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Abstract

A q-difference analog of the Garnier system is presented. It arises as the condition
for preserving the connection matrix of linear q-difference equations, in close anal-
ogy with the monodromy preserving deformation of linear differential equations. The
continuous limit is also discussed.
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1 Introduction

The purpose of this paper is to present a nonlinear q-difference system analogous to the

Garnier system. The Garnier system is a nonlinear multi-variable system regarded as a

natural extension of the sixth Painlevé equation.

Firstly we briefly look at theory of the Garnier system. While P. Painlevé and coworkers

discovered the six Painlevé equations as differential equations whose solutions do not have

movable singularities other than poles ([11]), R. Fuchs derived the sixth Painlevé equation as

an isomonodromic deformation equation of a linear differential equation which has 4 generic

regular singular points ([2]). His result was extended by R. Garnier ([3]) for the case of

N +3 generic singular points. Considering the equation of Fuchsian type whose Riemannian

scheme is written as x = 0 x = 1 x = tj x = uk x = ∞
1−θ
2

1−α
2

1−αj

2
−1
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−1−κ∞

2
1+θ
2

1+α
2

1+αj

2
3
2

−1+κ∞
2

 , j, k = 1, . . . , N,

he obtained the nonlinear partial differential equations which arise as the conditions for

preserving the monodromy of the Fuchsian equation. The system of equations is written as
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follows:

∂2uk

∂t2i
=

1

2

[
T ′(uk)

T (uk)
− 1

2

L′′(uk)

L′(uk)

](
∂uk

∂ti

)2

−
[
1

2

T ′′(ti)

T ′(ti)
− L′(ti)

L(ti)

]
∂uk

∂ti
(1)

+
1

2

∑
l �=k

T (uk)L′(ul)(ul − ti)
2

T (ul)L′(uk)(uk − ti)2(uk − ul)

(
∂ul

∂ti

)2

−
∑
l �=k

uk − ti
(ul − ti)(ul − uk)

∂uk

∂ti

∂ul

∂ti
+

L(ti)
2T (uk)

2T ′(ti)2L′(uk)(uk − ti)2
Ik,i,

T ′(ti)(ti − uk)

L(ti)

∂uk

∂ti
− T ′(tj)(tj − uk)

L(tj)

∂uk

∂tj
=

(ti − tj)T (uk)

(uk − ti)(uk − tj)L′(uk)
,(2)

for i, j, k = 1, . . . , N , where

T (x) = x(x− 1)
N∏

i=1

(x− ti),

L(x) =

N∏
k=1

(x− uk),

(
′ =

d

dx

)
,

Ik,i = κ2
∞ +

T ′(0)

L(0)

θ2

uk

+
T ′(1)

L(1)

α2

uk − 1
+

N∑
j=1

T ′(ti)

L(ti)

α2
i − δij
uk − ti

.

This system was found to be written in the form of a Hamiltonian system in the series of

studies of Okamoto K. ([10]). He showed that isomonodromic deformation equation (1)–(2)

is given by the system

∂uk

∂tj
=
∂Kj

∂vk

,
∂vk

∂tj
= −∂Kj

∂uk

, (j, k = 1, . . . , N),(3)

with the Hamiltonian

Kj = − L(tj)

T ′(tj)

[
N∑

l=1

T (ul)

L′(ul)(ul − tj)

{
v2

l −
(
θ

ul
+

α

ul − 1
+

N∑
i=1

αi − δij
ul − ti

)
vl

}
+ κ

]
,(4)

where

κ =
1

4

(θ + α +

N∑
j=1

αj − 1

)2

− κ2
∞

 .
Further development was made by Kimura H. and Okamoto K. ([8]). System (3) has

movable branch points. They transformed this system into a Hamiltonian system enjoying

the Painlevé property, whose Hamiltonians are polynomials in canonical variables.

The canonical transformation is written as

sj =
tj

tj − 1
, qj =

tjL(tj)

T ′(tj)
, pj =

N∑
k=1

(1 − tj)T (uk)vk

uk(uk − 1)(uk − tj)L′(uk)
,
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and this transformation take the system (3) to the system:

∂qk
∂sj

=
∂Hj

∂pk
,

∂pk

∂sj
= −∂Hj

∂qk
, (j, k = 1, . . . , N),(5)

with the Hamiltonian

Hi =
1

si(si − 1)

[
N∑

j,k=1

Eijk(s, q)pjpk −
N∑

j=1

Fij(s, q)pj + κqi

]
.(6)

Here Eijk, Fij ∈ C(s)[q] are given by

Eijk = Eikj =



qiqjqk, if i, j, k are distinct,

qiqj

(
qj − sj(si−1)

si−sj

)
, if j = k �= i,

qiqj

(
qi − si(sj−1)

sj−si

)
, if k = i, j �= i,

qi(qi − 1)(qi − si) −
∑

l �=i
si(si−1)

si−sl
qiql, if i = j = k,

Fij =


(
θ + α+

∑N
l=1 αl − 1

)
qiqj − αj

sj(si−1)

si−sj
qi − αi

si(sj−1)

sj−si
qj , if i �= j,

(θ − 1)qi(qi − 1) + αqi(qi − si) + αi(qi − 1)(qi − si)

+
∑

l �=i

{
αlqi

(
qi − si(sl−1)

sl−si

)
− αi

si(si−1)
si−sl

ql

}
, if i = j.

On the other hand we know several examples of extensions of the Painlevé equations and

their discretizations. Among them, we would mention two important studies.

One is a guiding principle for integrable dynamical system, called singularity confinement.

It was proposed by B. Grammaticos, A. Ramani et al. ([5, 13]) and it can be viewed as a

discrete counterpart of the Painlevé property. They presented several types of discrete

Painlevé equations discovered by using this method.

The second comes from a representation theory. Noumi M. and Yamada Y. et al. con-

struct many types of integrable systems from representations of affine Weyl groups ([9, 7]).

This is closely related to Drinfel’d-Sokolov hierarchy. However, among these integrable sys-

tems that they presented, discrete analogs of the Garnier system do not appear.

In the present article, we deal with a q-analog of the Garnier system. An origin of the

Garnier system is isomonodromic deformation of linear differential equations of Fuchsian

type. In a similar fashion we consider a deformation theory of linear q-difference equations.

As concerns linear q-difference equations, general theory was developed in classical works.

In particular G. D. Birkhoff studied the generalized Riemann problem of linear q-difference

equations in parallel with linear differential and difference equations ([1]). As its continua-

tion we investigate a deformation theory of linear q-difference equations. But our study is

concentrated only to the case that the coefficients are expressed in 2×2 matrices. Jimbo M.
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and the author derived q-PV I system from the case of the matrix system with polynomial

coefficients of degree 2 in paper [6]. The present paper is a generalization of that. (Examples

of similar constructions are found in former papers [12, 4]. This is realized in 4 × 4-matrix

system, but it falls within the frame work of [6]. See [6].) We deal with the case of degree

N + 1. In the result we find a nonlinear q-difference system which we call q-Garnier system.

It is written as

N∑
l=1

qκ1L(an) T (λl)
(an − λl)(qar − λl)(qas − λl)L′(λl)µl

=
N∑

l=1

κ2L(an)µl

(an − λl)(ar − λl)(as − λl)L′(λl)
,(7a)

L(an)
L(an)

= −
∑N

l=1
µl

(an−λl)(ar−λl)(as−λl)L′(λl)(
1 −
∑N

l=1
µl

(ar−λl)(as−λl)L′(λl)

)(
1 − κ2

qκ1

∑N
l=1

µl
(ar−λl)(as−λl)L′(λl)

) ×(7b)

×
(

θ1 + θ2

κ1L(0)
+ an

(
1 +

κ2

qκ1

)
+

N∑
l=1

anT (λl)
(an − λl)λlL′(λl)µl

+
N∑

l=1

(κ2/qκ1)(qaras − anλl)µl

(ar − λl)(as − λl)λlL′(λl)

)
,

(n ∈ {1, 2, . . . , 2N + 2} \ {r, s}),

where L(x) =
∏N

l=1(x− λl) and T (x) =
∏2N+2

i=1 (x− ai).

This system has the Garnier system as its continuous limit, as we expect (see Section 5).

We use the notations f = f(qt), f = f(q−1t) and so forth. For detailed settings, see

Section 4. These equations define the time evolution (λk, µk)k=1,... ,N �→ (λk, µk)k=1,... ,N , but

in this process we need solve an algebraic equation of degree N and this is not a birational

mapping. This is analogous to the fact that a solution of system (3), uk, does not satisfy

the Painlevé property.

By taking other variables, we can rewrite q-Garnier system to the form of a birational

mapping;

znl

zrzs

(
znl

− zr

anl
− ar

− znl
− zs

anl
− as

)
=
(

1 − (1 − qκ1/κ2)(ar − as)
zr − zs

)(
znl

− zr

anl
− ar

1
zr

− znl
− zs

anl
− as

1
zs

)
,(8a)

ynl

(
1 − (1 − qκ1/κ2)(ar − as)

zr − zs

)
=(8b)

= −ynl

(anl
− qar)(anl

− qas)
(zr − zs)2

(
znl

− zr

anl
− ar

− znl
− zs

anl
− as

)( κ1
κ2

wnl
+ zr

anl
− qar

−
κ1
κ2

wnl
+ zs

anl
− qas

)
,

(l = 0, 1 . . . , N and nl ∈ {1, 2, . . . , 2N + 2} \ {r, s}).

In system (8), wnl
, zr and zs are written by the rational function of (ynl

, znl
)l=0,1,... ,N . This

system defines a time evolution (ynl
, znl

)l=0,1,... ,N �→ (ynl
, znl

)l=0,1,... ,N . Moreover we have two

relations (integrals) (32) and (33). We can calculate the inverse as a rational map, so it is a

birational mapping. For detailed settings see Section 6.

The text is organized as follows. In Section 2 we recall known results concerning the

analytic theory of linear q-difference equations. In Section 3 we treat of their deformations,
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and the compatibility condition between the original and the deformation equations leads

to q-Garnier system in Section 4. We show in Section 5 that it reduces in the continuous

limit q → 1 to the Garnier system. In Section 6 we rewrite q-Garnier system to the form of

a birational map. Detailed calculations of the compatibility which is omitted in Section 4 is

also mentioned in this section. In Section 7 we discuss several directions of deformation and

their relations.

2 Linear q-difference systems

In this section we recall classical theory of linear q-difference equations ([1]). Consider an

m×m matrix system with polynomial coefficients

Y (qx) = A(x)Y (x), A(x) = A0 + A1x+ · · · + ANx
N .(9)

More general case of a rational A(x) can be reduced to this case by solving scalar q-difference

equations. Namely, if function f(x) satisfies f(qx) = (1/
∏M

i=1(x − ci))f(x), then the q-

difference equation

Ỹ (qx) =
A(x)∏M

i=1(x− ci)
Ỹ (x)

have a solution Ỹ (x) = f(x)Y (x).

We assume A0, AN are semi-simple and invertible. Denoting by θh, κh (1 ≤ h ≤ m) the

eigenvalues of A0 and AN respectively, we assume further that

θh

θk
,
κh

κk
�∈ {q, q2, q3, · · · } (1 ≤ h, k ≤ m).

We set A0 = C0q
D0C−1

0 and A∞ = C∞q
D∞C−1

∞ , where D0 = diag(log θr/ log q), D∞ =

diag(log κr/ log q). Throughout this article we fix a complex number q such that 0 < |q| < 1.

Proposition 1 ([1]). Under the conditions above, there exist unique solutions Y0(x), Y∞(x)

of (9) with the following properties:

Y0(x) = Ŷ0(x)x
D0 ,(10a)

Y∞(x) = q
N
2

ξ(ξ−1)Ŷ∞(x)xD∞ , ξ =
log x

log q
.(10b)

Here Ŷ0(x) (resp. Ŷ∞(x)) is a holomorphic and invertible matrix at x = 0 (resp. at x = ∞)

such that Ŷ (0) = C0 (resp. Ŷ∞(∞) = C∞).

The q-difference equation (9) entails that Ŷ∞(x)±1, Ŷ0(x)
±1 can be continued meromor-

phically in the domain 0 < |x| <∞. Unlike the case of Fuchsian linear differential equations
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on P
1, the points x = 0,∞ play distinguished roles in the q-difference systems. There are no

branch points aside from x = 0 or ∞.

Furthermore we know where poles appear. Let ai (i = 1, · · · , mN) denote the zeroes

of detA(x). Ŷ∞(x) and Ŷ0(x)
−1 have no poles, while Ŷ∞(x)−1 and Ŷ0(x) are holomorphic

except for possible poles at

Ŷ∞(x)−1 : qai, q
2ai, q

3ai, . . . ,(11a)

Ŷ0(x) : ai, q
−1ai, q

−2ai, . . . .(11b)

It follows from the fact that

Y0(x) = A(x)−1Y0(qx) = A(x)−1A(qx)−1A(q2x)−1 · · · ,
Y∞(x) = A(q−1x)Y∞(q−1x) = A(q−1x)A(q−2x)A(q−3x) · · · .

The connection matrix P (x) is introduced by

Y∞(x) = Y0(x)P (x).(12)

Equation (9) leads the relation P (qx) = P (x). It is known to be expressible in terms of

elliptic theta functions. It plays a role analogous to that of the monodromy matrices for

differential equations.

3 Connection preserving deformation

In the theory of monodromy preserving deformation of linear differential equations, extra

parameter t is introduced in the coefficient matrix and we describe the condition that the

monodromy stay constant with respect to t. Analogously, in the setting of q-difference

equations, one demands that the connection matrix stay pseudo-constant in t, namely that

P (x, qt) = P (x, t).

We restrict the subject to 2 × 2 matrix systems. In the differential case, this condition

can be written by the existence of the deformation equations and the Garnier system is

derived from the compatibility condition between the original and the deformation equations.

Likewise, under appropriate conditions, it can be shown that P (x, t) is pseudo-constant in t

if and only if the corresponding solutions Y (x, t) = Y0(x, t), Y∞(x, t) satisfy

Y (x, qt) = B(x, t)Y (x, t),(13)

where B(x, t) is rational in x (see Proposition 2 below).

Now we have to introduce a deformation parameter t in coefficient A(x). In the case

of monodromy preserving deformation of Fuchsian equation, deformation parameter t’s are
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configurations of regular singularities. But we have no branch points except x = 0 or x = ∞.

The natural candidate for the deformation parameters are the exponents θj , κj at x = 0,∞
and the zeroes of detA(x). We now take A(x, t) to be of the form

A(x, t) = A0 + A1x+ · · · + ANx
N + AN+1x

N+1,(14)

AN+1 =

(
κ1 0

0 κ2

)
, A0(t) has eigenvalues θ1, θ2,(15)

detA(x, t) = κ1κ2

2N+2∏
i=1

(x− ai).(16)

Clearly we have

κ1κ2

2N+2∏
i=1

ai = θ1θ2.(17)

Taking the determinants of equation (13), it follows that ai goes to qnai from the con-

figuration of possible poles. Now we put ar = brt, as = bst, θh = ψht (h = 1, 2), and br,

bs, ψh (h = 1, 2) and κh (h = 1, 2), ai (i ∈ {1, . . . , 2N + 2} \ {r, s}) are constant in t. We

denote this deformation by Tr,s, and f = Tr,sf . We will consider relations among these Tr,s’s

in Section 7.

In what follows we will normalize Y∞(x) by Ŷ∞(∞) = I.

Proposition 2. We have P (x, qt) = P (x, t) if and only if (13) holds for Y = Y0, Y∞, where

B(x, t) = Br,s(x, t) is a rational function of the form

Br,s(x, t) =
x
(
xI +B0

r,s(t)
)

(x− qar)(x− qas)
.(18)

Proof. From definition (12), the connection matrix is pseudo-constant in t if and only if

Br,s(x, t)
def
= Y∞(x, qt)Y∞(x, t)−1 = Y0(x, qt)Y0(x, t)

−1.

Using (11), we find that the only poles in 0 < |x| < ∞ common to both sides are x = qtbr

or x = qtbs. Moreover (10b) along with the normalization of Y∞(x) imply that the left

hand side behaves as I + O(x−1) at x = ∞. Similarly (10a) implies that the right hand

side behaves like O(x) at x = 0 (notice that D0 is proportional to t). The proposition is an

immediate consequence of these properties.

The compatibility condition for systems (9), (13) reads

A(x, qt)B(x, t)r,s = B(qx, t)r,sA(x, t)(19)

where A(x, t) and B(x, t)r,s are given respectively by (14) and (18). From the next section

we will parameterize A(x) and derive q-Garnier system by calculating this compatibility

condition as a time evolution of the space of A(x), the coefficient of the linear equation (9).
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4 q-Garnier system

Ignoring a gauge freedom, we have further 2N parameters for the space of the coefficient of

linear equations (9). If we set λk for a zero of the (1, 2)-element of A and set µk appropriately,

we can consider C(ai, κh, θh)(λk, µk)
i=1,... ,2N+2; h=1,2;
k=1,...N as the space of the coefficient A of linear

q-difference equation (9). Now we look at this more closely.

Define λk = λk(t), µ
(h)
k = µ

(h)
k (t) (h = 1, 2, k = 1, . . . , N) by

(A(λk, t))1,2 = 0, (A(λk, t))1,1 = κ1µ
(1)
k

∏
l �=k

(λk − λl),

(A(λk, t))2,2 = κ2µ
(2)
k

∏
l �=k

(λk − λl), (k = 1, . . . , N)
(20)

so that µ
(1)
k µ

(2)
k =

∏2N+2
j=1 (λk − aj)/

∏
l �=k(λk − λl)

2. In terms of λk, µ
(1)
k , µ

(2)
k and (14)–(16),

the matrix A(x, t) can be parametrized as follows.

A(x, t) =

(
κ1W (x) κ2wL(x)

−κ1
T (x)−Z(x)W (x)

wL(x)
κ2Z(x)

)
.

Here

L(x) =

N∏
l=1

(x− λl), T (x) =
detA(x)

κ1κ2
=

2N+2∏
i=1

(x− ai),

W (x) = L(x)

(
x− α +

N∑
l=1

µ
(1)
l

x− λl

)
, Z(x) = L(x)

(
x− β +

N∑
l=1

µ
(2)
l

x− λl

)
,

α =
1

κ1 − κ2

(
(−1)N+1 θ1 + θ2∏N

l=1 λl

− κ1

N∑
l=1

µ
(1)
l

λl

− κ2

N∑
l=1

µ
(2)
l

λl

− κ2(σ1 − 2
N∑

l=1

λl)

)
,

β =
1

κ1 − κ2

(
−(−1)N+1 θ1 + θ2∏N

l=1 λl

+ κ1

N∑
l=1

µ
(1)
l

λl
+ κ2

N∑
l=1

µ
(2)
l

λl
+ κ1(σ1 − 2

N∑
l=1

λl)

)
,

σ1 = a1 + a2 + · · · + a2N+2.

The quantity w = w(t) is related to the ‘gauge’ freedom, and does not enter the final result

for the q-GN equation. Introducing µk by

µk =
T (λk)

L′(λk)µ
(1)
k

= L′(λk)µ
(2)
k ,

we can identify C(ai, κh, θh)(λk, µk)
i=1,... ,2N+2; h=1,2;
k=1,...N with the space of A.

Compatibility (19) is written by the form of a set of q-difference equations among the

quantities λk, µ
(1)
k , etc.
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Theorem 3. The equation of compatibility (19) is equivalent to the q-Garnier system (7):

N∑
l=1

qκ1L(an) T (λl)
(an − λl)(qar − λl)(qas − λl)L′(λl)µl

=
N∑

l=1

κ2L(an)µl

(an − λl)(ar − λl)(as − λl)L′(λl)
,

L(an)
L(an)

= −
∑N

l=1
µl

(an−λl)(ar−λl)(as−λl)L′(λl)(
1 −
∑N

l=1
µl

(ar−λl)(as−λl)L′(λl)

)(
1 − κ2

qκ1

∑N
l=1

µl
(ar−λl)(as−λl)L′(λl)

) ×

×
(

θ1 + θ2

κ1L(0)
+ an

(
1 +

κ2

qκ1

)
+

N∑
l=1

anT (λl)
(an − λl)λlL′(λl)µl

+
N∑

l=1

(κ2/qκ1)(qaras − anλl)µl

(ar − λl)(as − λl)λlL′(λl)

)
,

(n ∈ {1, 2, . . . , 2N + 2} \ {r, s})

with the condition about the gauge freedom:

w

w
=
qκ1

κ2

1 −
∑N

l=1
T (λl)

(qar−λl)(qas−λl)L′(λl)µl

1 − qκ1

κ2

∑N
l=1

T (λl)

(qar−λl)(qas−λl)L′(λl)µl

.(21)

Because the calculation is essentially same as that of the birational form, we will omit

the proof and show it for the birational version in Section 6.

Now we study the q-Garnier system itself, in detail. In system (7) the suffix n is running

through {1, 2, . . . , 2N + 2} \ {r, s}, but what we need is only N equations. System (7) with

respect to ni (ni ∈ {1, . . . , 2N + 2} \ {r, s}, i = 1, . . . , N) assure the rest of them (see the

proof of Theorem 4 in Section 6).

The time evolution (λk, µk)k=1,... ,N �→ (λk, µk)k=1,... ,N is determined by these 2N equa-

tions. But this process is a little bit complicated.

Firstly L(an) is written by (λk, µk)k=1,... ,N . Then λk is a solution of the algebraic equation

of degree N in x:(
L(x) =

N∏
l=1

(x− λl) =

)
N∑

i=1

L(ani
)

Ψ′(ani
)

Ψ(x)

x− ani

+ Ψ(x) = 0,(22)

where Ψ(x) =
∏N

i=1(x − ani
). The rest of equations (7a) determine µk from λl, λl and

µl (l = 1, . . . , N) because these equations are linear about 1/µk.

Remark 1. In order to calculate µk we need the inverse of the matrix Pi,l = (1/(ani
−

λl))
i=1,... ,N
l=1,... ,N . It is written as Qk,i = (− Ψ(λk)

L′(λk)

L(ani )

(ani
−λk)Ψ′(ani

)
)k=1,... ,N
i=1,... ,N .

Proof. We consider the partial fraction of the rational function

L(x)

(x− ani
)Ψ(x)

=

N∑
i=1

1

x− ani

L(ani
)

(ani
− λl)Ψ′(ani

)
.

Substituting x = λk to this rational function, we get equation

N∑
i=1

Ψ(λk)

(λk − ani
)L′(λk)

L(ani
)

(ani
− λl)Ψ′(ani

)
=

N∑
i=1

Qk,iPi,l = δk,l.

9



In the process of determination of (λk, µk)k=1,... ,N we have to solve an algebraic equation

of degree N . It means that the time evolution is not uniquely determined. In the case of

the Garnier differential system, this corresponds to the fact that uk of (3) does not satisfy

the Painlevé property though qk of (5), symmetric functions of uk, satisfy it.

The inverse of this transformation can be calculated by (7a) and the equations

L(an)
L(an)

= −

∑N
l=1

T (λl)

(an−λl)(qar−λl)(qas−λl)L′(λl)µl(
1 −
∑N

l=1
T (λl)

(qar−λl)(qas−λl)L′(λl)µl

)(
1 − qκ1

κ2

∑N
l=1

T (λl)

(qar−λl)(qas−λl)L′(λl)µl

) ×

×
(

q
θ1 + θ2

κ1L(0)
+ an

(
1 +

qκ1

κ2

)
+

N∑
l=1

anµl

(an − λl)λlL′(λl)
+

+
qκ1

κ2

N∑
l=1

(qaras − anλl)T (λl)
(qar − λl)(qas − λl)λlL′(λl)µl

)
.

Remark 2. In the case N = 1 (r = 1, s = 2), system (7) is written as

λ̄1λ1 = a3a4

1 − θ1

κ1a3a4

µ1

(a1−λ1)(a2−λ1)

1 − µ1

(a1−λ1)(a2−λ1)

1 − θ2

κ1a3a4

µ1

(a1−λ1)(a2−λ1)

1 − κ2

qκ1

µ1

(a1−λ1)(a2−λ1)

(23a)

µ̄1µ1 =
qκ1

κ2
(λ̄1 − a3)(λ̄1 − a4)(λ1 − a1)(λ1 − a2).(23b)

It is equivalent to the q-PVI system ([6]).

5 Continuous limit

From the construction one expects that in the continuous limit the q-Garnier system reduces

to the Garnier system. By continuous limit we mean that the limit ε = 1 − q → 0.

Because a calculation of continuous limit is rather complicated, we go into the details of

this. We consider a limit of T2j+1,2j+2. In equations (7), we look at only the case of even n

sufficiently. In what follows in this section, the number n is replaced by 2n + 2. Formulas

used in detailed calculations are listed in Remark 3 in the last part of this section.

We set Todd(x) =
∏N

i=0(1 − x/a2i+1) and Teven(x) =
∏N

i=0(1 − x/a2i+2) (So we have

T (x) = (
∏2N+2

i=1 ai)Todd(x)Teven(x)). Besides we introduce new variables (uk, vk) which are

defined as q−ukvk = κ2µk/(θ2Todd(λk)) and uk = λk, then equation (7a) is written as

N∑
l=1

q2θ1L(a2n+2)Teven(ul)qūlv̄l

(a2n+2 − ul)(qa2j+1 − ul)(qa2j+2 − ul)L′(ul)
=

N∑
l=1

θ2L(a2n+2)Todd(ul)q−ulvl

(a2n+2 − ul)(a2j+1 − ul)(a2j+2 − ul)L′(ul)
.
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Here we have
N∑

l=1

Todd(ul)q
−ulvl

(a2n+2 − ul)(a2j+1 − ul)(a2j+2 − ul)L′(ul)

=
N∑

l=1

Todd(ul)

(a2n+2 − ul)(a2j+1 − ul)(a2j+2 − ul)L′(ul)
+

−
N∑

l=1

Todd(ul)(1 − q−ulvl)

(a2n+2 − ul)(a2j+1 − ul)(a2j+2 − ul)L′(ul)

=
Todd(a2j+2)

(a2n+2 − a2j+2)(a2j+1 − a2j+2)L(a2j+2)
− Todd(a2n+2)

(a2n+2 − a2j+2)(a2j+1 − a2n+2)L(a2n+2)
+

−
N∑

l=1

Todd(ul)(1 − q−ulvl)

(a2n+2 − ul)(a2j+1 − ul)(a2j+2 − ul)L′(ul)
.

Calculation about the left hand side is in the same way. Now we introduce notation of

q-number [α]q = (1− qα)/(1− q). This tends to α as q → 1. By using this notation, we can

write equation (7a) as

q2θ1L(a2n+2)Teven(a2j+1)
q(a2n+2 − qa2j+1)(a2j+2 − a2j+1)L(a2j+1)

− θ2L(a2n+2)Todd(a2j+2)
(a2n+2 − a2j+2)(a2j+1 − a2j+2)L(a2j+2)

+

+
θ2Todd(a2n+2)

(a2n+2 − a2j+2)(a2j+1 − a2n+2)
− ε

N∑
l=1

q2θ1L(a2n+2)Teven(ul)[ūlv̄l]q
(a2n+2 − ul)(qa2j+1 − ul)(qa2j+2 − ul)L′(ul)

+

+ε

N∑
l=1

θ2L(a2n+2)Todd(ul)[−ulvl]q
(a2n+2 − ul)(a2j+1 − ul)(a2j+2 − ul)L′(ul)

= 0.

Putting

a2n+1 = q−αn/2tn, a2n+2 = qαn/2tn (n = 0, . . . , N), κ1 = q−K/2, κ2 = qK/2,

θ1 = q−θ/2
N∏

i=0

(−ti), θ2 = qθ/2
N∏

i=0

(−ti),
(24)

(notice relation (17)), we get

L(tn)T ′(tj)
L(tj)(tj − tn)

θ + α0 − 1
tj

+
N∑

i=0
i�=j

αj − 1 − αi

tj − ti
−

N∑
l=1

(
αj − 1 + dul

dtj

tj − ul
−

dul
dtj

tn − ul

)
− αj − 1

tj − tn

+

− αnT ′(tn)
(tn − tj)2

−
N∑

l=1

2L(tn)T (ul)vl

(tj − ul)2(tn − ul)L′(ul)
= 0,

where T (x) = x
∏N

i=0(x − ti) and L(x) =
∏N

i=1(x − ui). In this calculation we used the

Taylor expansion

ul(qtj) = ul((1 − ε)tj) = ul(tj) − εtj
dul

dtj
+ ε2

t2j
2

d2ul

dt2j
+ · · · .
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The equation obtained is linear with respect to dul

dtj
’s. Considering the matrix Nk,n =

T (uk)tn(tn−tj)L(tn)

T ′(tn)uk(uk−tj)(uk−tn)L′(uk)
, which is the inverse of the matrixMn,l = 1/(tn−ul) (n ∈ {0, . . . , N}\

{j} and k, l = 1, . . . , N), we can calculate duk

dtj
. By using the formulas (28b) and (28f) given

below in Remark 3, we obtain

duk

dtj
=

L(tj)

T ′(tj)

T (uk)

L′(uk)(uk − tj)

(
θ

uk
+

N∑
i=0

αi − δlj
uk − ti

− 2vk

)
.(25)

Next we rewrite equation (7b) using the notation of q-numbers. It can be written as∏N
i=0(−a2i+1)Todd(a2j+2)

(a2j+2 − a2j+1)L(a2j+2)
+ ε

N∑
l=1

∏N
i=0(−a2i+1)Todd(ul)[−ulvl + θ+

∑N
i=0 αi−K

2 ]q
(a2j+1 − ul)(a2j+2 − ul)L′(ul)

×

×

∏N
i=0(−a2i+1)Todd(a2j+2)

(a2j+2 − a2j+1)L(a2j+2)
+ ε

N∑
l=1

∏N
i=0(−a2i+1)Todd(ul)[−ulvl + θ+

∑N
i=0 αi+K

2 − 1]q
(a2j+1 − ul)(a2j+2 − ul)L′(ul)


=

(
qθ1Teven(a2j+1)

(a2n+2 − qa2j+1)(a2j+1 − a2j+2)L(a2j+1)
+ ε

N∑
l=1

q2θ1Teven(ul)[ul vl]q
(a2n+2 − ul)(qa2j+1 − ul)(qa2j+2 − ul)L′(ul)

)
×

×
(

θ2(a2n+2 − qa2j+1)Todd(a2j+2)
q(a2j+2 − a2j+1)L(a2j+2)

− ε2a2n+2q
− θ+

∑N
i=0 αi
2 [k1]q [k2]q +

−ε
N∑

l=1

(
a2n+2θ1Teven(ul)[ulvl]q
(a2n+2 − ul)ulL′(ul)

+
(qa2j+1a2j+2 − a2n+2ul)θ2Todd(ul)[−ulvl]q

q(a2j+1 − ul)(a2j+2 − ul)ulL′(ul)

))
,

where k1 =
θ+
∑N

i=0 αi−K

2
, k2 =

θ+
∑N

i=0 αi+K

2
− 1.

This equation leads to 0 = 0 as the limit ε → 0. Furthermore, as the coefficient of ε1’s

term of this equation, the following equation appears:

N∑
i=0
i�=j

(αj − 1)tj + αiti
tj − ti

+
N∑

l=1

(αj − 1 + dul
dtj

)tj
ul − tj

=
tjL(tj)
T ′(tj)

N∑
l=0

T (ul)[θ +
∑N

i=0 αi − 1 − 2ulvl]
L′(ul)ul(ul − tj)2

.(26)

But this can be derived from equation (25). We have to look at equation (7b) in the

coefficient of ε2’s term. Notice that

[α]q =
1 − qα

1 − q
= α + ε

α(1 − α)

2
+ · · · ,
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and we obtain

0 =
1
2
T ′(tj)
tjL(tj)

 N∑
i=0
i�=j

(αj − 1)tj + αiti
tj − ti

N∑
l=1

+
(αj − 1 + dul

dtj
)tj

ul − tj

×

×

 N∑
i=0
i�=j

(αj + 1)tj + αiti
tj − ti

+
N∑

l=1

(αj + 1)t − tdul
dtj

ul − tj
− 2

tjL(tj)
T ′(tj)

N∑
l=1

(tn − tj)T (ul)vl

(tn − ul)(t − ul)2L′(ul)

+

+
1
2
T ′(tj)
tjL(tj)

 N∑
l=1

 t2j
d2ul

dt2j

ul − tj
− t2j

(
dul
dtj

− 1
)(

dul
dtj

+ αj − 1
)

(ul − tj)2

−
N∑

i=0
i�=j

(
tj

(αj − 1)tj + αiti
(tj − ti)2

+
αiti

tj − ti

)+

−
N∑

l=1

(tn − tj)T (ul)vl

(tn − ul)L′(ul)(ul − tj)2

 N∑
m=1
m�=l

tj
dul
dtj

− tj
dum
dtj

ul − um
−

N∑
i=0
i�=j

tj
dul
dtj

ul − ti
+

tj

(
dul
dtj

− 1
)

ul − tj
− tj

ul

dul

dtj
− tj

vl

dvl

dtj
+

−(αj − 2)tj
tn − tj

+
tj

dul
dtj

ul − tn
− k1 − k2

]
+

k1 + k2

2
T ′(tj)
tjL(tj)

 N∑
i=0
i�=j

αiti
tj − ti

+
N∑

l=1

αjtj
ul − tj

+

+
N∑

l=1

tjT (ul)vl

(tn − tj)L′(ul)(ul − tj)

[
vl −

θ

ul
−

N∑
i=0

αi − δi,j

ul − ti

]
+

tnk1k2

tn − tj
+

k2
1 + k2

2

2

(
1 +

T ′(tj)
tjL(tj)

)
+

+
1
2

N∑
l=1

T (ul)[2ulvl − k1 − k2]
L′(ul)ul(ul − tj)2

 N∑
i=1
i�=j

αjtj + αiti
tj − ti

+
N∑

m=1

αjtj
um − tj

− 1

+

+
tjL(tj)
T ′(tj)

( N∑
l=1

T (ul)[−ulvl + k1]
L′(ul)ul(ul − tj)2

)(
N∑

l=1

T (ul)[−ulvl + k2]
L′(ul)ul(ul − tj)2

)
+

(
N∑

l=1

(tn − tj)T (ul)vl

(tn − ul)L′(ul)(ul − tj)2

)2
 .

This equation contains the terms of d2ul

dt2j
’s, and we want to eliminate these terms. Differ-

entiating equation (26), we have

N∑
l=1

 t2j
d2ul

dt2j

ul − tj
−

t2j

(
dul
dtj

− 1
)(

dul
dtj

+ α0 − 1
)

(ul − tj)2

−
N∑

i=0
l �=j

(
tj

(αj − 1)tj + αiti
(tj − ti)2

+
αiti

tj − ti

)

=
tjL(tj)
T ′(tj)

N∑
l=1

2T (ul)vl

L′(ul)(ul − tj)2

 N∑
m=1
m�=l

tj
dul
dtj

− tj
dum
dtj

ul − um
−

N∑
i=0
i�=j

tj
dul
dtj

ul − ti
+

tj

(
dul
dtj

− 1
)

ul − tj
− tj

ul

dul

dtj
− tj

vl

dvl

dtj

+

+
tjL(tj)
T ′(tj)

(
θ +

N∑
i=0

αi − 1 −
N∑

l=1

2T (ul)vl

(tj − ul)2L′(ul)

) N∑
l=1

tj

(
dul
dtj

− 1
)

ul − tj
−

N∑
i=0
i�=j

t

t − ti

+

−
N∑

i=0
i�=j

(αj − 1)tj + αiti
tj − ti

−
N∑

l=1

(αj − 1)tj + tj
dul
dtj

ul − tj
.
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Using this equation and (26), we obtain

0 =
N∑

l=1

T (ul)vl

(tn − ul)L′(ul)(ul − tj)

 tj
vl

dvl

dtj
+
(

Ll −
1

ul − tj

)
tj

dul

dtj
+

N∑
i=1
i�=l

tj
dui
dtj

ul − ui
+ (k1 + k2)

tjL(tj)
T ′(tj)

+

+
tj

tn − tj

N∑
l=1

T (ul)vl

L′(ul)(ul − tj)

[
vl −

θ

ul
−

N∑
i=0

αi + δi,j

ul − ti

]
+

tjL(tj)
T ′(tj)

(
N∑

l=1

T (ul)vl

(tn − ul)(ul − tj)L′(ul)

)2

+

+
N∑

l=1

T (ul)vl

(tn − ul)2L′(ul)(ul − tj)
tj

dul

dtj
+ (αj − 1)tj

N∑
l=1

T (ul)vl

(tn − ul)L′(ul)(ul − tj)2
+

+
(

tjL(tj)
T ′(tj)

+
tj

tn − tj

)
k1k2,

where Ll = 1
ul

+
∑N

i=0
1

ul−ti
−
∑N

m=1,m�=l
1

ul−um
.

Here we multiply the inverse of the matrix Mn,l = 1/(tn − ul). By using (28a)–(28e) in

Remark 3, we get

T ′(tj)
L(tj)

dvk

dtj
= Lk

T (uk)v2
k

L′(uk)(uk − tj)
− T (uk)vk

L′(uk)(uk − tj)2

[
θ

uk
+

N∑
i=0

αi − δi,j

uk − ti

]
+

+
N∑

l=1
l �=k

T (ul)
L′(ul)(uk − tj)

vl

ul − uk

[
vl −

θ

ul
−

N∑
i=0

αi − δi,j

ul − ti

]
+

+
N∑

l=1
l �=k

T (ul)
L′(ul)(ul − tj)

vk

ul − uk

[
θ

ul
+

N∑
i=0

αi − δi,j

ul − ti

]
+

−(αj − 1)T ′(tj)
(uk − tj)L(tj)

vk − (k1 + k2)vk +
k1k2

uk − tj
.

We can simplify this equation. Using (28g) and (28h) in Remark 3, finally we obtain

T ′(tj)
L(tj)

dvk

dtj
=

T (uk)vk

L′(uk)(uk − tj)

[
Lk

(
vk − θ

uk
−

N∑
i=0

αi − δij

uk − ti

)
+

θ

u2
k

+
N∑

i=0

αi − δij

(uk − ti)2

]
+(27)

+
N∑

l=1
l �=k

T (ul)
L′(ul)(uk − tj)

vl

ul − uk

[
vl −

θ

ul
−

N∑
i=0

αi − δi,j

ul − ti

]
+

k1k2

uk − tj
.

Equations (25) and (27) coincide with the Garnier system (3).

Remark 3. Here we list formulas used in the above calculus. These can be verified by

investigating residues, or by decomposition of rational functions into partial fraction like

Remark 1.
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In calculation of multiplying Nk,n =
T (uk)tn(tn−tj)L(tn)

T ′(tn)uk(uk−tj)(uk−tn)L′(uk)
, it is useful to consider the

following formulas:

N∑
n=0
n �=j

tn(tn − tj)L(tn)

uk(uk − tn)T ′(tn)
· 1

tn − ul
=

L′(uk)(uk − tj)

T (uk)
δk,l,(28a)

N∑
n=0
n �=j

tn(tn − tj)L(tn)

uk(uk − tn)T ′(tn)
· 1

tn − tj
= − 1

uk(uk − tj)

tjL(tj)

T ′(tj)
,(28b)

N∑
n=0
n �=j

tn(tn − tj)L(tn)

uk(uk − tn)T ′(tn)
= − 1

uk

,(28c)

N∑
n=0
n �=j

tn(tn − tj)L(tn)

uk(uk − tn)T ′(tn)
· 1

(tn − ul)2
=

(tj − ul)L′(ul)

(uk − ul)T (ul)

ul

uk
, (l �= k),(28d)

N∑
n=0
n �=j

tn(tn − tj)L(tn)

uk(uk − tn)T ′(tn)
· 1

(tn − uk)2
=

(uk − tj)L′(uk)

T (uk)

(
1

uk

+
1

uk − tj
− Lk

)
,(28e)

where Lk = 1
uk

+
∑N

i=0
1

uk−ti
−
∑N

m=1,m�=k
1

uk−um
.

Moreover we used the next formula to get equation (25):

T ′(tj)

tjL(tj)

N∑
i=0
i�=j

tiL(ti)

(tj − ti)T ′(ti)
=

N∑
i=0
i�=j

1

ti − tj
+

N∑
l=1

1

tj − ul
.(28f)

In the last calculation to get equation (27) we used the next formulas:

N∑
l=1
l �=k

T (ul)
L′(ul)ul(ul − tj)

1
ul − uk

=
T (uk)

L′(uk)uk(uk − tj)

(
1
uk

+
1

uk − tj
− Lk

)
+ 1,(28g)

N∑
l=1
l �=k

T (ul)
L′(ul)ul(ul − tj)2

1
ul − uk

=(28h)

=
T (uk)

L′(uk)uk(uk − tj)2

(
1
uk

+
2

uk − tj
− Lk

)
+

T ′(tj)
tjL(tj)(uk − tj)

.

6 q-Garnier system of birational form

In Section 4 we calculated the compatibility, (19), but the determination of the time evolution

needs a process of solving algebraic equations of degree N . In order to describe this system

in the form of birational mappings, we change parameterization for A(x).
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Define yi, zi and wi (i = 1, 2, . . . , 2N + 2) by

A(ai) = yi

(
1

w−1zi

)(
κ1wi κ2w

)
(i = 1, 2, . . . , 2N + 2).(29)

(Notice that detA(ai) = 0.) Then there are 3(2N + 2) parameters and it is redundant. If

we take distinct N + 1 elements of i’s as {i0, i1, . . . , iN}, we can write down A(x) by yik , zik

and wik (k = 0, 1, . . . , N). These are Lagrange’s interpolations.

A(x) =

(
κ1Z(x) κ2wL(x)

κ1w
−1X(x) κ2W (x)

)
,

W (x) = Θ(x)

(
1 +

N∑
k=0

zik

Θ′(aik)(x− aik)

)
, L(x) = Θ(x)

(
N∑

k=0

yik

Θ′(aik)(x− aik)

)
,

X(x) = Θ(x)

(
N∑

k=0

wikzik

Θ′(aik)(x− aik)

)
, Z(x) = Θ(x)

(
1 +

N∑
k=0

wikyik

Θ′(aik)(x− aik)

)
,

where Θ(x) =
∏N

k=0(x− aik). In particular,

yl = Θ(al)

(
N∑

k=0

yik

Θ′(aik)(al − aik)

)
, zl =

1 +
∑N

k=0

zik
yik

Θ′(aik
)(al−aik

)∑N
k=0

yik

Θ′(aik
)(al−aik

)

,

wl =
1 +
∑N

k=0

wik
yik

Θ′(aik
)(al−aik

)∑N
k=0

yik

Θ′(aik
)(al−aik

)

(l �= ik).

(30)

Furthermore we obtain a linear equation for wik from the equation about X(x);

zj −
N∑

k=0

zj − zik

aj − aik

yik

Θ′(aik)
wik = 0 (j �= ik).(31)

Taking R as the inverse of the matrix
(

zjl
−zik

ajl
−aik

)
l,k

(where {j0, . . . , jN} ∪ {i0, . . . , iN} =

{1, 2, . . . , 2N + 2}), we get

wim =
Θ′(aim)

yim

N∑
l=0

Rm,lzjl
.

In the end we add two relations. The first is
N∑

k=0

yik

Θ′(aik)
= 1,(32)

because the gauge w normalize the leading term of L(x) to 1. The second comes from trace

in x = 0,

κ1 + κ2 −
N∑

k=0

(κ2zik + κ1wik)yik

aikΘ
′(aik)

=
θ1 + θ2
Θ(0)

.(33)
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Finally we can identify the space of the coefficient A(x) as

C(ai, κh, θh)(zi, yi, wi)i=1,... ,2N+2; h=1,2|(17), (30), (31), (32), (33)

= C(ai, κh, θh)(zik , yik)
i=1,... ,2N+1; h=1,2;
k=0,1,...N |(32), (33)

= C(ai, κh, θh)(zi0 , zi1, . . . , ziN ; yi1, . . . , yiN )i=1,... ,2N+1; h=1,2|(33).

Here the symbol K|(A) stands for a field K with a relation (A).

These parameters zi, yi and wi are written by λk and µk. Namely,

wi =
W (ai)

L(ai)
= ai − α +

N∑
l=1

µ
(1)
l

ai − λl
, yi = L(ai) =

N∏
l=1

(ai − λl),

zi =
Z(ai)

L(ai)
= ai − β +

N∑
l=1

µ
(2)
l

ai − λl
.

(34)

See the variables µ
(1)
l , µ

(2)
l , α and β in Section 4. The field C(ai, κh, θh)(λk, µk)

i=1,... ,2N+1; h=1,2;
k=1,...N

is an algebraic extension of C(ai, κh, θh)(zi0 , zi1 , . . . , ziN ; yi1, . . . , yiN )i=1,... ,2N+1; h=1,2|(33).

Now we calculate the compatibility condition (19). Before we see the proof of Theorem

3, we rewrite the compatibility in this parameterization.

Theorem 4. The q-Garnier system (7) is equivalent to system (8):

znl

zrzs

(
znl

− zr

anl
− ar

− znl
− zs

anl
− as

)
=
(

1 − (1 − qκ1/κ2)(ar − as)
zr − zs

)(
znl

− zr

anl
− ar

1
zr

− znl
− zs

anl
− as

1
zs

)
,

ynl

(
1 − (1 − qκ1/κ2)(ar − as)

zr − zs

)
=

= −ynl

(anl
− qar)(anl

− qas)
(zr − zs)2

(
znl

− zr

anl
− ar

− znl
− zs

anl
− as

)( κ1
κ2

wnl
+ zr

anl
− qar

−
κ1
κ2

wnl
+ zs

anl
− qas

)
,

(l = 0, 1 . . . , N and nl ∈ {1, 2, . . . , 2N + 2} \ {r, s}).

Remark 4. Equation (21) is written in this parameterization as

w

w
=
κ1

κ2

wr − ws

zr − zs

.(35)

In system (8), wnl
, zr and zs are written by the rational functions of (ynl

, znl
)l=0,1,... ,N (see

(30) and (31)). Moreover we have two relations (32) and (33). These equations define the

action of time evolution Tr,s on the space of coefficients A(x). Time evolution (yi, zi, wi) =

17



Tr,s(yi, zi, wi) is expressed by the system:

wr

zs

=
ws

zr

=
(κ2

κ1
− q)(ar − as)

zr − zs

− κ2

κ1

,(36a)

ȳrw̄r =
q(ar − as)zs

(zr − zs)2

[(
1

(q − 1)ar

− 1

qar − as

)(
X(qar) +

κ2

κ1

zrZ(qar)

)
+(36b)

−
(

zr

(q − 1)ar
− zs

qar − as

)(
W (qar) +

κ2

κ1
zrL(qar)

)]
,

z̄r ȳr =
q(ar − as)zrzs

(zr − zs)2

[(
1

(q − 1)ar
− 1

qar − as

)(
zrL(qar) +

κ1

κ2
W (qar)

)
+(36c)

−
(

1

(q − 1)ar

1

zr

− 1

qar − as

1

zs

)(
zrZ(qar) +

κ1

κ2

X(qar)

)]
,

(ȳs, z̄s are expressed by the equations obtained by the replacement (r, s) �→ (s, r).)

zn

(
zn − zr

an − ar

− zn − zs

an − as

)
+
κ1

κ2

(
zn − zr

an − ar

wr −
zn − zs

an − as

ws

)
= 0,(36d)

wn

(
wn − wr

an − qar
− wn − ws

an − qas

)
+
κ2

κ1

(
wn − wr

an − qar
zr −

wn − ws

an − qas
zs

)
= 0,(36e)

ȳnw̄r

ynzs
=

(an − qar)(an − qas)

(zr − zs)2

(
zn − zr

an − ar
− zn − zs

an − as

)(
wn + κ2

κ1
zr

an − qar
−
wn + κ2

κ1
zs

an − qas

)
,(36f)

(n ∈ {1, 2, . . . , 2N + 2} \ {r, s}).

We also call this system q-Garnier system. This system is a dynamical system on the

2N -dimensional space. But we may consider this as a dynamical system on the 3(2N + 2)-

dimensional space, which has 4N + 6 integrals defined by relations (30)–(33).

Proof of Theorems 3 and 4.

Now we calculate the compatibility, (19), in the variables (yi, zi, wi) and deduce that it

is equivalent to the system (8). Theorem 3 can be shown from the discussion below, by

substituting (34).

The compatibility (19) is written as

q(x− ar)(x− as)A(x)(xI +B0
r,s) − (x− qar)(x− qas)(qxI +B0

r,s)A(x) = 0.(37)

The left hand side is a polynomial of degree N+4. We look at this condition at the 4 special

points: x = ar, as, qar, qas, then we have

A(qah)(qahI +B0
r,s) = 0, (qahI +B0

r,s)A(ah) = 0 (h = r, s).(38)

So the determinant of A(qah) (h = r, s) is zero and we can parameterize as

A(qah) = yh

(
1

w−1zh

)(
κ1wh κ2w

)
, (h = r, s).
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Equations (38) are equivalent to equation (35), the equation

zrwr = zsws(39)

and the parameterization of B0
r,s;

Br,s(x) =
x(xI +B0

r,s)

(x− qar)(x− qas)
=

x

κ2w(zr − zs)
(Br − Bs) ,(40)

where

Bh =
1

x− qah

(
κ2w

−κ1wh

)(
zh −w

)
(h = r, s).

Substituting the matrix B0
r,s to the compatibility condition (37), we can write A(x) by

the parameterization of A(x) as follows;

A(x) =
(x− qar)(x− qas)

q(x− ar)(x− as)
(qxI +B0

r,s)A(x)(xI +B0
r,s)

−1.

Then A(x) is a polynomial. (Although possible simple poles appear at x = ah, it is shown

that (x−ah)A(x)|x=ah
= 0 (h = r, s).) Because the determinant of xI+B0

r,s is (x−qar)(x−
qas), we have

detA(x) = κ1κ2
(x− qar)(x− qas)

(x− ar)(x− as)

2N+2∏
i=1

(x− ai).

Moreover we know the leading term of A(x) is diag(κ1, κ2) and A(x) have qθ1 and qθ2 as the

eigen values at x = 0. Consequently A(x) can be parameterized by zj , yj, etc. as

A(aj) = yj

(
1

w−1zj

)(
κ1wj κ2w

)
.

They satisfies the over-lined version of (30),(31),(32) and (33).

Considering (37) at x = an (n �= r, s), we get

yn

(
1

zn

)[
wn − wr

an − qar

(
zr −1

)
− wn − ws

an − qas

(
zs −1

)]
+(41)

+yn

[
zn − zr

an − ar

(
1
κ1

− wr

κ2

)
− zn − zs

an − a2

(
1
κ1

− ws

κ2

)](
κ1wn κ2

)
= 0.

This is equivalent to equations (36d)–(36f). Notice that we have only to consider N points

among x = an’s (n ∈ {1, 2, . . . , 2N + 2} \ {r, s}), because equation (37) is of degree N + 4.

Hence N equations of (41) assure the rest of them.
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Now we calculate equation (39). In equation (30) we set i0 = r and s /∈ {i0, . . . , iN}.
Eliminating ws in (39), we get an equation about yil, wil (l = 1, . . . , N), yr and wr. But

we can eliminate yr by equation (32). Using equations (36d), (36f) and (39), we obtain an

equation about zr; it is equation (36a).

Eliminating wr and ws from (41), we obtain (8a)–(8b). Inversely, under the condition

(8a)–(8b), we can deduce equations (36) and (39), so the proof is finished.

We can calculate inverse transformation of the system (8a)–(8b). In particular,

zr

w̄s

=
zs

w̄r

=
(1 − qκ1/κ2)(ar − as)

ws − wr

− κ1

κ2

.

It follows that q-Garnier system with this parameterization defines a birational mapping.

7 Relations among the time evolutions

Till the previous section, we discussed about a time evolution Tr,s for the fixed r, s (r, s ∈
{1, 2, . . . , 2N + 2}). In this section we study on relations among several time evolutions. In

the first place the next proposition is obvious.

Proposition 5.

Tr,s = Ts,r.(42)

Next we see commutativities of time evolutions.

Proposition 6.

Tr1,s1 ◦ Tr2,s2 = Tρ1,σ1 ◦ Tρ2,σ2 ,(43)

where {ρ1, ρ2, σ1, σ2} = {r1, r2, s1, s2} and r1, s1, r2, s2 are distinct from each other.

Proof. Since the time evolution is defined by the equation

Tr,s(A(x)) = Br,s(qx)A(x)Br,s(x)
−1,

we have only to show Tr2,s2(Br1,s1)Br2,s2 = Tρ2,σ2(Bρ1,σ1)Bρ2,σ2 . The matrix Tr2,s2(Br1,s1)Br2,s2

is a rational function of the form

x2(x2I + xB1 +B0)

(x− qar1)(x− qas1)(x− qar2)(x− qas2)
.

Moreover this is uniquely determined by the equation

q2(x− ar1)(x− as1)(x− ar2)(x− as2)Tr1,s1 ◦ Tr2,s2(A(x))(x2I + xB1 +B0) =

=(x− qar1)(x− qas1)(x− qar2)(x− qas2)(q
2x2I + qxB1 +B0)A(x),
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as in the proof of Theorems 3 and 4. But this equation is also satisfied by Tρ2,σ2(Bρ1,σ1)Bρ2,σ2 .

Uniqueness of solutions of the equation leads to the result.

As can be seen from the proof above, time evolutions are uniquely determined by the

information about the move of (ai)i=1,... ,2N+2. Let T(d1,d2,... ,d2N+2) be the time evolution

associated with the transformation (ai) �→ (qdiai) (
∑2N+2

i=1 di ≡ 0 mod 2). Then we don’t

need the assumption that r1, s1, r2, s2 are distinct from each other, in Proposition 6.

At the end we close this section with the next proposition.

Proposition 7.

T(1,1,... ,1)(A(x)) = qN+1

(
κ1 0

0 κ2

)−1

A(q−1x)

(
κ1 0

0 κ2

)
.(44)

Proof. In this case the deformation equation T (Y (x)) = B(x)Y (x) is expressed by the

matrix B = B(1,1,... ,1) that is a rational function of the form

xN+1(xN+1I + xNBN + · · ·+B0)∏2N+2
i=1 (x− qai)

.

This is also uniquely determined by the compatibility

T(1,1,... ,1)(A(x))B(1,... ,1)(x) = B(1,... ,1)(qx)A(x).

This equation has B(1,... ,1)(x) = (x/q)N+1

(
κ1 0

0 κ2

)
A(q−1x)−1 and T(1,1,... ,1)(A(x)) =

qN+1A(q−1x) as a solution. Uniqueness of solutions leads to the proposition.

Equation (44) is written in the terms of (λk, µk) as

T(1,... ,1) = T1,2 ◦ T3,4 ◦ · · · ◦ T2N+1,2N+2 : (λk, µk)k=1,... ,N �→ (qλk, q
N+1µk)k=1,... ,N .

This is a kind of trivial transformations.
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[2] R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im
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Lett. Math. Phys. 62 (2002) 259–268.

[8] H.Kimura and K.Okamoto, On the polynomial Hamiltonian structure of the Garnier

systems, J. Math. pure et appl. 63 (1984) 129–146.

[9] M. Noumi and Y. Yamada, Affine Weyl groups, discrete dynamical systems and Painlevé
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system, J. Fac. Sci. Univ. Tokyo Sec.IA, Math.33 (1986) 575–618.
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