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0 Introduction

Let (B,H, µ) be an abstract Wiener space, that is, B is a separable real
Banach space, H is a separable real Hilbert space imbedded in B densely
and continuously, and µ is a Gaussian measure on B satisfying

∫

B
e
√
−1〈x,φ〉µ(dx) = exp

{

− 1

2
|φ|2H

}

, φ ∈ B∗.

Here B∗ denotes the dual space of B. We identify the dual space H∗ of H
with H itself. Then B∗ can be regarded as a subset of H∗ = H. Let µt be
the distribution of x ∈ B 7→

√
tx ∈ B under µ.

In this paper, we study the following type stochastic differential equa-
tions on (B,H, µ):

dXt = dWt +A(Xt)dWt + b(Xt)dt (0.1)

with X0 = 0, where Wt is a B-valued Wiener process and A : B → H ⊗H
and b : B → H are measurable maps with certain regularities. We assume
that

E
[

|(tIH + σ(t))−1|pL(H;H)

]

<∞, ∀p ∈ (1,∞) (0.2)

where σ(t) is the modified Malliavin covariance which will be defined in
Section 3. Our main theorem is following:

Theorem 1 . Let νT = P◦X−1
T be the distribution of XT . Then, νT is abso-

lutely continuous with respect to µT . Moreover, its Radon-Nikodým density
ρT (x) with respect to µT satisfies

∫

B
ρT (x)(log ρT (x) ∨ 1)αµT (dx) <∞

for 0 ≤ α < 1/2.
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If B = H = Rd, this is a well-known result. However, in the infinite
dimensional setting, we cannot use some important items such as Sobolev
inequalities that play essential roles there. Bell [1] studied about the quasi-
invariance of the measures induced by certain stochastic differential equa-
tions with values in an infinite dimensional Hilbert space. It does not imply
the absolute continuity as in finite dimensions. So we have to take a rather
different strategy from the finite dimensional case.

Let us summarize the results in the present paper. In Section 1, we
prepare some notations for Malliavin calculus and remind some known re-
sults. In Section 2, we prove the existence and uniqueness theorem for the
SDE(0.1), and then we show that solutions to the SDE(0.1) are ”smooth
functions” in the sense of Malliavin calculus, that is, the H-valued part
Yt = Xt − Wt is in W∞(H) (cf. Section 1) for each t ≥ 0. In Sec-
tion 3, we define the modified Malliavin covariance σ(t) and show that
γ(t) = (tIH + σ(t))−1 − t−1IH ∈ W∞(H ⊗ H) for each t > 0. Section
4 is devoted to show an integration in parts formula (Theorem 4.1) which
is essential to show the main theorem in Section 5 (Theorem 1). Finally,
in Section 6, we show that the condition (0.2) (therefore, Theorem 1) holds
if the diffusion coefficient is uniformly elliptic. We will discuss the more
general case in the forthcoming paper.

The author wishes to thank Professor S. Kusuoka for his valuable sug-
gestion and encouragement.

1 Preliminary

1.1 Some known theorems

Let {ei}∞i=1 ⊂ B∗ be a complete orthonormal system(abbreviated by CONS)
inH. Let Pn be the orthogonal projection fromH onto the finite dimensional
subspace spanned by {e1, . . . , en}. Define the map P̃n : B → B∗ by

P̃nx =

n∑

i=1

B〈x, ei〉B∗ei , x ∈ B. (1.1)

For each h ∈ H, it is easy to see that the sequence {〈P̃n · , h〉H}∞n=1 is a
Cauchy sequence in L2(B;R, dµ) and hence converges to an element in
L2(B;R, dµ) which is denoted by 〈 · , h〉H . It is easy to see that 〈 · , h〉H
is determined independently of the choice of CONS and is normally dis-
tributed with mean 0 and variance |h|2H .

The following theorems are well known. (See e.g. Kuo [5] for the proofs.)
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Theorem 1.1 (Landau-Shepp-Fernique). Let p be a continuous semi-
norm on B. Then there exists a constant β = βp > 0 such that

∫

B
eβ p(x)2µ(dx) <∞.

Theorem 1.2 (Cameron-Martin). If h ∈ H then µ( · − h) is equivalent
to µ and the Radon-Nikodým derivative is given by

dµ( · − h)

dµ
(x) = exp

{

− 1

2
|h|2H + 〈x, h〉H

}

, x ∈ B.

The following is due to Ito and Nisio [4]

Theorem 1.3. limn→∞ |P̃nx− x|B = 0 for µ-a.e.x ∈ B.

1.2 B-valued abstract Wiener space

Let W = {w ∈ C([0, T ] → B);w0 = 0}. Then W is a separable real
Banach space with norm ‖w‖W = sup0≤t≤T |wt|B . Let B(B) be the Borel
σ-algebra on B. Let µt (t ≥ 0) be the image measure of µ induced by the
map x 7→

√
tx, and set Pt(x,A) := µt(A − x) for x ∈ B, A ∈ B(B). Then,

there exists a unique probability measure P on W such that

P (Wt0 ∈ dy0, . . . ,Wtn ∈ dyn) = δ0(dy0)

n∏

i=1

Pti−ti−1(yi−1, dyi),

for 0 = t0 < t1 < · · · < tn where Wt(w) = wt, w ∈ W. We call W =
{Wt}t≥0 B-valued Wiener process and P Wiener measure on W. We often
write as Wt(h) = 〈Wt, h〉H for h ∈ H. Then Wt(h)/|h|H is a 1-dimensional
{Ft}-Wiener process with Ft = σ{ws; 0 ≤ s ≤ t}.

Let H be a subspace of W consisting of h for which h(t) is absolutely

continuous in t ∈ [0, T ] and
∫ T
0 |ḣ(t)|2Hdt < ∞. Then H is a separable

Hilbert space with norm ‖h‖H = {
∫ T
0 |ḣ(t)|2Hdt}1/2. The triple (W,H, P ) is

also an abstract Wiener space and called B-valued abstract Wiener space.

1.3 Sobolev spaces

Let K be a separable real Hilbert space. Let {Tt}t≥0 be the Ornstein-
Uhlenbeck semigroup, i.e.,

TtF (w) =

∫

W

F (e−tw +
√

1 − e−2tz)P (dz)

for t ≥ 0 and F ∈ L1(W;K). Let L be the infinitesimal generator of
{Tt}t≥0. For p ∈ (1,∞) and s ∈ R, W s,p(K) denote the completion of
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P(K)(the space of K-valued polynomials, see e.g. Watanabe [12]) by the
norm ‖F‖s,p = ‖(I−L)s/2F‖p and is called the Sobolev space. Let us denote

W∞(K) =
⋂

p∈(1,∞)

⋂

s∈R

W s,p(K).

The H-derivative D is defined as a linear operator from P(K) to P(H⊗K)
such that

d

dt
F (w + th)

∣
∣
∣
t=0

= DF (w)[h], ∀w ∈ W, ∀h ∈ H

for F ∈ P(K). More precisely, for F (w) = f(h1(w), . . . ,hn(w))k ∈ P(K)
where f is a polynomial, k ∈ K and {hi} ⊂ W∗ is ONS in H, DF is given
by

DF (w) =

n∑

i=1

∂if(h1(w), . . . ,hn(w))hi ⊗ k

(cf. Shigekawa [9], Watanabe [12]). The following is due to Meyer [8].

Theorem 1.4. For every k ∈ N and p ∈ (1,∞), there exist constants 0 <
ck,p, Ck,p <∞ such that

ck,p‖DkF‖p ≤ ‖F‖k,p ≤ Ck,p

k∑

l=0

‖DlF‖p

for all F ∈ P(K).

By virtue of this theorem, the operator D : P(K) → P(H ⊗ K) is
extended as a continuous operator from W r+1,p(K) to W r,p(H ⊗ K) for
every p ∈ (1,∞) and r ∈ R (cf. Sugita [11]).

1.4 Stochastic integrals

Let E,F be Banach spaces. L(E;F ) denotes the Banach space consisting of
bounded linear operators from E to F . For separable Hilbert spaces E,F ,
Lk

(2)(E;F ) denotes the Hilbert space consisting of Hilbert-Schmidt multi-

linear operators from E × · · · × E
︸ ︷︷ ︸

k

to F . We denote L1
(2)(E;F ) simply by

L(2)(E;F ) and often identify L(2)(E;F ) with E ⊗ F .
Let K be a real separable Hilbert space. Lp

2(H ⊗K), p ∈ (1,∞) denotes
the collection of (Ft)-adapted H ⊗K-valued processes Φ such that

E
[{ ∫ T

0
|Φt|2H⊗Kdt

}p/2]

<∞.
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For Φ ∈ Lp
2(H ⊗ K), we can define the stochastic integral

∫ t
0 ΦsdWs with

respect to the Wiener process Wt as an element of Lp(W;K). In the case
where K = R, we often denote

∫ t
0 ΦsdWs by

∫ t
0 〈Φs, dWs〉H . Lp

1(K), p ∈
(1,∞), denotes the collection of (Ft)-adapted K-valued processes φ such
that

∫ T

0
E[|φt|pK ]1/pdt <∞.

For φ ∈ Lp
1(K) we can define

∫ T
0 φtdt as an element of Lp(W;K).

The following Burkholder’s inequality for Hilbert space valued stochastic
integrals will be used throughout the next section (see Kusuoka-Stroock [7]
for the proof).

Theorem 1.5. Let K be a separable real Hilbert space. Then for all p ∈
(1,∞), there exists a constant cp <∞ depending only on p such that

E
[

sup
0≤s≤t

∣
∣
∣

∫ s

0
ΦrdWr

∣
∣
∣

p

K

]1/p
≤ cpE

[{∫ t

0
|Φs|2H⊗Kds

}p/2]1/p

for all Φ ∈ Lp
2(H ⊗K).

Ln,p
2 (H ⊗K), n ∈ N, p ∈ (1,∞), denotes the collection of H ⊗K-valued

(Ft)-adapted processes Φ such that Φt ∈W n,p(H⊗K) for each t ∈ [0, T ] and
DkΦt ∈ Lp

2(L
k
(2)(H;H ⊗K)) for each k = 0, 1, . . . , n. Ln,p

1 (K) denotes the

collection of K-valued (Ft)-adapted processes A such that At ∈ W n,p(K)
for each t ∈ [0, T ] and DkAt ∈ Lp

1(L
k
(2)(H;K)) for each k = 0, 1, . . . , n.

The following is well known in the finite dimensional setting (cf. Kusuoka-
Stroock [6]). We can easily show that the same argument works in infinite
dimensional cases.

Proposition 1.6. Let p ∈ (1,∞) and n ∈ Z+. Let Φ ∈ Ln,p
2 (H ⊗K) and

φ ∈ Ln,p
1 (K). Then

Ψt =

∫ t

0
ΦsdWs +

∫ t

0
φsds

is an element of W n,p(K) for each t ∈ [0, T ] and

E
[

sup
0≤t≤T

|DkΨt|pLk
(2)

(H;K)

]

<∞

for k = 0, 1, . . . , n. Moreover, DΨt is given by

DΨt[h] =

∫ t

0
DΦs[h]dWs +

∫ t

0
〈Φs, ḣ(s)〉Hds+

∫ t

0
Dφs[h]ds

for h ∈ H.
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2 Stochastic differential equations

2.1 Existence and uniqueness theorem

Given two Borel functions A : B → H ⊗ H, b : B → H. We consider the
following stochastic differential equation for a B-valued process {Xt}0≤t≤T :

dXt = dWt +A(Xt)dWt + b(Xt)dt, 0 ≤ t ≤ T,

X0 = 0.
(2.1)

Definition 2.1. We say that an (Ft)-adapted B-valued stochastic process
{Xt}0≤t≤T is a solution of the SDE (2.1), if A(Xt) ∈ Lp

2(H ⊗ H), b(Xt) ∈
Lp

1(H) for each t ∈ [0, T ] and

Xt = Wt +

∫ t

0
A(Xs)dWs +

∫ t

0
b(Xs)ds, 0 ≤ t ≤ T, a.s.

First we will show the existence and uniqueness of the solutions of (2.1).

Theorem 2.2. Let p ∈ [2,∞). Assume that A and b are H-Lipschitz func-
tions, that is, for some constant K > 0,

|A(x+ h) −A(x)|H⊗H + |b(x+ h) − b(x)|H ≤ K|h|H
for every x ∈ B and h ∈ H. Also assume that A(W· ) ∈ Lp

2(H ⊗ H) and
b(W· ) ∈ Lp

1(H). Then, there exists a unique H-valued process Y such that

E
[

sup
0≤t≤T

|Yt|pH
]

<∞ and X := W + Y is a solution to the SDE (2.1).

Proof. As in finite dimensions, we apply the method of successive approxi-
mation. Set Y 0

t = 0 and define Y n
t inductively by

Y n
t =

∫ t

0
A(Ws + Y n−1

s )dWs +

∫ t

0
b(Ws + Y n−1

s )ds,

for n = 1, 2, · · · . By Burkholder’s inequality, we can see that Y n (n =
0, 1, · · · ) are well-defined as elements of Lp(W;H) and that there exists a
constant C1 > 0 depending only on p, T and K such that

E
[

sup
0≤s≤t

|Y n+1
s − Y n

s |pH
]1/p

≤
{

C1

∫ t

0
E

[
|Y n

s − Y n−1
s |pH

]
ds

}1/p

for n = 1, 2, . . . . Thus we have

E
[

sup
0≤s≤t

|Y n+1
s − Y n

s |pH
]

≤ C2
(C1t)

n

n!
(2.2)

where C2 = E
[

sup
0≤s≤t

|Y 1
s − Y 0

s |pH
]

< ∞. This concludes that {Y n
· } is a

Cauchy sequence in Lp(W;C([0, T ];H)) and hence there exists an H-valued
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continuous process Y· such that sup0≤t≤T |Yt−Y n
t |H −→ 0 in Lp and it holds

that

Yt =

∫ t

0
A(Ws + Ys)dWs +

∫ t

0
b(Ws + Ys)ds, 0 ≤ t ≤ T a.s.

Setting Xt = Wt + Yt, we have

Xt = Wt +

∫ t

0
A(Xs)dWs +

∫ t

0
b(Xs)ds, 0 ≤ t ≤ T a.s.

It remains to show the uniqueness. Let Y and Y ′ have the desired
properties. Let

τN = inf{t ≥ 0; |Yt| ∨ |Y ′
t | ≥ N} (inf ∅ = ∞), N ∈ N.

Then using Burkholder’s inequality again, we have

E[|Yt∧τN
− Y ′

t∧τN
|pH ] ≤

{

C1

∫ t

0
E[|Ys∧τN

− Y ′
s∧τN

|pH ]ds
}

.

By Gronwall’s lemma we have E[|Yt∧τN
− Y ′

t∧τN
|pH ] = 0, t ∈ [0, T ], and

hence P (Yt∧τN
= Y ′

t∧τN
, 0 ≤ t ≤ T ) = 1. Since limN→∞ τN = ∞, we have

P (Yt = Y ′
t , 0 ≤ t ≤ T ) = 1.

2.2 The smoothness of solutions

Definition 2.3. Given a separable real Hilbert space K, we say that a
map f : B → K is continuously H-Fréchet differentiable if there exists a
continuous map f (1) : B → L(2)(H;K) such that

lim
|h|H→0

|f(x+ h) − f(x) − f (1)(x)h|K
|h|H

= 0

for each x ∈ B. For n = 2, 3, . . . , we say that f : B → K is n-times
continuously H-Fréchet differentiable if f is continuously H-Fréchet differ-
entiable and f (1) : B → L(2)(H;K) is (n− 1)-times continuously H-Fréchet

differentiable. We write f (n) = (f (1))(n−1), n = 2, 3, . . . , and may regard
f (n) as a map from B to Ln

(2)(H;K). We denote by CH∞
b (K) the collec-

tion of infinitely many times continuously H-Fréchet differentiable function
f : B → K such that supx∈B |f (n)(x)|Ln

(2)
(H;K) <∞ for all n ∈ Z+.

Lemma 2.4. Let f ∈ CH∞
b (K). Let F ∈W∞(H) and Gt = Wt +F . Then

f(Gt) ∈W∞(K) and

‖Dkf(Gt)‖p ≤
k∑

j=1

1

j!

∑

m1+···+mj=k,

1≤mi≤k, i=1,... ,j

k!

m1! · · ·mj!

× sup
x∈B

|f (j)(x)|
Lj

(2)
(H;K)

j
∏

i=1

(
√
t+ ‖DmiF‖jp)

(2.3)
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for each t ∈ [0, T ], k ∈ Z+ and p ∈ (1,∞).

Proof. It is easy to see that f(P̃NGt) ∈ W∞(K) for all N ∈ N. Given
k ∈ Z+, p ∈ (1,∞), we have by the chain rule

Dkf(P̃NGt) =
k∑

j=1

1

j!

∑

m1+···+mj=k,

1≤mi≤k, i=1,... ,j

1

m1! · · ·mj !

×
∑

τ∈Sk

[

f (j)(P̃NGt)
(

Dm1(P̃NGt), . . . ,D
mj (P̃NGt)

)

Hj

]

τ

.

(2.4)

where

f (j)(P̃NGt)
(

Dm1(P̃NGt), . . . ,D
mj (P̃NGt)

)

Hj
[h1, . . . ,hk]

= f (j)(P̃NGt)
(

Dm1(P̃NGt)[h1, . . . ,hm1 ], . . .

,Dmj (P̃NGt)[hm1+···+mj−1+1, . . . ,hk]
)

Hj

for h1, . . . ,hk ∈ H, Sk denotes the symmetric group and [Ψ]τ means that

[Ψ]τ (h1, . . . ,hk) = Ψ(hτ(1), . . . ,hτ(k))

for a map Ψ on Hk and τ ∈ Sk. But since |D(P̃NGt)|L(H;H) ≤
√
t +

|DF |L(2)(H;H) and |Dm(P̃NGt)|Lm
(2)

(H;H) ≤ |DmF |Lm
(2)

(H;H), m ≥ 2 for all

N ∈ Z+, we have

sup
N

‖Dkf(P̃NGt)‖p ≤
k∑

j=1

1

j!

∑

m1+···+mj=k,

1≤mi≤k, i=1,... ,j

k!

m1! · · ·mj!

× sup
x∈B

|f (j)(x)|
Lj

(2)
(H;K)

j
∏

i=1

(
√
t+ ‖DmiF‖jp) <∞.

(2.5)

Since W k,p(K) is reflexive, (2.5) implies that there exist f̂ ∈ W k,p(K) and
a subsequence Nj such that f(P̃Nj

Gt) converges to f̂ weakly in W k,p(K) as

j → ∞. But by the continuity of f , we have limN→∞ ‖f(Gt)−f(P̃NGt)‖p =

0 and hence f(Gt) = f̂ . (2.3) follows from (2.5).

Recall that in the proof of Theorem 2.2 we define {Y n} by

Y 0
t = 0,

Y n
t =

∫ t

0
A(Ws + Y n−1

s )dWs +

∫ t

0
b(Ws + Y n−1

s )ds, n = 1, 2, . . .

8



Lemma 2.5. Let A ∈ CH∞
b (H ⊗ H), b ∈ CH∞

b (H). Then Y n
t ∈ W∞(H)

for all n ∈ Z+, t ∈ [0, T ] and

E
[

sup
0≤t≤T

|DkY n
t |p

Lk
(2)

(H;H)

]

<∞

for all k ∈ Z+, p ∈ (1,∞).

Proof. We use induction in n. If n = 0, the claim is trivial. Assume that
Y n

t ∈W∞(H) for each t ∈ [0, T ] and

E
[

sup
0≤t≤T

|DkY n
t |p

Lk
(2)

(H;H)

]

<∞

for all k ∈ Z+ and p ∈ (1,∞). Then, by Lemma 2.4, we have A(W· + Y n
· ) ∈

Lk,p
2 (H ⊗H) and b(W· + Y n

· ) ∈ Lk,p
1 (dt;H). Hence, by Proposition 1.6 we

have Y n+1
t ∈W∞(H) for each t ∈ [0, T ] and

E
[

sup
0≤t≤T

|DkY n+1
t |p

Lk
(2)

(H;H)

]

<∞.

for all k ∈ Z+, p ∈ (1,∞). This completes the induction.

Proposition 2.6. Let A ∈ CH∞
b (H ⊗ H), b ∈ CH∞

b (H). Then, for each
k ∈ Z+ and p ∈ [2,∞), there exists a constant M = Mk,p > 0 such that

sup
n

∥
∥
∥ sup

0≤s≤t
|DkY n

s |Lk
(2)

(H;H)

∥
∥
∥

p
≤ eMt.

Proof. We use induction in k!%For k = 0, (2.2) implies our assertion. Assume
that for each l = 0, . . . , k and p ∈ [2,∞) there exists a constant Ml,p such
that

sup
n

∥
∥
∥ sup

0≤s≤t
|DlY n

s |Ll
(2)

(H;H)

∥
∥
∥

p
≤ eMl,pt.

We shall show that for given p ∈ [2,∞), there exists a constant M = Mk+1,p

such that
∥
∥
∥ sup

0≤s≤t
|Dk+1Y n

s |Lk+1
(2)

(H;H)

∥
∥
∥

p
≤ eMt

for every n ∈ Z+ by using induction in n. It is clear for n = 0. Assume that
the claim holds for n and we show that for n + 1. By Proposition 1.6 and
Burkholder’s inequality, we have
∥
∥
∥ sup

0≤s≤t
|Dk+1Y n+1

s |Lk+1
(2)

(H;H)

∥
∥
∥

p

≤ cp

{ ∫ t

0
‖Dk+1A(Xn

s )‖2
pds

}1/2
+ (k + 1)

{ ∫ t

0
‖DkA(Xn

s )‖2
pds

}1/2

+

∫ t

0
‖Dk+1b(Xn

s )‖pds.

(2.6)
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But Lemma 2.4 and the induction hypothesis imply that

‖Dk+1A(Xn
s )‖p

≤
k+1∑

j=1

1

j!

∑

m1+···+mj=k+1,

1≤mi≤k+1, i=1,... ,j

(k + 1)!

m1! · · ·mj!
‖A(j)‖∞

j
∏

i=1

(
√
s+ ‖DmiY n

s ‖jp)

≤
k+1∑

j=2

1

j!

∑

m1+···+mj=k+1,

1≤mi≤k+1, i=1,... ,j

(k + 1)!

m1! · · ·mj!
‖A(j)‖∞

j
∏

i=1

(es/4 + eMmi,(k+1)ps)

+2‖A(1)‖∞eMs

≤ (Ck + 2‖A(1)‖∞)eMs

where ‖A(j)‖∞ = supx∈B |A(j)(x)|
Lj

(2)
(H;H⊗H)

,

Ck =

k+1∑

j=1

1

j!

∑

m1+···+mj=k+1,

1≤mi≤k+1, i=1,... ,j

(k + 1)!

m1! · · ·mj!
‖A(j)‖∞2j

and M = Mk+1,p is taken such that M > (k+1)
(1

4
∨ max

1≤l≤k
Ml,(k+1)p

)

. Hence

we have

cp

{∫ t

0
‖Dk+1A(Xn

s )‖2
pds

}1/2
≤ 1

3
eMt. (2.7)

replacing M by larger one if necessary. By a similar way, we can show that

(k + 1)
{ ∫ t

0
‖DkA(Xn

s )‖2
pds

}1/2
≤ 1

3
eMt (2.8)

and that

∫ t

0
‖Dk+1b(Xn

s )‖pds ≤
1

3
eMt (2.9)

replacing M by larger one if necessary.
Combining (2.6), (2.7), (2.8) and (2.9), we have

∥
∥
∥ sup

0≤s≤t
|Dk+1Y n+1

s |Lk+1
(2)

(H;H)

∥
∥
∥

p
≤ eMt.

This completes the proof.

Let X be a solution to SDE (2.1) and Yt = Xt −Wt. Proposition 2.6
implies immediately the following:
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Theorem 2.7. Let A ∈ CH∞
b (H ⊗ H), b ∈ CH∞

b (H). For every k ∈ Z+

and p ∈ (1,∞), Y· ∈ Lk,p
2 (H) and there exists a constant M = Mk,p > 0

such that
∥
∥
∥ sup

0≤s≤t
|DkYs|Lk

(2)
(H;H)

∥
∥
∥

p
≤ eMt,

for any t ∈ [0, T ].

3 Modified Malliavin covariance operators

We denote by GL(H) the collection of bounded linear operators on H with
their inverse in L(H;H).

Theorem 3.1. Assume that IH + σ(w) ∈ GL(H) for P -a.e.w and

E[|(IH + σ)−1|pL(H;H)] <∞

for all p ∈ (1,∞). If σ ∈ W∞(H ⊗ H), then γ := (IH + σ)−1 − IH ∈
W∞(H ⊗H).

To prove this theorem, we make some preparations. Let φ̃ and ψ̃ be
smooth functions R → [0, 1] which satisfy

φ̃(x) =

{
1 if |x| ≤ 1
0 if |x| ≥ 2

, ψ̃(x) =

{
1 if |x| ≥ 1
0 if |x| ≤ 1

2

Then, we define smooth functions φn : H ⊗H → R, ψm : H ⊗H → R by

φn(A) = φ̃
( 1

n
|A|2H⊗H

)

, ψm(A) = ψ̃
(

m∆2(A)
)

,

where ∆2(A) = det2(IH + A) (see Dunford-Schwartz [2] Chapter XI.9 for
the definition). Using these functions, we define Fn,m : H ⊗H → H ⊗H by

Fn,m(A) =

{
φn(A)ψm(A)((IH +A)−1 − IH), if IH +A ∈ GL(H)

0, otherwise
.

We first show that this Fn,m is smooth and its Fréchet derivatives are
bounded.

Lemma 3.2. If |∆2(A)| > 0, then IH + A ∈ GL(H). Moreover, there is a
constant C > 0 such that

|(IH +A)−1|L(H;H) ≤ exp(1 + C|A|2H⊗H)|∆2(A)|−1

for any A ∈ H ⊗H with |∆2(A)| > 0.
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Proof. Let A ∈ H ⊗H and {λi}i∈N be its eigenvalues. We note that there
exists a constant 0 < C ′ < ∞ such that |(1 + z)e−z | ≤ eC

′|z|2 for every
z ∈ C. Then, for any i,

|∆2(A)| =

∞∏

j=1

|(1 + λj)e
−λj |

= |(1 + λi)e
−λi

∏

j 6=i

|(1 + λj)e
−λj |

≤ |1 + λi|e|λi|
∏

j 6=i

eC
′|λj |2

≤ |1 + λi|e1+|λi|2eC
′|A|2

≤ |1 + λi|e1+(1+C′)|A|2 .

Hence

|(IH +A)−1|L(H;H) ≤ sup
i

|1 + λi|−1 ≤ e1+(1+C′)|A|2 |∆2(A)|−1.

Lemma 3.3. For every m ∈ N, ψm is Fréchet differentiable and

|ψ′
m(A)|L(H⊗H;R) ≤ sup

x∈R

|ψ̃′(x)||(IH +A)−1|L(H;H)|A|H⊗H ,

if IH +A ∈ GL(H).

Proof. By virtue of Dunford-Schwartz [2], ∆2 : H ⊗ H → R is Fréchet
differentiable and

∆′
2(A)[B] = ∆2(A)tr{−(IH +A)−1AB}

for A, B ∈ H ⊗H. Hence

|∆′
2(A)|L(H⊗H;R) ≤ |∆2(A)||(IH +A)−1|L(H;H)|A|H⊗H .

Noting that ψ′
m(A) vanishes if ∆2(A) > 1/m, we have

|ψ′
m(A)|L(H⊗H;R) ≤ m sup

x∈R

|ψ̃′(x)||∆′
2(A)|L(H⊗H;R)

≤ sup
x∈R

|ψ̃′(x)||(IH +A)−1|L(H;H)|A|H⊗H .

Lemma 3.4. For every m, n ∈ N, Fm,n is Fréchet differentiable and

sup
A∈H⊗H

|F ′
m,n(A)|L(H⊗H;H⊗H) <∞.
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Proof. Note that Fm,n(A) vanishes if |∆2(A)| < 1/2m or |A|2H⊗H > 2n. By
Lemma 3.2, if |∆2(A)| ≥ 1/2m and |A|2H⊗H ≤ 2n, then

|(IH +A)−1|L(H;H) ≤ e1+C|A|2 |∆2(A)|−1 ≤ 2me1+2Cn. (3.1)

Moreover, it is easy to see that

|φ′n(A)|L(H⊗H;R) ≤
2√
n

sup
x∈R

|φ̃′(x)|. (3.2)

Combining (3.1), (3.2) and Lemma 3.3, we have the conclusion.

Now, let us prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.4, we can see Fm,n(σ) ∈ W 1,p(H ⊗H)
for all p ∈ (1,∞) and

DFm,n(σ) = ψ′
m(σ)[Dσ]φn(σ)γ + ψm(σ)φ′n(σ)[Dσ]γ

+ ψm(σ)φn(σ){(IH + γ)Dσ(IH + γ)}. (3.3)

By Lemma 3.3, we have

E
[

|ψ′
m(σ)[Dσ]φn(σ)γ|pL(2)(H;H⊗H)

]

≤ E
[

|ψ′
m(σ)|p|Dσ|pL(2)(H;H⊗H)|(IH + σ)−1|pL(H;H)|σ|

p
H⊗H

]

≤ sup
x∈R

|ψ̃′(x)|pE
[

|Dσ|pL(2)(H;H⊗H)|(IH + σ)−1|2p
L(H;H)|σ|

2p
H⊗H , |∆2(σ)| ≤ 1

m

]

(3.4)

Since |∆2(σ)| > 0, a.s., the right-hand side in (3.4) converges to 0 asm→ ∞.
Thus

DFm,n(σ) → φ′n(σ)[Dσ]γ + φn(σ){(IH + γ)Dσ(IH + γ)}

asm→ ∞ in Lp(W;L(2)(H;H⊗H)). Hence, noting that Fm,n(σ) → φn(σ)γ
as m→ ∞ in Lp(W;H ⊗H), we conclude that φn(σ)γ ∈W 1,p(H ⊗H) and

D{φn(σ)γ} = φ′n(σ)[Dσ]γ + φn(σ){(IH + γ)Dσ(IH + γ)}. (3.5)

Moreover, (3.2) implies that the right-hand side in (3.5) converges to (IH +
γ)Dσ(IH + γ) as n → ∞ in Lp(W;L(2)(H;H ⊗ H)). Hence, noting that
φn(σ)γ → γ as n→ ∞ in Lp(W;H ⊗H), we have γ ∈W 1,p(H ⊗H) and

Dγ = (IH + γ)Dσ(IH + γ). (3.6)

Therefore, if we assume γ ∈ W k,p(H ⊗H) for all p ∈ (1,∞), (3.6) implies
that Dγ ∈ W k,p(L(2)(H;H ⊗H)) for all p ∈ (1,∞). We have our theorem
by induction.
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Let X be a solution to SDE (2.1) with A ∈ CH∞
b (H ⊗H), b ∈ CH∞

b (H).
Let Y h

t = 〈Yt, h〉H and Xh
t = 〈Wt, h〉H + Y h

t for h ∈ H. Then we have

(

DXh
t ,DX

g
t

)

H

= t〈h, g〉H +
(

hh
t ,DY

g
t

)

H

+
(

hg
t ,DY

h
t

)

H

+
(

DY h
t ,DY

g
t

)

H

,

where hh
t =

∫ · ∧t
0 hds. It is easy to see that the maps (h, g) 7→ (hh

t ,DY
g
t )H

and (h, g) 7→ (DY h
t ,DY

g
t )H are in L2

(2)(H;R). Hence we can define an

H ⊗H-valued process σ(t) such that

〈(tIH + σ(t))h, g〉H =
(

DXh
t ,DX

g
t

)

H

for h, g ∈ H.
Let J and J̃t be the solutions to the following SDE’s:

Jth =

∫ t

0
A′(Xs)

[

(IH + Js)h
]

H
dWs +

∫ t

0
b′(Xs)

[

(IH + Js)h
]

H
ds, h ∈ H,

(3.7)

J̃th = −
∫ t

0
(IH + J̃s)A

′(Xs)[h]HdWs −
∫ t

0
(IH + J̃s)b

′(Xs)[h]Hds

+

∫ t

0

∞∑

i=1

(IH + J̃s)A
′(Xs)

[

A′(Xs)[h]Hei

]

H
eids, h ∈ H

(3.8)

where {ei}∞i=1 is a CONS in H. By a similar way as in Section 2, we can see
that (3.7) and (3.8) determine the unique solutions, respectively. Moreover,
Jt, J̃t ∈W∞(H ⊗H) for each t ∈ [0, T ] and for any k ∈ Z+ and p ∈ (1,∞),
there exist constants L̃ = L̃k,p, L = Lk,p such that

E
[

sup
0≤t≤T

|DkJt|pH⊗H

]1/p
≤ eLt,

E
[

sup
0≤t≤T

|DkJ̃t|pH⊗H

]1/p
≤ eL̃t.

Proposition 3.5. For each t ∈ [0, T ], (IH + Jt)(IH + J̃t) = (IH + J̃t)(IH +
Jt) = IH and

(IH + J̃t)(tIH + σ(t))(IH + J̃∗
t )

=

∫ t

0
(IH + J̃s)(IH +A(Xs))(IH +A(Xs)

∗)(IH + J̃s
∗
)ds.

(3.9)
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Proof. Using Itô formula, we have (IH +Jt)(IH + J̃t) = (IH + J̃t)(IH +Jt) =
IH and

h(t) +DYt[h] = (IH + Jt)

∫ t

0
(IH + J̃s){IH +A(Xs)}ḣ(s)ds, h ∈ H,

which implies (3.9).

The following theorem is immediately derived from Theorem 3.1 and Propo-
sition 3.9.

Theorem 3.6. Let A ∈ CH∞
b (H ⊗ H) and b ∈ CH∞

b (H). If tIH + σ(t) ∈
GL(H), a.s. and E[|(tIH + σ(t))−1|pL(H;H)] < ∞ for all p ∈ (1,∞) and

t ∈ (0, T ], then

γ(t) = (tIH + σ(t))−1 − t−1IH ∈W∞(H ⊗H)

for all t ∈ (0.T ].

4 Integration by parts formula

Let K be a separable Hilbert space. We denote by FC∞
b (K) the collection

of K-valued functions f on B expressed as

f(x) =

m∑

l=1

f̃l( B〈x, e1〉B∗ , . . . ,B 〈x, en〉B∗) kl, x ∈ B.

where {e1, . . . , en} ⊂ B∗ is an ONS in H, {k1, . . . , km} ⊂ K is an ONS in
K and f̃ ∈ C∞

b (Rn). For f ∈ FC∞
b (K) expressed as above, define

∇f (x) =

n∑

i=1

m∑

l=1

∂if̃l( B〈x, e1〉B∗ , . . . ,B 〈x, en〉B∗) ei ⊗ kl, x ∈ B.

Theorem 4.1. Let A ∈ CH∞
b (H ⊗ H) and b ∈ CH∞

b (H). Assume that
tIH + σ(t) ∈ GL(H), a.s. and E[|(tIH + σ(t))−1|pL(H;H)] < ∞ for all p ∈
(1,∞) and t ∈ (0, T ]. Then, for every G ∈ W∞(H ⊗ K) and t ∈ (0, T ],
there exists ρt ∈W∞(K) such that

E[〈∇u(Xt), G〉H⊗K ] = E[〈u(Xt), ρt〉K ]

for every u ∈ FC∞
b (K). In fact, ρt is given by

ρt = D∗
{

G(t−1IH + γ(t))(Zt +DYt)
}

where Zt is a bounded linear operator H → H defined by Zt(h) = h(t), we
identify H ⊗ K with L(2)(H;K) and regard G(t−1IH + γ(t))(Zt + DYt) ∈
L(2)(H;K) as an element of H ⊗K.
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Moreover, for each k ∈ Z+ and p ∈ (1,∞), there exists a constant
C <∞ depending only k, p and T such that

‖ρt‖k,p ≤ Ct−1‖G‖k+1,3p(1 + ‖γ(t)‖k+1,3p)

for all t ∈ (0, T ].

Proof. Let u ∈ FC∞
b (K) be given by

u(x) =

m∑

l=1

ũl( B〈x, e1〉B∗ , . . . , B〈x, en〉B∗)kl

where {ei}n
i=1 ⊂ B∗ and {kl}m

l=1 are ONS’s in H and K, respectively. Let

W j
t = 〈Wt, ej〉H and Y j

t = 〈Yt, ej〉H . Then

(

D〈u(Xt), kl〉K ,DW j
t +DY j

t

)

H

=

n∑

i=1

∂iũl(X
1
t , . . . ,X

n
t )〈(tIH + σ(t))ei, ej〉H

and hence
(

D〈u(Xt), k〉K , 〈Zt +DYt, h〉H
)

H

=
〈

(tIH + σ(t))∇〈u(Xt), k〉K , h
〉

H

for all h ∈ H and k ∈ K. This implies

〈∇u(Xt), G〉H⊗K =
(

D{u(Xt)},G(t−1IH + γ(t))(Zt +DYt)
)

H⊗K
.

Hence

E
[

〈∇u(Xt), G〉H⊗K

]

= E

[(

Du(Xt), G(t−1IH + γ(t))(Zt +DYt)
)

H⊗K

]

= E

[〈

u(Xt),D
∗
{

G(t−1IH + γ(t))(Zt +DYt)
}〉

K

]

.

The last inequality is derived from Theorem 2.7 and Theorem 3.6.

5 The absolute continuity of a measure induced

by SDE

Throughout this section, we assume that A ∈ CH∞
b (H ⊗H), b ∈ CH∞

b (H)
and that tIH + σ(t) ∈ GL(H) a.s., E[|(tIH + σ(t))−1|pL(H;H)] < ∞ for all

p ∈ (1,∞) and t ∈ (0, T ].
Let Ptf(x) = E[f(x+Wt)] for f ∈ FC∞

b ≡ FC∞
b (R), x ∈ B.
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Lemma 5.1. Let 1 < p′ < p < ∞ and 0 ≤ t < T . Then there exist
constants c1, c2 > 0 such that

E[PT−t(|f |p
′
)1/p′(Xt)] ≤ exp

(

c1
r

T − t

)

PT (|f |p)1/p(0) + c2
‖f‖∞
r2

for all r > 0 and f ∈ FC∞
b . Here c1 =

1

2(p− p′)
and c2 = E[sup0≤t≤T |Yt|4].

Proof. By Theorem 1.2, we have

Ptf(x+ h) = E[f(x+ h+Wt)]

= E
[

f(x+Wt) exp
{〈Wt, h〉H − 1

2 |h|2H
t

}]

.

for all h ∈ H, x ∈ B and f ∈ FC∞
b . Let p ∈ (1,∞), 1/p + 1/q = 1. Using

Hölder’s inequality, we have

|Ptf(x+ h)| ≤ e−
1
2t
|h|2

HE
[

|f(x+Wt)|p
]1/p

E
[

exp
{〈Wt, h〉H

t
q
}]1/q

= e−
1
2t
|h|2

HPt(|f |p)1/p(x)E
[

exp
{〈W1, h〉H√

t
q
}]1/q

= e
1

2t(p−1)
|h|2

HPt(|f |p)1/p(x).

Hence we have

E
[

PT−t(|f |p
′
)1/p′(Xt)

]

≤ E
[

PT−t(|f |p
′
)1/p′(Wt + Yt); |Yt|H ≤ √

r
]

+‖f‖∞P
(

|Yt|H ≥ √
r
)

≤ E
[

sup
|h|H≤√

r

PT−t(|f |p
′
)1/p′(Wt + h)

]

+
‖f‖∞
r2

E
[

sup
0≤t≤T

|Yt|4H
]

≤ exp
( r

2(T − t)(p− p′)

)

E
[

PT−t(|f |p)1/p(Wt)
]

+ c2
‖f‖∞
r2

= exp
(

c1
r

T − t

)

PT (|f |p)1/p(0) + c2
‖f‖∞
r2

.

Lemma 5.2. Let p ∈ (1,∞) and aij ∈ R, i, j = 1, . . . , n, with aij = aji.
Then

{ ∫

Rn

( n∑

i,j=1

aij(ηiηj − δij)
)p 1

(2π)n/2
e−|η|2/2dη

}1/p

≤
√

2(p− 1)
( n∑

i,j=1

a2
ij

)1/2
(5.1)
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Proof. Let {e1, e2, . . . , en} ⊂ B∗ be an ONS in H and define Fij(x) =
〈x, ei〉〈x, ej〉 − δij , x ∈ B. Then Fij ’s are Fourier-Hermitian functionals.
Hence using hyper-contractivity property of the Ornstein-Uhlenbeck semi-
group, we have

{ ∫

Rn

( n∑

i,j=1

aij(ηiηj − δij)
)p 1

(2π)n/2
e−|η|2/2dη

}1/p

=
∥
∥
∥

n∑

i,j=1

aijFij

∥
∥
∥

Lp(B;R,dµ)

≤ (p− 1)
∥
∥
∥

n∑

i,j=1

aijFij

∥
∥
∥

L2(B;R,dµ)

= (p− 1)
(

2

n∑

i=1

a2
ii + 4

∑

i<j

a2
ij

)1/2

=
√

2(p− 1)
( n∑

i,j=1

a2
ij

)1/2
.

Theorem 5.3. Let νT = P ◦X−1
T be the distribution of XT . For p ∈ (1,∞),

there exists a constant C > 0 depending only p and T such that

∣
∣
∣

∫

B
f(x)νT (dx)

∣
∣
∣ ≤ CeC/ε2

{ ∫

B
|f(x)|pµT (dx)

}1/p
+ ε‖f‖∞

for every bounded Borel function f : B → R and ε ∈ (0, 1).

Proof. It suffices to show for f ∈ FC∞
b . In fact, for every n ∈ N and

bounded Borel function f , we can find a compact set K ⊂ B and fn ∈ FC∞
b

such that νT (B\K) + µT (B\K) ≤ 1/n, maxx∈K |f(x) − fn(x)| ≤ 1/n and
‖fn‖∞ ≤ ‖f‖∞ + 1/n. Then, we have

∫

B
|f − fn|dνT −→ 0,

∫

B
|f − fn|pdµT −→ 0

as n→ ∞. Hence if the assertion for fn holds, then so does for f .
Given

f(x) = f̃(B〈x, e1〉B∗ , . . . ,B 〈x, en〉B∗), x ∈ B

for some f̃ ∈ C∞
b and an ONS {e1, e2, . . . en} in H. Let u(x, t) = Ptf(x).

Then, since ∂
∂tu(t, x) = 1

24u(t, x), Ito’s formula implies

u(T − t,Xt) =

∫ t

0

〈

{IH +A(Xs)
∗}∇u(T − s,Xt), dWs

〉

H
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+

∫ t

0

〈

∇u(T − s,Xs), b(Xs)
〉

H
ds

+

∫ t

0

〈

∇2u(T − s,Xs), Ã(Xs)
〉

H⊗H
ds,

where Ã(x) =
1

2
{A(x) +A(x)∗ +A(x)A(x)∗}. So we have

E[f(XT )] = E[u(0,XT )]

= u(T, 0)

+ E
[ ∫ T

0

〈

∇u(T − t,Xt), b(Xt)
〉

H
dt

]

+ E
[ ∫ T

0

〈

∇2u(T − t,Xt), Ã(Xt)
〉

H⊗H
dt

]

.

(5.2)

First, we show that there exists a constant 0 < c3 < ∞ depending only
on p and T such that

∣
∣
∣
∣
E

[ ∫ T

0

〈

∇2u(T − t,Xt), Ã(Xt)
〉

H⊗H
dt

]
∣
∣
∣
∣

≤ c3e
c3r2

PT (|f |p)1/p(0) +
c3
r
‖f‖∞

(5.3)

for all r ≥ 2
T ∨ 1. Let

γn
t (dξ) =

1

(2πt)n/2
e

|ξ|2

2t dξ, ξ ∈ Rn,

and X
(n)
t = (B〈Xt, e1〉B∗ , . . . ,B 〈Xt, en〉B∗). Then we have

〈

∇2u(T − t,Xt), Ã(Xt)
〉

H⊗H

=

∫

Rn

f̃(X
(n)
t + η)

n∑

i,j=1

〈Ã(Xt)ei, ej〉H
ηiηj − δij(T − t)

(T − t)2
γn

T−t(dη).
(5.4)

Let p′ = (1+p)/2 and
1

p′
+

1

q′
= 1. By (5.4), Hölder’s inequality and Lemma

5.2,
∣
∣
∣

〈

∇2u(T − t,Xt), Ã(Xt)
〉

H⊗H

∣
∣
∣

≤
{ ∫

Rn

f̃(X
(n)
t + η)p

′
γn

T−t(dη)
}1/p′

×
{ ∫

Rn

( n∑

i,j=1

〈Ã(Xt)ei, ej〉H
ηiηj − δij(T − t)

(T − t)2

)q′

γn
T−t(dη)

}1/q′

≤ CpPT−t(|f |p
′
)1/p′(Xt)

1

T − t
‖Ã‖∞
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where Cp =
√

2(q′− 1) > 0 and ‖Ã‖∞ = supx∈B |Ã|H⊗H . Hence, by Lemma
5.1, we have

∫ T− 1
r

0
E

[∣
∣
∣

〈

∇2u(T − t,Xt), Ã(Xt)
〉

H⊗H

∣
∣
∣

]

dt

≤ Cp

∫ T− 1
r

0
E

[

PT−t(|f |p
′
)1/p′(Xt)

] 1

T − t
‖Ã‖∞dt

≤ Cp

∫ T− 1
r

0

{

ec1
r

T−tPT (|f |p)1/p(0) +
c2
r2

‖f‖∞
} 1

T − t
‖Ã‖∞dt

≤ Cp‖Ã‖∞PT (|f |p)1/p(0)

∫ T− 1
r

0

1

T − t
ec1

r
T−t dt

+ Cp‖Ã‖∞
c2
r2

∫ T− 1
r

0

1

T − t
dt‖f‖∞

≤ Cp‖Ã‖∞
T

c1
ec1r2

PT (|f |p)1/p(0)

+ Cp‖Ã‖∞
c2
r2

(log T + log r)‖f‖∞

≤ c3e
c1r2

PT (|f |p)1/p(0) +
c̃3
r
‖f‖∞

(5.5)

On the other hand, by Theorem 4.1, there exist ρt ∈ L2(W;R, dP ) such
that
∣
∣
∣
∣
E

[〈

∇2u(T − t,Xt), Ã(Xt)
〉

H

]
∣
∣
∣
∣

=

∣
∣
∣
∣
E

[

ρtu(T − t,Xt)
]
∣
∣
∣
∣
≤ ‖ρt‖L2(W;R,dP )‖f‖∞.

Hence we have
∣
∣
∣
∣

∫ T

T− 1
r

E
[〈

∇2u(T − t,Xt), Ã(Xt)
〉

H

]

dt

∣
∣
∣
∣
≤ 1

r
sup

T/2≤t≤T
‖ρt‖L2(W;R,dP )‖f‖∞,

(5.6)

if r ≥ 2/T . Thus (5.5) and (5.6) imply (5.3).
Similarly, we can show that

∣
∣
∣
∣
E

[ ∫ T

0

〈

∇u(T − t,Xt), b(Xt)
〉

H
dt

]
∣
∣
∣
∣

≤ c4e
c4r2

PT (|f |p)1/p(0) +
c4
r
‖f‖∞

(5.7)

for all r ≥ 2
T ∨ 1 for some constants c4 > 0 depending only on p and T .

Therefore, by (5.2), (5.3) and (5.7), we conclude that there exists a
constant C̃ > 0 depending only on p and T such that

∣
∣
∣E[f(XT )]

∣
∣
∣ ≤ C̃eC̃r2

PT (|f |p)1/p(0) +
C̃

r
‖f‖∞
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for all r ≥ 2
T ∨ 1. For given ε ∈ (0, 1), letting r =

1

ε

( 2

T
∨ 1

)

, we have the

theorem.

Theorem 1 . Let νT = P◦X−1
T be the distribution of XT . Then, νT is abso-

lutely continuous with respect to µT . Moreover, its Radon-Nikodým density
ρT (x) with respect to µT satisfies

∫

B
ρT (x)(log ρT (x) ∨ 1)αµT (dx) <∞

for 0 ≤ α < 1/2.

Proof. Let A ∈ B(B). By Theorem 5.3, for every ε > 0 there exists a
constant C = Cp,ε <∞ such that

νT (A) ≤ CµT (A)1/p + ε.

Hence µT (A) = 0 implies νT (A) = 0.

Moreover, applying Theorem 5.3 to
ρT ∧ ξ
ξ

, we have

νT (ρT ≥ ξ) ≤
∫

B

{ρT (x) ∧ ξ
ξ

}1/2
νT (dx)

≤ CeC/ε2
{∫

B

ρT (x) ∧ ξ
ξ

µT (dx)
}1/2

+ ε

≤ CeC/ε2
ξ−1/2 + ε

for all ξ > 0 and ε > 0. Hence, letting ε = 4

√

C

log ξ
, we have

νT (ρT ≥ ξ) ≤ 4

√

C

log ξ
, ∀ξ > 1. (5.8)

Let FT (ξ) = νT (ρT ≤ ξ). Then, (5.8) implies

1 − FT (ξ) ≤ C ′
√

log ξ
, ∀ξ > 1.

for some constant C ′. Hence we have
∫

B
ρT (x)(log ρT (x) ∨ 1)αµT (dx)

≤ 1 +

∫

ρT ≥e
(log ρT )αdνT

= 1 +

∫ ∞

e
(log ξ)αdFT (ξ)
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= 1 −
[

(log ξ)α(1 − FT (ξ))
]∞

e
+

∫ ∞

e

α(log ξ)α−1

ξ
(1 − FT (ξ))dξ

≤ 2 − F (e) + αC ′
∫ ∞

e

1

ξ(log ξ)3/2−α
dξ <∞.

6 The uniformly elliptic case

The following is well known (cf. Kusuoka-Stroock [7]).

Lemma 6.1. Let Φ ∈ Lp
2(H ⊗ K) and denote It =

∫ t
0 ΦsdWs. If C ≡

sup
0≤t≤T

sup
w∈W

|Φt(w)|H⊗K <∞ then

E

[

exp
{ α

2C2t
sup

0≤s≤t
|Is|2K

}]

≤ e

(1 − α)1/2

for every α ∈ (0, 1) and t ∈ (0,∞).

Define a stopping time by

ζ(r) = inf{t > 0; |Xt|B ≥ r or |Jt|H⊗H ≥ r}.

Lemma 6.2. There exist constants C,M <∞ such that

P (ζ(r) ≤ t) ≤ Ce−Mr2/t

for every t > 0 and 0 < r < 1.

Proof. We may assume that |h|B ≤ |h|H , h ∈ H. Let ζ1(r) inf{t > 0; |Xt|B ≥
r} and ζ2(r) = inf{t > 0; |Jt|H⊗H ≥ r}.

Set It =
∫ t
0 A(Xs)dWs. By Theorem 1.1 and Lemma 6.1, we have

P (ζ1(r) ≤ t) ≤ P
(

sup
0≤s≤t

|Ws|B ≥ r/3
)

+P
(

sup
0≤s≤t

|Is|H + ‖b‖∞t ≥ 2r/3
)

≤ P
(√

t/T sup
0≤s≤T

|Ws|B ≥ r/3
)

+P
(

sup
0≤s≤t

|Is|H ≥ r/3
)

≤ exp
{

− β
(r

3

)2(T

t

)}

E

[

exp
{

β sup
0≤s≤T

|Ws|2B
}]

+ exp
{

− α

2‖A‖2∞t

(r

3

)2} e

(1 − α)1/2
,
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if 0 < t ≤ 1/3‖b‖∞. Letting M = (βT/9) ∧ (α/18‖A‖2
H⊗H ) and

C = E

[

exp
{

β sup
0≤s≤T

|Ws|2B
}]

∨ e

(1 − α)1/2
∨ 3‖b‖∞M,

we have P (ζ1(r) ≤ t) ≤ Ce−Mr2/t. By a similar way we can prove that
P (ζ2(r) ≤ t) ≤ Ce−Mr2/t.

Theorem 6.3. Let A ∈ CH∞
b (H ⊗ H) and b ∈ CH∞

b (H). Suppose there
exists a constant 0 < ε0 < 1 such that

∣
∣
∣(IH +A(0))h

∣
∣
∣
H

≥ ε0|h|H

for all h ∈ H. Then, for each t ∈ (0, T ], IH + σ(t) ∈ GL(H) a.e. and

E[|(tIH + σ(t))−1|pL(H;H)] <∞

for all p ∈ (1,∞).

Proof. We choose r > 0 such that |Xt|B ≤ r and |Jt|H⊗H ≤ r implies
∣
∣
∣{IH +A(Xt)

∗}(IH + J̃t
∗
)h

∣
∣
∣
H

≥ ε0|h|H

for all h ∈ H. Then we have
∫ t

0

∣
∣
∣{IH +A(Xs)

∗}(IH + J̃s
∗
)h

∣
∣
∣

2

H
ds

≥
∫ t∧ζr

0

∣
∣
∣{IH +A(Xs)

∗}(IH + J̃s
∗
)h

∣
∣
∣

2

H
ds

≥ (t ∧ ζ(r))ε20|h|2H
for all h ∈ H. Hence Proposition 3.9 and Lemma 6.2 imply our assertion.
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three-dimensional non-stationary Lamé system and the application to an inverse
problem.

2004–23 Wuqing Ning and Masahiro Yamamoto: An inverse spectral problem for a non-
symmetric differential operator: Uniqueness and reconstruction formula.

2004–24 Li Shumin: An inverse problem for Maxwell’s equations in biisotropic media.

2004–25 Taro Asuke: The Godbillon-Vey class of transversely holomorphic foliations.

2004–26 Vilmos Komornik and Masahiro Yamamoto: Estimation of point sources and
the applications to inverse problems.

2004–27 Oleg Yu. Imanuvilov and Masahiro Yamamoto: Stability estimate in a Cauchy
problem for a hyperbolic equation with variable coefficients.

2004–28 Naoki Heya: The absolute continuity of a measure induced by infinite dimen-
sional stochastic differential equations.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


