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MINIMAL POLYNOMIALS AND ANNIHILATORS OF
GENERALIZED VERMA MODULES OF THE SCALAR TYPE

HIROSHI ODA AND TOSHIO OSHIMA

ABSTRACT. We construct a generator system of the annihilator of a general-
ized Verma module of a reductive Lie algebra induced from a character of a
parabolic subalgebra as an analogue of the minimal polynomial of a matrix.

1. INTRODUCTION

In the representation theory of a real reductive Lie group G the center Z(g) of the
universal enveloping algebra U(g) of the complexification g of the Lie algebra of G
plays an important role. For example, any irreducible admissible representation 7
of G realized in a subspace E of sections of a certain G-homogeneous vector bundle
is a simultaneous eigenspace of Z(g) parameterized by the infinitesimal character
of 7. The differential equations induced from Z(g) are often used to characterize
the subspace F.

If the representation 7 is small, we expect more differential equations correspond-
ing to the primitive ideal I, that is, the annihilator of 7 in U(g). For the study
of I and these differential equations it is interesting and important to get a good
generator system of I.

Let po be a parabolic subalgebra containing a Borel subalgebra b of g and let A
be a character of pg. Then the generalized Verma module of the scalar type is by
definition

(L1)  Me(\) =U(g)/Jo(N) with Jo(A) = Y U(g)(X — A(X)).
Xepeo

In this paper we construct generator systems of the annihilator Ann(M@ ()\)) of the
generalized Verma module Mg(\) in a unified way. If 7 can be realized in a space
E of sections of a line bundle over a generalized flag manifold, the annihilator of
the corresponding generalized Verma module kills F.

When g = gl,,, [O2] and [O3] construct such a generator system by generalized
Capelli operators defined through quantized elementary divisors. This is a good
generator system and in fact it is used there to characterize the image of the Poisson
integrals on various boundaries of the symmetric space and also to define generalized
hypergeometric functions. A similar generator system is studied by [Od] for g = o,
but it is difficult to construct the corresponding generator system in the case of other
general reductive Lie groups. On the other hand, in [O4] we give other generator
systems as a quantization of minimal polynomials when g is classical.

Associated to a faithful finite dimensional representation 7 of g and a g-module
M, [O4] defines a minimal polynomial ¢, a(x) as is quoted in Definition 2.2 and
Definition 2.4l If g = gl,, and 7 is a natural representation of g, ¢ a(z) is char-

acterized by the condition g pr(Fr)M = 0. Here F; = (EZ) is the matrix

1<i<n
1<5<n
whose (i, j)-component is the fundamental matrix unit E;; and then F is identi-
fied with a square matrix with components in g C U(g). In this case ¢ aro (2 () is
naturally regarded as a quantization of the minimal polynomial which corresponds
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to the conjugacy class of matrices given by a classical limit of Mg(\). For example,
if pe is a maximal parabolic subalgebra of gl,,, the minimal polynomial q,r’Me(/\)(a:)
is a polynomial of degree 2.

For general m and g, the matrix F} is the image (p(EU)) of (E;;) under the

contragredient map p of m and then F} is a square matrix of the size dim 7 with
components in g. For example, if 7 is the natural representation of o,,, then the
(i, j)-component of F equals % (E;; — Ej;).

In [O4] we calculate the minimal polynomial g, a7 () (%) for the natural repre-
sentation 7 of the classical Lie algebra g and by putting

(12) Iﬂ',@<>‘) - ZU(g)qﬂ,M@(k)(Fﬂ')ija

it is shown that

(13)  Jo(N) =Ire(\) +J(Ne) with J(Ae) = Y U(g)(X — A(X))
Xeb

for a generic . This equality is essential because it shows that ¢ ar,(x)(Fr)ij give
elements killing Mg (A) which cannot be described by Z(g) and define differential
equations characterizing the local sections of the corresponding line bundle of a
generalized flag manifold. Moreover (1.3) assures that I; ¢(A) combined with the
ideal defined by Z(g) equals Ann(Me (X)) for a generic A.

In this paper, 7 may be any faithful irreducible finite dimensional representation
of a reductive Lie algebra g. In Theorem 2.23 we calculate a polynomial ¢, ¢(z; A)
which is divisible by the the minimal polynomial ¢, a7, (1) (z) and it is shown in
Theorem 2.28| the former polynomial equals the latter for a generic A. If pg =
b, this result gives the characteristic polynomial associated to 7 as is stated in
Theorem [2.32, which is studied by [Go2]. We prove Theorem 2.23]in a similar way
as in [O4] but in a more generalized way and the proof is used to get the condition for
(1.3). Another proof which is similar as is given in [Go2| is also possible and in fact
it is based on the decomposition of the tensor product of some finite dimensional
representations of g given by Proposition [2.26.

In §3 we examine (1.3) and obtain a sufficient condition for (1.3) by Theo-
rem [3.21. Proposition 3.25 and Proposition 3.27) assure that a generic \ satisfies
this condition if 7 is one of many proper representations including minuscule rep-
resentations, adjoint representations, representations of multiplicity free, and rep-
resentations with regular highest weights. In such cases the sufficient condition is
satisfied if A is not in the union of a certain finite number of complex hypersurfaces
in the parameter space, which are defined by the difference of certain weights of the
representation 7. In Proposition 3.3 we also study the element of Z(g) contained
in Iﬂ-’(_)()\).

A corresponding problem in the classical limit is to construct a generator system
of the defining ideal of the coadjoint orbit of g and in fact Theorem|3.28is considered
to be the classical limit of Corollary 13.22.

If 7 is smaller, the two-sided ideal Ir () is better in general and therefore in §4
we give examples of the characteristic polynomials of some small 7 for every simple
g and describe some minimal polynomials. Note that the minimal polynomial is
a divisor of the characteristic polynomial evaluated at the infinitesimal character.
In Proposition 4.12 we present a two-sided ideal of U(g) for every (g,pe) and
examine the condition (1.3)) by applying Theorem [3.21. In particular, the condition
is satisfied if the infinitesimal character of Mg () is regular in the case when g = gl,,,
02n+1, 8P, or Ga2. The condition is also satisfied if the infinitesimal character is in
the positive Weyl chamber containing the infinitesimal characters of the Verma
modules which have finite dimensional irreducible quotients.
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Some applications of our results in this paper to the integral geometry will be
found in [O4, §5] and [OSn].

2. MINIMAL POLYNOMIALS AND CHARACTERISTIC POLYNOMIALS

For an associative algebra 2 and a positive integer N, we denote by M (N, )
the associative algebra of square matrices of size N with components in 2. We
use the standard notation gl,, 0, and sp,, for classical Lie algebras over C. The
exceptional simple Lie algebra is denoted by its type Fg, E7, Fg, Fy or Gs.

The Lie algebra gl is identified with M (N, C) ~ End(C") by [X,Y] = XY —
Y X. In general, if we fix a base {v1,...,vn} of an N-dimensional vector space V'
over C, we naturally identify an element X = (X;;) of M(N,C) with an element
of End(V) by Xv; = Y, Xyjvi. Let Byj = (8005 ) 1<,cn € M(N,C) be the

1<v<N
standard matrix units and put E;; = Ej;. Note that the symmetric bilinear form
(2.1) (X,Y) =Trace XY for XY egly
on gly is non-degenerate and satisfies

<E1J7E > <EZJ7E* > = 51'1/5j,u7
(2.2) X = Z (X, Eji) Eij,
,J
(Ad(9)X,Ad(9)Y) =(X,Y) for X,Y € gly and g € GL(N,C).

In general, for a Lie algebra g over C, we denote by U(g) and Z(g) the universal
enveloping algebra of g and the center of U(g), respectively. Then we note the
following lemma.

Lemma 2.1. [O4, Lemma 2.1] Let g be a Lie algebra over C and let (7,CN) be a
representation of g. Let p be a linear map of gl to U(n(g)) satisfying

(2.3) p(X,Y]) = [X,p(Y)] for X € n(g) and Y € gly,

that is, p € Homy(g)(gly, U(n(g))).
Fiz q(x) € C[z] and put

F= (p(E )) 1<i<n € M(N U(m (g))),

2.4 1<j<N
155N
Then
(2.5) (p(Ad(g) )) <i<N = =9 F'9~ for g€ GL(n,C)
1<j<N
and

(2.6) [X, Q] = ZXMQM ZXWQW

N
=3 (X B Qs — ZQW X, Eyj) for X = (X ) < € 7(0):
p=1 = 1<v<N

Hence the linear map gly — U(nw(g)) defined by E;; — Qi; is an element of
Homﬁ(g)(gIN, U(W(g))). In particular, le\il Qi € Z(7(g)).-

Now we introduce the minimal polynomial defined by [04], which will be studied
in this section.
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Definition 2.2 (characteristic polynomials and minimal polynomials). Given a Lie
algebra g, a faithful finite dimensional representation (7, C"V) and a g-homomorphism
p of End(CY) ~ gl to U(g). Here we identify g as a subalgebra of gly through

w. Put F = (p(EU)> € M(N,U(g)). We say qr(z) € Z(g)[z] is the characteristic
polynomial of F' if it is a non-zero polynomial satisfying

qr(F) =0

with the minimal degree. Suppose moreover a g-module M is given. Then we call
gr.m(x) € Clz] is the minimal polynomial of the pair (F, M) if it is the monic
polynomial with the minimal degree which satisfies

Remark 2.3. Suppose g is reductive. Then the characteristic polynomial is uniquely
determined by (7, p) up to the constant multiple of the element of Z(g) since Z(g)
is an integral domain. In this case the characteristic polynomial actually exists by
[O4, Theorem 2.6] where the existence of the minimal polynomial is also assured if
M has a finite length or an infinitesimal character.

Definition 2.4. If the symmetric bilinear form (2.1)) is non-degenerate on 7(g), the
orthogonal projection of gl onto 7(g) satisfies the assumption for p in Lemma [2.1]
which we call the canonical projection of gly to m(g) =~ g. In this case we put F, =
(p(EU)) Then we call gg_(z) (resp. ¢r, m(x)) in Definition 2.2 the characteristic
polynomial of 7 (resp. the minimal polynomial of the pair (7, M)) and denote it by
qr(x) (resp. qm,n(2)).

Remark 2.5. For a given involutive automorphism o of gly, put
g={X egly; o(X) =X}

X+o(X)

and let 7 be the inclusion map of g C gly. Then p(X) = =5

Hereafter in the general theory of minimal polynomials which we shall study, we
restrict our target to a fixed finite dimensional representation (w, V') of g such that

(2.7) {g is a reductive Lie algebra over C,

7 is faithful and irreducible.

Moreover we put N = dim V' and identify V with CV through some basis of V.
The assumption of Definition [2.4] is then satisfied.

Remark 2.6. i) The dimension of the center of g is at most one.

ii) Fix g € GL(V). If we replace (w,V) by (79,V) with 79(X) = Ad(g)m(X) for
X € gin Lemma 2.1, F, € M(N,g) is naturally changed into ‘g~!F, 'g under the
fixed identification V' ~ C¥. This is clear from Lemma2.1/ (cf. [O4, Remark 2.7 ii)]).

Definition 2.7 (root system). We fix a Cartan subalgebra a of g and let ¥(g) be
a root system for the pair (g,a). We choose an order in ¥(g) and denote by X(g)*
and P(g) the set of the positive roots and the fundamental system, respectively.
For each root « € X(g) we fix a root vector X, € g. Let g = n® a ® n be the
triangular decomposition of g so that n is spanned by X, with o € X(g)™. We say
€ a* is dominant if and only if

28’2; ¢{-1,-2,...} forany acX(g)".

Let us prepare some lemmas and definitions.
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Lemma 2.8. Let U be a k-dimensional subspace of gly such that { , )|y is non-
degenerate. Let py be the orthogonal projection of gly to U and let {vy,...,vx}
be a basis of U with (va,v;) = 0 for 2 < j < k. Suppose that u € gly satisfies
(u,v;) =0 for 2 < j < k. Then py(u) = {u,01)

{v1,02) V2

The proof of this lemma is easy and we omit it.

Lemma 2.9. Choose a base {v;;i=1,...,N} of V for the identification V ~ C~
so that v; are weight vectors with weights w; € a*, respectively. We identify g
with the subalgebra m(g) of gly ~ M(N,C) and put ay = Zfil CE;;. For F; =

(Fi]) 1<i<n Wwe have
15N

u = W; = § w’L ]j J]a

ad (H)( u) (wi—wj)( )Fij (VH € a),

(2:8) <FU,EW> # 0 with i # j implies w; — w; = w, — w, € X(g),
CIZZ(CF“ Cany, n= Z (CFZ'J', n= Z (CF”
=1 w;—w;€X(g)T w;—w; €X(g) T

under the identification a* ~ a C ay ~ ay by the bilinear form (2.1)).

Proof. Note that H € a is identified with ZNﬂ w;(H)E;; € ay C gly. Hence
ad(H)(EZj) = (w, — Wj)(H)EU and therefore ad( )( 7J) = (wl — w])(H)FU In
particular we have Fj; € a. Since

(H,Fy) = (H, Ey) = ij Ejj, Ey) = wi(H) (VH € a),

we get F“ = W;.

For each root a, the condition (X4)ij = (Xa, Ej;) # 0 means w; — w; = .
Hence if i # j and X € a—|—2a€2(g ), ate;—w; CXa, then (E;ij, X) = 0 and therefore
(Fij, X) = 0. Hence F;; = 01if i # j and w; — w; ¢ X(g). On the other hand,
if w; — w; € ¥(g), we can easily get Fjj = CXq, o, for some C € C. Hence

(Fij, BEuw) =0if w; — wj # w, — w,,. O
Through the identification of a* ~ a C ay in the lemma, we introduce the
symmetric bilinear form (, ) on a*. We note this bilinear form is real-valued and
positive definite on ¢y (4 Rov
Now we take a subset © C ¥(g) with © # ¥(g) and fix it.
Definition 2.10 (generalized Verma module). Put
0o ={H €a;a(H) =0, VYaeO},
go ={Xeg[X,H=0, VHEao},
m@:{Xeg@; <X7H>:Oa VHEGQ},
S(g)” ={a —a€X(g)"},
Y(ge) ={a €X(g); o(H) =0, VH € ae},
S(ge)" =X(ge) NX(a)", X(ge)” ={-a; a€X(ge) "},

ng = Z CX,, ne= Z CX,,

a€X(g)T\Z(ge) a€X(g)~\X(ge)
b:a+n7 p®:9®+“67
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Z a, =% Y o pe=p—pO)

aEZ(g a€X(go) "

For A € a* which satisfies 2§a’a> 2,...} for a € ©, let Ug,) denote the
finite dimensional irreducible gg-module with highest weight A. By the trivial
action of ng, we consider Ug a) to be a pe-module. Put

(2.9) Me,a) =U(8) ®upe) Uo,n)-
Then Mg ) is called a generalized Verma module of the finite type.

Remark 2.11. i) pe is a parabolic subalgebra containing the Borel subalgebra b.
Po = me + ag + ne gives its direct sum decomposition.

ii) Every finite dimensional irreducible pg-module is isomorphic to Ue ) with a
suitable choice of A.

iii) M(p,a) is nothing but the Verma module for the highest weight A € a*.

iv) Let up be a highest weight vector of Ug a). Then 1 ® uy is a highest weight
vector of Mg x). Moreover 1 ® uy generates Mg Ay because

Me,n) = U(8) ®u(pe) Ue,a) = Ulle) @c U(pe) ®u(pe) Uo,a)
= U(ﬁ@) Rc U(@’A) = U(ﬁ@) Rc U(ﬁ Ngo)ua = U(ﬁ)(l ®up).
Hence Mg 4) is a highest weight module and is therefore a quotient of the Verma
module Mg x)-

v) If (A, o) = 0 for each a € ©, then dim U(g ) = 1 and we have the character \g
of pe such that Xuy = Ag(X)up for X € po. Since

Ug)=Ue)® Y _ Ug)(X —Ao(X))
Xepo
is a direct sum and Mg ) = U(ne) ®c Cup, we have the kernel of the sur-
jective U(g)-homomorphism U(g) — Mg s defined by D +— D(1 ® up) equals
Y xeps U@) (X — Ao (X)).

Definition 2.12 (generalized Verma module of the scalar type). For A € af) define
a character \g of pg by )\@(X + H)=XH) for X € mg +ng and H € ag. Put

= > Ulg)(X —re(X)),

Xepo
(2.10) Je) = > Ulg)(X — X (X)),

Xeb

Me (M) =U(9)/Jo(N), M(Xe)=U(g)/J(Ne).

Then Meg()) is isomorphic to Mg xe), Which is called a generalized Verma module
of the scalar type. 1If © = (), we denote Jy(A) and My(\) by J(A) and M(N),
respectively.

Definition 2.13 (Weyl group). Let W denote the Weyl group of ¥(g), which is
(p,00)

(o0

generated by the reflections w, : a* 3 p — p— 252 «a € a* with respect to

a € ¥U(g). Put
Wo = {w e W; w(X(g)" \ E(ge)) = X(0)" \ X(ge)},
W(©)={weW;w(=(ge)") C Z(g)*}.

Then each element w € W(0O) is a unique element with the smallest length in the
right coset wWg and the map W(0) x Wg 3 (w1, ws) — wiwe € W is a bijection.
For w € W and u € a*, define

(2.12) w.p=w(p+p) —p.

(2.11)
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Here we note that Wy is generated by the reflections w, with o € © and
(2.13) (po,a) =0 for a€ X(go).

Definition 2.14 (infinitesimal character). Let D € U(g). We denote by D, the
element of U(a) which satisfies D — D, € nU(g) + U(g)n and identify Dy € U(a) ~
S(a) with a polynomial function on a*. Then Aq(p) = Aq(w.u) for A € Z(g),
pea,and weW.

Let p € a*. We say a g-module M has infinitesimal character p if each A € Z(g)
operates by the scalar A,(p) in M. We say an infinitesimal character p is regular
if (u+ p,a) # 0 for any « € 3(g).

Remark 2.15. The generalized Verma module Mg ») in Definition 2.10/ has infini-
tesimal character A. It is clear by Remark 2.11] iv).

Definition 2.16 (Casimir operator). Let {X;; ¢ =1,...,w} be a basis of g. Then

put
Ar =) XX}
i=1

with the dual basis {X;} of {X;} with respect to the symmetric bilinear form (2.1)
under the identification g C gly through 7 and call A, the Casimir operator of g
for 7.

Remark 2.17. Tt is known that A, € Z(g) and A, does not depend on the choice

We may assume in Definition 2.16] that {X5,..., X/} and {X,41,..., X, } be

bases of go and ng + ne, respectively. Then X € go for i =1,...,w’ and
(2.14) A9 =D XX}
i=1

is the Casimir operator of gg for 7.

Lemma 2.18. Fiz a basis {Hy,...,H,} of the Cartan subalgebra a of g.
i) Let {H7,..., H’} be the dual basis of {Hy,...,H,}. Put Hy, = [X4,X_4]. Then

XoX_q
A= > o e ZHH*

OL?

a€X(g)

2X_ X, a(Hy)H,

= ZH Hf+ ) ( + )
(XEE(Q)+ XO¢7X—(X> <HCK7HO(>
QXQX,Q CV(Ha)Ha

= AC—) - .

T2 <<XQ,X_a> <Ha,Ha>)

a€X(g)T\X(go)

i) Let M be a highest weight module of g with highest weight p € a*. Then Ajv =
(i, o + 2p)v for any v € M.

iii) Let v be a weight vector of w belonging to an irreducible representation of ge
realized as a subrepresentation of m|q, and let w denote the lowest weight of the
irreducible subrepresentation. Then

A%y = (w,w — 2p(@)>v,

s

aeX(g)t\E(ge)
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Here 7 denotes the lowest weight of 7.
iv) Fiz 8 € X(g)" and put g(8) = CXg+ CX_g+>.._, CH;. Let v be a weight
vector of w belonging to an irreducible representation of g(8) realized as a subrep-
resentation of m|g(3) and let @ denote the lowest weight of the irreducible subrepre-
sentation. Let w + £0 be the weight of v. Then

XpX_3 f—1
X 5 (E(w + ﬁ,@)v.
v) Suppose g is simple. Let amax is the mazimal root of X(g)* and let B( , ) be
the Killing form of g. Then

(2.15)

B(tmax; Omax +2p) = 1.
Proof. i) Note that
(216)  (Ha, Ho) = (Ha, [Xo, X_a]) = ([Ha, Xo], X—0) = a(Ha) (X, X-a)
Since the dual base of {X,,, H;; « € 3(g), i =1,...,7} equals {<XX7X> H ac€

3(g), t =1,...,7}, the claim is clear.
ii) Let v, be a highest weight vector of M. Then

Arv, = ZHH*W+ > 9 HmH>

aeX(g)t

=;u<Hi>u<H:>vu+ S e,

aeX(g)t

Hence Ayv, = (i, pt + 2p)v,, because H, is a non-zero constant multiple of o with
the identification a* ~ a by (, ) and therefore Azv = (i, u + 2p)v because M is
generated by v,,.

iii) Let vz be a lowest weight vector of 7. Then we have A vz = (7,7 — 2p)vz
and therefore A,v = (7,7 — 2p)v. Similarly we have APv = (ww, @ — 2p(0))v.

Let @’ be the weight of v. Then we have

X, X_, 1 1 o ,
DD o amiiat LA TR ATk
a€X(g)T\E(ge)

1
=§<ﬁ'—w,ﬁ'—|—w—2p>v.

Here we note that (@', po) = (=, pe).
iv) By the same argument as above we have

QXBX 6 Hg)Hpg
v+ » H;Hv 7v:<w,w—ﬁ>v.
(Xg, X Z (Hp, Hp)
Hence
2X5X_5

mvz (w,w — B)yv— {(w+ L0, + LB)v + (B,w + {B)v

— — (2w, B) + £( — 1) (B, B))v

v) Suppose 7 is the adjoint representation of the simple Lie algebra g. Then for
H € a we have

([Xa, [X—o, H]|, H)

(n(Ax)(H), H)= )

(Xa, X_a)
a€X(g)
_ 7<[X—aaH]v[Xa7H}>
-2 (Xa, X o)

a€X(g)
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= Z a(H)?

a€X(g)
= (H,H).
Hence 7(A,)(H) = H and B(max, ®max + 2p) = B(—Qmax; —Qmax —2p) = 1. O

Definition 2.19 (weights). Let W(m) denote the set of the weights of the finite
dimensional irreducible representation 7 of g. For w € W(w) define a real constant
1
(2.17) Dﬂ(w)=§<7ﬁ'—w,ﬁ—|—w—2p>.
Here 7 is the lowest weight of 7. Put Ry = {3, cq(y) Mat; ma € {0,1,2,.. .} }.
We define a partial order among the elements of W(w) so that w < @’ if and only
ifw' —w e Ry.
Moreover we put
(2.18)
We(m) = {w are the highest weights of the irreducible components of g4 },

We () = {w are the lowest weights of the irreducible components of 4, },
W(r)|ae = {@lae; @ € W(m)}.

Let p and g/ € W(n)|ao- Then we define pp <g ' if and only if ¢/ — p €
{Zae\y(g)\@ Ma|ae; Mo € {0,1,2,...}}.

Remark 2.20. i) Wy(m) = Wy(r) = W(r) and We(r) = —We(n*). Here (7*,V*)
denotes the contragredient representation of (7, V') defined by

(2.19) (" (X)v*)(v) = —v*(7(X)v) for X € g, v* € V*¥and v € V.

i) W(m)lao = {@lae: @ € We(m)} = {@lae; @ € We(m)}.

iii) Suppose @ and @’ € W(m) and put @’ — @ = }_ g (g) Ma. Then @lo, <o

w'|qe if and only if m, > 0 for any a € ¥(g) \ ©. Hence 7|4, is the smallest
element of W(7)|4, . Note that w < @’ if and only if w <y @’.

Lemma 2.21. Let w and @' € W(r).
i) Ifa=w' —w e V(g), then D(w) — D (&) = (w, @’ —@).
ii) Suppose @' € We(r), w < @' and @w|ae = @'|ae. Then Dy(w) < Di(w’).

Proof. ii) Note that
1
Dﬂ'(w) - Dﬂ'(w/) = §<w/ —w,w + w, - 2p>
The assumption in ii) implies @’ — @ = )  .gmaa with m, > 0. Here at
least one of m, is positive. Hence (@’ — w,p) > 0. Since w’ are the lowest
weights of irreducible representations of gg, (o, @’) < 0 for @ € ©. Thus we have

(D aco Mat, 2w = o maa —2p) <0.
i) Put « = w’ — w. Then

Do(w) — Da(w') ~ (0, — ) = 2 (0,2~ a),
which equals 0 if & € ¥(g) because wq(2(g)" \ {a}) = 2(g)* \ {a}. O

Now we give a key lemma which is used to calculate our minimal polynomial.

Lemma 2.22. Fiz an irreducible decomposition @;_,(mi,V;) of (7|4, V) and a
basis {vi1, ..., Vim;} of Vi so that vy are weight vectors for a. Let w; ; and w; be
the weight of v; j and the lowest weight of the representation m;, respectively.

Suppose w; ; = wy j. Then for a positive integer k with k > 2 and complex
numbers py, ..., g
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k—1

k
(VH_l )w Pd) (VH_I(Er ) iy T P F ()
mod U(g)(me + ne) + Z C (H ) 74 (5,8)

(s,t), (s// t”) v=1
Wslag <0@ilag
Ws t =T g1t 41/

Proof. Note that @, ; = w; mod U(g)me. It follows from Lemma 2.9 that
F(s,t)(i,j) = 5si5tjwi mod U(g)(m@ + 1’1@)

if o1 — @iy & X(8)” \ Z(ge)-
Put F* = Hi:l(F7r — ftp,). Then Lemma 2.9 implies
(2.20)

k —
Flor g = Flr oy (@i = )
= Z [F{zi )(57,5)’F(S,t)(i,j)] mod U(g)(m@ + n@) + ﬁ@U(Q)
ws,t—wi ; €2(9) 7 \E(ge)

- ¥ Blong) Xa) pe—s N

(Xo, X_a) (i",5") (s, t)’
e(9)Si00)
_ $ (Es,t) (i) Xa) (E(s ) (57 ,7), X=a)
(Xa, X—a)
a€x(g)"\2(go)

Ws,t=Wi,j — &
Wt t/*’lﬂ " t//:a

—1
. ((Sss”(stt” (i"§')(s" ") 51/5/(5 /t/Fé,/ 7)(s, t))

1, _
= 5T @i T @i = 200 FG )

_ >y {Es,0)(50), Xa) (B gy ), X=a) pra
<XOL’X7Q> (6” t//)(‘S t)
a€X(a)"\Z(ge)

In the above the second equality follows from (2.8) and Lemma 2.8 with U = g.
The third equality follows from Lemma 2.1 with

X—CE = Z <E(S/,t/)(8”,t”)7X—Q>E(S//,t'/)(s',t’)
ws/’t/ 7@5//&//:&

which follows from the identification g C gl together with the property of ( , ).

Put XV = —*X for X € M(N,C) ~ gly. Let {v;;} be the dual base of {v; ;}
and consider the contragredient representation 7* of m. Then 7n*(X) = XV for
X € g with respect to these basis. Then (X,Y) = (XV,YV) for X, Y € g and

Z XV, XY v* _ Z <E(9t)(e’t’)7X ><E(m)(st)»X >v”
(XY, X3 (XY, XY) "

—a

aeX(g)T\X(ge) a€X(g)"\Z(go)

W ¢t =T, —Q
@t o1 =i g
which is proved to be equal to Dﬂ(wi)v:"j by Lemma 2.18]iii) because (7, w;, p) for
7 changes into (—7, —w;, —p) in the dual 7* with the reversed order of roots. This
implies the last equahty in (2.20).
Note that if D € ngU(g) + U(g)(me + ne) satisfies [H, D] = 0 for all H € agp,
then D € U(g)(me + ng). Since the condition w@; ; — ws: € L(g)" \ B(go) implies
Wslao <O Wilae, We have the lemma. O
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Theorem 2.23. Retain the notation in Definition 2.19. For w € a* we identify
Wlae With a linear function on ag by wlee(A) = (Ao, @) for A € a§. Put

Qﬂ',@ = {(w|ﬂevD‘ﬂ'(w)); w e W@(ﬂ-)}a
moxN = [ (@-npk)-0C).

(1,C)EQx 0

Then g0 (Fr; \)Me(A) =0 for any X € a§.

(2.21)

Proof. For any D € U(g) there exists a unique constant T'(D) € C satisfying
T(D)=D mod nlU(g) + Jo(N)
because the dimension of the space Mg (A\)/nMg (M) equals 1. Notice that
Jo(N) = > Ulg)(H = A\(H)) + U(g)(me + no).
Heae

Use the notation in Lemma 2.22| Since
ad(H)qm@(Fﬂ; )‘)(i’,j/)(i,j) = (wi/’j/ — wi,j)(H)qm@(Fﬂ; A)(Z‘lﬁj/)(iﬂ') for H € a,

T(qm@(Fﬂ—; A)(i’,j’)(i,j)) =0 lf wi,j 7é wi/,j/.
Next assume w; ; = @y ;- and put

QﬂH@J = {(:u’ C) € Qﬂ',@; ©<e wi|a@}a
tmoixN) =[] (@—p)-0C).

(M,C)GQ—”,@,Z‘

Then q(Fr) i j1).5) € Jo(N) for any q(x) € Clz] which is a multiple of ¢ e i(7; A).
It is proved by the induction on w;|q, with the partial order <g. Take iy €
{1,...,k} so that w;, = 7. If i = ip then Lemma 2.9 and Lemma 2.22 with
D, (w;) = D(7) = 0 imply our claim. If ¢ # iy then 7|q, <o Wilae and therefore
deg, ¢r0,i(z; A) > 2. Hence we can use Lemma [2.22] again to prove our claim
inductively.

Thus we get the condition

(2.22) T(gr,0(Fr; N i ,j1y(i,5)) = 0 for any (i, j) and (¢', j).

Let V()) denote the C-subspace of U(g) spanned by qr.e(Fr;A)qr jr)a,)- Then
V() is ad(g)-stable by Lemma [2.1. The g-module

My = V) Mo(N)
is contained in nMg(\) because putting uy = 1 mod Jo (),
My =VNU®@)uy =U®R)V(Nuy CUM)AU(g)uy = aMe(N).

On the other hand, since Mg(\) is irreducible if A belongs to a suitable open
subset of afy, My = {0} in the open set. If we fix a base {Y3,...,Y,,} of ng, we
have the unique expression

tn0(Frs N i) = O QuNYY -+ Yrm mod Jo (M)

with polynomial functions @, (X). All these @,(\) vanish on the open set and
therefore they are identically zero and we have V() C Jg()) for any A. We have
then for any A

My = VOOU(g)ux = U(g)V(Nux = {0}, O
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Theorem 2.23 is one of our central results since ¢r e (2;A) = ¢ ro (1) () for a
generic A € afy. Before showing this minimality, which will be done later in The-
orem [2.28, we mention the possibility of other approaches to Theorem 2.23. In
fact we have three different proofs for the theorem. The first one given above has
the importance that the calculation in the proof is also used in §3 to study the
properties of the two-sided ideal of U(g) generated by ¢r o(Fr;A);j. The second
one comes from a straight expansion of the method in [Gol|] and [Go2] to construct
characteristic polynomials. In the following we first discuss it. The third one is
based on infinitesimal Mackey’s tensor product theorem which we explain in Ap-
pendix Al With this method we shall get the sufficient condition for the minimality
of ¢r o(z; A) and slightly strengthen the result of Theorem [2.23l

Definition 2.24. Let (7*,V*) be the contragredient representation of (m, V) and
{v},..., vy} the dual base of the base {v1,...,vn} of V. For a g-module M define
the homomorphism

of associative algebras by

(2.23) (hran (@) Q_ws ©v7) = 3 (Qugus) @]

for u; € M and Q = (Q;5) € M(N,U(g)). Then QM = 0, namely, Q;; € Ann(M)
for any 4, j if and only if hx a7)(Q) = 0.

The following lemma is considered in [Gol] and [Go2].

Lemma 2.25. Let M be a g-module. For an element Zjvzl u; @ vy of M@ V™
with u; € M, we have

N N
2h’(7r,]\/[)(F7r)(Zuj®v ZAT&' ug ®'U +ZUJ®A Z’U,J ®’U
j=1 j=1 j=1

In particular hix vy (Fr) € Endg(M @ V*).

Proof. Let {X1,...,X.,} be abase of g and let {X7,..., X} be its dual base with
respect to (, ). Then

N
ZA (uj) @vj +ZuJ®A Zu](@v)
j=1 j=1
N w
==Y Xju; ® X,v) — ZZquj ® X;v
j=lv=1 j=1v=1
N w N
=> (X*“J®Z Xo, Eij)v; + Xou; @ Y (X )vz‘)
j=1lv=1 i=1
N N
=23 "> (p(Ey)uy) @ v}
i=1 j=1
Here we use the fact that Xo} = —ZﬁV:l<X, E;;jyv} for X € g because Xv; =

O

S (X, Eji)vi.

Now we examine the tensor product M ® V* in the preceding lemma when M
is realized as a finite dimensional quotient of a generalized Verma module Mg(A).



ANNIHILATORS OF GENERALIZED VERMA MODULES 13

Proposition 2.26 (a character identity for a tensor product). Put
S wew sgn(w)e A7)
Haez(g)+(€% —e72)

for Aea*. If (A,a) =0 for any « € ©, then

(2.24) XeXa = Y, M o(@)Xatw
weEW (1)

XA =

by denoting
Ma o(w) = dim{v* € V*; Hv* = w(H)v* (VH € a), Xv" =0 (VX € goNn)}.
Here x = is the character of the representation (7*,V*) and for u € a*, e denotes

the function on a which takes the value ) at H € a.

Proof. Tt is sufficient to prove (2.24) under the condition that (A, ) is a sufficiently
large real number for any o € ¥(g) \ © because both hand sides of (2.24) are
holomorphic with respect to A € a*. Put

ag ={p€a’; (u,a) eR (Vo€ X(g))},
af ={p€ag (pa) >0 (Yae(e))}
+ _ ZwGW@) Sgn(w)ew(Aer)
A [loes(e)+(e2 —€e72)

~ Zw’EW@ sgn(w’)ew'(erp(@))

Xw = 3 —a

Haesgge)+ (2 —€7%)

Then Y, = Zwew(ﬂ*)mﬂ*7@(W))Zw by Weyl’s character formula and if w €
W(r*) satisfies mz- o(w) > 0, then A 4+ w € a’ and

w(w+p(O))
o o we sgn(w)e ,
Xew XA | I (e2 —e™2) = Lwews % )g ——e" e § sgn(w’)e” 79
ae(g)+ HaGE(g@)+(e2 —e"2) weWe

Z sgn(w)e? A +ete)
weWeg

=M mod g Zet .
pE€ag\a’

For any w € W \ Wg there exists a € X(g)~ \ X(go) with wa € ¥(g)* and then
the value —(w(A + p), wa) = —((A + p), «) is sufficiently large and therefore

Xola —x3) J[ (2 —e%)e > Zer

X

)

agx(g)t pEag\al
Hence
X XA H (e —e %) = Z Mar 0(@)e* T mod Z Ze*
aex(g)* weWe (7*) neag\ay

and we have the proposition because X xa Haez(g)+ (e% —e~%)is an odd function
under W. 0

Lemma 2.27 (eigenvalue). Let (ma, V) be an irreducible finite dimensional rep-
resentation of g with highest weight A. Suppose (A,a) = 0 for a € © and (A +
w,a) > 0 forw € Wo(r*) and o € ¥(g) \ ©. Then the set of the eigenvalues of
ha v, (Fr) € End(Vy ® V*) without counting their multiplicities equals

1
{— (A, @) + §<7T* —w, " +w+2p); w e Weo(n™)}
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1 _
={(A,w) + 5(7? —w, T+ w—2p); w € We(m)}.
Here we identify 7 with the highest weight of (7*, V™).
Proof. The assumption of the lemma and Proposition [2.26/ imply
TR = Z M (W) TA+w
weEWe (1*)
and hence by Lemma [2.18 ii) and Lemma [2.25 the eigenvalues of 2k, v, (Fy) are
(N, A+2p)+ (7%, 154+ 2p) — (A+ o, A+ +2p) = =2\, @)+ (1" —w, 7"+ w+2p)
with @ € We(n*). Since We (1) = —We(7*), we have the lemma. O
Proof of Theorem 2.23| — the 2nd version. This proof differs from the previous one
in how to deduce the condition (2.22)). The rests of two proofs are the same.

Note that for fixed (4,7) and (i’,j") the value T'(qr,e(Fr; )@ jr),;)) depends
algebraically on the parameter A € ag. Since the set

S={re€ay; Do+wma)e{0,1,2,...} for @ € We(r*) U{0} and a € ¥(g) \ O}

is Zariski dense in a§, we have only to show (2.22)) for A € S. In this case we have
from Lemma 2.27 and the definition of g e (z; A),

hﬂ',V,\(_) (qm@(FTr; )\)) = q7r7®(h7r7V,\(_) (FTK')7 )\) =0.
Hence gr.0(Fr; A)(ir,j1)(i,5) € Ann(Vy,) for any (4, 7) and (i’, j'). On the other hand,
if we take a highest weight vector vy of Vi, we get
QW,G(FW; A)(i/,j/)(i,j)v)\ € T(qﬂ’@(Fﬂ.; )\)(i/,j’)(i,j))UA + ﬁV)\@
and therefore T'(qx,0 (Fr; A)(ir,j1)(i,5)) = 0- O
Theorem 2.28 (minimality). Let A € ag.
i) The set of the roots of qx e (n) () equals {(No, @) + Dx(w@); @ € We(r)}.

ii) If each root of g e(w; \) is simple, then ¢ o(7;\) = ¢ ao () (7). Hence we call
¢r,0(z; ) the global minimal polynomial of the pair (m, Mg(X)).

Proof. i) Fix an irreducible decomposition @;_, U; of the gg-module V*|g,. Let
w; € a* be the highest weight of U;. With a suitable change of indices we may
assume w;loe <o Wjlae implies ¢ > j. Then putting V; = @fj:l U, we get a
po-stable filtration
{0}:% cVig-- gVK:V*lpe'

Note that V;/V;_1 ~ Uj; is an irreducible pg-module on which ng acts trivially.

Recall Mo()\) =~ M@©o) = U(8) ®u(po) U©.26) and dimUe,r,) = 1. Hence
writing Cy instead of Uig o) We get by Theorem [A.1l of Appendix A

Mo(N) @ V* = (U(g) @u(pe) Cr) ® V" = U(8) Qu(pe) (CA ® V¥ |pe) -

Since Cy ®c - and U(g) ®u(pe) - = U(e) ®c - are exact functors, putting M; =
U(9) ®u(pe) (Cx ® Vi) we get a g-stable filtration

{0} =My C M S+ C M, =Me(N)@ V"
with
(2.25) M;/M;—1 ~U(8) @upe) (Cr @ Ui) = Mo rg+w:)-
Now as a subalgebra of End (Mg(A) ® V*) we take
A={D; DM; C M; fori=1,... ,Kk}.

Then by Lemma 2.25 and Lemma 2.18/ii) we have h(x ao (1)) (¢(Fr)) € A for any
polynomial g(z) € C[z]. Let n; : A — End (M;/M;—1) ~ End (Mo ro+w:)) be a
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natural algebra homomorphism. Then using Lemma [2.25/ and Lemma 2.18]ii) again
we get

i (hr, 0 (0) (Fr))
(2.26) = %(A@, Xo + 2p) + %<—fr, —7 +2p) — %(A@ + wi, Ao + @i + 2p)
= (Ao, —w@;) + D (—w;).
and therefore
Mo (n) ((Nos =@i) + Do (—=w1)) = G ato (3) (15 (R 10 (1) (Fr)))

=1 ("m0 (1) (@016 (0) (Fr)))
—0.

Since {w;} = We(1*) = —We(m) we can conclude (Ao, @) + D, (w) is a root of
the minimal polynomial for each @ € We(m). Conversely Theorem [2.23 assures
any other roots do not exist.

ii) The claim immediately follows from i) and the definition of ¢, o(x; A). O

Remark 2.29. In general it may happen for a certain A that ¢r e (2; A) # ¢x,me (1) (2).
Such example is shown in [O4] when g is 0, and A is invariant under an outer au-
tomorphism of g, which is related to the following theorem. It gives more precise
information on our minimal polynomials.

Theorem 2.30. Let A € ajy. Let We(m) = W}\ U Wi - UWL? be a division
of We () into non-empty subsets Wi such that the relation \e — w € {w.(Ae —
@'); w € W} holds for w, @’ € We(r) if and only if w,w’ € Wi for some £. For
each ¢ we denote by kg the maximal length of sequences {w,@’,...,@w"} of weights

in W, such that the restriction of each weight to ag gives both strictly and linearly
ordered sequences:

w|u@ <e w’|ae <o - <o w”|u@.
D) Mo, @) + Du(w@) = Mo, @) + Du(w) if @, € W, for some L.
ii) Let g(x) € Clx] and suppose for each ¢ = 1,...,my, q(x) is a multiple of
(z — (Mo, @) — Dy(w))" with w € Wy. Then q(Fy)Me(X) = 0.

Proof. i) By the W-invariance of { , ) and the assumption, we have
Pot+p—mret+p—m =Re+p—w,de+p—w),

which implies the claim.

ii) Use the notation in the proof of Theorem 2.28. Let M be a g-module and
u € a*. We say that a non-zero vector v in M is a generalized weight vector for
the generalized infinitesimal character p if for any A € Z(g) there exists a positive
integer k such that (A — Aq(u))*v = 0. We denote by (M), the submodule of M
spanned by the generalized weight vectors for the generalized infinitesimal character
. Note that (M), = (M), if and only if y = w.u’ for some w € W. By virtue
of (2.25) and Remark 2.15, Mo (A\) ® V* is uniquely decomposed as a direct sum of
submodules in {(Me(A\) ® V*)xgtw,); ¥ =1,...,1}.

For ¢ =1,...,k using a po-module

Vg =Ui & b uvcv
V§wi|u@<@wy|ne
define
My = U(g) ®pe (Cr ® V) = Ule) ® Cx ® Vi
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It is naturally considered as a g-submodule of M; = U(ng) ® C) ® V;. If we define
the surjective homomorphism
TM : M[i] — Mi — Mz‘/Mi—l ~ M(@A@J’_w%),
then
(2.27) Ker T = Z M[l,].

V§w1|u@<(—)wu‘u@
Since M(@,1q+w,;) has infinitesimal character A\g + w@; we get
My = (M) (no4w,) + > My,
Vi @ilag <0@ulag

Therefore we get inductively

(2.28) My = (M) potws) + > (M) (rete,)-

Vi @Wilag <0@ulag

Notice that the g-homomorphism h(y aze (r))(Fr) leaves any g-submodule of Me (A)®
V* stable. Then from (2.26) and (2.27)

(h(fr,M@(A))(Fﬂ) — (e, —wi) — Dw(*wi))(M[i])(AGJFwi)

- Z M[V]

V; Wilag <0@ulag (No+wi)

Y. My)oets)

v;wi|a(_)<(—)ﬁ'u|a(_) (No+w)

= Z (M[V])Oxe +w, ).

’/;wi|u@ <®wu‘a@7
rotw, e{w.(Ae+w;); weW}

By the relation {w;} = We(n*) = —We(rm) and the assumption of ii) we get
inductively
hiz, 6 (D)) (2(Fr)) (Mpi) (o) = 4,010 (1) (Fr)) (M) (o) = {0}
fori=1,...,k. Now our claim is clear because by (2.28)) we have
K K
Mo(N) @ V" =3 My = (M) ot O
i=1 i=1

Corollary 2.31. Let 7 be an involutive automorphism of g which corresponds to
an automorphism of the Dynkin diagram of g. Then 7(a) = a and 7(n) = n.
Furthermore we suppose 7(pe) = po, or equivalently, T7(ag) = ag. For w € a*
we identify @) as a linear function on (ag)” by @|qe)~(A) = (le,w@) for
A€ (ay)7. Put

Qmeﬂ- = {(w|(a®)r,Dﬂ(w)); w € W@(ﬁ)},
Q‘n',G),T(x; A) = H (J? — ,U(A) — C)

(MaC)EQﬂ,BVT

Then for X € (ag)™ we have the following.
1) Qﬂ',Q,T(Fﬂ; )‘)M@()‘) =0.
ii) If each root of g0 (x5 \) is simple, then qr.o.+(T;\) = ¢r vo () (7).
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Proof. We naturally identify pe with an element in (a)”. For a given pair of
weights @, @’ € We(rm) with @|qe <o @|ag, choose the non-negative integers
{ma; a € ¥(g)\ O} so that @'[ag —@lae = X aecw(gno Malas- Then @'lag (po) —
@lao (PO) = X acw(gne Male, po) > 0. It simply shows
(w|(a@)"' ’ Dﬂ'(w)) 7& (w/|(ae)7' ’ Dﬂ(w/)) .

Hence from Theorem 2.30/ we get i). Now ii) is clear from Theorem [2.28| ]

We will shift a* by p so that the action w.u = w(pu + p) — p for p € a* and
w € W changes into the natural action of W and then we can give the characteristic

polynomial as a special case of the global minimal polynomials. The result itself is
not new and it has already been studied in [Go2].

Theorem 2.32 (Cayley-Hamilton [Go2|). The characteristic polynomial of m equals
B (m,m+2p) — (w, w)
wr= ] (s-e- Erstos))
weW(m)

under the identification q(z) € Clz] ® S(a*)V ~ Clz] ® S(a)"V ~ Z(g)[x] by the
symmetric bilinear form ( , ) and the Harish-Chandra isomorphism:

Z(g) = U(@)"; A= T(A),
T(A) (1) = Aa(p — p) for p € a”.
Here 7 is identified with its highest weight.

Proof. Note that (7,7 + 2p) = (7,7 — 2p). Put V.= 3, ;Cqx(Fr);; and V, =
{Dq; D € V}. Then Theorem [2.23 with © = () shows Q(u) = 0 for any p € a* and
Q@ € V., which implies V, = {0}. Since V is ad(g)-stable, we have V = {0} as is
shown in [O1, Lemma 2.12]. The minimality of ¢, (z) follows from Theorem [2.28.

O

Corollary 2.33. i) Let g be a simple Lie algebra. Then the characteristic polyno-
mial of the adjoint representation of g is given by

tone@)= [ (r-a- L@w))_

2
a€X(g)u{0}

Here B( , ) denotes the Killing form of g.
il) Suppose that the representation 7 is minuscule, that is, W(w) is a single
W -orbit. Then

(@)= [ (z—@—{m0).

weW(m)

Proof. This is a direct consequence of Theorem 2.32| and Lemma 2.18 v). O

Corollary 2.34. Put q.(z) = 2™+ Aa™ 4+ -+ Ay 11+ Ay, with A; e Z(g)
and define
Fo=—-F" ' - AF™ 2. - Ay,

s

Then

~ ~ 20) —
FTrFfr:FﬂFTr:AmIN: H (_w_ <7Ta7T+ p> <w’w>)IN7
2
weW(n)

In particular, Fy. is invertible in M (N, Z(g)@z(g) U(g)) with the quotient field Z(g)
of Z(g)-
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In the next definition and the subsequent proposition, we do not assume (2.7).
Namely, g is a general reductive Lie algebra and (7, V') denotes a finite dimensional
irreducible representation which is not necessarily faithful. Moreover we use the
symbol ( , ) for the symmetric bilinear form on a* defined by the restriction of the
Killing form of g.

Definition 2.35 (dominant minuscule weight). We say a weight i, of 7 is dom-
inant and minuscule if

(Tmin, @) >0 for all a € ¥(g)*
and
<7Tmin7 7Tmin> < <w, w> for all w € W(?T)

If the highest weight of 7 is dominant and minuscule, then (7, V') is called a mi-
nuscule representation.

Proposition 2.36. Put U(g) = {ay,...,a,} and define o¥ = 2% for a € ¥(g).

a,o
Let (m,V) be a finite dimensional irreducible representation 0; g.> Let mynin be a
dominant minuscule weight of m.
i) If the highest weight of m is in the root lattice, then mymin = 0.
il) Tmin 8 uniquely determined by w. Moreover if (7',V') is a finite dimensional
irreducible representation of g such that the difference of the highest weight of 7'
and that of 7 is in the root lattice of X(g), then Tmin = Th ;-

iil) w € W(m) is a dominant minuscule weight if and only if
(2.29) (w,a¥) € {0,1} for all a € %(g)™.

iv) If m is a minuscule representation, then W(m) = Wtmin.

v) Suppose g is simple. Let ¥(g)¥ = {aV; o € X(g)} be the dual root system of
Y(g). Let B be the mazimal root of X(g)¥ and put B = >.._, n;a). Define the
fundamental weights A; by (A;, a}/) = 60;5. Then m is a minuscule representation if
and only if its highest weight is 0 or A; with n; = 1.

Proof. For a € ¥(g) we denote by g the Lie algebra generated by the root vectors
corresponding to  and —a. Note that g® is isomorphic to sls.

i) Suppose the highest weight of 7 is in the root lattice. Put w = >"|_, m;(@)a;
for w € W(m). Note that m,(w) are integers. Let @y € W (m) such that m;(wwg) > 0
and Y., my(wo) < Yi_, mi(w) for w € W(n) satisfying m;(w) > 0 for i =
1,...,r. The existence of wy is clear because m;(w) > 0 for i = 1,...,r. Suppose
wo # 0. Since 0 < (wg, @o) = >, mi(wo){wo, a;), there exists an index k such
that (g, ax) > 0 and my(wp) > 0. Hence wy — oy, € W(m) by the representation
7|gex , which contradicts the assumption for wy. Thus 0 = wy € W(n) and Tmin =
0.

ii) — iv) Suppose the existence of o € X(g)* with (myin, @) > 1. Then it follows
from the representation 7m|ga that mmin — a € W(m) and (Tmin, Tmin) — (Tmin —
Q Tmin — @) = 2{Tmin, @) — (@, @) > 0, which contradicts the assumption of mpiy.
Thus we have (2.29) for w = mmin.

Suppose 7 is an irreducible representation of g with the highest weight w sat-
isfying (2.29). Suppose W(w) # We. Then there exist 4 € Ww and p/ € W(r)
such that p/ ¢ Wew with a:= p— ¢/ € ¥(g). By the W-invariance we may assume
p = w and therefore 4/ = w — o with @ € (g)™. Then by the representation Tgo
together with the condition (2.29) we have (w,a") =1 and p’ = w,w, which is a
contradiction. Thus we have iv).

Let w and w’ be the elements of a* satisfying the condition (2.29). Then w” :=
w — w’ satisfies (@”,a") € {—1,0,1} for o € X(g). Suppose that w” is in the root
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lattice. Let o € Ww” such that (g, ) > 0 for « € £(g)T. Since wy also satisfies
(2.29), the finite dimensional irreducible representation 7y with the highest weight
wp is minuscule by the argument above. Since wy is in the root lattice, wy = 0 by
i) and hence w = w’. Thus we obtain ii) and iii).

v) Let a € X(g)T. If we denote a¥ = DI, ni(a)ey, then n;(a) < n; for
i=1,...,r. Hence the claim is clear. O

Remark 2.37. Equivalent contents of Proposition 2.36 are found in exercises of
[Bol], Ch. VI, where the meaning of the term “minuscule” is a different from ours.

Restore the previous setting (2.7) on g and (m, V).

Proposition 2.38. i) Let V, denote the weight space of V with weight w € W(w).
Define the projection map pe : W(m) — W(7)|ae by Do(w) = wlae and put V(A) =
Zweﬁél(A) Vo for A e W(n)|ae- Then

(2.30) v= @ v

AEW(m)lag

is a direct sum decomposition of the gg-module V.
Let V(A) =V (A)1®---®V(A)g, be a decomposition into irreducible go-modules.
We denote by wy the dominant minuscule weight of (7|ge,V(A)1). Then

ka
(2.31) Var =P Ve, NV(A);  with dim Vg, NV(A); > 0.
i=1

In particular, V(A) is an irreducible go-module if dim V,, = 1.
ii) Put ¥(g) = {a1, -, } and put ¥(g) \ © = {a,, ..., }, define the map
pe : X(g) - A
a=Ymia; — (Mi,...,mg)
and put
Le = {0} U{pe(a); a € %(g)},
Z CX, if m+#£0,
Vim) — a€pg'(m)
(m) a+ Y CX, if m=0
acpg’ (m)
for m € Lg. Then
(2.32) g= P V(m)
mEL@

is a decomposition of the go-module g. If m # 0, then V(m) is an irreducible go-
module. On the other hand, V(0) = go is isomorphic to the adjoint representation
of go = apg®meg. Let © = O1UOLI---1LUOy be the division of © into the connected
parts of vertexes in the Dynkin diagram of U(g). Then mg = mg, Gme, B --Gme,
gives a decomposition into irreducible go-modules.

iil) Suppose that the representation (w, V') is minuscule. Put W™ = {w € W; wr =

w}. Here we identify m with its highest weight. Let {w1, ..., wg} be a representative
system of W™\W/Wg such that w; € W(0). Then with the notation in i)
k
(2.33) V=PV rl)
i=1

gies a decomposition into irreducible go-modules. Moreover the go-submodule
V(wi_17T|a®) has highest weight wi_lw,
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Proof. 1) Since a4 = 0 for a € O, (2.30) is a decomposition into ge-modules. Then
Proposition 2.36! i) implies that @, is the minuscule weight for any (7|g,, V(A);)
and therefore the other statements in i) are clear.

ii) Note that @, |ae,- - -, lae are linearly independent and go = V(0). Then
the statements in ii) follows from i).

iii) From i) each V(w; '7|ae ) is an irreducible gg-module and

V(wi_17T|a(—)) ) Z{Vuﬁl‘h w e WwwiW@}.

Since w; € W(O) we have w; ‘7 4+ a ¢ W(r) for a € X(ge)*. It shows the highest
weight of V(w; '7|ee ) is w; 7. Since w; ‘7 # w;lﬂ if i # j we have (2.33). O

We give the minimal polynomials for some representations in the following propo-
sition as a corollary of Lemma 2.18 v) and Proposition [2.38.

Proposition 2.39. Retain the notation in Theorem 2.23 and Proposition 2.38.
i) (multiplicity free representation) Suppose dim V, =1 for any w € W(n). Let A
be the lowest weight of (m|gg, V(A)) for A € W(m)|ag. Then

Qﬂ',@(x;)‘): H $—<)\@7Z_\>—;<7T—/_\,7T+/_\—2p>>
(2.34) AeW(m)|ag o
= H <x—<)\9+p,A>—|—<7_r,p>—<7r’7T>2<A’A>>

AEW(T)ag

ii) (adjoint representation) Suppose g is simple and © # . Let ® =01 U--- 1O,
be the division in Proposition 2.38| ii). Let ol . denote the mazimal root of the
simple Lie algebra meg, fori=1,...,{. Put

= {B( max7 max + 2p(®1)) B(aﬁlax’ afnax + 2p(®€))}'

Let am be the smallest root in pg'(m) for m € Leg \ {0} under the order in Defi-
nition 2.19. Then for the adjoint representation of g,

(2:35)  Gapa0(@A) = (x - ;) 11 <x - 1_2C>

CeQeo
1 — B(am, am
H (x—B()\@+p7am)—(2)).
meLe\{0}
iii) (minuscule representation) Suppose (mw, V') is minuscule. Then with wy, ..., wg

in Proposition [2.38]iii),

(2.36) gr,0(z; N)

':]»

(m — (wi(Xe + po — p(©)) +p,7r>).

i=1
Proof. Tt is easy to get i) and ii).
iii) Let we denote the longest element in We. Then the go-module V (w; *7|q0)
has lowest weight wew;” L. The claim follows from the next calculation:
1
(Mo, Wew; ') + 5<7—r — Wew; 1T, 7 + wew; ‘T — 2p)
= (Xo + p, Wow; 'm) + (p, )
= (wiwe(Ne + p) + p,m) = (wi(Xe + pe — p(O)) + p, 7). O
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3. TWO-SIDED IDEALS

Our main concern in this paper is the following two-sided ideal.
Definition 3.1 (gap). Let A € af. If a two-sided ideal Ig(X) of U(g) satisfies
(3.1) Jo(A) = Ie(A\) + J(Xe),
then we say that Io(\) describes the gap between the generalized Verma module
Mg (M) and the Verma module M (Ag).

It is clear that there exists a two-sided ideal Ig(\) satisfying (3.1) if and only if
(3.2) Jo(X) = Ann(Me (X)) + J(Ne).

This condition depends on A but such an ideal exists and is essentially unique for
a generic A (cf. Proposition [3.11, Theorem [3.12, Remark 4.14). The main purpose
in this paper is to construct a good generator system of the ideal from a minimal
polynomial.

Definition 3.2 (two-sided ideal). Using the global minimal polynomial defined in
the last section, we define a two-sided ideal of U(g):

(3.3) Lro() ZU Jaro(FeiNij + > Ulg As(Ne)).
.3 A€Z(g)
From Theorem [2.23/ and Remark [2.15] this ideal satisfies
(3.4) Ine(A) C Jo(A).
In this section we will examine the condition so that
(3.5) Jo(A) = Ire(N) + J(Xe).

Proposition 3.3 (invariant differential operators). For A € Z(g) and a non-

negative integer k we denote by Agk) the homogeneous part of A, with degree k and
put

(3.6) T = Z My ()",
weW ()

Here my(w) is the multiplicity of the weight w of m and we use the identification
w € a* ~a C U(a). Let {Aq,...,A.} be a system of generators of Z(g) as
an algebra over C and let d; be the degree of (A;)g fori =1,...,7. We assume

that (Ay )(dl) ...,(Ar)gd” are algebraically independent. Suppose a subset A of
{1,...,7} satisfies

(37) di, > deg, gro(x, ) ifke{l,....,r}\ A4,
leant™, L a)i] = cla; )<d> T(d") €A kef{l,... ,r}\ A

Then

(38) ZU 9)qr.0 F‘rr;)\ lj+ZU ) (/\9))

€A
Proof. Note that Z” U(9)qr,0(Fr;N)ij 2 Trace(FTﬁq,r,@(Fﬂ;)\)) if v > 0. On the
other hand, since ’Hace(Fﬁkqm@ (Fﬂ;)\))adk) = T#dk) by Lemma 2.22] with © = ()
if the integer ¢;, = dj, — deg, (qm@(Fﬂ; )\)) is non-negative, the assumption implies
that for kK ¢ A, Ax may be replaced by Trace (Ff;" Gr,0 (F,r; )\)), which implies the
proposition. O
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Lemma 3.4. Let V be an ad(g)-stable subspace of U(g) and let V=@ _ V be
the decomposition of V into the weight spaces Vo with weight w € a*. Suppose
Dy(Xe) =0 for D € Vy. Then the following three conditions are equivalent.

i) Je(A) cU(@)V +J(Ne).

ii) For any o € © there exists D € V_, such that D — X_, € J(Xo).

iii) For any a € O there exists D € Vi such that Dy(Ae — @) # 0.

Proof. Let U(g) = @_ U(g)w be the decomposition of U(g) into the weight spaces
U(g)w with weight @ € a*. Let u € a*. Since U(g) = U(®R) & J(u), to D € U(g),
there corresponds a unique D* € U (1) such that D— D" € J(u). Here we note that
D € U(g) implies D* € U(n) and that D* = Dy(u) € C whenever D € U(g)o.

Put V¥ = {D*; D € V}. Since ad(X)V C V for X € b, we have PD €
V + J(u) and therefore (PD)* € V# for every P € U(b) and D € V. Owing to
U(g) =U(n) @ U(b), we have

(3.9) {D*;D e U(g)V}=U([m)V~

Note that

(3.10) V*# = @{(Vw)“; w=— Z n,7y for some non-negative integers n., }.
ye¥(g)

Suppose i). Let a € ©. Since X_, € Jo(A) \ J(Xe), there exists D € U(g)V
with D*¢ = X_,. On the other hand, we can deduce (U(R)V*®)__ = (V_g)**

from (3.10) because the assumption of the lemma assures (V()*® = 0. Hence from
(3.9) we may assume D € V_,. Thus we have ii).

It is clear that ii) implies i) because Jg(A) = J(Ae) + > nco U(g) X —a.

Let a € O. Since ad(H)X_, = —a(H)X_,, for H € a, we have Hy --- Hy X_, =
X_o(H1 —a(Hy)) -+ (Hy — a(Hy)) for Hy,...,H, € a. We also have X, X_,, €
J(Xe) for v € X(g)T because Ao ([Xqo, X_o]) = 0 and [X,,X_,] € nif v # a.
Hence for any D € U(g)o,

(3.11) (ad(X_a)D)*® = [X_q, Da]*® = (Da(Xe) — Da(Xe — @) X_q.

Now it is clear that iii) implies ii).
Conversely suppose ii). Let @ € ©. Since V_, = ad(X_,)Vy, there exists
D € Vg with (ad(X_,)D)*® = X_,, and we have iii) from (3.11). O

Remark 3.5. In the above lemma Ag — @ = w,. Ao for a € O because (Ao, a) = 0.

By the Duflo theorem ([Du]), Ann(M (p)) = 2 Aez(g) U(g) (A — Aq(p)) for any

1 € a*. Then, by the following theorem, each Ann(M(u)) has the same ad(g)-
module structure.

Theorem 3.6 (the Kostant theorem [Kol]). There exists an ad(g)-submodule H
of U(g) such that U(g) is naturally isomorphic to Z(g) ® H by the multiplication.
For any finite dimensional g-module V, dim Homgy (V,H) = dim V.

Similarly on the annihilators of generalized Verma modules we have

Proposition 3.7. Suppose Ao + p is dominant. Then for any finite dimensional
g-module V and H in Theorem [3.6,

dim Homg (V, Ann(Me()))/ Ann(M(Xe)))
= dim Hom, (V7 HN Ann(M@(/\))) =dimVy — dim'V#®e
where V8 ={v e V; Xv =0 (VX € go)}.

Before proving the proposition, we accumulate some necessary facts from [BGGI,
[BG| and [J2].
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Definition 3.8 (category O [BGG]). Let O be the abelian category consisting of
the g-modules which are finitely generated, a*-diagonalizable and U (n)-finite. All
subquotients of Verma modules are objects of O. For p € a* we denote by L(u)
the unique irreducible quotient of the Verma module M (u). There exists a unique
indecomposable projective object P(u) € O such that Homg(P(u), L(p)) # 0.

Proposition 3.9 (|[BGG], [BG]). i) If u+ p is dominant, then P(u) = M(p) and

: )i =g,
dim Homg (M (), M (1)) = {0 i
i) For any p, p’ € a*
L ifp' =p,
0 if p' #p.
iii) For any finite dimensional g-module V and p € a*, V. ® P(u) is a projective
object in O.

dim Homg (P(u), L(')) = {

Proposition 3.10 ([BGI, [J2]). Suppose p € a* and p+ p is dominant. Then the
map

(3.12) {I C U(g); two-sided ideal, I > Ann(M(pn))} — {M C M(n); submodule}
defined by I — IM(p) is injective and hence Ann(M (p)/IM (p)) = I for any two-

sided ideal I with I D Ann(M(u)). The image of the map (3.12) consists of the
submodules which are isomorphic to quotients of direct sums of P(u') with

I
(3.13) QW € {0,—1,-2,...} for any B € X(g)" such that {u+ p, 3) = 0.
Proof of Proposition 3.7. We first show the map
(3.14) Homg (V,H) 2 ¢ — ® € Homgy (V ® M(Xe), M(Xe))

defined by ®(v®u) = ¢(v)u is a linear isomorphism. Since U(g) = H&Ann (M (\eo))
the map is injective. To show the surjectivity we calculate the dimensions of both
spaces. By Theorem [3.6 dim Homg (V,H) = dim V. On the other hand, note that

Homg (V ® M(Xe), M(Xo)) ~ Homy (M(Xe), M(Ae) @ V)

and there exist a sequence {1, ..., ue} C a* and a g-stable filtration

{0} =My C ML S C My=M(Ao) ® V"
such that M;/M; 1 ~ M(u;) for i = 1,...,¢. Here the number of appearances
of Mg in the sequence {j1,...,ue} equals dim V§ = dim V (cf. the proof of The-
orem 2.28). Since Ag + p is dominant, it follows from Proposition [3.9/ i) that
dim Homg (M (Xe), M(Ae) ® V*) = dim V. Thus (3.14) is isomorphism.

Secondly, consider the exact sequence

0— Jo(A)/J(Ae) = M(Xe) = Mo () — 0.
It is clear that under the isomorphism (3.14) the subspace

Homg (V,H N Ann(Me()))) C Homg (V,H)
corresponds to the subspace

Homgy (V ® M(Xe), Jo(A)/J(Xe)) C Homg (V@ M(Xe), M(Xe)) .

Let us calculate the dimension of the latter space. By Proposition [3.9/1) and iii),

V ® M (Xe) is projective and therefore
dimHomg (V@ M(Xe), Jo(N)/J(Xe))



24 HIROSHI ODA AND TOSHIO OSHIMA

= dim Homg, (V ® M(Xe), M(Xe)) — dimHomgy (V ® M(Xe), Me(N)) .
Here we know
Homgy (V ® M(Xe), Mo (M) =~ Homg (M (Xe), Me(A) ® V¥)
and there exist a sequence {p1, ...,y } C a* and a g-stable filtration
{0} =My C My C--- C My = Me(A) @ V*

such that M;/M;_1 ~ Mg, for i = 1,...,¢". The number of appearances of
Ao in the sequence {u1,...,ue} equals dim(V*)%#e = dim'V9 (cf. the proof of
Theorem 2.28). Since the generalized Verma module Mg ,,,) is a quotient of M (),
Proposition 3.9/ i) implies dim Homgy (M (Ae), Me(A) ® V*) = dim V9. Thus the
proposition is proved. U

Proposition 3.11 (Harish-Chandra homomorphism). Let I be a two-sided ideal
of U(g). Put V(I) ={p € a; Dy(pr) =0 (VD € I)}.
i) Fiz o € U(g). If p € V(I) and

(n+p )
(3.15) 2 ¢ {1,2,3,...},
then wq.p € V(I).
ii) Suppose A € a§ and
(3.16) Jo(N\) =TI+ J(Ne).

Then w.he ¢ V(I) for w € We \ {e}.
iii) In addition to the assumption of ii), suppose Ao + p is dominant and

(3.17) I > Ann(M(Xe)).
Then I = Ann(Me (X)) and
(3.18) V(I) ={w.ho; we W(O)}.

Proof. i) Note that € V(I) if and only if I C Ann(L(p)). It is known by [J1] that
Ann(L(p)) € Ann(L(wq.p)) if (3.15) holds, which implies i).

ii) Since I C Ann(Mg(A)) C Ann(L(Xe)) we have Ag € V(I). Put W’ = {w €
Wo \ {e}; whe € V(I)}. Then, by Lemma 3.4 with V. = I, w, ¢ W’ for any
a € ©. Suppose W’ # (. Let w’ be an element of W’ with the minimal length.
Then there exists a € © such that the length of w” = w,w’ is smaller than that of
w’. Then w” # e and

(W' Xe + p, @) (w'p, a)

ey Haay 0

Hence by i), we have w”.u € V(I), which is a contradiction.

iii) It immediately follows from Proposition [3.10/ that I = Ann(Me())). Since
Amn(M(Xe)) = 2o Aez(g) U(g)(A — As(Xe)), V() C {w.he; w € W}. Let w =
w(O)we € W with w(0) € W(0O) and weg € We. Suppose w(©) # e. Then there
exists a € ¥(g) such that the length of w,w(O) is less than that of w(O). For this
root @ we have w,w(©) € W(O) and w(0) o, wg'w(©)ta € X(g)~ \ X(go).
The assumption thereby implies
(w. o + p, @)

" aa)

¢ 1{1,2,3,...).

Hence w.Ag € V(I) implies (waw).Ao € V(I), which assures
(3.19) V) N{(W(O)ws).Ne; we € Wo \ {e}} =0
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by ii) and the induction on the length of w(©). Similarly we can show that V(I) D

{w.Xe; w e W(O)} if

(Ao +p )
(o, @)

Let us remove the condition (3.20) by Proposition3.7. Since U(g) = H&Ann (M (Xe)),

we have only to show for each finite dimensional g-module V
(3.21)

(¢(v)) (wAe) =0 (Vgp € Homg (V,H N Ann(Mo(N))) Vo € V,Vu € W(@)).

(3.20) 2 ¢{1,2,3,...} (VaeX(g)t\Z(g0)).

For D € U(g) we denote by D* a unique element of U(fig) such that D — D* €
Jo(A). Then ¢ € Homg (V,H) belongs to Homg (V,H N Ann(Mg()))) if and only
if o(v)* =0for v € V. Let k = dim Vj and take ¢1, ..., ¢ € Homgy (V,H) so that
they constitute a basis. Note that for v € V and i = 1,...,k, @;(v)* are U(ng)-
valued polynomials in A. Let £ = k —dim V¥#©. Then by Proposition 3.7 there exist
an open neighborhood S C ag of the point in question and complex-valued rational
functions a;;(A) on S such that

aij(N)e1 +azj(N)p2 + - +ar;(Ner (1=1,...,0)

form a basis of Homg (V,H N Ann(Mg(A))) for any A € S. Since generic A € S
satisfy (3.20), (3.21) holds for any A € S. O

On the existence of a two-sided ideal Ig(\) satisfying (3.1), we have

Theorem 3.12. Suppose Ao + p is dominant. Then the following four conditions
are equivalent.

i) J@()\) = AHH(M@()\)) + J(/\@).

ii) If B € X(g)* \ X(ge) satisfies (Ao + p,3) =0, then (B,a) =0 for all a« € O.
iﬁ) W(@)/\@ NWe.de = {/\@}

iv) If we € Weg satisfies (W(@)w@).)\@ NW(O). o # 0, then weg = e.

In particular, if Ao + p is reqular, these conditions are satisfied.

Proof. iv) = iii) is obvious.
iii) = ii). Suppose there exist 5 € X(g)" \ X(go) and o € O such that (A\e +
p,3) =0 and (3,a) # 0. For v € ¥(go)™ we have

pre tpwsy)  ,Adetpy) ) (2.1,
(wg, wp) (v:7) ()
which shows (3,7) < 0 and wg € W(O). In particular (8,«) < 0 and hence
wewg € W(O). Now we get (wawg).Ae = Wa.Ao, a contradiction.
ii) = i). For each a € © we define the g-homomorphism M (Ag — a) — M(Xe)
by D mod J(Ae — ) — DX_, mod J(Ae). This is an injection and therefore we
identify its image with M (Ae — «). Note that

> Mo —a) = (Je) + 3 U@X 0 )/ (e) = Jo(N)/J (M)

a€c® acO

and we have a surjection P(Ag —a) — M (Mg — ) by Proposition 3.9/ii). Moreover
it is clear that the condition (3.13) with (i, ') = (Ae, Ae —«) holds for each « € ©.
Hence by Proposition[3.10/we have a two-sided ideal I containing Ann(M ()\@)) such
that TM (Xe) = Jo(N)/J(Xe). Then I = Ann(Me(N)) and Jo(A) =1 + J(Xe).

i) = iv) follows from (3.18) and (3.19). O

Remark 3.13. Through I o, we will get in §4' many sufficient conditions for (3.2)),
which are effective even if Ag + p is not dominant.
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Definition 3.14 (extremal low weight). For a simple root o € ¥(g), we call a
minimal element of {ww € W(7); (w, @) # 0} under the order < in Definition 2.19
an extremal low weight of ™ with respect to «.

Since 7 is a faithful representation, 7(X_,) is not zero and therefore an extremal
low weight w,, with respect to a always exists but it may not be unique. The main
purpose in this section is to calculate the function

(3.22) a5 3 A= (4r0(Fri Nz, ) (o —a)

a
on ag. If for any a € © there exists w, such that the value of the corresponding
function (3.22) does not vanish, Lemma [3.4 assures (3.5).

Lemma 3.15. Fiz « € U(g) and let w, be an extremal low weight of m with
respect to o For A =3 5cq gy mpB € a* put [N =3 5cq(q) mp- Then there exists
{71,--,7x} C ¥(g) with yx = «a such that the following (3.24)-(3.30) hold by
denoting

(3.23) W = Wa — Z Y.

i<v<K
(3.24) K =|wy — 7|+ 1 and w, = 7,
(3.25) (wi, ) <0 fori=1,... K,
(3.26) (wi,v) =0if1<i<j<K,
(3:27) (i:75) # 0 if and only if i — j| <1,
(3.28) A{wi,...,ok-1} ={& e W(n); @' < wa},
(3.29) w; s an extremal low weight of m with respect to ~y; fori=1,..., K,
(3.30) the multiplicity of the weight space of the weight w; equals 1.

The sequence Y1, ...,vKk 1S unique by the condition w1, ..., wx € W(w). The part
of the partially ordered set of the weights of m which are smaller or equal to w, is
as follows:

_ = 72 3 TK-1 _ YK =
(3.31) WL =T — Wy — T3 — ~=+++ — S WK = Wy ———

Proof. Let y1,...,vK be asequence of ¥(g) satisfying (3.24)), yx = o, and @, ..., wk €
W(n) under the notation (3.23). The existence of such a sequence is clear. We shall
prove by the induction on K that such a sequence is unique and that it satisfies
(3.25)-(3.29).

By the minimality of w, we have (w;, ) = 0 for « = 1,..., K — 1. Hence
(vi,a) = (wip1—wi, ) =0fori=1,..., K—2and (yx_1,a) = (We — @WK _1,0) =
(W, ) < 0. Thus we get v; # « for i = 1,..., K — 1. Moreover w, — v; ¢ W(r)
fori=1,...,K — 2 because (o, — Vi, @) = (wq, @) # 0 and w,, is minimal. This

means {w’ € W(n); @’ < wa} = {wk-1} U{w’ e W(n); w’ < wr_1}.

Suppose (wr_1,7k-1) > 0. Then wrg_1 — k-1 € W(m) because wr_1 +
VKk—-1 = Wo € W(m). Hence (wr—1 — yx—-1,a) = —(yx—1,a) > 0, which contra-
dicts with the minimality of w,. Thus we get (wx_1,7x-1) < 0.

Suppose wg_1 is not an extremal low weight with respect to yx_1. Then there
exists an extremal low weight @’ with respect to yx_1 such that @’ < @wgx_1. Then
W(r) > w' + yx—1 < wq and (@’ + yx—1,0) = (yx—1,a) = 0 by the minimality
of w,. It is a contradiction. Hence wg _1 is an extremal low weight with respect
to Yr-1.

Now by the induction hypothesis we obtain the uniqueness and (3.25)—(3.29).
Note that (3.30) follows from the uniqueness and the following lemma because
V = U(n)vz with a lowest weight vector vz of 7. O
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Lemma 3.16. U(n) is generated by {X.; v € ¥(g)} as a subalgebra of U(g).

Proof. Let U denote the algebra generated by {X,; v € ¥(g)}. It is sufficient to
show that X3 € U for 8 € X(g)*, which is proved by the induction on |3| as
follows. If |3| > 1, there exists v € ¥(g) such that 3 = 8 — v € X(g)*. Then
Xp = C(XyXpg —Xpg X,) with a constant C' € C. Hence the condition X, Xg € U
implies Xg € U. O

Remark 3.17. By virtue of (3.27) the Dynkin diagram of the system {vy1,...,vx}
in Lemma 3.15/is of type Ax or Bi or Ck or F; or G2 where 7; and i correspond
to the end points of the diagram. Note that

(3.32) (m,m) <0and (7,v;) =0fori=2,..., K.

Conversely if a subsystem {vi,...,vx} C U(g) satisfies (3.27) and (3.32) then
T+ 4+ +YK_1 is an extremal low weight with respect to vx. Hence we have
at most three different extremal low weights of 7 with respect to a fixed a € ¥(g).

The next lemma is studied in [O4, Lemma 3.5]. It gives the solutions for the
recursive equations which play key roles in the calculation of (3.22)).

Lemma 3.18. For k =0,1,... and £ = 1,2,..., define the polynomial f(k,?) in
the variables si,...,S¢—1, l1, 2, - . . Tecursively by

1 if k=0,
—
SO = 1) — )+ X suf(k=10) if k21,

Moreover for k = 1,2,... and { = 1,2,..., define the polynomial g(k,l) in the

(3.33) F(k,0) =

variables t,s1,...,S¢0—1, 1, 2, . . . recursively by
1 if k=1

3.34 k,0) = ’
@3 ko {g<k—1,e><t—uk>+f<k—1,e> ik
Then the following (3.35)—(3.37) hold.
(3.35) f(k,0) =0 for k>2¢,

-1
(3.36) F=1,0 = [T (e = + ),

v=1

-1 k
(3.37) g(k,0) = H(t — f + Sy) H (t— ) for k>4

v=1 v=~0+1

Now recall (2.20) with © = (). Let FX € U(a) be the element in (2.20) corre-
sponding to the weight w; for i = 1, ..., K under the notation in Lemma3.15. Then
Lemma [3.15/ and Lemma 2.18 iv) with £ = 1, 8 = w; —w, € X(g)" (1 < v < 1)
and w = w, show that (2.20) is reduced to
(3.38) Ff— Ff ' (w; — ke + Dr(w))

= Z (w,, @i —@,)FE 1 mod Ul(g)n.

1<v<i
Since (w;, Ag) = (wi, Ao —a) for i =1,..., K — 1, (3.38)) inductively implies
(3.39)  (Fi),(xe) = (Ff),(Ae —a) fori=1,...,K—1and k=0,1,....
From (3.26) we have
(@, @i — @) = (@, Vo + - + Y1) = (@, )
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and hence
Fk _ Fk — Fk—l ) - D 4
i — Fi = Fiip (@i — i+ Dr(w@ig1))
+ Fii @ @i = @i) = B (@i = i+ Da(wi))  mod U(g)n
- (Fiﬁ_liﬂ - Filz_l)(wiﬂ — Mg+ Dn(wz'+1)) + Fi]z_l%.

The last equality above follows from Lemma [2.21]1) with @ = w; and @’ = w;41
because v; = w;+1 — w; € ¥(g). Hence by the induction on k we have

Fi]fi-li—&-l = F} mod U(g)n+ Ul(g)y-

Now consider general © C ¥(g). Define integers ng, ni,...,n; with ng = 0 <
ny < --- < nrp = K such that

{n1,...,np1}={rve{l,...,. K —1};v, ¢ O}
If ng_1 < v < nyg, then 7, € ©, which implies (v,, Ae) = 0 and hence
(Fliive1),(0) = (F1,) (o).
We note that wny+1]ae <6 @Wni+1lae <o *** <6 Wny_1+1lae and
{@ngt1s s @ny 1411 = {@ € We(m); @' < wa}.

Put pe = (wn,_,+1,Ae) + Dx(wn,_,+1) for £ =1,..., L. Since HeL=1($ — ) is
a divisor of ¢, o(x; A), we can take py for { =L+ 1,L+2,..., L' = deg, ¢ro(x;\)
50 that ¢r.e(x;A) = [T/, (x — jue).

For k=0,1,...,L' and £ =1,2,..., L we define

f(k7£) = (F7]fg,1+1,ng,l+l)a()‘@) == (F7IL€@,7L5)C((/\@)'

Then putting
Sy = Z <wu7 711>7

ne_1<v<ng
we have from (3.38) with ¢ =n,—1 +1
-1

j=1
From (3.39) and (3.38) with ¢ = ny, = K we also have
(Fitx) oo = @) = (FRi) (Ao = @) (@, Ao — @) + Dr(a) = )

K-1

L—1
+> sifk=L0)+ | Y. (@) | fk—1,L).
j=1

v=nrp_1+1
Hence by Lemma [2.21] i)
f(k, L) — (FI%K)Q()‘@ —a)
(@as )

S mL D = (Fr)do =) (s D) — )

(@a, a)
+ f(k—=1,L).

Now applying Lemma 3.18 to
f(k,L) = (Fgk) (Ao —a)

<wm a)

g(k’ L) =
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with ¢ = (w4, Ao — @) + D (w4 ), we obtain
(4r6(Fri Nz ) (o —a)
a

= (FK,K)G (Ao —a)

= —<wa7 a> ﬁ((wa, Ao — a> + Dﬂ'(wa) — e + Se)
=1
lL_[ ((wa, Ao — a) + Dyp(wa) — M)
{=L+1

= ~(@a.0) ﬁ(<w; = @ Ae) + Da(@h) = Da(wn41)
{=1

H <<TD;—M,>\@>+DW(’ZE;)—C)‘
(1, C)EQr,0\QTG

Here we put w), = w, + @ € W(r) and
(3.40) 7%, = {(]ao, Dr(w)); @ € We (), < w0}
for @y € W(r). To deduce the last equality, we have used

e — S¢ = (wn,, Ao) + Dr(wn,+1) ifl1<¢<L-—-1.

Definition 3.19. Suppose a € © and w,, is an extremal low weight of m with
respect to «. Put @), = w, + a € W(nr) and

{w1,..., ok} ={w e W(n); @ < w,}
with w1 < wy < - < wg and define ng =0< ny < --- <nrp < K so that
{@not1y s @np+1} = {w € We(m); @ < wa}.

Under the notation in Definition 2.19 and (3.40), define

(341) raw.N = I (Qe.wh—u+Dalwh) - C)
(11,C)EQr 0\ T
L
JI(00:@a = @n.) = (@ a) + Dal@a) = Da(w@n,41))-

i=1
If there is no extremal low weights with respect to a other than w,, we use the
simple symbol r, () for 74, o, (A).

Remark 3.20. In the above definition we have the following.

i) If the lowest weight 7 is an extremal low weight of 7 with respect to «, then
L=0.

ii) The second factor

L
H<<)\@’ Weo — wnl> - <a7 wa> + Dﬂ'(wa) - Dﬂ'(wni+1)>
i=1
is not identically zero because @y, |ao <0 @Wn;+1lae <6 Walao-
iii) For w and w’ € W(w)
(w', w') — (w, w)

(3.42) (Mo, @ — @) + Dp(w) — Dr(w') = (Mo +p,w — @) + 5
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iv)Put v, =wpq41 —w, forv=1,..., K —1and yx = a. If
(3.43) _ QM (: _QM ifr> 1) =1,
Yo, 1) (Vs W)

then (w,, wl,>7= (Wya1, Tyt1)-
v) Suppose %E/T'E; = —1 and the Dynkin diagram of the system {vi,...,vk} is of
type Ak or of type Bg with short root v or of type Go with short root 5. Then

it follows from Lemma [3.15/ and Lemma 2.21]1) that

(3.44) (Mo, o — Wn,) — (o, @a) + Dr(wa) — Dr(won,+1)
= (Ao, Wa — @) + Dr(@a) — Dr(w@n,)
= (Ao +p@a —@n,) = (A6 + 0,9, + - +7K-1)
fori=1,...,L.
Theorem 3.21 (gap). Let w, be an extremal low weight with respect to o € ©.
Then
X o€l,oN)+J(Ne) ifrawm,(X) #0.
If for all o € O there exists an extremal low weight w,, with respect to a such that
Ta,wy(A) # 0, then
Jo(A) = Iz e(N) + J(Xe).

By Proposition 3.111iii) we have the following corollary.

Corollary 3.22 (annihilator). If Ag + p is dominant and if for all « € © there
exists an extremal low weight w, with respect to a such that 1o o, (A) # 0, then
Iﬂ,@()\) = AHH(M@()\))

Remark 3.23. It does not always hold that for each o € © there exists an extremal
low weight w, with respect to a such that the function rq o (M) is not identically
zero. In fact we construct counter examples in Appendix Bl However this condition
is valid for many 7 as we see below.

Recall the notation in Proposition 2.38.

Lemma 3.24. Suppose w, is an extremal low weight with respect to o € ©. The
function ro o, () is not identically zero if the space

V(wa|ue) = Z Ve

WEW(T); @lag =Walag
is irreducible as a go-module.

Proof. In this case we have pla, # @olae for (1, C) € Qre \ 27 and the first
factor of (3.41)) is not identically zero. O

Proposition 3.25. Use the notation in Lemma [3.15] and suppose yx = a € O.
The function 1., () is not identically zero if either one of the following conditions
is satisfied.

) {m,....7x} CO.

ii) The connected component of the Dynkin diagram of © containing « is orthogo-
nal to 7. O\ {n,...,7k} is orthogonal to {v1,...,vk—1}. Moreover the Dynkin
diagram of the system {y1,...,Yx—1} is of type Ax_1.

Proof. 1) Since @4 lae = Tlae and V(7|4 ) is an irreducible gg-module, the claim
follows from Lemma 13.24.
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ii) Suppose @ € We () satisfies @|qe = @a|ae- Then we can write

K
w=T7 + Zmi% + Z ngﬂ
i=1 BEO\{1,.-, 7K }
with non-negative integers m; and ng. Put
O = {vi; m; > 0},
0" = {B; ng > 0},
and define
V=Y (Vs er + ) 7B}
peO'UO"
Since V” is an irreducible go/ue~-module with lowest weight 7 and {0} C V, C V/,
each connected component of the Dynkin diagram of the system ©’ U ©” is not
orthogonal to 7.

Suppose v € ©'. Then the condition ii) implies ©" = {v1,..., vk } and therefore
w), = wa + « < w. However it is clear dimV,, =1 and @), ¢ We(w). Thus we
have w!, < w. In this case, by Lemma 2.21ii), we have D(w!) < D(w).

Suppose v ¢ ©’. Then ©’ is orthogonal to ®” and hence we have the direct
sum decomposition

goruer = aeruer O mer O mer.
Since w is the lowest weight of a mg-submodule of V’, which is an irreducible mg: ®

mer-module, ©” must be empty. On the other hand, we see ® = {v1,...,vx'}
with K’ < K. Now we can find each weight @’ of the gg.-module V' is in the form

<7_1', 71>
{(v,m)
and its multiplicity is one (cf. Examplel4.2/ii)). Fix v € V;\{0}. Takei=1,..., K’

so that m; > m;y1. Then X_. v # 0 and therefore v; ¢ ©. Since @|ay = Walae,
we conclude ¢ = K’ and mg = 1. It shows

>my>mh>>mh >0

K/
o =7 + > miy  with —2
=1

@ =7+ + 7K < Fa

Thus we have proved the function (3.41)) is not identically zero. O

Remark 3.26. The condition i) of the proposition is satisfied if the lowest weight 7
(or equivalently, the highest weight 7) of (m, V) is regular.

Proposition 3.27. i) (multiplicity free representation) Suppose dimVy, = 1 for
any w € W(x). Then for any extremal low weight w, with respect to o € O, the
function 1o, (X) is not identically zero.

ii) (adjoint representation) Suppose g is simple and 7 is the adjoint representation
of g. Suppose a € ©. If the Dynkin diagram of V(g) is of type A,, then we have
just two extremal low weights w, with respect to a. If the diagram is not of type
A,., then we have a unique w,. In either case, there is at least one w, such that
Ta,me (A) is not identically zero.

iii) (minuscule representation) Suppose (m,V') is minuscule. Then for any o € ©
there is a unique extremal low weight w, with respect to a. Moreover the function
ro () is not identically zero.

Proof. 1) Thanks to Proposition 2.38| i), V(wa|ae) is an irreducible go-module.
Hence our claim follows from Lemma [3.24.

ii) The lowest weight of the adjoint representation is —amax. Hence by Re-
mark3.17/we can determine the number of extremal low weights from the completed
Dynkin diagram of each type, which is shown in §4.
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Note that W(r) = X(g) U {0}. Suppose w, ¢ X(go). Then Proposition [2.38]ii)
assures the irreducibility of V(wqlqee ). Hence rq o, (A) is not identically zero.
Suppose @, € X(go). Take {y1,...,7x} C ¥(g) as in Lemma [3.15/ and put

Wi = —Qmax + 71 + - + Vi1 fori=1,..., K.

Let ©1 denote the connected component of the Dynkin diagram of © containing
vk = . Then we can find an integer K’ € {1,..., K—1} such that {vy,...,7x/} C
U(g)\ ©1 and {vk/+1,...,7x} C ©1. Then it follows from Lemma [3.15/ that the
root vectors X, for i = 1,..., K’ are lowest weight vectors of 7r|m91. These
lowest weight vectors generate the irreducible mg,-submodules belonging to the
same equivalence class because {71,...,7x/—1} is orthogonal to ©;. On the other
hand, we have wg/y1 € We(m). Then it follows from Proposition 2.38 ii) that
WK1 € E(gel)i. Since wg: — WK'+1 = =YK’ € E(g), [X—WK/+17XWK/] 75 0. It
shows the equivalence class above is not that of the trivial representation. Hence
O is not orthogonal to T = wy. Now we can take another extremal low weight w,
with respect to « which satisfies the condition i) of Proposition [3.25.

iii) Since a minuscule representation is of multiplicity free, we have only to show
the uniqueness of w,. Let [g,g] = g1 @ - - - D gm be the decomposition into simple
Lie algebras. Then 7r|[g’g] is a tensor product of faithful minuscule representations
of g; for i = 1,...,m. Hence, from Proposition 2.36/ v), each connected component
of the Dynkin diagram of ¥(g), which corresponds to some ¥(g;), has just one root
~ which is not orthogonal to 7. Now the uniqueness follows from Remark 3.17. [

At the end of this section, we discuss the commutative case. Consider F, =

(E;) 1<i<n @S an element of M(N,S(g)). Then we have
1<5<N

Theorem 3.28 (coadjoint orbit). Put
er,@ = {@|4e; @ € We(n)}

o= ] (- nn),
(3.45) peQr o

Fo(\) = I ey =rm).
Wy 1 E€EQr 0, pFN
Then if To(N\) # 0,
ZS 0)Gro(FriNij+ Y S@)(f — f(e)) ={f € S(a); flaa@re = 0}
fel(g)
Here I(g) is the space of the ad(g)-invariant elements in the symmetric algebra S(g)

of g and G a connected complex Lie group with Lie algebra g.

Proof. Let {v;; i =1,...,N} be a base of V such that each v; is a weight vector
with weight ;. Then

0 if (w; — w5, Ae) # 0,
HNEQW,(—B\{wilu@}(<wi’ Ao) — ,u()\))dFij if (o; —wj,Ae) =0.
For a € X(g) \ £(go) there exists a pair of weights of m whose difference equals

a and therefore 7g(A) # 0 implies (a, Ag) # 0, which assures that the centralizer
of \e¢ in g equals go. Since

go = Z CFi;

i=j or w;—w; is a root of geo

dgr,0(Fri N)ijlre = {

and [H, F;;| = (w; — w;)(H)F;; for H € a, we can prove the theorem as in the
same way as in the proof of [O4, Theorem 4.11]. O
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Remark 3.29. There is a natural projection preo : Qre — Qﬂ,@. We say that
p € Qn o is ramified in the quantization of Gre to ¢ e if ﬁ;g(u) is not a single
element. 7

If 7 is of multiplicity free, then there is no ramified element in Q, o (cf. Proposi-
tion[2.38/1)). In this case, consider g as an abelian Lie algebra acting on S(g) by the
multiplication and define the g-module MZ()\) = S(8)/ 2 xepo S(@)(X — Aa(X)).
Then taking a “classical limit” as in [O4], we can prove G o(Fr; A\)MJ(A) = 0.
Moreover if 7g(A) # 0, the polynomial g, e (z; A) is minimal in the obvious sense.

4. EXAMPLES

In this section we give the explicit form of the characteristic polynomials of
small dimensional representations of classical and exceptional Lie algebras. In
some special cases we also calculate the global minimal polynomials. Note that
if ¢r(z) = [l1<;<,n(@ — @i — C;) with suitable w; € a* and C; € C is the
characteristic polynomial, then the global minimal polynomial qr,0(x,\) equals
[Lic/ (@ — (@i, Ao + p) — C;) with a certain subset I of {1,...,m}.

Lemma 4.1 (bilinear form). Let (, ) be a symmetric bilinear form on a* and let
a* = af @ a} be a direct sum of linear subspaces with (aj,a) = (af,a3) = 0. If
there exists C € C\ {0} such that
(1, 1') = Clpo i) (Y, ' € ai),
then
(o, @)?
C= Z mq(w)~—  for a € aj such that (o, ) # 0.

weW(r) (CY, CY)

Here m(w) denotes the multiplicity of the weight w € W(w).

Proof. Let H, € a correspond to « by the bilinear form ( , ). Then we have
C(a, @) = C*a, o) = C? Trace n(H, )*

=C* Y me(@) (@)’ = > ma(w)(a, @)% O

weW(m) weEW ()

In the following examples €1, €2,... constitute a base of a vector space with
symmetric bilinear form ( , ) defined by (&;,¢;) = 6;;. We consider a* a subspace
of this space where €1 — &5 etc. are suitable elements in ¥(g) (cf. [Bo2]).

C equals the constant C' in the above lemma for a; = an(g, g]. CJ is the similar
constant in the case when a; is the center of g. Then we can calculate (, ) under
the base {€1,¢2,...} by the above lemma.

Example 4.2 (A, _1).

aq (6%)] Qp—2 Op—1 1 1 1 1
T
U={a=¢€1—€2,...,00_1 =Ep_1 —En}
n n— n—1 v(n—v
p=20o (05— (v = 1)ew = 02 M5 ey
i) g= g[n
T = Wy, ::51+~~+sk:/\kw1 (minuscule, k =1,...,n—1)
dimwk = (Z)
k(n—k
(wkvp) = (nQ )

W(wg) ={ev, + - +ep; 1< < <y <n}
—2
ka = %21§V1<”'<Vk§n(€l/l totEy,E — 62)2 = (Z—l)
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CL, = 1 Zl<u1< <Vk<n(81’1 +odey, e+ ten)?= k(::i)
n—k)!(k—1
(eirey) = PR (22h (ndyy — 1) + )
k!l(n—k)!
0w () = [l1<iy<ocip<n (@ (z = (e + - +ei) - 2((n—2))! )
ii) g =gl,
V =V,, := {the homogeneous polynomials of (z1,...
m = me; (multiplicity free, m =1,2,---)
W(me1) = {mie1 + -+ mpep; my+---+my, =m, m; € Z>o}

dimme, = ,H,, = (”*T’Z‘*l) — 7(;?‘(;”:11))!!

Cme, = % Z$1+"'+mn:m(m1€1 4+ Mpn, €1 — €2)
= %ZZL:O Zm1=0(k - le)Qn—2Hm—k-
m m+n—k—3)!
= 31 Speo k(b + 1) (k + 2)%
=31 n173123cno k+D(k+2)m+n—(k+3)---(m+n—(k+n-1))

(mtn)!
= A DIm-1)1
2

l — 1 2 _
Croer = 7 2y bty =m (MAEL + o+ Mpep, 1+ -+ 60) = T-n Hiy
(n—i—m—l)!m _ m(m+1)---(m+n— 1)

, %, ) with degree m}

2

(m—1)In! - n!
Gme, () = [Tmi+-tmn=m (l‘ _ 2?21 me; — 7rL(m+n2é) iy my )
m;EZL>o el
iii) g=-sl,

T =1 + W1 = €1 — &, (adjoint)

dim(w; + w@,) =n? -1

Cw1+wn,—1 =2n

(w1 + @n-1,p) =n—1

G+, (T) = (T — %) H1§i<j§n((m - %)2 — (e — Ej)g)

In [O4] we choose ¥/ = {a} =e3 —€1,...,0),_1 = €n — €n—1} as a fundamental
system of gl,, and then 7 = w; is the lowest weight of the natural representation 7
of gl,,. For a strictly increasing sequence
(4.1) n=0<n <---<np=n

we put n = n; —n;_1 and © = Uf 1Un,_ <ven, i} and study the minimal
polynomlal gr,0(x; A) in [O4] for A = (A\;) € CF ~ af. Define p’ = —p and put

(4.2) MeEL+ 4 Mnen =p + Z )\k( Z 5,,).

=1 ng—1<vng

The partially ordered set of the weights of 7 is as follows

’ ’ ’ ’
ng—1 (799 ank«#l Qg

o ol « "
€nk Enk+1 R N — Ep.

Then We (1) = {€ngt1,---sny_,+1} and Theorem 2.23 says

L
1
qﬂ',@(l'7 )\) _ H (.’E — g — 5(51 —E€np_141,€1 T Enp_1 41 — 2p/))
k=1
L
= H(w — Ae = Mgp—1)
k=1
and it follows from Remark [3.20 that

L —

Ta;<>‘): H (j\i+1 n,, 1+1 H

v=k+1 v=1
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in Definition 8.19/if ng_; < ¢ < ng. This result coincides with [O4, Theorem 4.4].
Note that if \ satisfies the condition:
(4.3) A+p,8) =0with € X(g) = Vo' €0 (3,0) =0,

then rq () # 0 for each o € ©.
Let 7, be the minuscule representation wy, in i) and we here adopt the funda-
mental system U’ as above. The decomposition

(4.4) T lge = @ IR

ki+--+kr=Fk
0<k;<n} (j=1,...,L)

is a direct consequence of Proposition 2.381). Here 7y, ., denotes the irreducible
representation of go with lowest weight Zle(enj_lﬂ + -4 €n;_,+k;). Then by
Proposition 2.39/1) we have

n L kj
< kl(n—k)!
re, 0(T;A) = H (fﬂ - Z Ail€is€ny_y4w) — 2((:_2)),)
ki4-+kr=k i=1 j=1v=1 '
0<k;<n) (j=1,...,L)
L kj — k
= H (J)—ngk(n—1)ij()\j+nj_1+7]2 )

kit =k j=1

0<k;<n (j=1,...,L)

n'. —n
+CL (k= 1) D +ny1 + =)

j=1
with C = % To deduce the final form we have used the relation
L ’

L e Dy
SE g =
Remark 4.3. Put gg = [ge,ge]. Then the irreducible decomposition of e, [q,, is
not of multiplicity free if and only if there exist an integer K and subsets I and J
of {1,..., L} such that
KzZnézZn}Sk, K<n—kandI#J.
icl jed
This is clear from (4.4) because 7y, k. lgr, = T .. k) g, if and only if k; = k] or
(ki, k}) = (0,n;) or (n},0) fori=1,...,L.

Example 4.4 (B,). g = 02,41

ap Q2 Op—10n 1 2 2
o—0—-+-—0—=0 o—O0O—:: - —0—>0 7123
U={a;=¢€1—¢€2,...,0p—1 =Ep_1 —En, Oy =En}

p=S0(n—v+ e, =i Xa,
i) m = wy := 1 (multiplicity free)

dimw; =2n+1

(wi,p) =n—3
Cw, = Y (£e,,61)2 +(0,61)? =2
oy (2) = (z = ) [Ty (= = 2271)% —€7)

ii) 7 =, := 2(e1 + - - + &,) (minuscule)
dimw, =2"
_ —3)4ee 2
(wnap) = = 1)+(2:1L e = %
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Co, = (te1 £+ Fe,,61)2=2"

2
4w, (Z‘) = H01:i17--- ’c”:jzl(‘r - %(Clsl + -+ Cnen) - 2?—%—2)

iil) m = @y := &1 + &2 (adjoint) - - s is not a fundamental weight if n = 2.

dimwy =n(2n+1)

Co, =4n—2

(w2, p) =2n — 2

E1 =W — Qg — +++— Oy

Qo () = (z = §) [Ticicjen((@ = 3577)% — (& — 5)?) ((z — 3524) — (&0 +
DI (e~ - 2]

Choose ¥/ = {a) =2 —¢€1,...,al,_1 = €p —En_1, &}, = —&,} as a fundamental

system. Then the partially ordered set of the weights of the natural representation
7 of 09,41 is shown by

’ 7 ! ’ ! 1 7
Q-1 Cny X1 [P n
€1 — Eg —> + e Eng Eppdl —— " — g, 0
’ ’ ’ ’
. Oy Oyt Oy np—1 o
— = ——— _ _E’I’Lk+1 g'ﬂk ...... — —€1.

Here we use the same notation as in (4.1) and (4.2)). Put © = ngl Un,_ <ven o}
and © = © U {a/,}. Then

We () = {Engt1s--+rEnps41s —Enp_1r-- s —Eny s
We(m) = Weg(m) U {0, —&,}.
Hence by Theorem 2.23

gro(x;\) = (x — 1(fsl,gl — 2,0'))

4
1.1 ,
: H(I - 5/\3 - 1(51 - Enj—1+17€1 + Enj—1+l - 2p ))
j=1
L 1 1 ,
) H<x+ 5)\]- — 1(61 + €n;,61 — En;, — 2p ))
j=1
B n )‘j nj—1 >‘j 277,77’Lj)
’(9‘" 2>]Hl(f” 2 2 )(9”2 2 )
1 /
Ir (T \) = (33 - 1(81 —Enp 1 4+1,€1 F Eny 141 — 2p ))
i 1 1 .
(1‘ — 5N (e = En e ey — 2 ))
j=1
L_l( iy -t 2’))
TT A — 7(€1 T En; €1 —Eny; — 4P
[ A
L—-1
.. NL-1 _ﬁ_njq)( ﬁ_2n—nj)
_(“T 2)1‘[(33 2 2 )" 2 )

Jj=1
Moreover if ng_1 < i < ny,

k—1

2°Pro o(A) = H (5\1‘ - ;\n,,) ﬁ (5\1‘+1 - j\n,/71+1)

v=1 v=k+1
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‘ (j\iJrl - %) ﬁ(j\iﬂ + j\ny)

= Lo )
=3 Vﬂ(x\z - Anu) V_I;IH(/\HI - AnH+1>
(5\1 + 5\1+1) ﬁ (S\H-l + )\m,)7
k-1 " L L1
22L=2y o) = (5\1 — 5\%) H A1 >\n”_1+1) (Aig1 + )\ny>,
v=1 v=k+1 v=1
- L1 L1 - e S
2 o) = I (A=A 1;[1(2 + X, ) = (-1) II (A= A,)

Here we denote 74(A) corresponding to © and © by rq.e(\) and r, g(\), respec-
tively. Note that r,, () # 0 for o/ € © under the condition (4.3) for ©. Moreover
suppose A+ p is dominant. Then A\; + \jy1 = 2\jp1 — 1 = —2% —1#0

and hence 7o/ () # 0 for o/ € © under the condition (4.3).
Example 4.5 (C,). g = sp,,

aq (6%) Qp—1 Op 2 2 2 1
00— -—0é—0 e—0—0—--—0&=0 N >2
U= {041 =€1—€2,...,0p_1 =Ep_1—En, Qn = 25n}
—1 2n— 1 1
p= 2221(71 — v+ 1)51’ — Z:/L:l v( 7L2V+ )O[l, + 7L(714+ )an

i) # = wy = €1 (minuscule)
dimw; = 2n
Cwl = Z(ify,€1)2 =2
(@1,p) =n
G, (7) = [T (@ = 3)* — &)
ii) m = 2wy = 2¢; (adjoint)
dim 2w, = n(2n+ 1)
C2w1 = 4(71 + 1)
(21, p) = 2n
G2, () = (gc—%) H?:1(($_ﬁ)2_2512) H1§z‘<j§n((x_iZLl;)Q_(Ei_Ej)Q) ((m—

i)’ — (i +ey)?)

Choose V' = {a) = e3—¢1,...,a,_1 =ep—¢Epn_1, &), = —2¢, } as a fundamental
system. The partially ordered set of the weights of the natural representation 7 of
sp,, is shown by

! 5 Oy —1 L2 Oy +1 g
E] —> € — >~ g E’I’LkJrl ...... — En
, , ’ ’ ’ ,
a, Qp X +1 Xy X —1 af
— —Epy ——— e - _E’nkJrl _Enk ...... — —€1.

Under the same notation as in the previous example, we have
We () = {Engt1s- -+ sEnp 141, —Enp_1r-- s —Eny by
W@(?T) = W@(W) @] {—€n}.
If np_1 < i < ng, it follows from Theorem 2.23, and Remark [3.20 that
L L-1
A miq Ai 2n—n;+1
ot =TG- -2 [T -2

j=1 j=1
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L
)

j=1
k=1 Lo ) Lo B
221710 0 (N) = (Ai - An,,) (Az‘+1 - )\nu,ﬁl) 1T ()\i+1 + )\ny)7
v=1 v=k+1 v=1
k—1 L ) -1 )
22L727”a'.,(:)()\) = ()\72 - )\n,,) </\i+1 — )\ny_1+1) (>\H~1 + )\ny>7
v=1 v=k+1 v=1
L—1 -1
282, o) = [ A, [T (A~ A,
v=1 v=1
If the condition (4.3) holds, then we have ro/ e(A) # 0 and 7,/ g(\) # 0 for o’ € ©.
Moreover suppose (\,a/) = 0 and A + p’ is dominant. In this case A, = —1 and
A, = 72% —1# 0. Hence 7,/ () # 0 under the condition (4.3)
for ©.
Example 4.6 (D,). g = 02,
a1 Qo Q9 Olp_1 1 2 2 1
I o O—T .. ﬂ_oi n>4
Qi 1
U={a=¢€1—€2,..., @n1 =En_1 —En, Ay = Ep_1+En}

pP= Z::l(n - V>€l/ = 22;12 V(2nguil) oy + n(n471) (O‘n—l + Oln)
i) m = wy := €1 (minuscule)

dimw; = 2n

Cwl = Z(i€y,51)2 =2

(w1,p) =n—1

G, (7) = 112y (& = 251)? = €7)

. {wnl = %(61 +:-+4ep_1—¢€n) (minuscule)
i) m=

@y = Le1 + -+ n1 +€n) (minuscule)
dimw,_; = dimw, =2""!
Cwn_l = Cwn = Z(isl =R En,€1)2 =2n~!

(@n—1,p) = (wn, p) = "2

G, _, (T) = Hclzcil,c.“,cn:il(fﬂ —erer + o H cnEn) — "52:11))
1" Cn=——
) = Terms1cy i (2 = Sera o0+ ) = 2420)
1°Cn—

111) T =Ty := €1 + &9 (adjoint)

dim gy = n(2n — 1)

C€1+€2 = 4(71 - 1)

(wa2,p) =2n—3

oz (2) = (2= 3) [Ticicjen (@ = 1220)% — (5 — €5)*) ((z — $2=0)° — (e +¢5)%)
Note that the coefficient of e1e5--- &, in the polynomial > ¢ —+1,.. c,=+1(c161 +

Cl "Cpn=

o4 cpen)"™ of (e1,...,&,) does not vanish. Hence
(4.5) Z(g) = C[Trace F2 , Trace F} , ..., Trace F;(I”_l), Trace F ].

Choose ¥/ = {a} = 63 —e1,...,0},_ 1 = €5 — Ep_1,Q), = —&, —En_1} @S a
fundamental system. Then the partially ordered set of the weights of the natural
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representation 7 of 05, is shown by

’ ’ / ’

(e Qg Q2 Q1
E1 — €9 — = s En—1 En
i OC/ l (X/
n n
’ ’ ’ ’
QA1 Q2 Qg ay
—Ep —— —Ep_] ——— — —&9 —> —€71.

Use the notation as in (4.1)) and (4.2)). Put © = Ui:l Uny s cven tan} g, €
0, we also put © = O U {a/,}.
Then

L—-1 L

Tloo = D e, s @ P70,
3=0 i=1
L—1 L—1

77'9@ = @ 7T5nj+1 S @ ﬂ-_Enj .
j=0 Jj=1

Here m. denotes the irreducible representation of gg or gg with lowest weight e.
Hence if ni_1 < i < ng,

L
. - )‘j nj—1 >‘j 2n — n; — 1
qw,@(xv /\) - J <l‘ 2 2 ) (I + 2 2 )

L L—1
i oni_ Ai 2n—n;—1
tro(@N) =[] (x—; — 321) [] (x—l—; —7; >7

j=1 Jj=1

22L 17n ;,@()\) = kl(j\i — S\n,,) ﬁ (Xﬂ-l - S\n,,_l—&-l) f[ ()\z—i-l + Any)a
v=1 v=k+1 v=1
k—1 L L-1

22L_2Ta'i,: ()\) — (;\z — X’nu) H (Xi-l-l — j\nu71+1) (Az-‘rl + /\nu>7
v=1 v=k+1 v=1

L-1
22L—2Ta/ - ()\) _ ( 1)L—1 Vl;ll </\n — )‘nu) ()\n_l - )\n,,)

If (\,al,) = 0and i+ 1 = ng < n, then \ix1 + A\, = 2(\ix1 + \n). Hence
Tor.6(A) # 0 for o € © under the condition (4.3) for ©.

Now suppose a;, 1 ¢ ©. Thenny_y =n—1. If A\, =0, then g, o(Fr; \)Mo(A) =
0 by Corollary 2.31 with

L-1
)\[ n—1 A n;_1 A 2n—n; —1
! . — || J J J J

Jj=1

The analogue of r,/ () in this case is

k1 L—1 L1
rae(N) =220 T (5\1‘ - Anu) I1 (5\1‘+1 - 5\nH+1) I1 (5\1'+1 + 5\nu>-
v=1 v=k+1 v=1

If i +1 = ny then A\iyq + Ap, = 2(Ajr1 + \). Hence r’a,’é()\) # 0 for o/ € © under
the condition (4.3).

Let 7y, , be the half spin representation w,,_; in ii) and we here use the fun-
damental system ¥’ defined above.

ﬂ-wn71|g@ = @ Thi,ekr ﬂ-wn—l‘gé = @ T,k

(k1,...kr)eKeo (k1,....kL)€EKg
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where
Ko = {(k1,...,kr) € Z"; 0 < k; <nj(j=1,...,L),
n—k —---—kr =1 mod 2},
Kg = {(k1,...,k) € Ke; kr, > n — 1} (Note o/,_, € © and n;, > 1)
and 7y, .., is the irreducible representation of gg or gg with lowest weight
L

Then for ® = O or ©

n(n —1)
o= T (02D
(k1,...kL)EK g/

L

1 _ _ _ _

T om E (/\nj—1+1 +ot )‘nj—1+kj - )\nj—1+kj+1 - )‘n]))
Jj=1

(57Lj—1+1 +oeet Enj_1+k; —Enj_1+k;+1 T T Enj)'

N |

If n}, > 1, then

o) = 11 7=

(k:l,...,k:L)EK(_)/
(k1,skn)#(nY,nl g mp —1)

L
: (Z(S\nj,1+kj+1 + -+ 5\nj—l + S\n]) - 5\n—1>-
j=1

Example 4.7 (Eg).

a1 a3 a4 Qs Qg 1 2 3 2 1
O O \‘; O
l 092
(6] l

U = {a; = %(51+€8)—%(52+83+€4+55+€6+€7),a2 = €1 +ée2,a3 =
€2 — €1, iy = €3 — €2, 5 = &4 — E£3, Oé6=€5—54}
p=c¢eo+2e3+3e4+4de5+4(es—e7—e6) = 8ag +11ag + 15a3 4+ 21as + 155 + 8ag

o )= 2(es —e7 — &) (minuscule)
i)ym= we = 3(es —€7 —&6) + &5  (minuscule)
dimwl = dlm’W(; =27
Coy=Cgp, =6 (see below)
(w1, p) = (w6, p) =8
0, (%) = [oewp, o, (¢ — @ — 3) for i =1 and 6.

11) T = Wy := %(51 +éeo+e3t+eqgte5—€6—€E7+ 58) (adjoint)

dimwy =78

Co, =24

(w2a p) =11

Gy = (¥ — %) Haez(EG)(x —a- %)

Expressing a weight by the linear combination of the fundamental weights w;,
we indicate the weight by the symbol arranging the coefficients in the corresponding
position of the Dynkin diagram. For example, w = Z?zl m,;w; is indicated by the
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symbol mimsmymsmg. Moreover for a positive integer m we will sometimes write
ma
m in place of —m.
Let 7 be the minuscule representation cop in i). Then the partially ordered set
of the weights of 7 is shown by the following. Here the number j beside an arrow
represents —a;.

0 10000
0
N 1
1 11000
0
.3
2 01100
0
\, 4
3 00}10
/20 N5
4 00010 00011
1 1
N5 S22 \\6
5 00111 00001
1 1
J4 0 N6 2
6 01101 00101
0 1
/3 N6 4
7 11001 01111
0 0
1 N6 3 N\/5
8 10001 11011 01010
0 0 0
N6 1 N5 /3
9 10011 11110
0 0
NS T N4
10 10610 10}00
N4 T N2
11 11100 10000
1 1
/3 N2 U1
12 01000 11000
1 1
N2 /3
13 01100
1
/4
14 00110
0
Ve
15 00011
0
/6
16 00801

The type As corresponding to {a, as, . .., as} is contained in type Fg. The high-
est weights of the restriction (Eg, 7)|4, are wwy = 10800, W5 — W = WolaW3W1 W] =
00010 and @ —wy = wawswswewzwsws(ws —ws) = 10000. Here we put w; = w, .

1 1

Hence (Eg, 7)|a, = 2(As5,@1) + (A5, 1) and Co, = Co = 2(3°1) + (37]) = 6.

Now use the fundamental system ¥’ = {af = —a1,...,05 = —ag}. Then the
lowest weight 7 of 7 equals w;. Putting ©; = ¥’ \ {«}}, we have
We, () = {10800, 11800, 10801},
We, () = {10800, 00010, 10000},
1 1
We. () = {10000, 01100, 11001, 01000},
o) = {10g00, 01300, 11001, 01000)

We, () = {10000, 00110, 01701, 10100, 00110%,
ou(m) = { 0 1 0 1 0 }
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We, () = {10000, 00011, 01010, 00011},

We, (7 {10000 00001 00001}

If we identify ag, with C by e, = Aw; and put 7 —A =}, miaj for A € W(n),
then Proposition 2.39 i) implies

(46) are N = [ (v- (7 —milan=)A = milag.0).

AeWe, () J

Since (a;,@;) = (a;, p) = 3{oy, ;) = § and

(w1, @) = ¢ (w1, @2) = 2, (@1, w5) = o
(1, @) = 5, (w1, w5) = 2. (. 5) = 2.
we get
dron (@) = (2= o) (2 - oA - 2) (= %A_;l),
ar0x(2:2) = (o - %A) (=~ ;) (z+ é)\ %)
qmeg(m;k)z(x—§A)(x—$A é)(x—l——)\—g)(x—&-f -2),
o= (=) o= =)o =D -)
o) = (5= 2) (s 1A= D) o+ =B (o4 20-2),
qw,eﬁ(m;/\):(x—éA)(ijf,\ %)(gj+3A_§)

Example 4.8 (E7).

a; a3 a4 a5 Qg Qy 2 3 4 3 2 1
O (L O o l
[6%) 2

U = {a = %(€1+€g)*%(52+€3+€4+€5+66+67),012 = €1 t+&2,a3 =

€2 — €1, g = €3 — &2, Q5 = &4 —E3, 046*55 5470‘7*56*55}
p—€2+283+3€4+465+5€6— —57—1— 1758 = 17a1+ 19 o + 33ai3 + 48au +
Oé5+260¢6+ 20&7

i) m = w7 := g6 + (s — e7) (minuscule)
dim wwy = 56.

Cw, =12 (see below)
(w77 p) = % 0

qw7($) = HWEWE7W7 (’JZ —w-= g)

ii) m = wy := g — g2 (adjoint)

dimw; =133
Cw, =36
(wlap) =17

G, (€) = (& = 3) [aex(m) (v — @ = 55)
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Let 7 be the minuscule representation twr in i). Then the diagram of the partially
ordered set of the weights of 7 is as follows.

0 000001
0

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

001100
N4
01}000
720 N3
010000 110000
N3 20 N
111000 100000
sS4 N 2
101100 101000

1
/5 N1 /4

111100
0

N1 /5 N\ 3

110110 018100

0
/6 N3 /5

011110
0

N3 /6 N\ 4

011011 001010
0 1

pau N\ 4 /612

001111 000010
1 1

N4 ST 2 XS

00}101 000111 009101
1
2l X§ XIl2
000101 000T11 001101
1 1
X$§ 12/7 N4

000010 Q01111 013001
1
21 /6 N4 ST 3
001010 011011 110001
1 0 0
N4 60 N3 T N
011110 110011 100001
0 0 0
a: N3 a N1 a
010100 110110 100011
0 0 0
N3 ) Nl /6
111100 100110
0 0
/4 Nl /5
101000 101100
1 0
/2 Nl /4
111000
1
Nl /2 N3
110000 010000
1
N3 2
011000
1
N4
001100
0
N
000110
0
\. 6
000011
0
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Here we use the similar notation as in Example 4.7.
The type Ag corresponding to {a1, as, ..., ar} is contained in type E7. The high-
est weights of the restriction (E7, 7)|a, are wy = 008001, W3—Wo = WolW4WsWeW7TT7 =

010000, wg — wa = wowswswiwswaws(ws — wy) = 000010 and w; — wy =
1
WaWaWswWeWrWswawswe(we — we) = 100000. Therefore (Er,m)|a, = (As,ws) +
1

(A, 2) + (Ao, 5) + (A, 1) and Coor = (7)) + (7)) + (371) + (171) = 12
Now use ¥/ = —¥ and put ©; = ¥’ \ {«}}. Then

We, () = {00001, 10000, 100001},

We, () = {009001, 010000 000010, 100000}

W, () = {000001, 010000, 010100, 110001, 010000},

We, () = {000001, 011000, 101100 001010 011001, 101000, 001100},

OS5

o, (m) = {000001, 001100, 100110, 000101, 010100, 000110},
0 0 0 1 0 0
We,(m) = {008001, 008110, 108011, 00(1)010, 008011},

We, () = {008001, 008011 100001, 008001}.

0
From (4.6) with (o, @;) = (a;, p) = 3{a;, ;) = & and
(w7, 1) = % (w7, wa) = é, (w7, w3) = %, (w7, w4) = i,
5 1 1
(w7, ws) oYL (w7, we) = 6’ (w7, w7) = g
we have
e (@) = (2= T12A> (2 %) (24 12’\ g)
0r.0:(1 %) = <x - éA) <w B 2714A 152)< + 214A - 1) (m + éA - Z)
o) = (r= ) (- 357 - ) (= ) (o 357 - 3) (o 2 )
1 1 1 7 11
ineuleid) = (2= ) (2= 53 = 3) (- 152~ 15) (0~ 33)

(
Cralopijeepd
5 1
)= -5 3) F5h 1)
(e 3o 1)
qw,eb-(x;k):(z—%A)@f%/\fé) x—%)<z+1—12/\7§)( 7)\,%)
)

(
[ R S R
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Example 4.9 (FEjg).

a1 a3 Qg (675 Qg a7 Aag 2 4 6 5 4 3 2
[e; l O O l ®
(65 3

U ={a; = 3(c1+es) —2(eatesteates+es+er),an =ce1 462,03 =
€9 — €1, = €3 — €2, A5 = €4 — €3, Qg = €5 — €4, Q7 = £ — £5, 08 = €7 — €6}

p = €9 + 2e3 + 364 + 4e5 + deg + 667 + 236 = 46071 + 68as + 9lag + 13bay +
110a5 + 84ag + H7a7 + 29ag

1) T = max = 7 + €5 (adjoint)
dim oy = 248 (Mg, (0) = 8)
C(Xmax = 60

(Ctmax, p) = 29 ) v
o (7) = (& = ) [Taesn(my) (r—a-5)

Let 7 be the adjoint representation anax and amax = Zle n;ay, that is, ny = 2,
ng = 3,.... Put ©; = U\ {o;} for ¢« = 1,...,8. The irreducible decomposition
of g as a ge,-module is given by Proposition [2.38 ii). In this case Lg, in the
proposition equals {—n;, —n; + 1,...,n;}. Suppose m € Lg, \ {0}. Then V(m) is
a minuscule representation since Fg is simply-laced. Let w; (j = 1,...,8) be the
fundamental weights. If we write the lowest weight and the highest weight of V' (1m)
by am = Zf':l c;jw; and o), = Z§:1 cjw; respectively, we clearly have

1 lfl’Il7é 1,—711‘, ’ -1 lfl’Il7é —177’),1‘,
C; = Ci = .
2 ifm=1, -2 ifm=-1

)

and aym = —a’ ,,. Since we know the highest weights and the lowest weights of

minuscule representations of gg, by the previous examples, starting with amax =
wg = 0080001, we can determine oy, and o, for m € Lg, \ {0} step by step. For

example, suppose i = 4. Then Lo, = {—6,—5,...,6} and we have

0080001 h.w.

V(6) _ — 0011000 — oy = 0110000 is a weight of V (5)
0011000 L. 0 1
0110000 h.w.
e 1010000 — a; = 1111000 i ight of V(4
V(5) 1010000 L. — 010000 ay s 000 is a weight of V'(4)
1011000 h.w.
V(4): il(i)looo . oiéoooi —ay = 00}1001 is a weight of V(3)
0110001 lw.
0
0010100 h.w.
V(3) : ¢ 0011001 0010010 — g = 0111070 is & weight of V(2)
_ 1
0010010 Lw.
1
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01(1)0010 h.w.

V(2): 01%1010 — 10(1)0100 —ay =11 } 1100 is a weight of V(1)
1060100 Lw.

1010001 h.w.

0121000 Lw.

On the other hand, the non-trivial irreducible subrepresentations of V(0) corre-
spond to the connected parts of Dynkin diagram of ©;. If Zf-:l c;jw; is a lowest
weight of such subrepresentations, then ¢; = 1. Hence, if ¢ = 4, the lowest weights
of the non-trivial irreducible subrepresentations of V' (0) are

1110000, 0010000, 0011001.
0 2 0

Thus we get
We, () = {00(1)1000, 1010000, 01(1)00017 0010010, 10(1)0100, 0121000}
1 1 1

U {0} U {1110000, 0010000, 0011001}
2
U {—1010001, —0110010, —0010100, —1011000, —0110000, —0000001 }.
1 0 1 0 1 0
Put Ao, = Aw;. Then, by (2. 35) we have

D) 5) (-2 - 152 1)

o = (- ) -

AR VAN WAl A VU YA PO
Do 2o Do i)
QAT VR YA PR Y

Similarly we get
We, (1) = {1080001, 2180000} u{o}uU {1080010} U {—10(1)00007 —0080001},
We, (1) = {10(1)0000, 00(1)00107 00%0000} u{o}u {10(1)0001}
U {700(1)0100, 701(1)0000, 70080001},
We, () = {01(1)0000, 1180001, 01801007 1230000} u{0} U {2180000, 01(%0001}
U {—11800107 —01810007 —11(1)00007 —0080001},
We, (1) = {0081100, 01810007 00%1001, 1081010, 00%2100}
u{0} U {10(1)10007 0081101}
U {—0181001, —00(1)10107 —10811007 —00(1)10007 —0080001},
We, () = {00(0)0110, 00(1)0100, 1080101, 0081210} u{0} U {0180100, 0080111}

U {—00(1)0101, —1080110, —0081100, —0080001},
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We, (r) = {0000011, 1000010, 0090121} U {0} U {0000010, 0000012}
U {~10000T1, 0000110, ~0000001},
W (m) = {0000001,0000012} U {0} U {1000001} U {~0000011, ~0000001},
and
.00 (@i4) = (2 - %) (-0 -mr ) -5 3)
' ($+ 607 670)< 30A)

eV = (1= 3) (7 5) (- 300~ 39) (7502~ 5) (7 02 )
(50 50) (7 37 19) (o 52,

e = (v 5) (= 55) (= )

(o) Dl )l
(ot 0) (0r ) (o pr - 30) (o 350)

e 0n(@:) = (- %) ()30 ) (52 5)
() gt 5) - 2) e - )
(g 50 (Fapd a) (4 5 35) (4 )

In.00 (@A) = (m N %) (“T :1')(1)) ( 290)

'(“%A‘%)( 210A %)("” %A_%)( 610A %)
(gt 1) (500~ ) (e 5~ ) (o 350,

In.0: (3 A) = (”C - %) (m N %)( 175)( 210A ;g)( %A N %)
'(m_é)‘_ﬁ)( @A %)( +%A %)( 20)\)

tr 0@ 4) = (x—%)(x—%)( “5r 50 () )

(e ) )
(9” 60" 60/\" " 30
Example 4.10 (Fy).

Qap 2 3 Oy 2 3 4 2
U={a;=¢cy—¢3, ap =63 —¢c4, a3 =4, g = 3(61 — €2 — €3 — £4)}
p=1ler + Sex+ 2e3 4+ $e4 =8y + 150 + 21az + 1lay

i) m=wy =1 = a1 + 202 + 3a3 + 2a4 (dominant short root)
dimwy = 26 (M, (0) =2)
Cow, = Zizl(iey,€1)2 + 13 (ter testeztese)? =2+ =6

qw4(12) = (2:17 - 1) H a€X(Fy) (‘T - M %)

|B]<|amax|
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il) m = @y := €1 + &2 (adjoint)

dimw; = 52

Coy =18

(wl’p) =38

Geor (#) = (€ = $) [T aenmy (x—a—=3)T1 peser (z -5 - 5)

|a|:‘0¢max| ‘5‘<‘0¢max‘

Let 7 be the representation ty in i). Then the diagram of the partially ordered

set of the weights of 7 is as follows. Here the weight 00)00 is the only weight with
the multiplicity 2 and hence indicated by [00)00].

0 00)01
N\ 4
1 00)11
N3
2 01)10
N\ 2
3 11)10
10 N3
4 10)10 10)11
N3 1 N4
5 1111 10)01
J2 0 N4 1
6 01)11 11)01
30 N4 2
7 00)12 01)21
N4 /3
8 [00)00]
sS4 N3
9 00)12 01)21
N34 N2
10 01)11 11)01
N2 4 N
11 11)11 10)01
30 N1 4
12 10)10 10)11
N3
13 11)10
/2
14 01)10
/3
15 00)11
/4
16 00)01

—
—
—
—

~
S
—
]
—
~
—
o
——

@
N
3
Il
—~—
(@)
(a=)
o
=
o
[a=)
=
—
o
(@)
=
o
(==
=
o
P
(e
o
=
—
[\]]
o
(a=)
=
o
=
——

1 4
1. 1 3 1, 7 Ly 3
rog g () g) (e gr-)

(
(
(-3 -5 m) - 3)
)
)

qw,eg(ﬂc;)\)z(x— A
(- (x+1i2)\—1>(x+%/\—§)< +3A_Z)7
i = (= e 5) - Do



ANNIHILATORS OF GENERALIZED VERMA MODULES 49

1 11
(et =) (e A=)
The extremal low weights of m with respect to ¥’ are as follows:
Wa), = W4 — Qg — Q3 — Q2 =1 + as + 203 + ay,
W), = W4 — Q4 — Q3 = a1 + 200 + 2a3 + ay,
Way = Wa — Qg = 1 + 202 + 30 + au,
Wy = Wy = a1 + 200 + 3ag + 20y.

4

None of them is a member of ¥(gg) U {0} for any © C ¥'. Hence by Proposi-
tion 2.38 1) and Lemma 3.24, the functions r./(A) (i = 1,2,3,4) are not identically
Z€r0.

Example 4.11 (G3).

Q1 Q2 3 2
o& o o& o—e
U ={ag =¢€1—€2, ay = —2¢1 + &2 + €3}

p = —&1 *262 +3€3 = 50&1 +3052

i) m = wy = —eg + €3 = 201 + oy (multiplicity free)
dimw; =7
Cw1 = %(2 Zl§i<j§3(5i —E&j,€1 — 82)2 + (0,61 — 62)2> =6

(w1,p) =5
e, () = (5’3 - 1) H1§i<j§3((m - %)2 —(&i — 53’)2)
i) m = wy 1= —&1 — €2 + 263 = 31 + 22 (adjoint)
dimwy = 14
Cw, =24
(va /0) =9
Gy (2) = (& = 3) [T aex(@n) (@ —a—3) 1 pes(an (= —6-3)

Ia‘:‘ama)cI ‘/8‘<‘arnax‘
Consider the representation m with the highest weight ;. Then as is shown in
[FH], the weights of 7 are indicated by

£y —€3 el —€3 2 —g1d e o5 0 e —ey 22 gy ez o5 —ey t g3
and therefore
W{al}(ﬂ) = {eg — €3, —€1 + €2, —€1 + €3},
W{QQ}(W) = {62 — €3, &1 — €3, 0, €1 — &2, —&2 +€3}.

For A € a§ we put Ag = A1 + Agws. Then Ay = 0 (resp. Ao = 0) if © = {ay}
(resp. {as}) and

>

) (=
) (= )( —%—3)7
)

3 x—i— - ahp))(m—l)

(- i—*@“z% 2) (- - o o)

6
A1 AMb
) D) A4
( )( )(z "% 3 3
Moreover, from Remark [3.20, we get

Tay (A) = </\® + P (7w1 + al) - (7w1 + a1 + 042)>

(a1 +0427 )) (a: B )\22 (B +62042,P))

qr, {al}(x >‘ = (.T}-i-

(=

qr, {az}(m )\ (

+

A2
2
A2
2

A
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. <)\@ + p, (—wl + al) — (—w1 + 301 + 2042)>
= 2<)\@ + p, 062><)\@ +p,a1 + Oé2>

= %()\2 +1)(3X2 + 4),
Tay(A) = ((Ae, (—w1 4+ 1) — (—w1)) — (a2, —w1 + a1>)

. (<)‘@7 (-t a1+ az) —0) + (-1 + o + 012,041>)
(e +p, (—w1 + a1 + az) — (—w1 + 3a1 + a2))
(Ao + p, (—wm1 + o1 + a2) — (w1 + 4oy + 20a3))

= —% (()\@ + P a1>) (<>\@ +p 300 + 2a2>) ((/\e +p;30n + @2>)2

= 72—16(& + 1M +2)2(\ + 3).

Here we have used the following relations:

<p, 30[1 + 20&2>
3 )
<p7 30&1 + a2>

(—w1 + o +ag,a1) = —(0q, 1) = -3

Note that a3 + aa,3a1 + 202,301 + ag € X(g) and r4,(A) # 0 if the condition ii)
of Theorem [3.12] (we do not assume here that A\g + p is dominant) is satisfied.

Let S(a)™) denote the space of the elements of the symmetric algebra over a
whose degree are at most m. Note that

(Trace F2™), = 2(e1 — £2)?™ + 2(eg — £3)*™ + 2(e1 — £3)*™  mod S(a)?m~ Y

=2(e; — £2)?™ 4+ 2(e1 + 262)%™ + 2(2e1 + &2)*™
mod S(a)(e1 + €2 + €3),
(Trace F2), = 12(¢? + e160 +£2) mod S(a)®) + S(a)(e1 + 2 + €3),

i((Trace F2)o)? mod S(a)® + S(a)(eq + &2 + £3).

— (g, —w1 + 1) = —{ag, 1) =

(Trace F}), =

Moreover (Trace F{)q and ((Trace FT%)Q)3 are linearly independent in

S(a) /(S(a)<5> +S(a)(e1 + o2 + 53)).
Thus we have
(4.7 Z(g) = C[Trace F2, Trace F?)].

Proposition 4.12. We denote by «; the elements in U(g) which are specified by
the Dynkin diagrams in the examples in this section.
For a € ¥(g) define A, € a* by

A 1 ifpg=

(8,8) 0 ifBe¥(g))\{a}
Let 7}, be the irreducible representation of g with the lowest weight —A,, and let A},
be the highest weight of m7,.
i) Suppose g = gl,,, sl,,, sp,, or 02,41 and 7w is the natural representation of g. Then

(3.5)) holds for any © if the infinitesimal character of the Verma module M(\g) is
regular, that is

(4.9) (e +p,a) 0 (Va € 5(g)).
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If Ao +p is dominant, then (3.5) is equivalent to (3.2). Moreover in Proposition 3.3
we may put A = {i; d; < deg, gr.0}-

i) Suppose g = Go and 7 is the non-trivial minimal dimensional representation of
g. Then the same statement as above holds.

iii) Suppose g = 02, with n > 4 and 7 is the natural representation of g.

Suppose © D {ap_1,a,}. Then (3.5) holds if Ao + p is regular and (3.5) is
equivalent to (3.2) if Ao + p is dominant.

Suppose ON{an_1,an} =0 and (Mo, an—an_1) = 0. In this case we may replace
qr,0(z; A) in the definition of Ir e by q, o(z; ) given in Example 4.6 Then the
same statement as the previous case holds. Note that deg, ¢} ¢ = deg, ¢ro — 1.

In other general cases, (3.5) holds if the infinitesimal character of M(Aeg) is
strongly regular, that is, Ae + p is not fized by any non-trivial element of the Weyl
group of the non-connected Lie group O(2n,C). In particular, if ©ON{ap—1, a0} =0,
then (3.5) holds under the conditions (4.9) and

(4.10) Mo +p,20;+ -+ 209+ ap_1 +ay) #0
fori=2...,n—1 satisfying a;—1 € © and a; ¢ O.
Suppose © N {ap—1,0an}t = {an_1}. Then
(4.11) Jo(A) = Ino(A) + Ir:  0(A)+J(e)
if (4.9), (4.10) and

(412) (Ae+pw+Aa, , —an_1)#0

for any w e We(r, ) satisfying @ > an_1— Aa,_,

-1
hold.

In Proposition 3.3 we may put r =n and Aq,...,A,_1 are invariant under the
outer automorphism of g corresponding to €, — —e,, and A = {i;d; < deg, ¢r.0}U
iv) Suppose g = E,, with n =6, 7 or 8 (c¢f. Example 4.7, 4.8] [4.9). For «; € ¥(g)
put

a1 ifi=1 or3, Q; ifi=1 or2,
(4.13) o) =< as ifi=2, Qi =4 a1 +as if i =3,
an ifi >4, ity ifi> A4

Here o(«;) satisfies #{0 € ¥(g); (t(ay),B) < 0} <1 and & is the smallest root with
&> aand &> (o). Let A € ag. If (4.9) holds and moreover X\ satisfies
(4'14) 2<)‘@ +p, w0+ AL(a) - 6‘> 7& <ZU, w> - <Ab(a)a AL(a)>

for a € © and w € We (ﬂf(a)) satisfying @ > & — Ay,
then
(4.15) Jo(N) = > In:e(\)+J(Ne).

aclL(O)

In particular, under the notation in Definition 2.19 the condition

(Ao +p, 1)
(4.16) 27“@,&(&)> ¢ [-1,0]

forae® and p € Ry withO<u§AL(a)+Af(a)—d

assures (4.14). Moreover, if m = 7}, or m}

. we may put A = {i; d; < deg, qr.0}
1 Proposition 13.3.
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v) Suppose g = Fy. For a; € U(g) put

fi<9 Q; ifi=1 or4,
oy if i , R .
(4.17) o) = ! T =R a1 +ay ifi=2,
ag if i >3, .
as+ayq  ifi=3.

Then the same statement as iv) holds for m = «7, (cf. Example 4.10).

Proof. The statements i) and iii) are direct consequences of [O4, Theorem 4.4] (or
Theorem 3.21) and Theorem [3.12. The statement ii) is a consequence of Exam-
ple 4.11.

Suppose g is Eg, E7, Eg, Fy or G5 and 7 is a minimal dimensional non-trivial
irreducible representation of g. Then in Proposition [3.3] it follows from [Me] that
the elements 3 )y my(w)w® (i = 1,...,n) generate the algebra of the W-
invariants of U(a) (For G2 we confirm it in Example [4.11)) and hence we may put
A= {i; d; < deg, gr0}-

Suppose g is Fg, E7, Eg or Fy. Fix a € ©. Then Theorem 3.21 assures X_, €
Iﬂf(a)>@()‘) + J(o) if raw, (A) # 0. Here rq w, () is defined by (3.41) with = =
T and @a = —Ayq) + (& — @). Then the assumption of Remark [3.20/ v) holds

and therefore the second factor HiL:1 (+++) of Ta,w, (A) in (3.41) does not vanish
under the condition (4.9). On the other hand, @ € W(x},,) which does not
satisfy @ < —A,(q) + & always satisfies @ > —A,(4) + & because {y1,...,7x} in
Remark 3.20/ is of type Ax and (A,(4),3) = (vi,6) =0 fori=1,...,K —1 and
Be€U(g)\{11,..-,vx}. Hence (4.14) assures that the first factor of 74 »_ (A) does
not vanish. Thus we have X_, € IWL*(W@()\) + J(Ae). It implies (4.15)). It is clear

that (4.14) follows from (4.16) since (A,(a), Ay(a)) = (@, @) for @ € W(m},)). O

Remark 4.13. Suppose g = gl,, or g is simple. In the preceding proposition we
explicitly give a two sided ideal I () of U(g) which satisfies Jo(X) = Ie(A)+J (o)
if at least

(4.18) Re(Xe + p,a) >0 for a € U(g).
In particular, this condition is valid when A = 0.

Remark 4.14. Suppose g = gl,,. Then in [O2] the generator system of Ann(M@ ()\))

is constructed for any © and A through quantizations of elementary divisors. It
shows that the zeros of the image of the Harish-Chandra homomorphism of Ann(Me (X))
equals {w.A\g; w € W(O)} and proves that (3.2)) holds if and only if (4.19) does
not valid for any positive numbers j and k which are smaller or equal to L. Here

we note that this condition for (3.2)) follows from this description of the zeros and
Lemma 3.4/ and the following Lemma with the notation in Example 4.2l

Lemma 4.15. Letng = 0 < ny < ng < -+ < np = n be a strictly increas-
ing sequence of mon-negative integers. Let X = (A1,...,AL) € CE. Define X =
(M, ) €C™ by

n —

XV:)\;C—&-(V—l)— ifng_1 <v<ng

and put

A = {)‘nk—1+1ﬂ A 1425+ )‘nk}'
Then there exists v with nj_1 < v < n; satisfying (v,v + 1)A € W(O)X if and only
if there exists k € {1,..., L} such that

(419) A1y £ 0, Ay & Ay and (€ A\ A, ' € A = (' — ) (k= ) > 0).
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Here (i,7) € &, is the transposition of i and j and
W(O)={0 € &,; o(i) < o(j) if there exists k with ny_1 <i < j <ny},
Ol = (fo=1(1)s s Bo-1(n)) for p=(p1,...,pun) € C".
Proof. Suppose (4.19)). Then there exists m such that

j<k,1<m<n;—nj_;and ng_1 +n; —n;j—1 —m < ny,
Anj_adr = Any_iqv—m form <v <nj —mn;_1

or

J>k, 1<m<n; —nj_rand np —m+1>ng_1,
j\nj—1+V = j\nk_,_,,_m for1<v<m.

Defining o € W(©) by

o= Mnj_1+m,nj_1+m+1) H (nj_1 +v,ng_1 +v—m),

m<v<ng—mn;_1

or

o= nj_1+mn;_1+m+1) H (nj—1+v,n, +v—m),
1<v<m

respectively, we have (v,v + 1)\ = 05\76 W(O)A with v = n;_1 + m.
Conversely suppose (v, v+ 1)\ = oA for suitable v € {n;_1 +1,...,n; — 1} and
o€ W(O). Put

{617 v 7€7n} = {67 < nj—1 and 5\6 = an,l-i-l}v

{rias e i} = {05 0 > nj and Ay = Ay, }
and define
;=104 (nj —nj_1—1) if i <m,
=10, —(nj—nj_1—1) ifi>m+2,

bpy1 = nj_1 + 1, an_H =n;.
Assume that (4.19) is not valid for any k. Then for i € I := {1,...,m +m’ + 1},
there exist integers N; with ny, , < ¢; < ¢; < npy, and therefore Ay, = /\njfﬁ_l and
Aoy = Ap; -
Note that #I; < m + 1 and #I, < m’ by denoting

L ={iel;o;)<n;}and I, ={i € I; o(;) > n,;}.

Since o(¢;) < o(¥}), we have I; U Iy = I and therefore #I; = m+ 1 and #I, = m/.
Then there exists io with n; 1 < o(£;,) < nj. Since I1NI = (), we have o (¢}) < nj,
which implies o= (v/) = €;, + v/ —nj_1 — 1 for nj_; < v/ < n;. It contradicts to
the assumption (v,v + 1)\ = o \. O

Remark 4.16. Suppose g = gl,, and 7 is its natural representation. Then the
condition 74(A) # 0 for any a € © is necessary and sufficient for (3.5) (cf. [O4,
Remark 4.5]). Under the notation in the preceding lemma, it is easy to see that
the condition is equivalent to the fact that

ApnA; £0, A; ¢ Ay, and (au € A;\ Ag, 3 € Ay such that (i — p)(k —j) > o)

does not hold for any positive numbers k and j smaller or equal to L.
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APPENDIX A. INFINITESIMAL MACKEY’S TENSOR PRODUCT THEOREM

In this appendix we explain infinitesimal Mackey’s tensor product theorem fol-
lowing the method given in [Ma].

Let g be a finite dimensional Lie algebra over C and p a subalgebra of g. Let
V and U be a U(g)-module and a U(p)-module, respectively. We denote by V|,
and Ind} U the restriction of the coefficient ring U(g) to U(p) and the induced
representation U(g) ®(py U in the usual way.

Theorem A.1 (infinitesimal Mackey’s tensor product theorem). There is a canon-
ical U(g)-module isomorphism
(Ind$ U) ®c V ~ Ind§(U ®c V).

(A1) .
that is, (U(9) ®@u(p) U) @c V = U(g) Quy (U @c V).

To prove this we need two lemmas.

Lemma A.2. Let R be a ring and R-Mod the category of left R-modules. For
M,N € R-Mod consider Fy; : - — Hompg(M,-) and Fy : - — Hompg(N,-), which
are functors from R-Mod to the category of abelian groups. Suppose that Fyoand
Fy are naturally equivalent, namely, there exists an assignment A +— T4 for each
object A € R-Mod of an isomorphism 74 : Homp(M, A) — Hompg(N, A) such that
Fn(f)oTa =1 o Fuy(f) for each f € Homp(A, B). Then M ~ N as R-modules.

Proof. Define ¢ = 7' (idy) € Homg(M, N) and ¢ = 7ar(idpr) € Hompg(N, M).
Then ¢ o1h = Fn(p)(¢) = Fn(p) o mar(idar) = 7v 0 Fr () (idar) = 7 () = idy -
Similarly ¢ o ¢ = idp; . Hence M ~ N. (|

Lemma A.3. Let (m;,V;) (i = 1,2,3) be U(g)-modules. We consider Home(Va, V)
as a U(g)-module by X = 73(X)o® —Pomy(X) for ® € Homc(Va, V3) and X € g.
Then naturally

HomU(g)(Vl ®Rc Vo, Vg) ~ HOIIIU(Q)(Vl, Hom(c(Vg, Vg))
Proof. We have only to define the mapping ¢ +— & from the left-hand side to the
right-hand side by (®(v1)) (v2) = p(v1 ® v2) for v1 € Vi and ve € V5. O
Proof of Theorem [A.1. Lemma |A.3 implies the following isomorphism for a given
U(g)-module A:

Homy (g) (U(9) ®u ) U) ®c V, A) =~ Homy gy (U(g) ®u(p) U, Home (V, A))
~ Homy(py (U, Home(V]p, Alp))
~ Homy () (U ®&c Vlp, Alp)

(U(g) @up) (U @c Vlp), A).

It gives a natural equivalence between F(U(g)®u(p)U)®Cv and FU(9)®U(p)(U®CV|p)
under the notation of Lemma [A.2 with R = U(g). Hence by Lemma [A.2] we have
the theorem. O

~ HOHlU(g)

APPENDIX B. UNDESIRABLE CASES

In this appendix we give counter examples stated in Remark 3.23. Let g = sl,
and use the notation in §2land §3l Suppose the Dynkin diagram of the fundamental
system ¥ = {a1,...,a,_1} is the same as in Example 4.2 Let {Ay,...,Ap_1} be
the system of fundamental weights corresponding to W. Let 7 be the irreducible
representation of g with lowest weight @ = —mj1A; — mgoAs. Here my and my are
positive integers. Then the multiplicity of the weight @’ := T + a1 + as € W(n)
equals 2.
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Now take © = ¥\ {as} = {a1,a3,a4,...,,-1}. Since the multiplicity of
the weight 7 + ag is 1, both @’ and 7 + az belong to We(w). On the other
hand, by Remark 3.17, the weight w,, , ;=7 + a2 +ag + -+ + an—_2 is a unique
extremal low weight of 7 with respect to a,_i. Note that {w € We(r); w <
Wan_y} = AT, T + az} and the weight @y, | =7+ as + a3 + - + a,_; satisfies
@,y lae = @'lae = (T + a2)|ag # Tlae- Moreover, it follows from Lemma 2.21

my + 1
Do(w') — D (7 + ) = —(7 + as, a1) = 1T<oz1,oq>,
/ — n—3
Dﬂ'(wan,l) - DTI'(7T + OQ) = _<a270‘3> - <an—2aan—1> = 2 <O‘15041>~

It shows the first factor of the function (3.41) with (o, @a) = (an-1,@a,_,) is
identically zero if n = my + 4.
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