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1 Introduction

The sixth Painlevé equation is derived from monodromy preserving deformation of a 2nd

order linear differential equation of Fuchsian type which has 4 regular singular points ([1]).

The Garnier system is a natural extension of the sixth Painlevé equation after this idea. The

system consists of nonlinear partial differential equations which arise as the conditions for

preserving the monodromy of Fuchsian equation which has N +3 generic regular singularities

(see [2, 4]).

It is natural to consider the same problem for m×m matrix system. The system obtained

as the condition is called Schlesinger system ([7]). The 2×2 Schlesinger system is equivalent

to the Garnier system. When we write the Fuchsian equation as

d

dx
Y =

N+1∑
i=0

Ai

x − ti
Y,

then the Schlesinger system is expressed by

∂Al

∂tk
=

[Al, Ak]

tl − tk
, (k �= l), (1.1a)

∂Al

∂tl
= −

N+1∑
j=0
(j �=l)

[Aj , Al]

tj − tl
. (1.1b)

Besides, it is known that the Painlevé equations admit, under a certain restriction on the

parameters, particular solutions which are expressed in terms of the Gauss’ hypergeometric

function and its confluents. As a generalization, Okamoto K and Kimura H constructed a

particular solution of the Garnier system which is written by the Lauricella’s hypergeometric

functions ([5]).
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Recall that the Garnier system is expressed by the following Hamiltonian system:

∂qk

∂sj

=
∂Hj

∂pk

,
∂pk

∂sj

= −∂Hj

∂qk

, (j, k = 1, . . . , N), (1.2)

with the Hamiltonian

Hi =
1

si(si − 1)

[
N∑

j,k=1

Eijk(s, q)pjpk −
N∑

j=1

Fij(s, q)pj + κqi

]
. (1.3)

Here Eijk, Fij ∈ C(s)[q] are given by

Eijk = Eikj =



qiqjqk, if i, j, k are distinct,

qiqj

(
qj − sj(si−1)

si−sj

)
, if j = k �= i,

qiqj

(
qi − si(sj−1)

sj−si

)
, if k = i, j �= i,

qi(qi − 1)(qi − si) −
∑

l �=i
si(si−1)

si−sl
qiql, if i = j = k,

Fij =


(
κ0 + κ1 +

∑N
l=1 θl − 1

)
qiqj − θj

sj(si−1)

si−sj
qi − θi

si(sj−1)

sj−si
qj , if i �= j,

(κ0 − 1)qi(qi − 1) + κ1qi(qi − si) + θi(qi − 1)(qi − si)

+
∑

l �=i

{
θlqi

(
qi − si(sl−1)

sl−si

)
− θi

si(si−1)
si−sl

ql

}
, if i = j,

and

κ =
1

4

(κ0 + κ1 +

N∑
j=1

θj − 1

)2

− κ2
∞

 .

Notice that the Garnier system contains N + 3 parameters

(κ0, κ1, θ1, θ2, . . . , θN , κ∞) ∈ C
N+3.

These are connected to the Riemannian scheme of an associated Fuchsian equation: x = 0 x = 1 x = tj x = uk x = ∞
1−κ0

2
1−κ1

2

1−θj

2
−1

2
−1−κ∞

2
1+κ0

2
1+κ1

2

1+θj

2
3
2

−1+κ∞
2

 , j, k = 1, . . . , N.

Theorem 1.1 ([5]). Suppose that κ = 0, then Hamiltonian system (1.2) admits solutions

(q1, . . . , qN , p1 . . . , pN):

ql = Asl(sl − 1)
∂

∂sl
log
(
(1 − sl)

θlu(s)
)
, pl = 0, (1.4)

where u(s) is the Lauricella’s hypergeometric series in N variables:

u(s) = FD

(
α; β1, . . . , βN

γ
; s

)
=

∑
m∈(Z≥0)N

(α)|m|(β1)m1 · · · (βN )mN

(γ)|m|(1)m1 · · · (1)mN

sm1
1 · · · smN

N , (1.5)

with α = 1 − κ1, βj = θj, γ = κ0 +
∑N

i=1 θi and A−1 = κ0 + κ1 +
∑N

i=1 θi − 1.
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In the present paper we will show a q-analog of this theorem. The text is organized as

follows. In Section 2 we recall the setting of q-Schlesinger system and consider the reducible

case especially. In Section 3 we give some formulas about a q-analog of Lauricella’s hyper-

geometric series, which we use later. In final Section we state the main theorem, that is a

q-analog of the above theorem, and we prove it.

2 2 × 2 q-Schlesinger system and its reducible case

Consider an m × m matrix system with a polynomial coefficient

Y (qx) = A(x)Y (x), A(x) = A0 + A1x + · · · + AN+1x
N+1. (2.1)

More general case of a rational coefficient can be reduced to this case by solving a scaler

q-difference equation.

A deformation theory is studied in the previous papers ([3, 6]). In the theory of mon-

odromy preserving deformation of Fuchsian equations, extra parameter t = (tj) is introduced

as the position of regular singular points. In the setting of q-difference equations we put the

(discrete) deformation parameters in zeros of det A(x), a1, . . . , a2N+2, and the eigen values

of A0, θ1, . . . , θm, and the eigen values of AN+1, κ1, . . . , κm. Notice that(
m∏

h=1

κh

)(
2N+2∏
i=1

ai

)
=

m∏
h=1

θh.

We normalize the leading term to a diagonal form as AN+1 = diag(κ1, . . . , κm).

The connection preserving deformation of the linear q-difference equation, which is a

discrete counter part of monodromy preserving deformation, is equivalent to the existence of

linear deformation equation whose coefficients are rational in x. We express the deformation

equation as

T (Y (x)) = B(x)Y (x). (2.2)

Last of all, q-Schlesinger equation is written by the compatibility of the deformation equation

and the original linear q-difference equation:

T (A(x))B(x) = B(qx)A(x). (2.3)

Here T express a discrete time evolution.

We restrict the subject to 2×2 matrix system. We introduce a function w by the leading

term of the (1, 2)-element A1,2(x) = κ2wxN + · · · . The function w is related to the gauge

freedom.
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We denote by T = Tr,s the deformation:

f(a1, . . . , a2N+2, θ1, θ2, κ1, κ2) �→ Tr,s(f) = f(a1, . . . , qar, . . . , qas, . . . , a2N+2, qθ1, qθ2, κ1, κ2),

where f is a function of the variables (ai, κh, θh)
h=1,2
i=1,... ,2N+2. In this case, if we parameterize

A(al) = yl

(
1

zl/w

)
(wl, w), (l = 1, . . . , 2N + 2), (2.4)

the coefficient of the deformation equation, B(x) = Br,s(x), can be expressed by the elements

of A(ah) (h = r, s):

Br,s(x) =
x

(x − qar)(x − qas)

{
x1 −

(
qaszr−qarzs

zr−zs
qw ar−as

zr−zs

zs

w
Tr,s

(
ws

ar−as

wr−ws

)
Tr,s

(
aswr−arws

wr−ws

) )} . (2.5)

This 2 × 2 q-Schlesinger system,

Tr,s(A(x))Br,s(x) = Br,s(qx)A(x), (2.6)

can be regarded as a q-analog of the Garnier system, and this tends to the Garnier system

as a natural continuous limit (see [6]).

Now we consider the reducible case. In the reducible case, we can write A(x) as

A(x) =

(
κ1

∏N
i=0(x − a2i+1) A12(x)

0 κ2

∏N
i=0(x − a2i+2)

)
. (2.7)

The parameters satisfy constraints

θ1 = κ1

N∏
i=0

(−a2i+1), θ2 = κ2

N∏
i=0

(−a2i+2). (2.8)

Immediately we have

y2l+1z2l+1 = κ2

N∏
i=0

(a2l+1 − a2i+2), y2l+2w2l+2 = κ1

N∏
i=0

(a2l+2 − a2i+1),

w2l+1 = z2l+2 = 0, (l = 0, 1, . . . , N).

(2.9)

We consider the case that r is odd and s is even. Assume that initial data of A(x) is

expressed by upper triangular one, then T l
r,s(A(x)) (r:odd, s:even, l ∈ Z) remains still upper

triangular because Br,s(x) is also upper triangular.

In this case, the q-Schlesinger system, (2.6), is expressed by

(x − ar)Tr,s(A12(x)) − (x − qas)A12(x)

=
(ar − as)w

zr

[
qκ1

N∏
i=0

(x − a2i+1) − κ2
x − qas

x − as

N∏
i=0

(x − a2i+2)

]
.

(2.10)
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This equation is an identity of polynomials of degree N +1 in x. Hence it is sufficient to show

that the equation is established at N +2 distinct points. We choose x = a2l+1 (l = 0, . . . , N)

and x = qas. At x = ar, it is trivial. For the rest we obtain N + 1 equations:

Tr,s(wy2l+1) =
a2l+1 − qas

a2l+1 − ar

wy2l+1 +

+
as − ar

a2l+1 − ar

∏N
i=0(a2l+1 − a2i+2)∏N

i=0(ar − a2i+2)

a2l+1 − qas

a2l+1 − as

wyr, (2l + 1 �= r), (2.11a)

Tr,s(wys) = −qκ1

κ2

∏N
i=0(qas − a2i+1)∏N
i=0(ar − a2i+2)

as − ar

qas − ar

wyr. (2.11b)

3 A q-analog of Lauricella’s hypergeometric series

Here we consider the following q-analog of Lauricella’s hypergeometric series:

ϕD

(
a; b1, . . . , bN

c
; q; t1, . . . , tN

)
=

∑
m∈(Z≥0)N

(a; q)|m|(b1; q)m1 · · · (bN ; q)mN

(c; q)|m|(q; q)m1 · · · (q; q)mN

tm1
1 · · · tmN

N ,

(3.1)

where (x; q)k = (1−x)(1−qx) · · · (1−qk−1x) and |m| = m1+· · ·+mN . This q-hypergeometric

series defines a holomorphic function around the origin t1 = t2 = · · · = tN = 0.

We know that the series ϕD(t) satisfies the system of q-difference equations:

LkϕD =
{

(1 − cq−1T̃ )(1 − T̃k) − tk(1 − aT̃ )(1 − bkT̃k)
}

ϕD = 0, (3.2a)

Mi,jϕD =
{
ti(1 − biT̃i)(1 − T̃j) − tj(1 − T̃i)(1 − bjT̃j)

}
ϕD = 0. (3.2b)

We here denote by T̃j the q-shift operator in the variable tj :

T̃jf(t) = f(t1, . . . , tj−1, qtj , tj+1, . . . , tN),

and T̃ = T̃1 · · · T̃N .

We give some formulas about q-Lauricella’s. Setting

ϕl(t) = (1 − T̃l)ϕD(t), (3.3)

we rewrite equation (3.2b) as

(bktk − bltl)T̃kϕl = (tk − bltl)ϕl + (bl − 1)tlϕk. (3.4)

Moreover we set

ϕ0(t) = (1 − aT̃ )ϕD(t), (3.5)
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and rewrite equation (3.2a) to the following relations which are equivalent to each other:

(cq−1 − abltl)T̃ϕl = (1 − bltl)ϕl + (bl − 1)tlϕ0, (3.6a)

(bktk − 1)T̃kϕ0 = (tk − 1)ϕ0 + (cq−1 − a)ϕk. (3.6b)

Using this notation, we obtain the following formulas:

Proposition 3.1.

T̃ϕl = T̃l

(bl − 1)tl

N∑
j=1

∏N
i=1(bjtj − ti)∏N

i=1
(i�=j)

(bjtj − biti)

ϕj

(bjtj − tl)(bj − 1)tj

 , (3.7a)

(1 − xT̃ )ϕD = (1 − x)ϕD + x
N∑

j=1

∏N
i=1(bjtj − ti)∏N

i=1
(i�=j)

(bjtj − biti)

ϕj

(bj − 1)tj
. (3.7b)

Proof. Concerning the first relation, (3.7a), we have T̃ϕl = T̃lT̃1 · · · T̃l−1T̃l+1 · · · T̃Nϕl. It-

erating to use equation (3.4), we see that T̃ϕl can be expressed by a linear combination of

T̃lϕj ’s. A straight calculus leads to the relation.

The second relation is obtained from equation

(1 − xT̃ )ϕD = x

{
1

x
− 1 + (1 − T̃1) + T̃1(1 − T̃2) + · · · + T̃1T̃2 · · · T̃N−1(1 − T̃N )

}
ϕD.

The right hand side can be calculated by using formula (3.4) and the second equation is

obtained.

Now then we consider contiguity relations. We construct ladder operators; the following

one is easily obtained by comparison between coefficients of series:

Proposition 3.2.

1 − bkT̃k

1 − bk
ϕD

(
a; b1, . . . , bN

c
; q; t

)
= ϕD

(
a; b1, . . . , qbk, . . . , bN

c
; q; t

)
. (3.8a)

1 − cq−1T̃

1 − cq−1
ϕD

(
a; b1, . . . , bN

c
; q; t

)
= ϕD

(
a; b1, . . . , bN

qc
; q; t

)
. (3.8b)

The next one, which we need later, is about the following ladder operators:

Proposition 3.3.

(bktk − q−1bltl)T̃k − tk + q−1bltl
(bk − 1)tk

ϕD

(
a; b

c
; q; t

)
= ϕD

(
a; b1, . . . , q−1bltl, . . . , qbk, . . . , bN

c
; q; t

)
. (3.9a)

c − 1

(c − a)(1 − bk)tk

{
(c − abktk)T̃ − c + atk

}
ϕD

(
a; b

c
; q; t

)
= ϕD

(
a; b1, . . . , qbk, . . . , bN

qc
; q; t

)
. (3.9b)
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Proof. We can write Mi,j in equation (3.2b) as

Ml,k =

{
tl(1 − T̃k) − tk

bl
(1 − bkT̃k)

}
(1 − blT̃l) +

tk
bl

(1 − bk)(1 − bkT̃k).

Therefore, using equation (3.8a), we get{
(bltl − tk) − (bltl − bktk)T̃k

}
ϕD

(
a; b1, . . . , qbl, . . . bN

c
; q; t

)
+

+ (1 − bk)tkϕD

(
a; b1, . . . , qbk, . . . bN

c
; q; t

)
= 0,

and we obtain the first relation by replacing bl to q−1bl.

We obtain the second relation similarly by using LkϕD = 0.

4 Main result

We state the main theorem.

Theorem 4.1. Suppose that

θ1 = κ1

N∏
i=0

(−a2i+1), θ2 = κ2

N∏
i=0

(−a2i+2),

then the 2×2 q-Schlesinger system (2.6) (r:odd, s:even) admits solutions A(al) = yl

(
1

zl/w

)
(wl, w):

w2l+1 = z2l+2 = 0, z2l+1 =
κ2Ψ(a2l+1)

y2l+1
, w2l+2 =

κ1Φ(a2l+2)

y2l+2
, (4.1a)

w =

(
1 − qκ1

κ2

)
u

κ2
, (4.1b)

y2l+1 =
Ψ(a2l+1)

(a2l+1 − a2l+2)w
(1 − T̃l)u, (l �= 0), (4.1c)

y2l+2 = −qκ1

κ2

Φ(a2l+2)

(a2l+2 − a2l+1)w
(1 − T̃−1

l )u, (l �= 0), (4.1d)

y1 =
Ψ(a1)

(a1 − a2)w

(
1 − qκ1

κ2
T̃−1

)
u, (4.1e)

y2 = −qκ1

κ2

Φ(a2)

(a2 − a1)w

(
1 − κ2

qκ1

T̃

)
u, (4.1f)

where Φ(x) =
∏N

i=0(x − a2i+1), Ψ(x) =
∏N

i=0(x − a2i+2) (′ = d
dx

) and u is expressed by the

q-analog of the Lauricella’s hypergeometric series in N variables:

u = u(t) =

(
qκ1

κ2

) log a1
log q

(
qa2

a1
; q
)
∞(

κ2a2

κ1a1
; q
)
∞

ϕD

(
a; b1, . . . , bN

c
; q; t

)
, (4.2)
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with a = κ2

qκ1
, bj =

a2j+1

a2j+2
, c = κ2a2

κ1a1
and tj =

qa2j+2

a1
(j = 1, . . . , N).

Proof. We will prove that it is a solution of the reducible case.

Firstly we see that the solution is well-defined, that is to say, that the solution defines

2 × 2 coefficient matrix whose elements are polynomials of degree N + 1. It is necessary to

show the relations coming from Lagrange’s interpolations:

A(a2l+2) = Φ(a2l+2)

(
AN+1 +

N∑
j=0

A(a2j+1)

Φ′(a2j+1)(a2l+2 − a2j+1)

)
, (l = 0, 1, . . . , N). (4.3)

Diagonal part of equation (4.3) is trivial. For l �= 0, the (1, 2)-element can be shown as

follows:

T̃−1
l ϕl = (bl − 1)tl

N∑
j=1

∏N
i=1(bjtj − ti)∏N

i=1
(i�=j)

(bjtj − biti)

T̃−1(ϕj)

(bjtj − tl)(bj − 1)tj

= (a2l+1 − a2l+2)
N∑

j=1

Ψ(a2j+1)(a2j+1 − a1)

Φ′(a2j+1)(a2j+1 − a2)

T̃−1(ϕj)

(a2j+1 − a2l+2)(a2j+1 − a2j+2)

= (a2l+1 − a2l+2)

N∑
j=1

Ψ(a2j+1)

Φ′(a2j+1)

κ2

qκ1
ϕj +

a2j+1−a2j+2

a2j+1−a2
T̃−1(ϕ0)

(a2j+1 − a2l+2)(a2j+1 − a2j+2)

=
κ2

qκ1

(a2l+1 − a2l+2)

(
N∑

j=1

Ψ(a2j+1)

Φ′(a2j+1)

ϕj

(a2j+1 − a2l+2)(a2j+1 − a2j+2)
+

− Ψ(a1)

Φ′(a1)

(1 − a−1T̃−1)ϕD

(a1 − a2)(a1 − a2l+2)

)
.

In this calculation we have used equations (3.7a) and (3.6a).

In the case l = 0 we have

(1 − aT̃ )ϕD = (1 − aT̃ )ϕD + (1 − T̃−1)ϕD − (a − T̃−1)ϕD

= a

N∑
j=1

∏N
i=1(bjtj − ti)∏N

i=1
(i�=j)

(bjtj − biti)

(a − T̃−1)ϕj

(bj − 1)tj
− (a − T̃−1)ϕD

=
κ2

qκ1

N∑
j=1

Ψ(a2j+1)

Φ′(a2j+1)

(a2 − a1)ϕj − (a2j+1 − a2j+2)(1 − a−1T̃ )ϕD

(a2j+1 − a2)(a2j+1 − a2j+2)
− (a − T̃−1)ϕD

=
κ2

qκ1

N∑
j=1

Ψ(a2j+1)

Φ′(a2j+1)

(a2 − a1)ϕj

(a2j+1 − a2)(a2j+1 − a2j+2)
− κ2

qκ1

Ψ(a1)

Φ′(a1)

(1 − a−1T̃−1)ϕD

(a1 − a2)
.

In this calculation we used equations (3.7b) and (3.6a).
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The coefficient of the leading term of A12(x) is κ2w and we have

κ2w =

N∑
j=1

(a2j+1 − a1)y2j+1w

Φ′(a2j+1)(a2j+1 − a2)
+

(a2 − a1)y2w

Φ(a2)

=
N∑

j=1

∏N
i=1

(i�=j)
(bjtj − ti)(1 − T̃j)u∏N
i=1

(i�=j)
(bjtj − biti)

−
(

qκ1

κ2

− T̃

)
u

=

(
1 − qκ1

κ2

)
u.

We used equation (3.7b) above.

Secondly we show equation (2.11a) in the case that Tr,s = T2k+1,2k+2. The time evolution

T2k+1,2k+2 acts on u as T̃k for k �= 0. Equation (2.11a) is equivalent to (3.4) for k, l �= 0 and

is equivalent to (3.6b) for l = 0. Furthermore T1,2 acts on ϕD as T̃−1 and equation (2.11a)

for k = 0 is equivalent to relation (3.6a). Equation (2.11b) is trivial in that case.

Furthermore we consider the other case of Tr,s (r: odd, s: even). Putting Tr,s = T2n+1,2m+2

(n, m �= 0), we find that Tr,s acts on u as

(a; b; c; t) �→ (a; b1, . . . , qbn, . . . , q−1bm, . . . , bN ; c; t1, . . . , qtm, . . . , tN).

By using ladder operators (3.9a), this action is written by q-shift operators with respect to

t:

1

(1 − bn)tn

{
(bmtm − bntn)T̃n − bmtm + tn

}
T̃mϕD =

1

(1 − bn)tn

{
(tm − bntn)T̃n − tm + tn

}
ϕD.

Using equation (3.4), we obtain equation (2.11a) (l �= 0). In the case that l = 0, we

get equation (2.11a) similarly by using relation (3.6b). Furthermore equation (2.11b) are

obtained from the following calculation:

(1 − T̃−1
m )
{

(tm − bntn)T̃n − tm + tn

}
ϕD

= −(1 − T̃m)T̃−1
m

{
(bmtm − bntn)T̃n − bmtm + tn

}
T̃mϕD

= −tn(1 − bnT̃n)(1 − T̃m)ϕD + q−1bmtm(1 − qT̃m)(1 − T̃n)ϕD

= (q−1bm − 1)tm(1 − T̃n)ϕD.

As concerns the case Tr,s = T2n+1,2 we find that T2n+1,2 acts on u as

(a; b; c; t) �→ (a; b1, . . . , qbn, . . . , bN ; qc; t).

By using ladder operator (3.9b), this action is written by the q-shift operator

c − 1

(c − a)(1 − bn)tn

{
(c − abntn)T̃n − c + atn

}
.

9



Equations (2.11a) and (2.11a) can be obtained similarly as above by using equations (3.4)

and (3.2a). For Tr,s = T1,2m+2, equation (2.11a) and (2.11b) are derived from T1,2m+2 =

T1,2 ◦ T−1
2n+1,2 ◦ T2n+1,2m+2 (see [6]).

Remark 4.1. The coefficient, A(x), is written by using this solution as follows:

A(x) =

(
κ1

∏N
i=0(x − a2i+1) A12(x)

0 κ2

∏N
i=0(x − a2i+2)

)
, (4.4)

where

A12(x) = Φ(x)

[
Ψ(a1)

Φ′(a1)(a1 − a2)

1 − qκ1

κ2
T̃−1

x − a1
+

N∑
l=1

Ψ(a2l+1)

Φ′(a2l+1)(a2l+1 − a2l+2)

1 − T̃l

x − a2l+1

]
u.

(4.5)
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three-dimensional non-stationary Lamé system and the application to an inverse
problem.

2004–23 Wuqing Ning and Masahiro Yamamoto: An inverse spectral problem for a non-
symmetric differential operator: Uniqueness and reconstruction formula.

2004–24 Li Shumin: An inverse problem for Maxwell’s equations in biisotropic media.

2004–25 Taro Asuke: The Godbillon-Vey class of transversely holomorphic foliations.

2004–26 Vilmos Komornik and Masahiro Yamamoto: Estimation of point sources and
the applications to inverse problems.

2004–27 Oleg Yu. Imanuvilov and Masahiro Yamamoto: Stability estimate in a Cauchy
problem for a hyperbolic equation with variable coefficients.

2004–28 Naoki Heya: The absolute continuity of a measure induced by infinite dimen-
sional stochastic differential equations.

2004–29 Hidetaka Sakai: Hypergeometric solution of 2 × 2q-Schlesinger system.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


