomorphisms

Sg −→ Sfrg −→ Hg,1.

where Sfrg ∼= Sg × Z
g is the group of concordance classes of pure framed string links.

Figure 8

D0
g

Now we briefly review this homomorphism. Let L be a pure framed string link and C be the

complement of an open tubular neighborhood of L in D0
g×I . We have a canonical identification

of ∂C with ∂(D0
g×I) by using the framing of L which decides the way to identify their meridians.

Then we make a new homology cylinder ML by removing D0
g × I from Σg,1× I and replacing it

with C by using this identification. This homology cylinder ML gives Φ(L).

We have two representations for string links, one is the Gassner representation g : Sg →
GL(2g, Frac(ZH1Dg)) and the other is the restriction r|Sg : Sg → GL(2g, Frac(ZH1Σg,1)) of

Magnus representation for homology cylinders. These representations have the following rela-

tionship.

Theorem 6.1. Let L ∈ Sg be (a concordance class of) a pure string link. Then

r̃(Φ(L)) =

 Ig ∗
O g̃(L)


where r̃ is the Magnus anti-representation and g̃ is the Gassner anti-representation mentioned

before.

We mention two remarks about the above theorem. First we identify homology groups

H1(Dg) ∼= H1(D0
g) with the subgroup of H1(Σg,1) generated by b1, . . . , bg. Second, the ho-

momorphism Φ has ambiguity with respect to framings. However we can see below that the

lower right part of r̃(Φ(L)) does not depend on the choice of framings, so that the statement of

the theorem makes sense.

Proof. All we have to do is to give a suitable admissible presentation of π1ML where ML is

the homology cylinder which corresponds to the element Φ(L) ∈ Hg,1. To use van-Kampen’s

theorem, we divide ML into two parts B and C as follows.
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We take g points q1, . . . , qg and g paths lj from the base point p to qj as in Figure 9.

Figure 9

p

l1 l2 lg

q1 q2 qg

γ

Let B be the union of Σg,1 × I \D0
g × I and 2g paths i+(lj) and i−(lj) (j = 1, . . . , g). We denote

by C the complement of an open tubular neighborhood of L in D0
g × I as before. We glue C to

B by using some fixed framing. Then

π1B ∼=
〈 i+(α̃1), . . . , i+(α̃g)

i+(β1), . . . , i+(βg)

i−(α̃1), . . . , i−(α̃g)

δ1, . . . , δg, i+(γ)

i+(α̃1) = i−(α̃1)δ1
...

i+(α̃g) = i−(α̃g)δg

〉

where α̃j = [α1, β1] · · · [αj−1, βj−1]αj, γ is the loop corresponding to a boundary of D0
g, and δj

are loops which are composite of paths i−(lj),
−−−−−−−−→
i−(qj)i+(qj) and i−1

+ (lj). On the other hand,

π1C ∼= 〈i+(β1), . . . , i+(βg), z1, . . . , zl, i−(β1), . . . , i−(βg) | r1, . . . rg+l〉
is given by the Wirtinger presentation of D × I \ L and

π1(B ∩C) ∼= 〈i+(β1), . . . , i+(βg), δ1, . . . , δg, i+(γ)〉.
Using the above decomposition, we obtain

π1ML
∼=
〈 i+(α̃1), . . . , i+(α̃g)

i+(β1), . . . , i+(βg)

z1, . . . , zl

i−(α̃1), . . . , i−(α̃g)

i−(β1), . . . , i−(βg)

i+(α̃1) = i−(α̃1)δ̃1
...

i+(α̃g) = i−(α̃g)δ̃g
r1, . . .rg+l

〉

where

〈i+(β1), . . . , i+(βg), z1, . . . , zl, i−(β1), . . . , i−(βg) | r1, . . . rg+l〉
coincides with the Wirtinger presentation ofD×I\L and δ̃i are words in i+(β1), . . . , i+(βg), z1, . . . , zl,

i−(β1), . . . , i−(βg) which depends on the framing. After we rewrite the above presentation by

using i+(αj) and i−(αj), we see that the theorem follows from Proposition 4.4 (2). Note that

this rewriting does not affect generators i±(βj), zj and relations rj. �

Corollary 6.2. The mapping class group Mg,1 is not normal in the group Hg,1 of homology

cobordism classes of homology cylinders
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Proof. In [KLW], they give an example of string links L5 and L6 of 3 strands which have the

condition that L5 is a pure braid, while the conjugate L6L5L
−1
6 is not. To show that L6L5L

−1
6

is not a pure braid, they use the fact that g(L6L5L
−1
6 ) has the entry which is not a Laurent

polynomial of b1, b2 and b3. Then the corollary follows from Theorem 6.1 with respect to this

example. �

7. Some examples

Finally, we give some examples of computations. Examples 7.1 and 7.2 show that the Alexan-

der rational function defined in Section 5 is actually non-trivial. Examples 7.3, 7.4 and 7.5 treat

the relationship between the Gassner representation for string links and the Magnus represen-

tation for homology cylinders observed in Section 6.

Example 7.1. Assume that g = 1. Let ζ be the Dehn twist map along the simple closed curve

which is parallel to the boundary of Σg,1. This map gives a Torelli homology cylinder Mζ . It is

easy to see that

r̃(Mζ) =

(
a1 + b1 − a1b1 1− 2a1 + a2

1

−1 + 2b1 − b21 2− a1 − b1 + a1b1

)
.

Then ∆Mζ
= 1 ∈ ZH which is non-trivial.

Example 7.2. Assume that g = 2. Let τα, τβ and τγ be Dehn twist maps along the simple

closed curves α, β and γ as in Figure 10. We define ϕ = τατ
−1
β and ψ = τγ . They give Torelli

homology cylinders. For simplicity, we also write ϕ and ψ for corresponding homology cylinders.

Figure 10

γα

β

Then

r̃(ψ) =


1 0 0 0

0 a2 + b2 − a2b2 0 1− 2a2 + a2
2

0 0 1 0

0 −1 + 2b2 − b22 0 2− a2 − b2 + a2b2

 and ∆ψ = 0.
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r̃(ϕ) =


a−1

2 −a−1
2 + a1a

−1
2 0 0

a−1
1 − a−1

1 a−1
2 1− a−1

2 + a−1
1 a−1

2 0 0

ϕ1 ϕ2 1− a−1
1 + a−1

1 a−1
2 a−1

1 a2 − a−1
1

ϕ3 ϕ4 a−1
2 − a−1

1 a−1
2 a−1

1


ϕ1 = −a−1

1 a−1
2 + a−1

1 − a−1
1 b1 + a−1

1 a−1
2 b1

ϕ2 = −a−1
2 + a−1

1 − a−1
1 b2 + a−1

2 b1

ϕ3 = −a−1
1 a−1

2 b1 + a−1
1 a−1

2 b2

ϕ4 = −a−1
2 + a−1

1 a−1
2 − a−1

1 a−1
2 b2 + a−1

2 b2

and ∆ϕ = 0. However we can obtain

r̃(ϕψ) = r̃(ψ)r̃(ϕ) and ∆ϕψ =
(a2 − 1)2

a1a2
2

.

Examples 7.3, 7.4 and 7.5 treat string links through the injective homomorphism Φ : Sg →
Hg,1. To define this homomorphism, we need to give the framing of string links. Now we adopt

the convention of black board framings. We use Proposition 4.4 to compute the Magnus matrix.

Given a string link L, let ML = (ML, i+, i−) be the homology cylinder corresponding to Φ(L).

We identify H1(ML) and H1(Σg,1) through i−. We write αj+ and βj+ for i+(αj) and i+(βj), for

short. Similarly αj− and βj− mean i−(αj) and i−(βj).

β1+ β2+

β2−β1−

z

Figure 12

z1

z2

β2− β3−β1−

β3+β2+β1+

Figure 11 Figure 13

Example 7.3. Let L5 be a pure braid of 3 strands as depicted in Figure 11. Then the presen-

tation of π1ML5 is given by

π1ML5
∼=
〈 α1+, . . . , β3+

z1, z2

α1−, . . . , β3−

α1+β
−1
2+β

−1
3+β2+α

−1
1−, [α1+, β1+]α2+β2+α

−1
2−[β1−, α1−]

[α1+, β1+][α2+, β2+]α3+z
−1
2 α−1

3−[β2−, α2−][β1−, α1−]

β2+β
−1
1+β

−1
2+z1, β3+z

−1
1 β−1

3+z2

β3−z2β−1
3+z

−1
2 , β2+β1−β−1

2+z
−1
2 , β2−β−1

2+

〉
.
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From this presentation, we obtain

(A B) =



1 0 0 0 −a1b
−1
2 b3 + a1b

−1
2 −a1b

−1
2 0 0

1− b1 1 0 a1b3 − 1 a2b
−1
2 0 0 0

1− b1 1− b2 1 a1b3 − 1 a2b
−1
2 − 1 0 0 −a3

0 0 0 −b−1
1 b2 1− b−1

1 0 b−1
1 0

0 0 0 0 0 1− b−1
1 −b−1

1 b3 b−1
1

0 0 0 0 0 −b1 0 b3 − 1

0 0 0 0 1− b1 0 0 −1

0 0 0 0 −1 0 0 0


,

C =



−1 0 0 0 0 0

b1 − 1 −1 0 1− a1 0 0

b1 − 1 b2 − 1 −1 1− a1 1− a2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 b2 0 0

0 0 0 0 1 0


.

Hence r̃(Φ(L5))

=



1 0 0 a1b3b
−1
1 − a1b

−1
1 a1b3b

−1
1 b−1

2 − a1b
−1
1 b−1

2 a1b
−1
1 b−1

2

0 1 0 b−1
1 b−1

3 − b−1
1 b−1

2 ((b−1
1 − 1)(b−1

3 − 1)− a2) b−1
2 b

1

3 − b−1
1 b−1

2 b
1

3

0 0 1 b−1
1 b2(b−1

3 + a3b1 − 1) (b−1
1 − 1)(b−1

3 + a3b1 − 1) b−1
3 − b−1

1 b−1
3

0 0 0 1− b−1
1 + b−1

1 b−1
3 b−1

2 (1− b−1
1 )(1− b−1

3 ) b−1
2 b−1

3 − b−1
1 b−1

2 b−1
3

0 0 0 0 1 0

0 0 0 b−1
1 b2(b3 − 1) (b−1

1 − 1)(b3 − 1) b−1
1


.

Example 7.4. Let L be a string link of 2 strands as depicted in Figure 12. Then the presen-

tation of π1ML is given by

π1ML
∼=
〈 α1+, α2+, β1+, β2+

z

α1−, α2−, β1−, β2−

α1+β
−1
1−β2+α

−1
1−, [α1+, β1+]α2+zα

−1
2−[β1−, α1−]

β2+β1−β−1
2+z

−1, β1−β−1
1+β

−1
1−z, β2−z−1β−1

2+z

〉
.

From this presentation, we obtain

(A B) =



1 0 0 a1b
−1
2 0

1− b1 1 a1b1b
−1
2 0 a2b

−1
1

0 0 0 1− b1 −1

0 0 −1 0 b−1
1

0 0 0 −b−1
1 −b−1

1 b2 + b−1
1


, C =



−1 0 −a1b
−1
2 0

b1 − 1 −1 1− a1 0

0 0 b2 0

0 0 1− b−1
1 0

0 0 0 1


.
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Hence

r̃(Φ(L)) =



1 0 −a1b1b−1
2 +a1b1−a1b2

b1b2−b1−b2
a1b1b

−1
2

b1b2−b1−b2

0 1 b1+a2b2b
−1
1 +b2−b1b2

b1b2−b1−b2
a2−a2b1

b1b2−b1−b2

0 0 b1b2−b1−2b2+1
b1b2−b1−b2

b1−1
b1b2−b1−b2

0 0 b22−b2
b1b2−b1−b2

−b1
b1b2−b1−b2


.

Example 7.5. Let L6 be a string link of 3 strands as depicted in Figure 13. We consider the

conjugate L = L6L5L
−1
6 . From the somewhat long computation, we obtain the corresponding

Magnus matrix which has complicated entries. Hence we write only one entry of this matrix.

r̃(Φ(L))6,6 =
b1b2 − b1b22 + b1b3 − b2b3 − 2b1b2b3 + b1b

2
2b3 − b1b23 + b1b2b

2
3

b1(b2 + b3 − 1)(b2b3 − b2 − b3) .
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Lamé system with stress boundary condition and the application to an inverse
problem.

2004–3 Hiroshi Oda and Toshio Oshima: Minimal polynomials and annihilators of
generalized Verma modules of the scalar type.

2004–4 SAKAI Hidetaka: A q-analog of the Garnier system.

2004–5 Takuya Sakasai: The Magnus representation for the group of homology cylin-
ders.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2003–43 Hiroshi Kawabi and Tomohiro Miyokawa: Notes on the Littlewood-Paley-Stein
inequality for certain infinite dimensional diffusion processes.

2003–44 Yasuyuki Shimizu: Weak-type L∞-BMO estimate of first-order space deriva-
tives of stokes flow in a half space.

2003–45 Yasuyuki Shimizu: Existence of Navier-Stokes flow in the half space with non-
decaying initial data.

2003–46 Mourad Bellassoued and Masahiro Yamamoto: H1-Logarithmic stability in
determination of a coefficient in an acoustic equation by arbitrary boundary
observation.

2003–47 Keiichi Gunji: On the defining equations of abelian surfaces and modular forms.

2003–48 Toshiyuki Nakayama: Support Theorem for mild solutions of SDE’s in Hilbert
spaces.

2004–1 V. G. Romanov and M. Yamamoto: On the determination of a sound speed
and a damping coefficient by two measurements.

2004–2 Oleg Yu. Imanuvilov and Masahiro Yamamoto: Carleman estimates for the
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