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Abstract

We study theg-difference analogue of the sixth Pairéesquationd-Py,) by means of tau
functions associated withffiine Weyl group of typeDs. We prove that a solution aj-Py,
coincides with a self-similar solution of tleeUC hierarchy. As a consequence, we obtain in
particular algebraic solutions ofPy, in terms of the universal character which is a general-

ization of Schur polynomial attached to a pair of partitions.
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Introduction

The sixth g-Painlevé equatiorfg-Py,) is equivalent to the following system gfdifference equa-

tions (see [4]):

f? — b7b8(g + b5)(g + bG)

(f +by)(f +by)
; = bsb .
@+b)(@+be) 2 (T be)(f + )
Here f = f(a) andg = g(a) are the unknown functions in variables = (ao,...,as) with

(0.1)

aca1a,%az?asas = g; andby’s are the parameters given by (1.1) below; the symticsd g stand

for f(...,qa,qtas,...)andg(...,qtay, gas, . ..), respectively. Notice that,/as plays the roll of
the independent variable and otlegs (i # 2, 3) constant parameters of (0.1). This system satis-
fies the singularity confinement criterion which is a discrete counterpart of the Rajpeperty
(see [18]), and actually goes to the sixth Paiglelfferential equation through a certain limiting
procedure ag — 1.

We have known at least two important aspects of nature of the giRtinle\e equation. First,
g-Py, is closely related to thgeneralizedRiemann—Hilbert problem (see [1]), as analogous to
the case of continuous one; it was shown by Jimbo—Sakai [4]oHft governs the connection
preserving deformation of a lineardifference equation. The second is algebraic geometry of
rational surfaces due to Sakai [19]; he presented a class of discrete Bagleations defined
by the group of Cremona transformations on certain rational surfaces associatedfiwehaot
systemscf. [2]. Among themg-P,, corresponds to the surface witline Weyl group symmetry
of type Ds, that is the same surface as studied by Looijenga [10].

The aim of the present work is to provide yet another formulatiog B, , from the viewpoint
of infinite-dimensional integrable systems. An extension of the KP hierarchy, callééGheer-
archy, was proposed in [23]. This hierarchy is considered as an integrable system characterized by
theuniversal characte(see [9]) which is a generalization of Schur polynomial attached to a pair of
partitions. Also ag-difference analogue of the hierarclgyl{C hierarchy) was studied in [26]. In
this paper we prove, by usirigu functionsthatg-Py, coincides with a certain similarity reduction
of theg-UC hierarchy. Consequently, we obtain in particular a class of algebraic solutigrd,pf
in terms of the universal character.

In Sect. 1, we present the geometric formulationgd?,, by means of tau functions; then
we obtain a birational representation dfiee Weyl group of typeDs (see Theorem 1.4). By
virtue of this representation, we transfoyP,, equivalently into a system of bilinear equations
among tau functions in Sect. 2 (see Theorem 2.3). We sum up, in Sect. 3, some results concerning

the universal character and thdJC hierarchy. Finally we see that the bilinear equationsg;-of
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Py, coincide with a similarity reduction of thg-UC hierarchy, thus obtain an expression of the
solution ofg-Py, in terms of that of the hierarchy in Sect. 4 (see Theorem 4.1). Sincg-the
hierarchy admits the universal character as its homogeneous solution, we have immediately a class
of algebraic solutions of-Py, in terms of the universal character (see Theorem 4.2). Sect. 5 is
devoted to the verification of Theorem 4.1.

Recall that the sixth Painlévequation can be deduced frapPy, as a continuous limit and
so are all the other Painlevequations. Hence the above relation betwgéty, and theg-UC
hierarchy gives a natural explanation why the universal character appears in the solutions of the
Painle\e equations; see [13, 14].

Remarkd.1 We refer to the result [26] where the higher orddPainle\e equations also turn out
to be certain similarity reductions of tlgeUC hierarchy;cf. [24]. It is still an interesting open

guestion why the universal character solves the Garnier system; see [25].

Note. We use the following conventions throughout this paper.
g-shifted factrials

n-1 n-1

@an=] |@-ad). @pan=]]2-add). (0.2)

i=0 i,j=0
We use also the notatioay...,a; q)n = (a1; 9n- - - (&; q)n, and so on.
Jacobi’s theta function

0(a;0) = (a.ga’;q)_. (0.3)
Elliptic gamma function
(pga®; p.q)_
I'(a p.0) = T@pa. 0.4)
We have
I'(9a,g.q)
- " = 0 a, y 05
I(aq.q (& a) (0.5)
and
0@aq) _ 1 (0.6)
6(a; g)



1 The sixthg-Painlevé equation

In this section we present, by meanda functionsthe geometric formulation af-Py,; cf. [19].
Let (f,g) = (fo/f1, go/g1) denote the inhomogeneous coordinatébdfk PL. Consider the eight

points,p; (1 <i < 8), given as follows:

P =(-b1,0), pP2=(-02,0), p3=(-Dbs,0), ps=(-by ),
Ps = (0,-bs), ps=(0,—bs), p7=_(c0,—by), pg=/(c0,—bg),
where
by = &’y tas, by = afa’as, by =agtastas, by =agaytas 1.1)
bs = agtaia,?, bg=actar®a, % by =agtawd?  bg = adaa?
anda, € C* being constant parameters such tha@a,’az’asas = 0. Lete : X = X, —» P x P!
be the blowing-up at eight points (1 < i < 8); lete = &7}(p;) be the exceptional divisor and let
ho = {0} x P, hy = P! x {0}. We thus have the Picard lattice Xf
Pic(X) = Zho + Zh; + Z Ze,

1<i<8

equipped with the intersection form (symmetric bilinear form)), defined by
(hilh)) =1-46;, (ele) = -6, (hile)=0.

First we shall see that the (extendetfjree Weyl groupN(DS") acts on PicX) as the group of
Cremona isometriesf rational surfaceX. Here recall that an automorphismof Pic(X) is said
to be aCremona isometrysee [10, 19])ft o preserves the intersection form ), the canonical
divisor Kx, and dfectiveness of eacHtective divisor of PicK).

The anti-canonical divisorKy is uniquely decomposed into prime divisors:

—7()( :2h0+2h1— Z € =Dg+D1+Ds+ D3,
1<i<8
whereDy =hi—e -6, D1 =hh-6&-6, D, =h —-ea—-eandD; = hg —e; — eg. Let
(—-Kx)* = {v e Pic(X)| (v|D;) = O for all i}, then we have the

Lemma 1.1 Gee [19]. (-Kx)* =~ Q(DL): root lattice of typeD".
We have the canonical root ba8s= {«ag, a1, ..., @s} given as follows:

=€ -6, a1=6-6, a=h-e&-¢,
az=hg—e -6, @s=€-6, as=6—¢6.

(1.2)
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The intersection matrix multiplied byl actually coincides with the Cartan matrix f):

2 -1
2 -1
-1 -1 2 -1
(Cij) = —((ailay)) =
-1 2 -1 -1
-1 2
-1 2

Now define the action of simple reflectighon Pic(X) corresponding te; as
S(v) = v+ (Maja; for ve Pic(X),
and also that of Dynkin diagram automorphistras

o1 hoy = o, ©€12345678 F €567.81234)

0265678 — €7856-

We have in fact the fundamental relations (seg [5]):
=1 ss=s5s (fCj=0), ssjs=sss (fCj=-1)

ando; o 12345 = S543210 © 01, 02 ° So13 = S0 © 02. One can immediately verify that each
action ofs ando is a Cremona isometry. Denote by &)the group of Cremona isometriesXf

Proposition 1.2 Gee [10, 19} Cr(X) = (S, ..., S5, 071, 02) = W(D).

In parallel, we let the action aN(D{") on the multiplicative root variables = (ao, .. ., as) be
as follows:
@) =8 13)
o1(@012345) = Q543210 > 02(8012345) = &102345
Secondly we shall realize the action of each elemert Cr(X) as an isomorphism between
rational surfacesX; and X,. To this end, we now introduci&u functions Consider the field
L = K(ry,...,71g) Of rational functions in indeterminants (1 < i < 8) with the codicient field

K = C(ap"?,...,as"?). Take a sub-latticé = (Ji_q123 M; of Pic(X), where

M; = {v € Pic(q) | (V) = D) = -1, (VD)) = 0 (] # D)}.



Definition 1.3 (cf. [6]). A functiont : M — L is said to be a tau functionfiit satisfies the
following conditions

(i) 7(w.v) = w.r(v) for anyv € M andw e Cr(X) ~ W(DY);

(i) r(e) =7 (1<i<8).

We can determine such functions and the action oKLof them as follows. Suppose

fo=1(e5)r(6s), fi=7(€r)r(€), Qo=r7(e)7(€), Q1 =7(63)7(E4), (1.4)

and
by 2fo+bi2f = 7(ho —en)r(e), by 2o+ oty = 7(ho — &)7(ey),
by~ fo + ba? f1 = 7(ho — €)(es), by % fo+ b fy = 7(ho — ex)7(es),
bs™2go + bs20y = 7(hy — es)7(es), b 2go + be2gr = 7(hy — es)7(es),
by 2g0 + gy = 7(hy — e)7(er), b 2go + >0y = T(hy — es)(ey).
Notice thatsy(es) = h; — e; andsy(e;) = h; — &5, then we obtain the action & on £. Similarly

(1.5)

we obtain the action of; by s3(e;) = hg — €3 ands;(e3) = hy — €;. The action of each elemeast
(i # 2,3)ando; (j = 1,2)is realized as just a permutation$ (1 < i < 8). Summarizing above,
we thus have a realization of Off ~ W(D") on L.

Theorem 1.4.Let

So(tize) = T87, Si(tse) = Tes,  Su(Tnz) = T21, S5(Tza) = T4z
_1 1 _ _1 1 _

Sy(7s) = (b7 2T1T2 + b72T374) 7771, S(17) = (bs 2T1T2 + b52T3T4) 7571,

_1 1 -1 _1 1 -1 (16)
sa(t1) = (bs™27s76 + D32 7778) T3 7L, Sa(7a) = (b 276 + by 1r7e) 717,
g 1(T {1,2,3,4,5,6,7,8}) = 756781234}, 0. 2(7'{5,6,7,8}) = T7(7,856}>

whereb; being the parameters given i§§.1). Then(1.6) with (1.3) gives a representation of

W(Dl(sl)) = <S)’ ey SSa o1, 0-2> on L

Hence we obtain, by virtue of (1.4), also birational actiong\(D%") on variables {,g) =
(fo/ f1, 9o/ ).
Theorem 1.5 gee [19]. Let
b; 29+ b;? bs 2 f + bs?
o(f) = 12200 g =g 2

bs2g + bs? by "2 f + b2 (1.7)

O-l(f) =0 0-1(9) = f’ O—Z(f) = f_l’

under(1.1). Then(1.7)with (1.3)realizes the actions OK/(DS)) onC(ay,...,as)(f,g). Moreover,
each elemeny € W(DY") gives an isomorphism frob, to Xu()-
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Finally we regard the birational action of a translatiorWﬂDgl)) as the sixthg-Painlee equa-
tion (see [19]):

Q-Pyi = (03083085085 08)0(02050%0850%):
(a0, 84, p, 8, &4, as; T, Q) > (80, &1, G2, G as, a4, 35; T, ).
T (9 + bs)(g + be)
£ = byb : 1.8a
"% g+ Dr)(g+ by (68
(f + by)(f + by)
(f +bg)(f +by)

(1.8b)

g9 = bsby

Here we leto; = 0,00 and recall thabya,ay’as’asas = 0. This system goes to the sixth

Painle\e equation through a certain limiting proceduregas 1, in fact; see [4].

Remarkl.6. Theorem 1.5 asserts thgtP,, acts on the family of surface¥ = U,X, as an auto-
morphism; we calK thedefining varietyof g-Py,. Each fiberX, of X is called thespace of initial
conditionsof g-Py,. This is a counterpart of Okamoto’s space of initial conditions for the sixth

Painlee equationgf. [17].

2 Bilinear relations among tau functions

This section is devoted to obtain bilinear equations satisfied by tau functions. We will use them
later in the following sections to clarify the internal relation betwgd®,, and theg-UC hierarchy.
Letr; (0 <i < 3) andr be the elements &V(DY) = (s, ..., S5, 071, 072 defined by

fo=S%S, M =995, 2=3%%, [3=95%S, 7 =0201.

We can easily verify the relations among themd:= 1, (riri.1)® = 1, (rir;))? = 1 (j #i,i + 1), and
nry = ri;1r, where we regard the fiix i of r; as an element df/(4Z). So that(rg,...,rz, )y =
W(A). Note that the action of diagram automorphisrof order four is given as

n: (ag, &, 8, 83, 84, 85; 1,0, T(1.234567.8)

1
= (34, ds, dg, dp, A1, Ao, 6, f, 756783412 -

Now we compute the relations among the chain of tau functions connected with the action of

> T2 > Teg —>Tyg —>Tg—>T2 — =+ (21)



Let us consider an element

{ = 03035091 4595S € W(D), (2.2)

which acts on the parameters as

1 1
Q1383 Apdrds

1 1
8385 apazdy

2 2
, dpd1 A" Az, Axd3" Ay ds,

¢ (ap, &y, @, 3, &y, as) — ) (2.3)

Notice thatf commutes with each action W(Agl)) and particularly that o-Py,; cf. [22]. By
using the birational actions W(Dé”) on tau functions given in Theorem 1.4, we therefore obtain
the bilinear relation betweery andre.

Lemma 2.1. The following formula holds

1
2

ag (o)t Y (t6) + ((a2a3)2 - (a2a3)‘2) (%) 276 — @l (12){(76) = 0. (2.4)

Other relations among the chain, (2.1), can be obtained via the actior\Véé can verify also
that

U(ri1537) = Tlas26) (2.5)

by straightforward computations.

Let ¢ = ayaz and use the notatio®y = £(a;) for convenience. Consider the variabtes"r;/y;
where

l//2 = F(ng’ az’ é-Z» a3a q_la@ q’ q) X (_qzé‘:za _qzazz’ _qzazz’ _q2a327 _332; qz’ qz) (26)

2
[

and othery;’s are also determined by applyingo this formula. We have from Lemma 2.1 the

Proposition 2.2. The following formula holds

1
a 1 N plym 1 \[(aas\%.. .
Zr— ez - ==
(a3+ azas) (72) (Te)+(azas )( ) T2Te

_ (a2a3 + ?) 0 (7,)(Fs) = O. 2.7)
3

Proof. First we notice the formulae

08 =, U(a) =at (@), {(as)=0ql*(as),



and the fact that and¢ commute with each other. We have (see (0.5))

() _ T(G68 08 80,30 G,q) (C0'¢% —0Pa% ', —6Pas”, —cad?; o, )
Yo [(0%¢, @, &, 83,7183, 0,0) (—02¢2, —02a2, —0%&y2%, —0Pag?, —as?, o, 4?),,
O(0P¢, @, 9 *ag; Q)
(—02€2, —qRax?, —ag%;, 4?) .,

Applying the action ofr to this, we get

t(e) _ 0(9%¢, as, 4 1a; Q)

(/IG (_qZé‘:Z, _q2a32’ _ézz; qz)oo .
Accordingly we have (see (0.6))

(W) | OPE g s (-6 8 e )

Yae —0(g¢, qtas, g ay; ) (—-9PE2, —Par?, —ag?; o).,
= () M(-qta) (1 + (1 + &)
= (+&N(@+a™). (2.8)

Applying 7, we have also
(W2t (Ws)

=(E+&D(az +ag™d). 2.9
Vol E+&)(az+az) (2.9)
Substitutingr; = ¢,7; in (2.4), we arrive at (2.7) via (2.8) and (2.9). O
Let us rename tau functions as follows:
00123 = 112648} (2.10)
so that we have (see (2.5))
M p0123) = T37.15)- (2.11)

Introduce the parameteds C such that

ﬂw:&ﬂ%nmw=@ﬂﬁA=@%3 (2.12)
135
Sincer?(A) = 1/A, we havedy — dy + d, — d3 = 0. Let
a
E=apaz and n=—. (2.13)
az



Note thatr(¢) = £ andn(n) = 71. We then obtain, from Proposition 2.2, the following bilinear
equations satisfied by the quartet of tau function = 0, 1, 2, 3):

(7 + E D (p2)) ™ (p2141) + AHRE = Ep2i211

—(€ + )M p2)p2j+1) = O, (2.14a)
7 + €N p2i-1)C M o2)) + G RI(E — ENpoj1p02j
—(& + 17 M (p2j-1)t(p2;) = 0. (2.14b)

Conversely, we can obtain a solutiong®y, from that of the above system of bilinear equations.

In summary, we have the

Theorem 2.3. Let{p;i(a)}i-0.1.23 be a solution 0{2.14) then the pair

Y (p3)p1 _ " Hp2)po

AT

g(a) (2.15)

satisfiegy-Py,, (1.8).

Remark2.4. If apa; = ayas, then’ leaves the variablg = a,/as invariant; see (2.3). In this
case, (2.14) is equivalent to the bilinear equations of the €ffPainle\e equation ¢-P\); see
[7, 12, 26]. We cite the result [22] by Takenawa; he showed that the defining varigtPpfis
actually included in that of-Py,.

3 Universal character andg-UC hierarchy

In this section we briefly review the notion of the universal character ang-thé€ hierarchy; see
[9, 23, 26].

A partition 1 = (14, A5,...) is a sequence of non-negative integers such.that 1, > --- >
0 andA; = O for all suficiently largei. For a pair of partitionst = (11,15,...,4) andu =
(U1, 42, . . ., 1), theuniversal characteBy, (X, y) is a polynomial inK, y) = (X1, X2, .. .. Y1, Y2, . . .)
defined as follows (see [9, 23]):

St (X y) = det[ (3.1)

pﬂv-i+1+i—i(y)’ 1<i<l ]
p/li_|'—i+j(x), F+1<i<Il+/l Lei jelal

Herep, are the polynomials defined by the generating function:

i pn(X)Z" = eXp(i xni“], (3.2)
n=0 n=1
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andpn(x) = 0 for n < 0; note that it can be explicitly written as

X1k1X2k2 P xnkn

Kalko! k! (3:3)

Pn(X) =

ki+2ko+--+nky=n

The Schur polynomiab, (seee.g.[11]) is regarded as a special case of the universal character:
S1(%) = det(p-i+(¥) = Spa (%, ¥)-
If we count the degree of each variableandy, (n=1,2,...) as
degx, =n, degy,=-n,

thenS;,, is a (weighted) homogeneous polynomial of degrge- |u|, where we lefd] = A; +

-+ + A;. It is known that the universal charact8y, ,; describes the irreducible character of a
rational representation of the general linear gr@lgn; C) corresponding to a pair of partitions
[, 1], while the Schur polynomigb, does that of a polynomial representation corresponding to a
partition A; see [9], in detail.

The UC hierarchy introduced in [25], is an extension of the KP hierarchy and is an infinite-
dimensional integrable system characterized by the universal character in a similar sense that the
KP hierarchy is characterized by the Schur polynomial; see [15, 20, 21]g-Th& hierarchyis a
g-difference analogue of the UC hierarchy defined as follows. Consider finite suilisgts and
J C Zo. Lett; (i € | U J) be the independent variable affig, be itsg-shift operator defined as
follows:

Too(t) = { QEl (f el), (3.4)
q-t (i€J),
andTi4(t) = t; (i # J). We use also the notatioR,;, i,.q = Ti;:qTi,:q " Tinq fOr the sake of

simplicity.

Definition 3.1 (see [26]. The following system afdifference equations is called tlgeUC hier-
archy.

(ti — 1)) Tij.q(wo) Tig(wi) + (t) — 1) Tjg(wo) Tig(ws)
+(t — 1) Tkig(wo) Tjig(w1) = 0, (3.5)

fori, j,kel UJd.
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Recall that the-UC hierarchy includes thg-KP hierarchy (see [7]) as a special case.

In what follows we extend, for convenience, the universal char&fer, (3.1), to be defined
for a pair of arbitrary sequences of integetsy]. Note that for any pair of sequences of integers
[, 1], we have a unique pair of partitions, [z] such thatS, ) = +Sp35.- Now let us consider the
function s,y = Sa,(t) inti (i € 1 U J) defined by

a1 (1) = Spa (X, y), (3.6)
with
Zia "= 0" ity
Xn =) , (3.7a)
2ia =g " Yt ™"
Yo = (3.7b)
Note that we have an expressionH{(t) = pn(Xx) by the following generating function:
N (A4 Q)
Hn(1)Z' = (3.8)
; |61:L (t Z q)°°
The universal characters solve tipJC hierarchy in the sense of the
Proposition 3.2 Gee [26). For every integem and pair of sequences of integers ],
wo = (1), w1 = §maya (D), (3.9)

satisfy theq-UC hierarchy(3.5).

4 The solutions of the sixthg-Painleve equation

In this section we see that a solution@®,, coincides with a self-similar solution of treeUC
hierarchy. As a consequence, we obtain in particular a class of algebraic solutipRg,oh terms
of the universal character.

Letl = {1, 2}, J = {-1, -2} and replace the basgwith g?>. Consider the following chain of the
g-UC hierarchy:

(tl - t—Z)Tl,—Z;qZ((UZj)T—l;q2 (w2j+1) + (t—2 - t—1)T—2,—1;q2((‘)Zj)-I-l;qz((i)2j+l)

+(t_1 - tl)T—l,]_;q2(w2j)T—2;q2((1)2j+1) = 0, (4.1&)
1 1 1 1
o Te(@2i- )T ae(@2) +{ 7 = 7 | Tuee(@2j-1) Too-1ce(w2)
1 -2 2 -1
1 1
+ (t_ - t_) T—2;q2((-U2j—1)T—1,1;q2(w2j) = O, (41b)
-1 1
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with the four-periodic condition:
Wit+4 = Wj. (42)

Let{w; = wi(t_o, t_1, 11, t2)}i—01.23 be a solution of (4.1) satisfying the similarity condition:
wi(gtz, gts, gtz, qt) = ghwi(to, te, tr, b)), (4.3)

whered; € C being the parameters given by (2.12). Let

=) dpa1dp

E=aa, n= %’ = 2oaaas (4.4)
Define the function§;(¢&, n, £) by
Fi(6.n,0) = wilt 2, g, 11, 1), (4.5)
under the substitution
ti=n t=¢ ti=-07% to=-q%*" (4.6)

We have the following expression of the solutiorgel, in terms of that of the-UC hierarchy.

Theorem 4.1. The quartet

(pO’ P1, P2, ,03) = (FO(é:’ mn, é/)’ Fl(é:’ n, q_zg)’ FZ('f’ 1, 5)’ F3(‘f’ 1, q_zé/)) s (47)

solves the system of bilinear equationgd?,, (2.14) Consequently the pair

fo Y ps)p1 _ Y(p2)po

" ey 97 Tipolpn’ (4)

satisfieg}-Py,, (1.8).

The proof of the theorem is given in the next section.
Finally, we shall present algebraic solutionsgePy,. Introduce a functiorR;, (¢, 7, ), for
each pair of partitionst], u], defined by

R[Mt] (f, n, {) = S[/l,ﬂ](t) = S[/l,u](x’ Y), (4-9)

under the substitution (4.6), or
"+ - (=6)" - (=)™

Xn (L= o) , (4.10a)
_ - -9
Yn = ) . (4.10b)

Recall that the universal charact®y, ,; is a homogeneous solution of thdJC hierarchy whose
degree equalsl| — |u| (see [26], or Proposition 3.2). Hence we can immediately obtain from

Theorem 4.1 a class of algebraic solutiong-®#t,, in terms of the universal charactef; [24, 26].
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Theorem 4.2. For everym, n € Z, the quartet

(PO,Pl,PZaP3) (411)
= (R[(m—l)!,(n—l)!] & 17,0), Rt n-1y1 (€5 7 A728), R (€577, ) Ry (.7, q_zf)) ,

satisfieq2.14)withd; — dp = d, — d3 = mandd, — d; = d3 — dy = —n. Consequently the pair

-1 -1
. 4 1(/03)/01’ _¢ 1(/02)/00’ (4.12)
t(o1)p3 t=(po)p2
gives an algebraic solution @fPy,, (1.8), when
aO m-n a4 m+n
a3 U 2 U (4.13)

Heren! stands for the two-core partitiom(n—-1,..., 1); alsowe len! = (-1 -n)! for n< 0.

Remark4.3. The algebraic solutions obtained in Theorem 4.2 are reduced to those of the sixth

Painlee equation, in parallel with the continuous limit fragPy, to the equation¢f. [13].

Remark4.4. Let us consider the functioRyn) (£, 7, ) = Ra(€,1,¢) = pn(X) under the substitu-
tion (4.10), wherep,(X) is the polynomial given by (3.2), or (3.3). We then have the following
expression by means of the generating function (see (3.8)):

S L, _ (- d) "
ZO Ri.m 07 = "= (4.14)
Hence we obtain
P I —-2n _ ¢ -1
R, = fn—( ézqf;q;)(: )n2¢1[ q_q;_zf; 0; —quﬂ], (4.15)

where,¢, denotes the basic hypergeometric series ésg43]):

o= S @D,
i x]_; CIONCTO.

a,b
c

201

We remark also tha®,(£, 7, ) is equivalent to a kind off-orthogonal polynomial called thal-
Salam—Chihara polynomiatee [8].

Example4.5. Let us consider the polynomial

P[/l,/z] (‘f’ 1, g)
= gzt T (1- g?00) [T (o - 1) Ryya(€.7.2)-

(i.j)ed (k1)e
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Here we denote b¥(i, j) the hook-length that is, h(i, j) = 4 + 4 —i - j + 1 (see [11]); let

v = (v1,v2,...) be a sequence of integers definedvby= maxo, i/ — A;}. It is interesting that
P, seems to be a polynomial whose fiagents are all positive integers. Some examples of the
polynomial are given as follows:

A || Pag(én. Q)

0 |0 |1

Q) | 0 |1+ +(m+0¢

@ | 0 | PA+EN+ QA+ P+ DE+E) + (L +P)L+nd) + 7P + e
(LD] 0 |1+ + 1+ P)+DE+E) + (L + P A +n2) + P + 12))é?

0 | ()| 1+ + 0+

0 | @ | PR+ + @+ Pni(n + OE + ) + (0 + &) + L+ Pl (L +nd))é?
D) | @) ] @ +&D+ P+ )L +nd)E + ) + (L + P)nd + P + )E

D) | @) | PP+ &%) + nin + O+ & + )€ +£)

+H((1+ 307 + 29* + )L + PP (P + 22 + (L + AL (L + 177 + E)N)E + €%
+0 + QL+ AL+ + g + a0 + £%) + (L + PP)Ee

We regard this polynomial ascpanalogue of th&memura polynomiahssociated with algebraic

solutions of the sixth Painléequation; see [13, 16].

5 \Verification of Theorem 4.1

In order to prove the theorem, we shall see that the system of bilinear equatigi#®,0f(2.14),

arises from that of thg-UC hierarchy, (4.1), through a certain similarity reduction.

Proof of Theorem 4.1We have from (2.3) and (4.4) that

O =g ) =g ) = (5.1)
Notice that functionw; = wj(t_p,t_1,t3,t;) can be regarded as a function in variablgsyj] =

(X1, X2, ..., Y1, ¥2,...) Via
tln + tzn _ q2n(t_1n + t_zn)

(L~ ) (5.2a)
_ tl—n + tz_n _ q—2n(t_1—n + t_z_n)
Yo = O : (5.2b)

Let us consider the substitution of variables (see (4.6)):
tb=n t=¢ ti=-q% to=-q%™
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We verify by using (5.1) that

q2nt1n + tzn _ q2n(t_ln + q—2nt_2n)
n(1 - o)

"+ " = ()" - g (=4 "
n(1 - o)

(@) + (@) — (-)" - ()"
n(1- ")

(@) + (@n)" = (=6)" - (—§)‘”) :

n(1 - o) ’

Tl,—2;q2 (Xn)

= q

q"e (

and similarly

0, (@) + (@) "= (=4)" - (&)™
Tl,—z;q2(yn) =q f( n7(71 g2 )

Combine this with the similarity condition (4.3), we obtain
T1 2q(w2)) = G @ EF2(E on, 67)).
One can verify in the same way thBt; 2 (wzj.1) = q%2+67(Fj11(£, 0?7, £)); and also

T 1(wzy) = T2 F5(E, 00, 0%0),  Tiqe(wajer) = Fojua(& o, O);
T_11(w2)) = q_d2i€‘1(sz(§, o1, %)), T_2g2(w2j+1) = q_d21+1€(|:2]+1(§’ an.2)).

Substitute (4.6) and the above formulae into the bilinear equati@pWE hierarchy, (4.1a); re-
placingn and/ with g=2n andq2¢, respectively, hence we obtain

(77 + f_l) €(Fai (&, OV (Fajialé n, 9720))
+Q 1 (¢ = £ Foi(€.m, OF 2a(€.1. 07%0)
— (€ +m) CHF2i(&m O)(F2ia(é,m,97%0) = 0. (5.3)

In parallel, we have also from (4.1b) that

(77" + €1) E(F2i-a(Em. 20N (Foy(€.1.0)
+Q27% (£ = ) Fopa(€n, AP F2(€,m.0)
—(&+ ) M Fapaléon. O AF2i(€.m.)) = O. (5.4)

These formulae, (5.3) and (5.4), coincide with the system of bilinear equatiap®af (2.14).

The proof is now complete. O
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