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Abstract

We study theq-difference analogue of the sixth Painlevé equation (q-PVI ) by means of tau

functions associated with affine Weyl group of typeD5. We prove that a solution ofq-PVI

coincides with a self-similar solution of theq-UC hierarchy. As a consequence, we obtain in

particular algebraic solutions ofq-PVI in terms of the universal character which is a general-

ization of Schur polynomial attached to a pair of partitions.
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Introduction

Thesixthq-Painlevé equation(q-PVI ) is equivalent to the following system ofq-difference equa-

tions (see [4]):

f f = b7b8
(g+ b5)(g+ b6)
(g+ b7)(g+ b8)

, gg= b3b4
( f + b1)( f + b2)
( f + b3)( f + b4)

. (0.1)

Here f = f (a) and g = g(a) are the unknown functions in variablesa = (a0, . . . ,a5) with

a0a1a2
2a3

2a4a5 = q; andbi ’s are the parameters given by (1.1) below; the symbolsf andg stand

for f (. . . ,qa2,q−1a3, . . .) andg(. . . , q−1a2,qa3, . . .), respectively. Notice thata2/a3 plays the roll of

the independent variable and otherai ’s (i , 2,3) constant parameters of (0.1). This system satis-

fies the singularity confinement criterion which is a discrete counterpart of the Painlevé property

(see [18]), and actually goes to the sixth Painlevé differential equation through a certain limiting

procedure asq→ 1.

We have known at least two important aspects of nature of the sixthq-Painlev́e equation. First,

q-PVI is closely related to thegeneralizedRiemann–Hilbert problem (see [1]), as analogous to

the case of continuous one; it was shown by Jimbo–Sakai [4] thatq-PVI governs the connection

preserving deformation of a linearq-difference equation. The second is algebraic geometry of

rational surfaces due to Sakai [19]; he presented a class of discrete Painlevé equations defined

by the group of Cremona transformations on certain rational surfaces associated with affine root

systems;cf. [2]. Among them,q-PVI corresponds to the surface with affine Weyl group symmetry

of typeD5, that is the same surface as studied by Looijenga [10].

The aim of the present work is to provide yet another formulation ofq-PVI , from the viewpoint

of infinite-dimensional integrable systems. An extension of the KP hierarchy, called theUC hier-

archy, was proposed in [23]. This hierarchy is considered as an integrable system characterized by

theuniversal character(see [9]) which is a generalization of Schur polynomial attached to a pair of

partitions. Also aq-difference analogue of the hierarchy (q-UC hierarchy) was studied in [26]. In

this paper we prove, by usingtau functions, thatq-PVI coincides with a certain similarity reduction

of theq-UC hierarchy. Consequently, we obtain in particular a class of algebraic solutions ofq-PVI

in terms of the universal character.

In Sect. 1, we present the geometric formulation ofq-PVI by means of tau functions; then

we obtain a birational representation of affine Weyl group of typeD5 (see Theorem 1.4). By

virtue of this representation, we transformq-PVI equivalently into a system of bilinear equations

among tau functions in Sect. 2 (see Theorem 2.3). We sum up, in Sect. 3, some results concerning

the universal character and theq-UC hierarchy. Finally we see that the bilinear equations ofq-
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PVI coincide with a similarity reduction of theq-UC hierarchy, thus obtain an expression of the

solution ofq-PVI in terms of that of the hierarchy in Sect. 4 (see Theorem 4.1). Since theq-UC

hierarchy admits the universal character as its homogeneous solution, we have immediately a class

of algebraic solutions ofq-PVI in terms of the universal character (see Theorem 4.2). Sect. 5 is

devoted to the verification of Theorem 4.1.

Recall that the sixth Painlevé equation can be deduced fromq-PVI as a continuous limit and

so are all the other Painlevé equations. Hence the above relation betweenq-PVI and theq-UC

hierarchy gives a natural explanation why the universal character appears in the solutions of the

Painlev́e equations; see [13, 14].

Remark0.1. We refer to the result [26] where the higher orderq-Painlev́e equations also turn out

to be certain similarity reductions of theq-UC hierarchy;cf. [24]. It is still an interesting open

question why the universal character solves the Garnier system; see [25].

Note. We use the following conventions throughout this paper.

q-shifted factrials:

(a; q)n =

n−1∏

i=0

(1− aqi), (a; p,q)n =

n−1∏

i, j=0

(1− apiqj). (0.2)

We use also the notation (a1, . . . , ar ; q)n = (a1; q)n · · · (ar ; q)n, and so on.

Jacobi’s theta function:

θ(a; q) =
(
a,qa−1; q

)
∞
. (0.3)

Elliptic gamma function:

Γ(a; p,q) =

(
pqa−1; p,q

)
∞

(a; p,q)∞
. (0.4)

We have
Γ(qa; q,q)
Γ(a; q,q)

= θ(a; q), (0.5)

and
θ(qa; q)
θ(a; q)

= −a−1. (0.6)
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1 The sixthq-Painlevé equation

In this section we present, by means oftau functions, the geometric formulation ofq-PVI ; cf. [19].

Let ( f ,g) = ( f0/ f1,g0/g1) denote the inhomogeneous coordinate ofP1 × P1. Consider the eight

points,pi (1 ≤ i ≤ 8), given as follows:

p1 = (−b1,0), p2 = (−b2,0), p3 = (−b3,∞), p4 = (−b4,∞),

p5 = (0,−b5), p6 = (0,−b6), p7 = (∞,−b7), p8 = (∞,−b8),

where
b1 = a3

2a4
−1a5, b2 = a3

2a4
3a5, b3 = a3

−2a4
−1a5, b4 = a3

−2a4
−1a5

−3,

b5 = a0
−1a1a2

−2, b6 = a0
−1a1

−3a2
−2, b7 = a0

−1a1a2
2, b8 = a0

3a1a2
2,

(1.1)

andai ∈ C× being constant parameters such thata0a1a2
2a3

2a4a5 = q. Let ε : X = Xa → P1 × P1

be the blowing-up at eight pointspi (1 ≤ i ≤ 8); let ei = ε
−1(pi) be the exceptional divisor and let

h0 = {0} × P1, h1 = P
1 × {0}. We thus have the Picard lattice ofX:

Pic(X) = Zh0 + Zh1 +
∑

1≤i≤8

Zei ,

equipped with the intersection form (symmetric bilinear form), (| ), defined by

(hi |hj) = 1− δi, j , (ei |ej) = −δi, j , (hi |ej) = 0.

First we shall see that the (extended) affine Weyl groupW̃(D(1)
5 ) acts on Pic(X) as the group of

Cremona isometriesof rational surfaceX. Here recall that an automorphismσ of Pic(X) is said

to be aCremona isometry(see [10, 19]) iff σ preserves the intersection form (| ), the canonical

divisorKX, and effectiveness of each effective divisor of Pic(X).

The anti-canonical divisor−KX is uniquely decomposed into prime divisors:

−KX = 2h0 + 2h1 −
∑

1≤i≤8

ei = D0 +D1 +D2 +D3,

whereD0 = h1 − e1 − e2, D1 = h0 − e5 − e6, D2 = h1 − e3 − e4 andD3 = h0 − e7 − e8. Let

(−KX)⊥ = {v ∈ Pic(X) | (v|Di) = 0 for all i}, then we have the

Lemma 1.1 (see [19]). (−KX)⊥ ≅ Q(D(1)
5 ): root lattice of typeD(1)

5 .

We have the canonical root basisB = {α0, α1, . . . , α5} given as follows:

α0 = e7 − e8, α1 = e5 − e6, α2 = h1 − e5 − e7,

α3 = h0 − e1 − e3, α4 = e1 − e2, α5 = e3 − e4.
(1.2)
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The intersection matrix multiplied by−1 actually coincides with the Cartan matrix ofD(1)
5 :

(Ci j ) = −((αi |α j)) =



2 −1

2 −1

−1 −1 2 −1

−1 2 −1 −1

−1 2

−1 2



.

Now define the action of simple reflectionsi on Pic(X) corresponding toαi as

si(v) = v+ (v|αi)αi for v ∈ Pic(X),

and also that of Dynkin diagram automorphismσi as

σ1 : h{0,1} 7→ h{1,0}, e{1,2,3,4,5,6,7,8} 7→ e{5,6,7,8,1,2,3,4},

σ2 : e{5,6,7,8} 7→ e{7,8,5,6}.

We have in fact the fundamental relations (seee.g. [5]):

s2
i = 1, si sj = sj si (if Ci j = 0), si sj si = sj si sj (if Ci j = −1);

andσ1 ◦ s{0,1,2,3,4,5} = s{5,4,3,2,1,0} ◦ σ1, σ2 ◦ s{0,1} = s{1,0} ◦ σ2. One can immediately verify that each

action ofsi andσi is a Cremona isometry. Denote by Cr(X) the group of Cremona isometries ofX.

Proposition 1.2 (see [10, 19]). Cr(X) = 〈s0, . . . , s5, σ1, σ2〉 ≅ W̃(D(1)
5 ).

In parallel, we let the action of̃W(D(1)
5 ) on the multiplicative root variablesa = (a0, . . . , a5) be

as follows:
si(aj) = aja

−Ci j

i ,

σ1(a{0,1,2,3,4,5}) = a{5,4,3,2,1,0}−1, σ2(a{0,1,2,3,4,5}) = a{1,0,2,3,4,5}−1.
(1.3)

Secondly we shall realize the action of each elementw ∈ Cr(X) as an isomorphism between

rational surfacesXa andXw(a). To this end, we now introducetau functions. Consider the field

L = K(τ1, . . . , τ8) of rational functions in indeterminantsτi (1 ≤ i ≤ 8) with the coefficient field

K = C(a0
1/2, . . . ,a5

1/2). Take a sub-latticeM =
⋃

i=0,1,2,3 Mi of Pic(X), where

Mi =
{
v ∈ Pic(X)

∣∣∣ (v|v) = (v|Di) = −1, (v|D j) = 0 ( j , i)
}
.
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Definition 1.3 (cf. [6]). A functionτ : M → L is said to be a tau function iff it satisfies the

following conditions:

(i) τ(w.v) = w.τ(v) for anyv ∈ M andw ∈ Cr(X) ≅ W̃(D(1)
5 );

(ii) τ(ei) = τi (1 ≤ i ≤ 8).

We can determine such functions and the action of Cr(X) on them as follows. Suppose

f0 = τ(e5)τ(e6), f1 = τ(e7)τ(e8), g0 = τ(e1)τ(e2), g1 = τ(e3)τ(e4), (1.4)

and
b1
− 1

2 f0 + b1
1
2 f1 = τ(h0 − e1)τ(e1), b2

− 1
2 f0 + b2

1
2 f1 = τ(h0 − e2)τ(e2),

b3
− 1

2 f0 + b3
1
2 f1 = τ(h0 − e3)τ(e3), b4

− 1
2 f0 + b4

1
2 f1 = τ(h0 − e4)τ(e4),

b5
− 1

2 g0 + b5
1
2 g1 = τ(h1 − e5)τ(e5), b6

− 1
2 g0 + b6

1
2 g1 = τ(h1 − e6)τ(e6),

b7
− 1

2 g0 + b7
1
2 g1 = τ(h1 − e7)τ(e7), b8

− 1
2 g0 + b8

1
2 g1 = τ(h1 − e8)τ(e8).

(1.5)

Notice thats2(e5) = h1 − e7 ands2(e7) = h1 − e5, then we obtain the action ofs2 onL. Similarly

we obtain the action ofs3 by s3(e1) = h0 − e3 ands3(e3) = h0 − e1. The action of each elementsi

(i , 2,3) andσ j ( j = 1,2) is realized as just a permutation ofτi ’s (1 ≤ i ≤ 8). Summarizing above,

we thus have a realization of Cr(X) ≅ W̃(D(1)
5 ) onL.

Theorem 1.4.Let

s0(τ{7,8}) = τ{8,7}, s1(τ{5,6}) = τ{6,5}, s4(τ{1,2}) = τ{2,1}, s5(τ{3,4}) = τ{4,3},

s2(τ5) =
(
b7
− 1

2τ1τ2 + b7
1
2τ3τ4

)
τ7
−1, s2(τ7) =

(
b5
− 1

2τ1τ2 + b5
1
2τ3τ4

)
τ5
−1,

s3(τ1) =
(
b3
− 1

2τ5τ6 + b3
1
2τ7τ8

)
τ3
−1, s3(τ3) =

(
b1
− 1

2τ5τ6 + b1
1
2τ7τ8

)
τ1
−1,

σ1(τ{1,2,3,4,5,6,7,8}) = τ{5,6,7,8,1,2,3,4}, σ2(τ{5,6,7,8}) = τ{7,8,5,6},

(1.6)

wherebi being the parameters given by(1.1). Then(1.6) with (1.3) gives a representation of

W̃(D(1)
5 ) = 〈s0, . . . , s5, σ1, σ2〉 onL.

Hence we obtain, by virtue of (1.4), also birational actions ofW̃(D(1)
5 ) on variables (f ,g) =

( f0/ f1,g0/g1).

Theorem 1.5 (see [19]). Let

s2( f ) = f
b7
− 1

2 g+ b7
1
2

b5
− 1

2 g+ b5
1
2

, s3(g) = g
b3
− 1

2 f + b3
1
2

b1
− 1

2 f + b1
1
2

,

σ1( f ) = g, σ1(g) = f , σ2( f ) = f −1,

(1.7)

under(1.1). Then(1.7)with (1.3) realizes the actions of̃W(D(1)
5 ) onC(a0, . . . , a5)( f , g). Moreover,

each elementw ∈ W̃(D(1)
5 ) gives an isomorphism fromXa to Xw(a).
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Finally we regard the birational action of a translation inW̃(D(1)
5 ) as the sixthq-Painlev́e equa-

tion (see [19]):

q-PVI = (σ3 ◦ s3 ◦ s5 ◦ s4 ◦ s3) ◦ (σ2 ◦ s2 ◦ s0 ◦ s1 ◦ s2) :

(a0,a1,a2,a3, a4,a5; f ,g) 7→
(
a0,a1, qa2, q

−1a3,a4,a5; f ,g
)
,

f f = b7b8
(g+ b5)(g+ b6)
(g+ b7)(g+ b8)

, (1.8a)

gg= b3b4
( f + b1)( f + b2)
( f + b3)( f + b4)

. (1.8b)

Here we letσ3 = σ1σ2σ1 and recall thata0a1a2
2a3

2a4a5 = q. This system goes to the sixth

Painlev́e equation through a certain limiting procedure asq→ 1, in fact; see [4].

Remark1.6. Theorem 1.5 asserts thatq-PVI acts on the family of surfacesX = ∪aXa as an auto-

morphism; we callX thedefining varietyof q-PVI . Each fiberXa of X is called thespace of initial

conditionsof q-PVI . This is a counterpart of Okamoto’s space of initial conditions for the sixth

Painlev́e equation;cf. [17].

2 Bilinear relations among tau functions

This section is devoted to obtain bilinear equations satisfied by tau functions. We will use them

later in the following sections to clarify the internal relation betweenq-PVI and theq-UC hierarchy.

Let r i (0 ≤ i ≤ 3) andπ be the elements of̃W(D(1)
5 ) = 〈s0, . . . , s5, σ1, σ2〉 defined by

r0 = s5s3s5, r1 = s1s2s1, r2 = s4s3s4, r3 = s0s2s0, π = σ2σ1.

We can easily verify the relations among them:r i
2 = 1, (r ir i±1)3 = 1, (r ir j)2 = 1 ( j , i, i ± 1), and

πr i = r i+1π, where we regard the suffix i of r i as an element ofZ/(4Z). So that〈r0, . . . , r3, π〉 ≅
W̃(A(1)

3 ). Note that the action of diagram automorphismπ of order four is given as

π :
(
a0,a1,a2, a3,a4,a5; f ,g, τ{1,2,3,4,5,6,7,8}

)

7→
(
a4,a5,a3,a2,a1,a0;

1
g
, f , τ{5,6,7,8,3,4,1,2}

)
.

Now we compute the relations among the chain of tau functions connected with the action of

π:

· · · → τ2→ τ6→ τ4→ τ8→ τ2→ · · · (2.1)
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Let us consider an element

ℓ = σ2σ3s0s1s4s5s2s3s2 ∈ W̃(D(1)
5 ), (2.2)

which acts on the parameters as

ℓ : (a0, a1,a2,a3,a4,a5) 7→
(

1
a1a2a3

,
1

a0a2a3
,a0a1a2

2a3, a2a3
2a4a5,

1
a2a3a5

,
1

a2a3a4

)
. (2.3)

Notice thatℓ commutes with each action of̃W(A(1)
3 ) and particularly that ofq-PVI ; cf. [22]. By

using the birational actions of̃W(D(1)
5 ) on tau functions given in Theorem 1.4, we therefore obtain

the bilinear relation betweenτ2 andτ6.

Lemma 2.1. The following formula holds:

a3
−1ℓ(τ2)ℓ

−1(τ6) +
(
(a2a3)

2 − (a2a3)
−2

) (a0a4

a1a5

) 1
2

τ2τ6 − a2ℓ
−1(τ2)ℓ(τ6) = 0. (2.4)

Other relations among the chain, (2.1), can be obtained via the action ofπ. We can verify also

that

ℓ(τ{1,5,3,7}) = τ{4,8,2,6}, (2.5)

by straightforward computations.

Let ξ = a2a3 and use the notation ˆai = ℓ(ai) for convenience. Consider the variables ˜τi = τi/ψi

where

ψ2 = Γ(q
2ξ, a2, â2,a3,q

−1â3; q,q) ×
(
−q2ξ2,−q2a2

2,−q2â2
2,−q2a3

2,−â3
2; q2, q2

)
∞
, (2.6)

and otherψi ’s are also determined by applyingπ to this formula. We have from Lemma 2.1 the

Proposition 2.2. The following formula holds:

(
a2

a3
+

1
a2a3

)
ℓ(τ̃2)ℓ

−1(τ̃6) +

(
a2a3 −

1
a2a3

) (
a0a4

a1a5

) 1
2

τ̃2τ̃6

−
(
a2a3 +

a2

a3

)
ℓ−1(τ̃2)ℓ(τ̃6) = 0. (2.7)

Proof. First we notice the formulae

ℓ(ξ) = qξ, ℓ(a2) = qℓ−1(a2), ℓ(a3) = qℓ−1(a3),
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and the fact thatπ andℓ commute with each other. We have (see (0.5))

ℓ(ψ2)
ψ2

=
Γ(q3ξ, â2,qa2, â3, a3; q,q)
Γ(q2ξ, a2, â2,a3,q−1â3; q,q)

(
−q4ξ2,−q2â2

2,−q4a2
2,−q2â3

2,−q2a3
2; q2,q2

)
∞(−q2ξ2,−q2a2

2,−q2â2
2,−q2a3

2,−â3
2; q2,q2

)
∞

=
θ(q2ξ, a2,q−1â3; q)(−q2ξ2,−q2a2

2,−â3
2; q2

)
∞
.

Applying the action ofπ to this, we get

ℓ(ψ6)
ψ6
=

θ(q2ξ,a3,q−1â2; q)(−q2ξ2,−q2a3
2,−â2

2; q2
)
∞
.

Accordingly we have (see (0.6))

ℓ(ψ2)ℓ−1(ψ6)
ψ2ψ6

=
θ(q2ξ, a2,q−1â3; q)
θ(qξ, q−1â3,q−1a2; q)

(
−ξ2,−â3

2,−a2
2; q2

)
∞(−q2ξ2,−q2a2

2,−â3
2; q2

)
∞

= (−qξ)−1(−q−1a2)
−1(1+ ξ2)(1+ a2

2)

= (ξ + ξ−1)(a2 + a2
−1). (2.8)

Applying π, we have also
ℓ−1(ψ2)ℓ(ψ6)

ψ2ψ6
= (ξ + ξ−1)(a3 + a3

−1). (2.9)

Substitutingτi = ψi τ̃i in (2.4), we arrive at (2.7) via (2.8) and (2.9). �

Let us rename tau functions as follows:

ρ{0,1,2,3} = τ̃{2,6,4,8}, (2.10)

so that we have (see (2.5))

ℓ−1(ρ{0,1,2,3}) = τ̃{3,7,1,5}. (2.11)

Introduce the parametersdi ∈ C such that

π2 j(A) = qd2 j+1−d2 j , π2 j−1(A) = qd2 j−1−d2 j , A =

(
a0a4

a1a5

) 1
2

. (2.12)

Sinceπ2(A) = 1/A, we haved0 − d1 + d2 − d3 = 0. Let

ξ = a2a3 and η =
a2

a3
. (2.13)
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Note thatπ(ξ) = ξ andπ(η) = η−1. We then obtain, from Proposition 2.2, the following bilinear

equations satisfied by the quartet of tau functionsρi (i = 0,1,2,3):

(η + ξ−1)ℓ(ρ2 j)ℓ
−1(ρ2 j+1) + qd2 j+1−d2 j (ξ − ξ−1)ρ2 jρ2 j+1

−(ξ + η)ℓ−1(ρ2 j)ℓ(ρ2 j+1) = 0, (2.14a)

(η−1 + ξ−1)ℓ(ρ2 j−1)ℓ
−1(ρ2 j) + qd2 j−1−d2 j (ξ − ξ−1)ρ2 j−1ρ2 j

−(ξ + η−1)ℓ−1(ρ2 j−1)ℓ(ρ2 j) = 0. (2.14b)

Conversely, we can obtain a solution ofq-PVI from that of the above system of bilinear equations.

In summary, we have the

Theorem 2.3.Let {ρi(a)}i=0,1,2,3 be a solution of(2.14), then the pair

f (a) =
ℓ−1(ρ3)ρ1

ℓ−1(ρ1)ρ3
, g(a) =

ℓ−1(ρ2)ρ0

ℓ−1(ρ0)ρ2
, (2.15)

satisfiesq-PVI , (1.8).

Remark2.4. If a0a1 = a4a5, thenℓ leaves the variableη = a2/a3 invariant; see (2.3). In this

case, (2.14) is equivalent to the bilinear equations of the fifthq-Painlev́e equation (q-PV); see

[7, 12, 26]. We cite the result [22] by Takenawa; he showed that the defining variety ofq-PV is

actually included in that ofq-PVI .

3 Universal character andq-UC hierarchy

In this section we briefly review the notion of the universal character and theq-UC hierarchy; see

[9, 23, 26].

A partition λ = (λ1, λ2, . . .) is a sequence of non-negative integers such thatλ1 ≥ λ2 ≥ · · · ≥
0 andλi = 0 for all sufficiently largei. For a pair of partitionsλ = (λ1, λ2, . . . , λl) andµ =

(µ1, µ2, . . . , µl′), theuniversal characterS[λ,µ](x, y) is a polynomial in (x, y) = (x1, x2, . . . , y1, y2, . . .)

defined as follows (see [9, 23]):

S[λ,µ](x, y) = det


pµl′−i+1+i− j(y), 1 ≤ i ≤ l′

pλi−l′−i+ j(x), l′ + 1 ≤ i ≤ l + l′


1≤i, j≤l+l′

. (3.1)

Herepn are the polynomials defined by the generating function:

∞∑

n=0

pn(x)zn = exp


∞∑

n=1

xnz
n

 , (3.2)
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andpn(x) = 0 for n < 0; note that it can be explicitly written as

pn(x) =
∑

k1+2k2+···+nkn=n

x1
k1 x2

k2 · · · xn
kn

k1!k2! · · · kn!
. (3.3)

The Schur polynomialSλ (seee.g. [11]) is regarded as a special case of the universal character:

Sλ(x) = det
(
pλi−i+ j(x)

)
= S[λ,∅](x, y).

If we count the degree of each variablexn andyn (n = 1, 2, . . .) as

degxn = n, degyn = −n,

thenS[λ,µ] is a (weighted) homogeneous polynomial of degree|λ| − |µ|, where we let|λ| = λ1 +

· · · + λl. It is known that the universal characterS[λ,µ] describes the irreducible character of a

rational representation of the general linear groupGL(n;C) corresponding to a pair of partitions

[λ, µ], while the Schur polynomialSλ does that of a polynomial representation corresponding to a

partitionλ; see [9], in detail.

TheUC hierarchy, introduced in [25], is an extension of the KP hierarchy and is an infinite-

dimensional integrable system characterized by the universal character in a similar sense that the

KP hierarchy is characterized by the Schur polynomial; see [15, 20, 21]. Theq-UC hierarchyis a

q-difference analogue of the UC hierarchy defined as follows. Consider finite subsetsI ⊂ Z>0 and

J ⊂ Z<0. Let ti (i ∈ I ∪ J) be the independent variable andTi;q be itsq-shift operator defined as

follows:

Ti;q(ti) =


qti (i ∈ I ),

q−1ti (i ∈ J),
(3.4)

and Ti;q(t j) = t j (i , j). We use also the notationTi1i2...in;q = Ti1;qTi2;q · · ·Tin;q for the sake of

simplicity.

Definition 3.1 (see [26]). The following system ofq-difference equations is called theq-UC hier-

archy:

(ti − t j)Ti j ;q(ω0)Tk;q(ω1) + (t j − tk)T jk;q(ω0)Ti;q(ω1)

+(tk − ti)Tki;q(ω0)T j;q(ω1) = 0, (3.5)

for i, j, k ∈ I ∪ J.

11



Recall that theq-UC hierarchy includes theq-KP hierarchy (see [7]) as a special case.

In what follows we extend, for convenience, the universal characterS[λ,µ], (3.1), to be defined

for a pair of arbitrary sequences of integers [λ, µ]. Note that for any pair of sequences of integers

[λ, µ], we have a unique pair of partitions [λ̃, µ̃] such thatS[λ,µ] = ±S[λ̃,µ̃]. Now let us consider the

functions[λ,µ] = s[λ,µ](t) in ti (i ∈ I ∪ J) defined by

s[λ,µ](t) = S[λ,µ](x, y), (3.6)

with

xn =

∑
i∈I ti n − qn ∑

j∈J t j
n

n(1− qn)
, (3.7a)

yn =

∑
i∈I ti−n − q−n ∑

j∈J t j
−n

n(1− q−n)
. (3.7b)

Note that we have an expression ofHn(t) = pn(x) by the following generating function:
∞∑

n=0

Hn(t)zn =
∏

i∈I , j∈J

(qtjz; q)∞
(tiz; q)∞

. (3.8)

The universal characters solve theq-UC hierarchy in the sense of the

Proposition 3.2 (see [26]). For every integerm and pair of sequences of integers[λ, µ],

ω0 = s[λ,µ](t), ω1 = s[(m,λ),µ](t), (3.9)

satisfy theq-UC hierarchy(3.5).

4 The solutions of the sixthq-Painlevé equation

In this section we see that a solution ofq-PVI coincides with a self-similar solution of theq-UC

hierarchy. As a consequence, we obtain in particular a class of algebraic solutions ofq-PVI in terms

of the universal character.

Let I = {1, 2}, J = {−1,−2} and replace the baseq with q2. Consider the following chain of the

q-UC hierarchy:

(t1 − t−2)T1,−2;q2(ω2 j)T−1;q2(ω2 j+1) + (t−2 − t−1)T−2,−1;q2(ω2 j)T1;q2(ω2 j+1)

+(t−1 − t1)T−1,1;q2(ω2 j)T−2;q2(ω2 j+1) = 0, (4.1a)(
1
t1
− 1

t−2

)
T−1;q2(ω2 j−1)T1,−2;q2(ω2 j) +

(
1

t−2
− 1

t−1

)
T1;q2(ω2 j−1)T−2,−1;q2(ω2 j)

+

(
1

t−1
− 1

t1

)
T−2;q2(ω2 j−1)T−1,1;q2(ω2 j) = 0, (4.1b)
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with the four-periodic condition:

ωi+4 = ωi . (4.2)

Let {ωi = ωi(t−2, t−1, t1, t2)}i=0,1,2,3 be a solution of (4.1) satisfying the similarity condition:

ωi(qt−2,qt−1,qt1,qt2) = qdiωi(t−2, t−1, t1, t2), (4.3)

wheredi ∈ C being the parameters given by (2.12). Let

ξ = a2a3, η =
a2

a3
, ζ =

a0a1a2

a3a4a5
q. (4.4)

Define the functionsFi(ξ, η, ζ) by

Fi(ξ, η, ζ) = ωi(t−2, t−1, t1, t2), (4.5)

under the substitution

t1 = η, t2 = ζ, t−1 = −q−2ξ, t−2 = −q−2ξ−1. (4.6)

We have the following expression of the solution ofq-PVI in terms of that of theq-UC hierarchy.

Theorem 4.1.The quartet

(ρ0, ρ1, ρ2, ρ3) =
(
F0(ξ, η, ζ), F1(ξ, η,q

−2ζ), F2(ξ, η, ζ), F3(ξ, η,q
−2ζ)

)
, (4.7)

solves the system of bilinear equations ofq-PVI , (2.14). Consequently the pair

f =
ℓ−1(ρ3)ρ1

ℓ−1(ρ1)ρ3
, g =

ℓ−1(ρ2)ρ0

ℓ−1(ρ0)ρ2
, (4.8)

satisfiesq-PVI , (1.8).

The proof of the theorem is given in the next section.

Finally, we shall present algebraic solutions ofq-PVI . Introduce a functionR[λ,µ](ξ, η, ζ), for

each pair of partitions [λ, µ], defined by

R[λ,µ](ξ, η, ζ) = s[λ,µ](t) = S[λ,µ](x, y), (4.9)

under the substitution (4.6), or

xn =
ηn + ζn − (−ξ)n − (−ξ)−n

n(1− q2n)
, (4.10a)

yn =
η−n + ζ−n − (−ξ)n − (−ξ)−n

n(1− q−2n)
. (4.10b)

Recall that the universal characterS[λ,µ] is a homogeneous solution of theq-UC hierarchy whose

degree equals|λ| − |µ| (see [26], or Proposition 3.2). Hence we can immediately obtain from

Theorem 4.1 a class of algebraic solutions ofq-PVI in terms of the universal character;cf. [24, 26].
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Theorem 4.2.For everym,n ∈ Z, the quartet

(ρ0, ρ1, ρ2, ρ3) (4.11)

=
(
R[(m−1)!,(n−1)!](ξ, η, ζ),R[m!,(n−1)!](ξ, η,q

−2ζ),R[m!,n!] (ξ, η, ζ),R[(m−1)!,n!] (ξ, η, q
−2ζ)

)
,

satisfies(2.14)with d1 − d0 = d2 − d3 = m andd2 − d1 = d3 − d0 = −n. Consequently the pair

f =
ℓ−1(ρ3)ρ1

ℓ−1(ρ1)ρ3
, g =

ℓ−1(ρ2)ρ0

ℓ−1(ρ0)ρ2
, (4.12)

gives an algebraic solution ofq-PVI , (1.8), when

a0

a1
= qm−n and

a4

a5
= qm+n. (4.13)

Heren! stands for the two-core partition (n, n− 1, . . . ,1); also we letn! = (−1− n)! for n < 0.

Remark4.3. The algebraic solutions obtained in Theorem 4.2 are reduced to those of the sixth

Painlev́e equation, in parallel with the continuous limit fromq-PVI to the equation;cf. [13].

Remark4.4. Let us consider the functionR[(n),∅](ξ, η, ζ) = Rn(ξ, η, ζ) = pn(x) under the substitu-

tion (4.10), wherepn(x) is the polynomial given by (3.2), or (3.3). We then have the following

expression by means of the generating function (see (3.8)):

∞∑

n=0

Rn(ξ, η, ζ)z
n =

(
−ξz,−ξ−1z; q2

)
∞(

ηz, ζz; q2
)
∞

. (4.14)

Hence we obtain

Rn = ζ
n (−ξ−1ζ−1; q2)n

(q2; q2)n
2φ1


q−2n,−ξη−1

−q2−2nξζ

∣∣∣∣∣∣∣∣
q2;−q2ξη

 , (4.15)

where2φ1 denotes the basic hypergeometric series (seee.g. [3]):

2φ1


a,b

c

∣∣∣∣∣∣∣∣
q; x

 =
∞∑

n=0

(a; q)n(b; q)n

(c; q)n(q; q)n
xn.

We remark also thatRn(ξ, η, ζ) is equivalent to a kind ofq-orthogonal polynomial called theAl-

Salam–Chihara polynomial; see [8].

Example4.5. Let us consider the polynomial

P[λ,µ](ξ, η, ζ)

= ξ|λ|+|µ|η|µ|ζ |µ|q−2|ν|
∏

(i, j)∈λ

(
1− q2h(i, j)

) ∏

(k,l)∈µ

(
q2h(k,l) − 1

)
R[λ,µ](ξ, η, ζ).
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Here we denote byh(i, j) the hook-length, that is,h(i, j) = λi + λ
′
j − i − j + 1 (see [11]); let

ν = (ν1, ν2, . . .) be a sequence of integers defined byνi = max{0, µ′i − λi}. It is interesting that

P[λ,µ] seems to be a polynomial whose coefficients are all positive integers. Some examples of the

polynomial are given as follows:

λ µ P[λ,µ](ξ, η, ζ)

∅ ∅ 1

(1) ∅ 1+ ξ2 + (η + ζ)ξ

(2) ∅ q2(1+ ξ4) + (1+ q2)(η + ζ)(ξ + ξ3) + ((1+ q2)(1+ ηζ) + η2 + ζ2)ξ2

(1,1) ∅ 1+ ξ4 + (1+ q2)(η + ζ)(ξ + ξ3) + ((1+ q2)(1+ ηζ) + q2(η2 + ζ2))ξ2

∅ (1) ηζ(1+ ξ2) + (η + ζ)ξ

∅ (2) η2ζ2(1+ ξ4) + (1+ q2)ηζ(η + ζ)(ξ + ξ3) + (q2(η2 + ζ2) + (1+ q2)ηζ(1+ ηζ))ξ2

(1) (1) q2ηζ(1+ ξ4) + q2(η + ζ)(1+ ηζ)(ξ + ξ3) + ((1+ q2)2ηζ + q2(η2 + ζ2))ξ2

(1) (2) q2η2ζ2(1+ ξ6) + q2ηζ(η + ζ)(1+ q2 + ηζ)(ξ + ξ5)

+((1+ 3q2 + 2q4 + q6)η2ζ2 + q2(q2(η2 + ζ2) + (1+ q2)ηζ(1+ η2 + ζ2)))(ξ2 + ξ4)

+(η + ζ)((1+ q2)(1+ q2 + q4)ηζ + q4(η2 + ζ2) + q2(1+ q2)η2ζ2)ξ3

We regard this polynomial as aq-analogue of theUmemura polynomialassociated with algebraic

solutions of the sixth Painlevé equation; see [13, 16].

5 Verification of Theorem 4.1

In order to prove the theorem, we shall see that the system of bilinear equations ofq-PVI , (2.14),

arises from that of theq-UC hierarchy, (4.1), through a certain similarity reduction.

Proof of Theorem 4.1.We have from (2.3) and (4.4) that

ℓ±1(ξ) = q±1ξ, ℓ±1(η) = q−1ζ, ℓ±1(ζ) = qη. (5.1)

Notice that functionωi = ωi(t−2, t−1, t1, t2) can be regarded as a function in variables (x, y) =

(x1, x2, . . . , y1, y2, . . .) via

xn =
t1n + t2n − q2n(t−1

n + t−2
n)

n(1− q2n)
, (5.2a)

yn =
t1−n + t2−n − q−2n(t−1

−n + t−2
−n)

n(1− q−2n)
. (5.2b)

Let us consider the substitution of variables (see (4.6)):

t1 = η, t2 = ζ, t−1 = −q−2ξ, t−2 = −q−2ξ−1.

15



We verify by using (5.1) that

T1,−2;q2(xn) =
q2nt1n + t2n − q2n(t−1

n + q−2nt−2
n)

n(1− q2n)

=
q2nηn + ζn − (−ξ)n − q−2n(−ξ)−n

n(1− q2n)

= q−n (q3η)n + (qζ)n − (−qξ)n − (−qξ)−n

n(1− q2n)

= q−nℓ

(
(q2ζ)n + (q2η)n − (−ξ)n − (−ξ)−n

n(1− q2n)

)
;

and similarly

T1,−2;q2(yn) = qnℓ

(
(q2ζ)−n + (q2η)−n − (−ξ)n − (−ξ)−n

n(1− q−2n)

)
.

Combine this with the similarity condition (4.3), we obtain

T1,−2;q2(ω2 j) = q−d2 jℓ(F2 j(ξ, q
2η,q2ζ)).

One can verify in the same way thatT−1;q2(ω2 j+1) = q−d2 j+1ℓ−1(F2 j+1(ξ, q2η, ζ)); and also

T−2,−1;q2(ω2 j) = q−2d2 j F2 j(ξ, q
2η,q2ζ), T1;q2(ω2 j+1) = F2 j+1(ξ, q

2η, ζ);

T−1,1;q2(ω2 j) = q−d2 jℓ−1(F2 j(ξ, q
2η,q2ζ)), T−2;q2(ω2 j+1) = q−d2 j+1ℓ(F2 j+1(ξ, q

2η, ζ)).

Substitute (4.6) and the above formulae into the bilinear equation ofq-UC hierarchy, (4.1a); re-

placingη andζ with q−2η andq−2ζ, respectively, hence we obtain

(
η + ξ−1

)
ℓ(F2 j(ξ, η, ζ))ℓ

−1(F2 j+1(ξ, η,q
−2ζ))

+qd2 j+1−d2 j
(
ξ − ξ−1

)
F2 j(ξ, η, ζ)F2 j+1(ξ, η,q

−2ζ)

− (ξ + η) ℓ−1(F2 j(ξ, η, ζ))ℓ(F2 j+1(ξ, η,q
−2ζ)) = 0. (5.3)

In parallel, we have also from (4.1b) that

(
η−1 + ξ−1

)
ℓ(F2 j−1(ξ, η,q

−2ζ))ℓ−1(F2 j(ξ, η, ζ))

+qd2 j−1−d2 j
(
ξ − ξ−1

)
F2 j−1(ξ, η, q

−2ζ)F2 j(ξ, η, ζ)

−
(
ξ + η−1

)
ℓ−1(F2 j−1(ξ, η,q

−2ζ))ℓ(F2 j(ξ, η, ζ)) = 0. (5.4)

These formulae, (5.3) and (5.4), coincide with the system of bilinear equations ofq-PVI , (2.14).

The proof is now complete. �
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