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DISCRETIZED INGHAM TYPE THEOREMS

VILMOS KOMORNIK AND PAOLA LORETI

ABSTRACT. In [2] we developed, in collaboration with C. Baiocchi, a new ap-
proach, based on the systematic use of eigenfunctions of the Laplacian op-
erator, in order to obtain various Ingham type generalizations of Parseval’s
equality. Recently in [14] Ingham’s original theorem was adapted to the case
where the integrals are replaced by Riemann sums. The purpose of this paper
is to establish discrete versions of various discrete Ingham type theorems by
using the approach of [2]. This leads to more precise results and to simpler
proofs.

1. INTRODUCTION

In a classical paper devoted to the study of Dirichlet series, Ingham [5] proved
an estimate for nonharmonic Fourier series, which extended Parseval’s equality to
cases where the exponents do not form an arithmetical sequence. His theorem
was an improvement of earlier results of Paley and Wiener, and was subsequently
generalized in many different directions. Ingham’s original theorem turned out to
be quite useful in control theory, too, where it became an essential tool in proving
observability estimates of linear evolutionary systems. An overview of this subject
was given by Russell [15]; see also [9].

In connection with some problems of numerical approximation, Negreanu and
Zuazua [14] recently proved an Ingham type theorem where the integrals were
replaced by Riemann sums. In the present note we propose a different approach,
based on another method of Ingham. This easily leads to an improved version of
the just mentioned result: first, we provide a weaker assumption on the exponents
which appear in the estimates. Secondly, we give an explicit sufficient condition on
the length of the interval on which the desired estimates hold. Both our assumption
and condition are simple and natural.

Moreover, we also establish discrete versions of several multidimensional and
vector-valued Ingham type theorems, obtained in [1], [2], [3], [4], [7] and [12]. As
a matter of fact, the constants of our estimates below will allow us to pass to the
limit and to recover the former theorems concerning the continuous case. We note
that, on the other hand, the discrete versions of these theorems cannot be deduced
from the continuous ones.

In the following section we give a discrete version of Ingham’s theorem which
improves an analogous theorem of Negreanu and Zuazua [14]. In the next one
we illustrate the usefulness of this theorem by establishing a discrete observability
result for a simple model problem. In the last two sections we generalize our
discrete Ingham type theorem in two different directions: to functions of several
variables and to vector-valued functions. Both generalizations play an important
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role in proving various observability and exact controllability theorems for systems
of partial differential equations: we refer to [9] for various applications of this type.

2. A DISCRETE VERSION OF INGHAM’S THEOREM

Let (wg)rer be a family of real numbers, satisfying for some v > 0 the uniform
gap condition

(2.1) |wk —wp| >~ forall k#n.
We consider functions of the form
(2.2) p(t) = Y apert
keK
with complex coefficients xj, and we are going to establish estimates of the form

(2.3) 53 et +38)P = S Jail?,

j=—J keK

where ¢ is a given positive number, J a positive integer and ¢ a real number.

Remarks.

e In the sequel we often write A < B instead of c;A < B < ¢3 A for brevity
if we do not need to use explicitly the positive constants ¢1, ¢o. In all such
estimates, the constants c¢1, ¢ will be assumed to be independent of the
particular choice of the coefficients xj.

e The expression on the left-hand side is an approximation of the integral

t'+J8
/ lz(t)|? dt.
t

'—Jé

Theorem 1. Assume (2.1). Given 0 < § < /v arbitrarily, fix an integer J such
that JO > 7 /y. Then the estimates (2.3) hold true for everyt' € R, for all functions
(2.2) whose coefficients satisfy the condition

(2.4) xzp =0 whenever |wi| > % - %

Moreover, the constants of the estimates (2.3) depend only on v and J§.

Remarks.

e Since the constants of the estimates (2.3) depend only on v and J§, letting
9 — 0 in (2.3) we recover Ingham’s theorem [5] :

Assume (2.1) and fix a bounded interval I of length |I| > 2w /~. Then

all functions (2.2) with square summable complex coefficients satisfy the

estimates
/|x(t)|2 dt =< Y |al.
1 keK
Moreover, the constants of the estimates depend only on v and |I|.
e As a matter of fact, the estimates (2.3) follow from the linear independence
of the vectors

(eiwkjé)jzij
where k runs over the elements of K for which
L
Wel < = — —=.
| 53



(2.5)

Proof.
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Thanks to assumption (2.1) the number of such indices k is smaller than
2J + 1, the length of these vectors. Furthermore, none of the nonzero
differences (wy — wy,)d is a multiple of 27 because 0 < |wg — wy, |0 < 2 if
k # n. The linear independence hence follows because the corresponding
Vandermonde determinants are different from zero.

However, this simple argument does not show the dependence of the
constants on §, and so it does not enable us to let § — 0.
Our theorem remains valid with the same proof if we assume instead of (2.4)
that the exponents wy for which xj # 0, belong to some fixed interval of
length 27“ — 7, because we only use the estimates of the differences wy — wy,.
(Alternatively, we can also use a translation argument for all exponents.)
In their theorem, Negreanu and Zuazua used the assumption

lwi — wn| < C sp—1
0

whenever z, # 0 and z,, # 0, with some given number 0 < p < 1/2. It is
easy to see that their proof requires § = At be sufficiently close to 0, for
otherwise the positivity of their constant C;(At, T, ) is not ensured. (Note
that the expression of Cy(At, T, ) contains an implicit constant C, which
can only been neglected if At is sufficiently small.)

Another feature of our theorem is that we give an explicit condition 2J4 >
27/~ on the length of the the observation interval, instead of their corre-
sponding condition 7' > 27/v + ¢(At) with an implicit function ¢ whose
limit is zero in zero.

We proceed in three steps.

First step. If G is a function belonging to Hg(—,7), then its Fourier transform
is given by the formula

g(t) = /O:O G(z)e ™ dx

for all real ¢. Since 7/§ > =y, G vanishes outside the interval

so that

(59

g(j9) = /IG(m)efijM dx

for all integers j. Since the functions

1/ ie"j‘sm, jEZ
2

form an orthonormal basis in L?(I), applying the Dini-Lipschitz theorem (see, e.g.,
[17]) we conclude that

) Z 9(76)e¥%% = 27 Gs(x)

j=—oco

for all real x where Gy is differentiable, where G5 denotes the 27 /§-periodic function
which is equal to G in the interval I. Observe for later use that

2
Gs() =0 if v<l|a] <= 7.
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Assuming that G is differentiable in 0, it follows that the functions (2.2) satisfy
the equalities

4 Z 9]5 |I ,75 =0 Z xkan Z (]5) (W —wn)jo
J=ee kneK =00
=2r Z Ty Gs(wWp — wn)
k.neK
=2nG(0) 3 [ f*
keK

In the last two equalities we have also used the fact that
lwi, — < I
k wn| =75
whenever xj, # 0 and ,, # 0 by condition (2.4), and that |w; —w,| > 7 by condition
(2.1) if k # n, so that Gs(w, — w,) = 0.
More generally, we also have

(2.6) ] Z (50)|z(t' + 30)|* = 27 G(0 Z EN

j=—o00 keK

for any fixed real number #’. This follows by applying the preceding equality to the

function
y(t) t + t Z xkelwkt zwkt Z ykelwkt
keK keK

and by observing that |yx| = |zk| for every k.

Second step: proof of the direct inequality. Let us introduce the functions H, G :
R — R by the formulae

Hz) = {cos’%” if || <.’y/2, G=H+H,
0 otherwise,
and let us denote by h and g their Fourier transforms. One can readily verify that
e (7 satisfies the conditions of the previous step;
e ¢ has a positive minimum £ in the interval [—7 /v, 7/7].
Furthermore, one can readily verify that G is differentiable everywhere. Using these
properties and denoting by J’ the integer part of m/(vd), we deduce from (2.6) the

inequality
J/
86 D | +50)* <27 G(0) D fal*.
j=—J kEK
Now given any positive integer J, the upper integer part m of 3vd.J/m satisfies the
inequality m(2J’ +1) > 2J 4+ 1 because (note that J > 1 and J’ > 0)

2J+1 3J - 3J  3vyoJ

2J'+1 - J+1 ~w/(v6) «
Hence, applying the above estimate for m suitably chosen values of # and summing
these inequalities we obtain that

2 G
5 Z ot +38)2 < TN a2

j=—J keEK
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for any fixed .

Third step: proof of the inverse inequality. Let H and h be as in the preceding
step. Set R := JJ and now define G and ¢ by

G:=R*HxH+H xH and g(t) ::/ e "G(z) da.

— 00
It is easy to see that
(G satisfies the conditions of the first step;
G is differentiable everywhere except in x = +7;
G(0) > 0;
g is bounded from above by some constant a, and g < 0 outside (—R, R).

Using these properties we deduce from (2.6) the inequality

J
ad .
E |xk|2§27rG(0) E lz(t' + 78)|2. O
j=—J

keK

3. A DISCRETE OBSERVABILITY THEOREM

There is an extensive literature on the observability of distributed systems: see,
e.g., Lions [10] , [11], Russell [15] and their references. In these works one usually
considers problems with continuous observations, i.e., the observation of the solu-
tion or some derivatives of the solution at all points of some given time interval.
However, sometimes this type of observation may be too expensive or even impos-
sible. In many cases, it seems to be more realistic to make observations at a finite
number of points of the given time interval. Of course, we cannot hope in this way
to determine completely the unknown initial data, but we may hope to get better
and better results as the number of observation points increases. As we will show,
these results yield in the limit case the formerly established continuous observation
theorems.

As an illustration, let us consider the following simple model system where £ is
a given positive number:

U — Ugy + at = 0 in R x(0,¢),
u(t,0) =u(t,f)=0 for teR,

u(0, z) = ug(x) for xz€(0,¢),
ut(0, ) = u1(x) for z € (0,9).

(3.1)

For a = 0 this is a model of a vibrating string of length ¢ with fixed endpoints. Let
us define the energy of the solutions by the usual formula

1 é

E = —/ u? —{—ui dx.
2 Jo

We are going to establish the following discrete variant of Proposition 3.8 in [9]:

Proposition 1. Assume that

372
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Given 0 < § < £ arbitrarily, fiz an integer J such that Jé > £. Then we have

J
8> |ua(t' +56,0)] < E(0)

j=—J
and
J
5> gt + 38,0 < E(0)
j=—J

for all real numbers t' and for all solutions of (3.1) whose initial data are finite
linear combinations of the eigenfunctions sin purx for which

1
k< <— 2.
k<5 -3

Moreover, the constants in the estimates only depend on £ and on J§.

Proof. Setting

uk:k% and wi = <%>2+a

for brevity, it is well-known that the solutions of (3.1) are given by the sum

oo
u(t,z) = Z(akew’“t + a,kefi“”“t) sin pgx
k=1

with suitable complex coefficients ay, a_j, depending on the initial data. (We only
have a finite number of nonzero coefficients.)

Using this representation and the relation |ug|? < k2, we obtain by an easy
computation that

dzr

¢ oo
E(0) %/0 ’Z(iwkak—iwka,k) sinukx‘2
k=

1
1[5 2
+—/ ’Z(iukak—l—wka,k)cos,ukm’ dx

2.Jo k=1

I
=~
NE

(|wk|2|ak — a_il® + |pkl?lak + a—k\z)
1

)
(8

k2(|ak|2 + |a,;€|2).

?,
Il

1

On the other hand, it also follows from the representation of the solutions that

o
ug(t,0) = Z appire™ "t + a_gpge "kt
=1

and

o0
ug (¢, €) = E ap et — a_pupe Rt
k=1
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By assumption (3.2) the family of the exponents {£wy} satisfies the condition (2.1)
with v = 7/f. Since |ux|? < k2, applying Theorem 1 we obtain that

J o0
53 Jualt + 56,002 = 3k (laxl + o)
k=1

j=—J
and
J oo
§ ) fua(t +56,0P <>k (Jak* + la—k[?).
j=—J k=1
Taking into account the above estimate of E(0), the proposition follows by . O

4. A MULTIDIMENSIONAL THEOREM

The proof of the preceding section can easily be adapted to the case of several
variables. Let (wy)rer be a family of vectors in RV, satisfying for some 1 < p < oo
and v > 0 the uniform gap condition

(4.1) llwe —wnllp >~ forall k#n.

We consider functions of the form

(4.2) x(t) = Z rpe™rt e RY
keK

with complex coefficients zj (the dot in the exponent denotes the usual scalar
product of RY), and we are going to establish estimates of the form

(4.3) SN (' + GO =Y fanl
jer}f keK
where § is a given positive number, J a positive number, ¢ € RY, and Zf}f denotes

the set of N-tuples j = (j1,...,jn) satisfying = ||j]l2 < J.

Remark. The expression on the left-hand side is an approximation of the integral

[ @ ropa= [ P
Bs t'+Bs

where Br denotes the open ball of center 0 and radius R.

In the following theorem we denote by B2 the open ball of radius r with respect
to the p-norm of RY, center ed at the origin, i.e.,

B ={weRY : |w|,<r}
We shall establish the following

Theorem 2. Assume (4.1) and let us denote by p, the first eigenvalue of —A
in the Sobolev space H&(B,’;/Q). Given 0 < § < /v arbitrarily, fix an integer J
such that J§ > \/it,. Then the estimates (4.3) hold true for all t' € R and for all

functions (4.2) whose coefficients satisfy the conditions

(4.4) zp =0 whenever ||wgl|, > % — %

Remark. As in the preceding section, the constants of the estimates (4.3) depend
only on v and Jd. This allows us to let § — 0; this yields the following theorem,
obtained earlier in [1], [2] and [12]:
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Theorem 3. Assume (4.1) and let us denote by u, the first eigenvalue of —A in

the Sobolev space Ha (B,’;/Q) If R > /iy, then all sums (4.2) with square summable

complex coefficients xy, satisfy the following estimates :

| R @< 3 jaf
Br

keK
Proof. We proceed in three steps:

First step. If G € Hj(Bb), then its Fourier transform is given by the formula
= / G(z)e ™ dx, teRN.

Since 7/§ > 7y, G vanishes outside the N-dimensional interval

T T\ N
1= (-53)
so that
g9(j9) = /G(m)eiij‘;'x dx
I

for all j € ZV. Since the functions

2N ieij6m7 je 7N
2

form an orthonormal basis in L?(I), we conclude that

SN Y 9(j6)e T = (2m)N Gs(x)

JELN

for every x € R where Gy is infinitely many times differentiable. Here G5 denotes
the function which coincides with G in I and which is 27 /§-periodic in each variable.
Furthermore, we consider the pointwise convergence of the square partial sums: see
[16].

Assuming that G is infinitely many times differentiable in = = 0, similarly to
the preceding section it follows, thanks to (4.1) and (4.4), that the functions (4.2)
satisfy the equalities

(4.5) SN ST gt + jo)P = 2m)NG(0) Y |al?

jeLN keK
for any fixed ¢ € RY.

Second step: proof of the direct inequality. Let us denote by H the eigenfunction
of —A in H} (Bg/Q), corresponding to the first eigenvalue p. Multiplying by —1 if
necessary, we may assume that H > 0 in Bf; /20 Extending by zero outside this ball,
we obtain a continuous function on RY, still denoted by H. We obtain similarly to
the preceding section that

e (G := H x H satisfies the conditions of the previous step;
e its Fourier transform ¢ has a positive lower bound £ in the ball Bg Iy where

q denotes the conjugate exponent of p;
e G is of class C™ outside the boundary of BY.
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Denoting by J’ the integer part of w/(~d), using these properties we deduce from
(4.5) the inequality

BN Z lz(t' +56)2 < (20)NG(0 Z |z |
jezy, keEK
Now for any given positive integer J the set ZJJV may be covered by a finite number,

say m translates of ZJJV,. Therefore we deduce from the preceding inequality the
more general estimate

Y et + o) < OGO S e

]GZN keK
for any fixed ' € RV,
Third step: proof of the inverse inequality. Define H and h as above. Choose
a positive integer J satisfying R := J& > \/fip and set G := (R* + A)(H x H). A
simple adaptation of the arguments of the preceding section shows that

(G satisfies the conditions of the first step;

G is of class € outside the boundary of BY;

G(0) > 0;

g is bounded from above by some constant a and g < 0 outside the ball
Bg.

Therefore, applying (4.5) we obtain that

@ONG0) Y |zl < ad™ Y Ja(t + )P

TN
keK JELy

since G(0) > 0, the inverse inequality follows. O

5. A THEOREM FOR VECTOR-VALUED FUNCTIONS

In this section we establish a discrete version of a theorem obtained in [7], which
played an important role in proving various observability and exact controllability
theorems for systems of partial differential equations.

Let (wi)kex be a family of real numbers, satisfying for some positive integer M
and for some positive number v the following weakened gap condition:

(5.1) { no interval (wy — 7y, wy + ) contains more than

M members of the family (wy).

Let (Ej)rcx be a family of vectors in a complex Hilbert space H, and denote
by Z the linear hull of these vectors. Let p(-,-) be a given semiscalar product on
Z, and denote by p(-) the corresponding seminorm.

Theorem 4. Assume (5.1). Given 0 < § < /v arbitrarily, fix an integer J such
that J§ > m/~. There exists a number n > 0, depending only on v and J§ such
that if

(5.2) |p(Ey, En)| < np(Ep)p(En) whenever |wi —wp| <75 but k#n,
then the estimates

(5.3) b Z Ut +350))% < Y |Uxl*p(Ek)?

j=—J keK
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hold true for all t' € R and for all functions

Ut) =Y Upe*'Ep, Up€eC
keK

whose coefficients satisfy the conditions

Up =0 whenever |wg|> T

J
5 2

Remark. Letting 0 — 0 we recover the following theorem from [7]:

Theorem 5. Assume (5.1). For every bounded interval I of length |I| > 2m/~,
there exists a number n > 0 such that if (5.2) is satisfied, then all finite sums

Ut) =Y _ Upe™*' By, Up€C
keK
satisfy the estimates
[pw®y ae= 3 wiPaE®
I keK

Proof. We may assume without loss of generality that p(Ex) = 1 for all k. Indeed,
terms with p(E;) = 0 do not contribute to either side of (5.3), while the other
terms can be normalized. Then we have

|p(Ey, E,)| <1 forall k,n
and (5.2) takes the form
p(Er,En)| <n whenever |wy—w,| <7y but k#n.

Let us choose the same functions H and h as in the proof of Theorem 1. Observe
for further use that H is differentiable (it is even of class C*°) in (—v/2,7/2).

First step: If G € H&(Bio) is differentiable in (—~,~), then repeating the first
step of the proof of Theorem 1 we now obtain the following identity:

oo

5> gGOpUE +48))° =2n Y UrlUnG(wi, — wn)p(Egk, En).
j=—00 kneK:
“*’k*wn‘<7

Second step: proof of the direct inequality. Let us introduce the same function G
and integer J’ as in the proof of the direct inequality in Section 2. Since G clearly
attains its maximum in 0, now we have the following estimates:
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Jl
B3> pUE +46)) 52 Ut + jo))>
j=—J j=—00
=21 Y UpUnG(wi — wn)p(Ek, En)

kneK:
|wk—wn|<y

Ukl + |Un|?
<27G(0 _
cmeo Y
kneK:
|w —wn|<y
< 2rG(O)M > Uk
keK
In the last step we used that, thanks to assumption (5.1), no term |Uy|?
more than M times in the sum.

appears

Third step: proof of the inverse inequality. Let us define R := J§ and G :=
R2H x H + H' x H' as in the proof of the inverse inequality in Section 2 and let 3
be the maximum of G. We have the following estimates:

J oo
ad Y g(OpUE +46))> =5 Y glid)p(U{ + j6))?
j==J j=—00
=27 Z UrUnG(wi. — wn)p(Ey, Ey)
kneK:
|wp—wn|<y
=20GO) (Y IUkP) +2r Y UGl — wn)p(Br. En).
keK kneK:
|“ch*wn‘<')/a
k#n

The last sum can be majorized as follows:

Z UpUnG(wi, — wn)p(Ex, En)

<Bn Y. |UTl

k,neK: kneK:
‘kawn|<77 ‘kawn‘<')’:
k#n k#n
Uk|® + |Un|?
< Ll S
</ > 5
kneK:
‘kaw'n‘<'77
k#n
< (M = 1) ( 3 Ukf?).
keK
It follows that
ad Z U(t' +46))” = 27 (G(0) — (M — 1)) Y _ |Ux[*.
j=—J keK

Choosing a sufficiently small n > 0 such that (M — 1)8n < G(0), the desired
inequality follows. Observe that 7 depends only on + and on the product R =
Jé. O
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