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ABSTRACT. Several examples of transversely holomorphic foliations with non-trivial
Godbillon-Vey class are given. It is shown that if the complex codimension is odd,
then there are at least two foliations which are distinct as real foliations. It is also
shown that the Godbillon-Vey class is rigid under deformations in the category of
transversely holomorphic foliations.

INTRODUCTION

The Godbillon-Vey class is the most important invariant in the theory of fo-
liations and extensively studied. It is well-known that the Godbillon-Vey class
admits continuous deformations, namely, there are families of foliations of which
the Godbillon-Vey class varies continuously. However, when restricted to categories
of foliations admitting certain transverse structures, the Godbillon-Vey class often
become rigid or trivial [5],[35],[11],[7],[24],[30]. In this paper, we will study trans-
versely holomorphic foliations and show the following non-triviality and the rigidity
of the Godbillon-Vey class.

Theorem A.

1) For each q, there are transversely holomorphic foliations of complex codi-

mension q of which the Godbillon-Vey classes are non-trivial.
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2) If ¢ = 3, then there are at least three transversely holomorphic foliations
which are mutually distinct as real foliations. If q is odd and q > 3, then
there are at least two transversely holomorphic foliations of complex codi-

mension q which are distinct as real foliations of codimension 2q.

Moreover, these foliations can be realized as locally homogeneous foliations.

The Godbillon-Vey class of transversely holomorphic foliations seems to be firstly
studied by Rasmussen [36], where some examples are given by using actions of
complex Lie groups. Theorem A is shown by constructing examples obtained by

clarifying and generalizing one of his examples.

Theorem B. The Godbillon-Vey class is rigid under both actual and infinitesimal

deformations in the category of transversely holomorphic foliations.

Theorem B is in fact valid for classes which belong to the image of the natural
map H*(WUg41) — H*(WU,). By a deformation of transversely holomorphic fo-
liation, we mean a smooth family of integrable distributions such that the resulting
foliations are transversely holomorphic. On the other hand, the infinitesimal de-
formations will be introduced by following Heitsch [22], in which the rigidity under
infinitesimal deformations has been shown for a certain type of cocycles. Theorem
B is obtained as its generalization. See section 4 for more details.

This paper is organized as follows. First of all, basic notions and general con-
structions of secondary classes are recalled. In Section 2, Theorem A is shown in
steps. Firstly, the theory of Kamber-Tondeur is recalled in the first part (§1). As
a result, it will be shown that secondary classes of locally homogeneous foliations
are realized in the Lie algebra cohomology. Some related known results in the real
category are also recalled. Calculations of Lie algebra cohomology using the unitary
trick will be explained in §2. The construction of examples is carried out in §3.
They are constructed on the complex simple groups of type A,, B,, C, and Gs.
These examples will have some common properties and it will be shown that the
groups of type D,,, E, and F; cannot have foliations having the same properties.

In Section 3, relations with the residue of Heitsch [21],[23] are discussed. In Sec-
tion 4, Theorem B is shown. The proof is separately given for smooth deformations
and for infinitesimal deformations.

Section 5 is a review of Rasmussen’s examples given in [36]. One of his results

seemingly contradicts Theorem B. An explanation will be given.
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1. DEFINITIONS OF TRANSVERSELY HOLOMORPHIC
FOLIATIONS AND COMPLEX SECONDARY CLASSES

Definition 1.1. A foliation F of real codimension 2q of a manifold M is said
to be transversely holomorphic if there is a coordinate system {U,}, {ppa} of M
satisfying the following conditions, namely,
1) Uy =V, x Dg, where V,, ¢ RI™M=24 and D, C C? are open subsets, in a
way such that if L is a leaf of F, then the connected components of L N U,
are of the form V,, x {2}, z € D,.
2) Under the above identification, @gq(z, 2) = (Vga(z, 2), 784 (%)), where each

YBa is a biholomorphic local diffeomorphism.

The integer q is called the complex codimension F and denoted by codimgF.

There are some relevant complex vector bundles associated with transversely

holomorphic foliations.

Definition 1.2. Let T'F be the subbundle of T'M spanned by the vectors tangent
to the leaves of F. Let TcM = TM ® C and let E be the subbundle of T M

locally spanned over C' by the vectors tangent to the leaves and transversely anti-
holomorphic vectors ——,..., 954 The integrability condition for F implies that
z

z
E is well-defined. Set Q(F) = TcM/E and call it the complex normal bundle.

Let C[v1, - ,v,] be the polynomial ring generated by vy, ..., v, with coefficients
in C. The degree of v; is set to be 2i. Let Z, be the ideal generated by the
monomials of degree greater than 2¢, and set Cylvy, - ,v,] = Clv1,- - ,v4]/Zy4.
Similarly, C,[v1,- - - ,7,] is defined by replacing v; with v;.

Definition 1.3. Let WU, be the differential graded algebra defined by setting

WUQ = Cq[vl"" 7Uq] ®Cq[7717"' 71—’(1] ®/\[ﬂ17"' 7ﬁq]'
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The exterior derivative on WU, is defined by requiring du; = v; — v; and dv; =
dv; = 0. The degree of u; is set to be 2 — 1. The cohomology classes in H*(WU,)

which involve wu;’s are called complex secondary classes. Cochains in WU, are

denoted as follows. Let I = {iy,io,...,i,}, where i1 < iy < --+ < i,. Set then
Ur = Wi, Wi, - - - U;,. If I is empty, then set uy = 1. Let J = (j1,J2,...,Jq), Where
j¢’s are non-negative integers. Set then vy = vJ'v}*---v)* and |.J| = ji + 2jo +

-+ 4+ qjg. Similarly, v; is defined for an index set J as above. Index sets for v;’s
are usually denoted by K. Finally, the classes in H*(WU,) are usually denoted by

their representatives by abuse of notation.

Real secondary classes are also considered by forgetting the transverse holomor-
phic structures. Set Ryglci, -+, caq] = Ragler, -+, caq] /Ty, where the degree of ¢;

is set to be 2i and Iéq is the ideal generated by monomials of degree greater than
4q.

Definition 1.3’. Set
WO2C] = R2(1[Clv T 7C2CI] ® /\[h17 h37 s ,h2q—1],

where the degree of h; is 2¢ — 1 and the derivative is defined by requiring dh; = ¢;
and dc; = 0. The cohomology of H*(WOsg,) which involve h;’s are called real

secondary classes.
The following secondary classes are relevant [9],[10] (see also [34],[1]).

Definition 1.4.

1) The class hyc2? in H*+1(WO,,) is called the Godbillon-Vey class and de-
noted by GVa,.

2) The class v/— 111 (v¢ + v '5 +---+37) in H29T(WU,) is called the imag-
inary part of the Bott class and denoted by &,.

There is a natural map from H*(WOy,) to H*(WU,) which corresponds to

forgetting transverse complex structures. It is given as follows.

Theorem 1.5 [1]. Let X\ be the mapping from WOq, to WU, given by

J

k
Aew) = (V=15 (=1 vp—;0;,
=0

(_1)]{3 2k+1 '
A hogt1) = 5V -1 Z (=1) Uk —j1(v; + 05),
j=0

=~



where vy and vy are considered as 1. Then X\ induces on the cohomology a mapping,
denoted again by \, which corresponds to forgetting transverse complex structures.
In particular, The Godbillon-Vey class and the imaginary part of the Bott class are
related by the formula

(29)!

- &, - chi,

v1 + U1

corresponds the first Chern class of the complex normal bundle
of the foliation. The image of GVa, under X is also called the Godbillon-Vey class.

where ch, =

Definition 1.6. A connection V on Q(F) is said to be a complex Bott connection
it V satisfies
VxY =LxY

for any sections X of F and Y of Q(F), where Lx denotes the Lie derivative with
respect to X. It is equivalent to the condition VxY = 7[X, }7], where 7 : Tc M —
Q(F) is the natural projection and Y is any lift of Y to Te M.

Given a transversely holomorphic foliation F of M, the characteristic mapping
xr : H*(WU,) — H*(M; C) is defined. First recall the definition of Chern-Simons
forms [12].

Definition 1.7. Let Vy and Vi be connections on Q(F) and let 6y and 6; are
respective connection forms. Let f be an invariant polynomial on GL(g;C) of
degree k. Set 6, = (1 — )6y + tf and

1
A (01, 00) :/ EF(01 — 00, )L,
0
where Q; = df; + 0; N 0; is the curvature form of 6;.

It is well-known that dAf(@l, 90) = f(Ql) —f(Qo) and Af(go, 91) = —Af(gl, 00)
See Section 4 for more properties of Af(61,6y).
The characteristic mapping xr : H*(WU,) — H*(M; C) is defined on the form

level as follows.

Definition 1.8. Let F be a transversely holomorphic foliation of complex codi-
mension g of M. Let V be a complex Bott connection on Q(F) and let V* be
a unitary connection on Q(F) with respect to some Hermitian metric on Q(F).
Denote by 6 and 6" the connection forms of V and V%, respectively. Let ¢; be the

Chern polynomial of degree ¢ and set

Ul(Q) = CZ‘<Q), T)Z(Q) = Ci(Q),

u;(0,0%) = A, (0,0) — A, (6,0v),
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where () is the curvature form of # and @ denotes the complex conjugate in value

of w for a differential form w.

In what follows, Chern polynomials and Chern forms are denoted by v; and v;

in order to avoid confusions with elements of WOa,,.

Theorem-Definition 1.9 (Bott [10]). The correspondence which assigns v; to
v; (), v; to U;(Q2) and u; tow;(6,0") induces a mapping from H*(WU,) to H*(M; C)
independent of the choice of connections and metrics. This mapping is denoted by
X7 and called the characteristic mapping. The image xr(w) of w € H*(WU,) is
denoted also by w(F).

Remark 1.10. Let BFqC be the classifying space of transversely holomorphic foli-
ations of complex codimension ¢, then yz can be considered as a mapping from
H*(WU,) to H*(BI'{; C).

In what follows, the coefficients of cohomology groups are always chosen to be

the complex numbers C' unless otherwise stated.

2. NON-TRIVIALITY OF THE (GODBILLON-VEY CLASS
The aim of this section is to show the following

Theorem A.

1) For each q, there are transversely holomorphic foliations of complex codi-
mension q of which the Godbillon-Vey classes are non-trivial.

2) If ¢ = 3, then there are at least three transversely holomorphic foliations
which are mutually distinct as real foliations. If q is odd and q > 3, then
there are at least two transversely holomorphic foliations of complex codi-

mension q which are distinct as real foliations of codimension 2q.
Moreover, these foliations can be realized as locally homogeneous foliations.
For this purpose, we will first introduce locally homogeneous foliations and then

explain how to compute their complex secondary classes. Theorem A is shown in

§ 3 by constructing examples.
§ 1. Locally homogeneous foliations and their complex secondary classes.

Notation 2.1.1. Given a Lie group, its Lie algebra is denoted by the corresponding

german lower case letter, e.g., if G is a Lie group, then its Lie algebra is denoted

by g.



Let G be a Lie group and let K be its connected closed Lie subgroup. Let H
be a connected subgroup of G which contains K, and denote by F the foliation
of G whose leaves are {gH |g € G}. This foliation induces a foliation F of G /K
invariant under the left action of G. Assuming in addition that G/K admits a
cocompact lattice I', a foliation Fr of M = I'\G/K is induced.

Definition 2.1.2. The foliations of the form F for quadruplets (G, H, K,I") as

above are called locally homogenous foliations.

Definition 2.1.3. Assume that H is a closed Lie subgroup of G. A foliation F of
M is said to be a (transversely) (G, H)-foliation if F admits a foliation coordinate
system {Vi, X Do}, {(¥8a;78q)} @s in Definition 1.1 such that D, is an open subset
of G/H and 7, is given by the natural left action of G on G/H.

Locally homogenous foliations are (G, H)-foliations if H is closed.

The following facts are already known for real secondary classes of transversely
(G, H)-foliations.

Theorem 2.1.4 (Baker [5] for 1) and Pittie [35] for 2) and 3)). In the category of
(G, H)-foliations, we have the following.

1) If G is semisimple, then all real secondary classes are rigid.

2) If H is nilpotent, then all real secondary classes are trivial. If H is solvable,
then only real secondary classes of the form h;c; with i+|J| = codimgF +1
can be non-trivial.

3) If (G, H) is a parabolic pair, namely, if G is semisimple and H is parabolic,
then only real secondary classes of the form hrcy with i14cy = codimpF +1
can be non-trivial, where 11 is the smallest entry of I. Moreover, such non-

trivial classes are cohomologous to scalar multiples of hihycq.

In the cases 2) and 3), there are non-trivial examples.

Assuming that g/h admits complex structures, Fr is transversely holomorphic.
It is in particular the case if G and H are complex Lie groups. In what follows, we

pose the following

Assumption 2.1.5. Let G be a complex Lie group and let H be its closed con-
nected complex subgroup. Assume that there is an Adg-invariant splitting o :
g/h — g, i.e., the image is invariant under the action of Adg. Assume also that

there is an Adg-invariant Hermitian metric on g/b.

It is easy to verify that if o is Adg-invariant, then Adg(o(v)) = o(Adg(v)) for
7



v € g/h and k € K. Note that a splitting o and a Hermitian metric as above can
be always found if K is compact.

Let F be the foliation of G /K induced by the foliation F of G as above, then the
complex normal bundle Q(J’? ) of F is naturally isomorphic to G X g (g/b), where
K acts on G x (g/h) from the right by (g,v) - k = (gk, Adp-1v). Let P(]?) be the
associated principal bundle of Q(F), then P = G x x GL(g/h), where (g, A) - k =
(gk, k=t A) for (g, A) € G x GL(g/h). Hence the normal bundle Q(Fr) is naturally

isomorphic to I'\G x (g/h). The following kind of connections are relevant.
K

Definition 2.1.6. A connection on Q(Fr) is said to be locally homogeneous if it
is induced by a gl(g/h)-valued 1-form on the trivial bundle G x GL(g/h) which is

invariant under the left G-action and the right K-action as above.

Under these assumptions, the following theorem is known.

Theorem 2.1.7 (Kamber-Tondeur [26], Baker [5], Pittie [35]). Let (G, H,K,I")
be as above and assume that there are an Adg-invariant splitting of g — g/b and
an Adg-invariant Hermitian metric on g/h. Let gr be the Lie algebra g viewed
as a real Lie algebra. By using locally homogenous connections, the characteristic
mapping for Fr factors through H*(gr,%). This mapping is independent of the

choice of locally homogeneous connections.

If g’ is a real Lie algebra and if ¢ is a Lie subalgebra of g’, then the cohomology
group H*(g',¥') is by definition the cohomology of the complex

C*(g ¥)={we N'g"|ikw=0,igdw =0 for all K € ¥},

where i denotes the interior product with K. We refer to [8] for more details.
Theorem 2.1.7 is particularly important by virtue of the following theorem by

T. Kobayashi and K. Ono. We only need its quite reduced form, which is as follows;

Theorem 2.1.8 (Proposition 3.9 and Example 3.6 in [29]). Let G’ be a real con-
nected semisimple Lie group and let K' be its compact subgroup. Let I be a co-
compact lattice of G'/K’, then the natural mapping H*(¢',¢') — H*(I"\G'/K') is

imjective.

It follows that it suffices to study the characteristic classes in H*(gg,t) rather
than H*(I"\G/K) when examples as in §3 are considered.
From now on, we will give a proof Theorem 2.1.7 in steps by following Baker [5].

We do not assume that G is semisimple nor K is compact until § 2.
8



Definition 2.1.9 (cf. Lemma 4.3 in [5]). Let 7 : g — g/b be the projection and let
o be an Adg-invariant section to 7. Set p =idy — o, and define a gl(g/h)-valued
1-form 6 on G x GL(g/h) by setting

O0g,0)(X,Y) = AdAfl(L;_lp*ad)(X) +74(Y),

where (X,Y) € T, 4)(G x GL(g/h)) and 7 is the Maurer-Cartan form on GL(g/b).
Note that p is also an Adg-invariant mapping from g to b.

Lemma 2.1.10 [5]. 6 induces a connection on P invariant under the natural left

action of G on P. Moreover, 0 is associated with a Bott connection on the complex

normal bundle Q(F).

Proof. Claim 1. 6 projects down to P.
Let k € K and denote by Ry the right action on G x GL(g/h), then

(R9)(g,4) = RrO(gr.Ad, _, A)
= RZ(AdA—lAdAdk (Lz,le,lp*ad) + Tk—lA)
= AdA71AdAdk (L;_lAdzfl p*ad) +7A.

Thus it suffices to show Ady-ip*ad = Adaq,_, © p*ad. This follows from the
following infinitesimal version.
Claim 2. ad; p*ad = [ad,, p*ad] if w € ¢, where the right is the Lie bracket of ad,,

and p*ad in gl(g/h).
Indeed, for X,Y € g, one has (ad,,p*ad(X))Y = ad,[, x|Y. Since w € € and p is

Adg-invariant,

adp[fw,X]Y = [[w, Y], p(X)] + [w, [p(X), Y]]
= —ad,(x)(adwY’) +ady(ad,x)Y).

Hence Claim 2 and Claim 1 are shown.
Let R4 denote the right action of GL(g/h) on P, and given a vector v € gl(g/h),
v denotes the vertical fundamental vector field induced by v.
Claim 3. R%6 = Ad4-160 and 6(v) = v.
Let (X,Y) € T(4,5)(G x GL(g/b)), then

(R40)(4,8)(X,Y) = 0(4.84)(X, Ra.Y)
= AdA—lAdB—l adp(Lg_l*X) + TB(RA*Y)

= Ads-1(0(4,5)(X,Y)).
9



The second claim is clear.
Claim 4. 0 is left invariant.
Let L,, denote the left action of g; on G x GL(g/h), then

(L;lﬁ)(g%A)(X, Y) = AdA—l(L21,1L3271p*ad)(L91*X) + TA(Y)
= 0(g,,4)(X,Y).

Claim 5. 6 is a Bott connection.

Let [go] € G/K and choose a local decomposition U; x Uy of G around gg, where
Uy, and Us; are open set such that U; C K and U, is diffeomorphic to an open set
of G/K containing [go] (in terms of foliations, U; x Us is a foliation chart for the
foliation of G by cosets of K). Then define a local section of P around [go] by
setting s([g]) = [g,idg,p], where g € Us. Let X € Tjy1(90H/K) and Y € Q(]?)[
then one may assume that L, -1, X € h and Ly -1,Y € g/b. One has

90]7

(80)1go)(X)Y = 0(gq.iq, ) (5+: X )s:Y = adx V.

This completes the proof. [

Let {w!,...,w?} be a basis of (g/h)* and consider w'’s as elements of g* which
vanish when restricted to h. Since H is a subgroup, there is a gl(g/h)-valued 1-
form @ such that dw = —0 A w, where w = *(w!,...,w?). Noticing that w can be

considered as an element of P, one has the following

Corollary 2.1.11. Assume that 8 = 0 when restricted to the image of the Adg-
mvariant splitting o as above, then 6 can be regarded as a left invariant Bott con-
nection on Q(F).

Fix now an Adg-invariant Hermitian metric on g/h so that Adx C U(g/h). Let
h = tPndm be an Adg-invariant splitting such that ¢&n = ¢+ ker ad and ad,, = 0,
and denote by p’ the projection from h to €. Finally, choose an Adagq, -invariant

splitting gl(g/h) = ade ® ady, @ [ and denote by p the projection to ade.

Lemma 2.1.12 (cf. Lemma 4.4 in [5]). Set p, = p'p : g — ¥, then we have the
following properties:
1) poad,x) = ad,, x) for X € g.
2) Set
Olg,.2)(X,Y) = Ada—1 (L1 pyad)(X) + 7a(Y),

then 0" is a unitary connection.
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Proof. Let X = X1+ Xo+ X5 € t@&ndm = b, then p,(X) = X; and adx =
ady, + adx,. Thus poady = adx, = ad,, (x). Since the mapping p, is Adg-
invariant, 8" is shown to be a connection form on P as in Lemma 2.1.3. When
restricted to G x g U(g/h), 0% is u(g/h)-valued. Hence 6" is unitary. O

Proof of Theorem 2.1.7. Since the connections given by Lemmas 2.1.10 and 2.1.12
are left invariant, they induce connections on Q(F). When calculated by these
connections, the characteristic mapping factors through H*(ggr,%). The indepen-
dence of the characteristic mapping from the choice of connections can be shown
by standard arguments (cf. [10]). O

Let F be a transversely holomorphic foliation of complex codimension ¢ and
suppose that AYQ(F) is a trivial line bundle, then the Bott class is defined as
follows [10]. Fix a trivialization s of AYQ(F) and let V* be the flat connection
with respect to s and let ° be its connection form. Let V be a Bott connection on
Q(F), then V induces a connection on A?Q(F), which we denote by V°. Set now

u1(9b7 08) = ACl (96’ 98)7

where 6° is the connection form of V°. Let Q° be the curvature form of #°, then
duy (0°,0°) = v1(Q°) and thus u;(6°,60%)v1(Q2°)9 is a closed form. It is known that
the cohomology class represented by u1(6°,6*)v1(92°)? is independent of the choice

of trivializations and connections [10].

Definition 2.1.13. The class represented by u;(6°,60%)v1(2°)9 is called the Bott
class and denoted by Bott,(F).

Remark 2.1.14. Assuming furthermore that Q(F) is trivial, differential forms w;,
i > 2, are well-defined and several characteristic classes are obtained. However,

these classes depend on the choice of trivializations in general.

Let Fr be a locally homogeneous, transversely holomorphic foliation associated
with (G, H, K, I'). By repeating similar arguments as in the proof of Theorem 2.1.7,

one has the following

Theorem 2.1.15. Let Fr and (G, H, K, I') be as above. Assume that N'Q(Fr) is
trivial as a homogeneous vector bundle. Then by choosing a left invariant trivializa-
tion and using a locally homogeneous Bott connection, the Bott class is realized as
an element of H*471(gg, ). The Bott class is independent of the choice of invariant

trivializations and locally homogeneous Bott connections.

11



§ 2. Calculation of the Lie algebra cohomology.

In what follows, we assume that G is a complex semisimple Lie group and that
K is a compact connected Lie subgroup of G. Hence there are always cocompact
lattices of G/K and Theorem 2.1.8 is valid, and g admits a compact real form
go. We also assume that ¢ C gg. Under these assumptions, we will construct an
isomorphism from H*(ggr, t) to H*(Go % (Go/K)), where G is a compact Lie group
with Lie algebra gg.

Notation 2.2.1. The complex Lie algebra g considered as a real Lie algebra is
denoted by gr. Let J be the complex structure of g and let g— be the Lie algebra
gr equipped with the complex structure —J. The complex conjugate on g with
respect to go is denoted by o, namely, (X + JY) = X — JY for X,Y € go.

Definition 2.2.2. For w € \"g*, define W € A\"g~* by taking complex conjugate

in value. Their complexifications are denoted as follows;

WC=walec(N\gr eC,

Note that if w restricted to go is R-valued (resp. v—1R-valued), then W = o*w

(resp. W = —o*w).

Definition 2.2.3. Let kK : go P go — g0 D v—1Jgo C gr ® C be the isomorphism
of real Lie algebras defined by

H(Xl,Xz) == (Xl — \/—_L]Xl) + % (XQ + \/__1JX2) .

DN | =

Since go ® v/ —1Jgo is a real form of gr ® C, 6 induces an isomorphism from g ® g
to gr ® C by complexification. Denote the complexification again by x, then

1 1
RX A+ IV, Z+IW) = 5 (X +JY +Z = IW) + V=1 5 (~IX +Y + JZ+ W)

holds for X,Y,Z, W € go.

Remark 2.2.4. For X € gq, one has

rHX) = (X, X) kHIX)=(JX,—JX)
kHV-1X) = (JX,JX) v HV-1JX) = (-X,X).

These relations imply the following
12



Lemma 2.2.5. s }(t®C) = {(k,k)|kct®C} Cgdy.

Let At be the diagonal embedding of £ into g g, then At = x~1(£) and k1 (E®
C)=AtxC.
As C is chosen as the coefficients, there is a natural isomorphism from H*(gg, & C)

to H*(gr ® C,t® C; C). Hence k induces an isomorphism
K*:H*(gr,t) - H" (g @ g, At® C).

Lemma 2.2.6. Letw € g* and set w' = (w,0) € g*Dg* and w? = (0,w) € g*Dg*,
then k*(w®) = wl. Ifwl|y, is R-valued, then k*(W°) = w?. Ifw|y, is v—1R-valued,

then k*(0€) = —w?.
Proof. Let XY, Z, W € gg. Since w € g*, one has

FWONX +JY, Z+TW)

% (@(X) +w(JY) +w(Z) — w(JW)) + % (@(X) +w(JY) —w(Z) + w(JW))
=w(X +JY).

Assume that w|g, is R-valued, then @ = o*w. Hence

g (—w(JX)+o(Y)+w(JZ) +T(W))
(

—w(X) + w(JY) + w(Z) + w(JW))

N =

Similar calculations show that £*(@®) = —w? if wly, is vV—1R-valued. O
Since g is a real form of g, there are isomorphisms as follows:
H*(g® g, A(t® C)) =H"((90 @ C) ® (90 @ C), At C)

~H"((go © go) ® C, At @ C)
~H*((Go x Go)/K),

where K acts on Gg X Gg diagonally from the right. The diffeomorphism 7 : Gy %
(Go/K) — (Go x Go)/K given by 7(g1, [92]) = [9192, g2] induces an isomorphism

7" H*((go ® g0) © C, At @ C) — H™(go® C) @ H"(go ® C, £ ® C)

given by 7*([a, B]) = ([, [« + B]). Note that H*(go ® C) @ H*(go ® C,t @ C) =

H*(Gy x (Gp/K)). Summing up, we obtained the following
13



Proposition 2.2.7. Let k and T as above, then
TR : H*(gR,E> — H*(go) ®H*(go,g> = H*(Go X (G()/K))

is induced by the correspondence w — (w,w), W — (0,w) (resp. @ — (0,—w)) for

w € g* such that wlg, is R-valued (resp. v/—1R-valued).

§ 3. Examples.

First we make some remarks.

Notation 2.3.1. Cochains in WOy, are regarded as cochains in WU, via the
mapping A in Theorem 1.5. If « € H*(WU,), then the image of a under xr, as
an element of H*(gg, £) is denoted by a(K).

Lemma 2.3.2. Suppose that o(K) is non-trivial in H*(ggr,%). If K' is a closed
subgroup such that K C K' C H, then a(K") is non-trivial in H*(ggr, ).

Proof. We have a natural mapping r : H*(gr,?) — H*(gr,t). By the functoriality
of the characteristic mapping, r(a(K')) = a(K). O

Thus it is preferable to show the non-triviality of GV, (K) for small K. But

there is the following

Proposition 2.3.3. One has v;({e}) = v;({e}) = 0 for all i. In particular,
GVa,({e}) =0.

Proof. The bundle Q(F) admits a G-invariant trivialization because it is isomorphic
to G x (g/h). Hence v;({e}) = v;({e}) = 0. The triviality of the Godbillon-Vey

class follows from Theorem 1.5. [

We recall the definition of several Lie algebras to fix notations. We denote by I,

the identity matrix of M(¢;C), and set J, = ( OI {)q) € M(2¢;C).
g

Definition 2.3.4.
1) sli¢g+1;,C)={X e M@+ 1,C); tr X =0}
2) su(g+1)={X €slg+1;C); X +'X =0}
3) so(; F)={XeM(q;F); X+'X =0}, where F=Ror F =C,
4) sp(q;C) ={X € M(2¢;C) ; "X J, + J, X = 0},
5) sp(q) = sp(g; C) Nsu(2q)
sp(q) is also denoted by sp(q; R).

For more details including the topology of homogeneous spaces, we refer to [32].
14



Notation 2.3.5. We denote by E;; (0 < i,j < q) the standard basis of the Lie

algebra gl(q + 1; C). Rows and columns of matrices are always counted from zero.

Example 2.3.6. Let g =sl(¢+1;C) and gy = su(g+1), and construct an (SL(qg+
1;C),CPY)-foliation. Let T'? be the maximal torus of G standardly realized as a
subset of diagonal matrices, and let U,, SU, and H be the subgroups of G' defined
by

.= {(g g) BeUlg),a= (detB)—l},

Squ{((l) g) BGSU(q)},
H:{(g ;) BeGL(q;C),a:(detB)—l}.

We denote U, and SU, again by U(q) and SU(q), respectively. The subgroup U(q)
is also denoted by T' x SU(q). Let K be a compact connected subgroup of G
contained in U(gq) and containing 7%, hence G D H D U(q) D K D T1.

q q
Let w;; be the dual of E;; restricted to g, then ) w;; =0 and dw;; = — > wir A
i=0 k=0

wij- Set w = (w10, w20, ,wgeo), then h = kerw and dw = —f A w, where
w11 oo wlq
0 = — wO()Iq.
wa . e wqq

Here I, denotes the identity matrix of dimension ¢. Since 6 restricted to o(g/h)
is 0, Corollary 2.1.11 implies that € can be seen as a Bott connection with respect
to the basis {[Fjo]}: of g/h. On the other hand, define a splitting o : g/h — g
by the formula o([E;]) = Eio, where ¢ > 0, then o is Ady(g)-invariant. Let g be
the Hermitian metric on g/b given by g([X],[Y]) = trto([X])o([Y]) for [X],[Y] €
g/b, then g is Ady(g)-invariant and {[Ej]}; is an orthonormal basis. Hence the

connection form of the unitary connection 8" given by Lemma 2.1.12 with respect
to {[Fio]}: is skew-Hermitian.
Denote cochains in WOy, and WU, evaluated by the Bott connection ¢ and the

unitary connection 6% again by their own letters, then

- +1 .
hiy =v—-1u; = q?(woo + @00),

cp =dhi = v —1<U1 - 171)

q+1 I o
— —7 Z(w()i AN Ws0 —|— Woi N wio).
1=0

15



It follows from Theorem 2.1.7 that

q
GVQq(K) = hlc?q = E(WOO —|—w_00) N (/\ Woi /\in /\w_()i/\w_io)

1

1 2q+1
as an element of H2971(gg,€), where ¢ = (2¢)! <%> )
s

Set now X;; = E;j — Eji, Yij = V/—1(Ei; + E;i) and K, = —1(Eo — Egg),
where 0 < i < j < qgand 1<k <gq. These vectors form a basis of gy = su(q + 1).
Let o, Bij, vij be the dual of K}, X;j, Y;;, respectively. Set X;; = —X;; and
Y;; = Y;; if ¢ > j and denote their dual forms by 3;; and ~;;, then —3;; = B;;
and 7yj; = ;5. Denote their extension to g by complexification again by the same

letters, then
woo =V —1(a1 + -+ ay),
wij = Bij +V —1vi;, where ¢ # j.

By Lemma 2.2.6,

q
K* (/\ wOi/\wio/\w_Oi/\w_io>
i=1

(502 + V=150 A By + V=17) A (B3 = V=113 A (B — V—=17%)

(ﬁ()z + \/_’701) (ﬁ()z \/_’701) (ﬁ()z \/_’701) (B()z + \/_’701)

(4ﬁ02 A ,701 A ﬁOz A 702)

I
I>a I>a 1>=

.

Here the superscripts are as in Lemma 2.2.6. Hence the equation

K (GV2q(K)) = e vV—1(ag — af) A /q\ (480: N voi N B AN6i)

=1
2q+1
q+1 -1 q
=0t (T2) Y e - adn A8 A A s o)

holds in H*(g @ g, At ® C) = H*(go @ go, At), where g = o1 + -+ + .
Finally, we have by Proposition 2.2.7 the following equation;

T K" (GVoq(K))
~ear (T Y g (A n oh+o) o (A sinad)

2q+1
=(2¢)! <q+1) \/_ ag A (/_\ Béi/\’yéi)/\(‘/j\lﬁgi/\'ygi>'
16




The non-triviality of GVg,(K) is shown as follows. It suffices to show by Lemma
2.3.2 the non-triviality of GVy,(7T%) in H*(SU(¢ + 1)) ® H*(SU(q + 1)/T?). It

j=1 j=1
volume forms of S2¢+! = SU(q + 1)/SU(q) and CP? = SU(q + 1)/(T* x SU(q)),

respectively. Since the natural mappings 71 : SU(g+1) — S2971 = SU(¢+1)/SU(q)
and 7y : SU(q+1)/T? — CP? = SU(q+1)/(T* x SU(q)) induce injective mappings
on the cohomology, GV2,(T9) is non-trivial in the cohomology.

On the other hand, GV, (K) is trivial if K is contained in SU(g). By Lemma
2.3.2, it suffices to show the claim for K = SU(q). Then, the characteristic mapping
factors through H*(SU(q + 1)) ® H*(SU(q + 1)/SU(q)), which is trivial in degree
2. Therefore GVg,(K) is trivial by Theorem 1.5 because ch; (K) is trivial.

Let us verify now the relation between §, and GV, given in Theorem 1.5. Under

q
is clear that af A (/\ Boj Aoy | and A B5; A, are non-zero multiple of the

the notations as above, one has

q q
qg+1 q+1
v = E Wos VAN Wi and U1 = E Wos N wW;0-

277\/ 2myv—1 P

Hence

Q

K*vy ARERY —1’)’37;) A (—531 + Vv —17(%1)
q —
= Z (1) 7027
=1
q
K 0] = ﬁoz 701) (— /301 \ 70@)
q_
- Z 03 A 701

It follows that

™

T*k*chy (K)? = ¢! <——)q /\1(581‘ AYg)
as an element of H*4(SU(q+ 1) x (SU(g+1)/K)). On the other hand,
64 () = VT 4o 44 )
_ \/_(Q+1> ! (—ﬂ) al A /\(ﬁol/\%l +sz/\/801/\701

T
=1
17



for some w;, i = 1,...,q. Hence the equation GVg,(K) = @ﬁq(K)chl(K)q

q!
certainly holds. Remark that £,(K) is non-trivial even if K = {e}.

q!

Remark 2.5.7.

1)

As explained, the non-triviality of GVg,(7'?) follows from the non-triviality
of GV, (T" x SU(g)). On the other hand, GV5,(SU(g)) is trivial. In other
words, GVa, (T xSU(q)) become trivial when pulled-back by the S*-bundle
p: I'\SL(q + 1;C)/SU(q) — I'\SL(q + 1;C)/(T* x SU(q)), where I' is a
cocompact lattice of SL(g+1;C)/(T* x SU(q)). This is related to the Hopf
fibration as follows. Recall that GV, (K) is decomposed into the product of
£q(K) and ch; (K)?. By the last part of Example 2.3.6, the both £,(SU(q))
and &, (T xSU(q)) are non-trivial. On the other hand, ch; (SU(q)) is trivial

while chy (T x SU(q))? is non-trivial. Now consider the following diagram;

g+t —  I'\SL(¢g+1;C)/SU(q)  — I'\SL(¢+1;C)/SU(¢ +1)

l d H

CP1 — I'\SL(g+1;C)/(T* x SU(q)) — I'\SL(q+1;C)/SU(q + 1),

where the first column is the Hopf fibration. Hence one can consider the
non-triviality of chy (T x SU(q))¢ is derived from the Hopf fibration.

By Proposition 2.3.3, GVa,({e}) = 0in H*(sl(¢+1; C)r) because v1({e}) =
0. Since the complex normal bundle is trivial, the Bott class ujvi({e})
is well-defined (Definition 2.1.13). The product of the Bott class and its
complex conjugate is u1u1v{0]({e}). By a similar calculation as in Example
2.3.6, one has

g+1

2q+2
o ) woo N\ Wog N (du)o())q A (dwOo)q.

u v o] ({e}) = (
The mapping 7*k* is now an isomorphism from H*(sl(¢ + 1;C)Rr) to
H*(SU(¢+ 1)) ® H*(SU(g + 1)). The image of uju1v{v]({e}) under 7*x*

is equal to

2q+2
q'q! [q+1 a q
4 (—> 04(1)/\0‘(2)/\ (/\ 53;‘ /\'Yéj AA ﬁgj/\%%j .
T j=1 j=1

By repeating the argument as in Example 2.3.6, this class is seen to be non-
trivial. It is easy to show that the Bott class is well-defined and non-trivial

if K is contained in SU(q). See Section 3 for related constructions.
18



3) Another complex secondary class can be computed as follows. By Lemma

2.2.11, the matrix valued 1-form Q_Ttg induces a unitary connection. Set

Wi; = wj; + Wy, then one has
~ 1 S o
Uz =25 ((5woo + wi1) A (wo1 A wig — Wor A Wio)
+ (5Woo + Waz) A (woz A wep — Woz A Wag)
+ (W11 — Wa2) A War A W12

—wa1 A (w10 A woz — Wap AWo1) — Wiz A (weo A wor — Wig A Wp2)) -
Hence
~ ~ q-q e — o
U1 U2V Uy (K) = ewi1 N wor Awgr N wig A woz N\ wag A w2 A wio,

where € is a non-zero constant. As the above differential form is a non-zero
multiple of the volume form of SU(3)/(T* x SU(2)), it is non-trivial.

Example 2.3.6, continued. Other real secondary classes also can be computed.
As an example, consider the case where ¢ = 2. Noticing that these classes can be
realized as classes in H*(SU(3)) ® H*(SU(3)/(T* x SU(2))), it suffices to compute
the classes of degree 4¢ + 1 = 9 by a theorem of Pittie [35] referred in §1 as 3) of
Theorem 2.1.4. Indeed, if hyc; (T x SU(2)) is non-trivial, then i1 +|J| = 2¢+1 = 5.
Thus the degree of hyc; (Tt x SU(2)) is 9 + (2i2 — 1) + --+ + (24, — 1), where
I ={iy,--- ,ir}. Noticing that io > 3, the only possibility is I = {i1}.

The classes of degree 9 are hici, hicca, hicics, hicy, hics and hsco. By Theorem

1.5, the following formulae hold for ¢s, c3, ¢4 and hs;

c2 = —(v2 — V101 + D), c3=—V—=1(—v201 +v172), ¢4 = V2o,
v—=1, _ _ ~ _
hs = _T(—ug(vl + 01) + Uy (v2 + 02)).

Hence

4 ~ 2.2 2 ~ 2o 2.2 2
hici = 6V —1uvivy, hicice = vV —1uq(vivs + 20707 + v207),
~ 2 _ _9 ~ _
h10103 =V —1U1(’l)11)2 + Uzvl), h104 = —lulvgvg,

hlcg =V —1&1(2@2’1_}2 + ’U%@%),
19



and

-1 _ - _ _
hsca = ——(—u2(v1 + U1) + u1(Uz + Uz))(UQ — V101 + v2)

-1 ) ) . ) o
(=T (—vi01 + V10 + V201 — V107) + 2U1V202)

PRGBS

(—ﬂg(vl — 171)(1)% - 1_}2 — Vg — 17%) + 2611}252)

-1 B B B .
T(—ul(vg — 1}2)(1}% + Uy — Vg — v%) + 2y v2U3)

V1

ﬂl (1)21_}% + ’U%’Ug),

where ‘=" means that the equality holds in H*(WU,).

On the other hand, the curvature form of the Bott connection 6 is given by

do+6 N0

_ dwi1 — dwoo + wiz A way dwiz + w11 A wiz + wiz A wa
d(.UQl + w1 A w11 + w9292 A w21 dw22 — dwOo -+ w1 A w12

[ 2wo1 AN wig + wo2 A wao —w10 N wo2
—wa0 N\ wo1 wo1 A wip + 2wo2 A wag

Hence

v = (wo1 A wig + wo2 A wa),

3
T omy/—1

2
-1
Vg = | —— ] 6wy A wig A wps A w
2 (27r\/—_1) 01 10 02 20
- 3

Uy = woo + Woo ) -
1 271'\/—_1( 00 wOO)

Define a differential form (gv) by setting

(gv) = (27)5@00 + Wo0) A wor A wio A woz A wao A Wot A Wig A Woz A Wao,
then

GVy=hici =6-(2-3%)%(gv) =2°-3° (gv),
hicies = ((2-3%)-6+2(2-3%)>+6-(2-3%)) (gv) = 2° - 3% (gv),
hicies = ((2 ' 32) 6+6-(2- 32)) (gv) = 2°.3° (gv),
hicy = 6% (gv) = 22 - 37 (gv),
hics = (2- 6%+ (2-3%)?) (gv) = 2% - 3% - 11 (gv),

~—~

(6-(2-3%) 4 (2-3%)-6) (gv) = 2% 3%(gv).
20
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Hence
9 4 1
hiciea(K) = §GV4(K)7 hicics(K) = 5GV4(K)=
1 11
hes(K) = = GVa(K), mc3(K) = = GVa(K),
1
thQ(K) = 1—8GV4<K)

in H%(gr, € C) if K is as in Example 2.3.6. These classes satisfy the following

relations;
1
hzcy = §h16103,
1 1
hicy = §hlc§ — —hycf,

2
h10103 = hlclcg — ghlcl'

These equations hold in fact for any transversely holomorphic foliations [2].

Example 2.3.8. Let G = SO(q+2;C), g = s0(q+ 2;C) and gg = so(q + 2; R).
Denote by 71%*] the maximal torus realized as SO(2; R)®---®SO(2; R) ((¢+2)/2-
times) if ¢ is even, and SO(2; R) @ --- @ SO(2; R) @ {1} ((¢ + 1)/2-times) if ¢
is odd. Set X;; = E;; — Ej;, where E;; is defined as in Notation 2.3.5, then
{Xij; 0<i<j<g+1}is a basis for g. Note that this is also a basis for go =
s0(q + 2; R) over R.

Let h* be the Lie subalgebras of g defined by

b* = (Xo1, Xow £ V—1X14, Xs5; 2< k< q+1,2<i<j<q+1),,

and let H* be the corresponding Lie subgroups. Let K be a connected compact Lie
subgroup of G such that Tl c K c 7' x SO(q; R) = SO(2; R) ® SO(q; R). We
will show that GVg,(K) is non-trivial if and only if ¢ is odd. In what follows, the
quadruplet (G, H', K, I") is considered and h* and H* are simply denoted by b
and H, respectively, because the argument for (G, H, K, I") is completely parallel.

Let Wij be the dual of Xij (l 7é j), then dwij = — Z Wik /\wkj, where Wij =
0<k<qg+1

—wj; and wy; = 0. It is easy to see that h = ker <w0i +vV—1lw;; 2<i<qg+ 1>,

and one has

g+1

d(woi + V—1wii) = V—1wer A (woi + vV —1wi;) + Zwli A (wor + vV —1wyp).
1=2
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By setting w = “(wo2 + vV—1wia,...,woq+1 + V—1wi 4+1), the above equation
implies that dw = —0 A w, where

V—lwor  —we3z  —woas - —w2 41
w23 V—1lwpr —w3g - —w3 441

0= ,
W2,q+1 W3,q+1 ey =lwon

On the other hand, let o : g/h — g be the splitting defined by o([Xo; —v—1X1;]) =
Xoj —v—1Xy;, where j =2,...,q+ 1, then o is Adp1x50(g+2;r)-invariant. To see
this, notice first that

[(Xij, Xna] = 0 Xa + 0 X — 0 Xj1 — 050X,

where d;; is the Kronecker delta. Since the Lie algebra of T x SO(g; R) is generated
by Xo1 and X;;, 2 <i < j < (g¢+ 1), over R, it suffices to verify that [Xo1, Xo; —
Vv—1X1;] and [X;;, Xo; — v/—1X71;] belong to the image of o, where [ = 2,...,q+ 1.
If I > 2, then

[(Xo1, Xot — V—-1Xy] = - Xy —vV—-1Xp = —vV—-1(Xo — V—-1X1)).
On the other hand,

[(Xij, Xoo — V—=1X1] = (60uXj0 — 61 Xi0) — V—1(0uX;1 — §;:Xi1)
= —67;1(X0j — —1X1j) + 5jl(X0i — —1X1i).

Thus o is Ad71y50(g+2;r)-inVvariant.

As 6 is equal to 0 when restricted to the image of o, the above 6 can be used
as a Bott connection by Corollary 2.1.11. Moreover, let g be the Hermitian metric
on g/b defined by g([X],[Y]) = itrio([X])o([Y]) for [X],[Y] € g/b, then g is
an Adrp1,50(g+2;r)-invariant metric with respect to which {[Xo; — V—1X4,]} is
an orthonormal basis. Hence we may use a unitary connection represented by a
skew-Hermitian matrix.

Then by Theorem 2.1.7, one has the following equalities;

gv/—1 .

hy = o (wo1 — Wo1),
q q+1
o1 = q”% ;(w% A win — @oi A TTR)-
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It follows that

q 2g+1 q+1
GV (K) = \/—1< > (wor — o) A N (wor A wiy A wor A w1p)

2n i
as an element of H4M1(gp, £). As {X,;} is also a basis of gg over R, it follows from
Lemma 2.2.6 that

why — why) A z/\z (wor A wiy Awly Awiy),

K*GVag(K) = \/—_1( a

2q+1 q+1
o)

where {w;;} is considered as the dual basis of gg.

Finally by Proposition 2.2.7,

T K*GVay (K) = v/—1 (i

2q+1 1 q+1
27r)

wor A A (wor Awiy Awgy Awy).
1=2

In what follows, denote SO(m; R) simply by SO(m) as usual. Denote by SO(q)
the subgroup {1}®{1}®SO(q) of SO(g+2). Recall that T* xSO(q) = SO(2)®S0(q).
Let m : SO(q + 2) — SO(q + 2)/SO(q) and 75 : SO(q + 2) — SO(q + 2)/(T* x
SO(q)) be the natural projections. Then 7*¢*GVg,(K) is a non-zero multiple of
the pull-back of the volume form of (SO(g + 2)/SO(q)) x (SO(q + 2)/(T"* x SO(q)))
by (m1,m2) to H*(SO(q+2)) @ H*(SO(q+2)/(T* x SO(q))). It is classically known
that 7] (volgo(q+2)/s0(q)) i non-trivial if and only if ¢ is odd. Assume that ¢ is
odd and write ¢ = 2m — 1, then 73 (volso(2m+1)/(T1 x30(2m—1))) 18 non-trivial in
H*(SO(2m + 1)/T™). Therefore, 7*k*(GVgq(K)) is non-trivial if ¢ is odd and

a+2

7l c K c 7' x SO(q), and 7*k*(GVgq(K")) is trivial for any closed subgroup
K’ of T' x SO(q) if q is even. [

It is well-known that SL(2; C) is a double (the universal) covering of SO(3;C).

This is still true as foliated spaces, namely, we have the following

Proposition 2.3.9. There is a covering map SL(2; C) to SO(3; C) which preserves
the foliations defined in Examples 2.3.6 and 2.3.8.

Proof. First recall a description of a covering map by following [16] and [33]. Let
{Xo, X1, X2}, where

1 0 0 1 0 0
XOZ(O _1>7 X1=(0 0), X2=<1 0)7

be a basis of s[(2; C), and denote by F* the foliation of SL(2; C) induced by X; and

denote by F~ the foliation induced by X,. Let {X;; = E;; — E;; |0 <i<j <2}
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be a basis of s0(3;C) and denote by G* the foliation of SO(3;C) induced from
b* given in Example 2.3.8. Let ¢ be the linear isomorphism from sl(2; C) to C®

ot 1 1 (o B
= (m(b—c),E(b—l—c),—a).Forg—(,y 5),
define ¢(g) € GL(3;C) by ¢(g9)(21,22,23) = po Ady o 0 1(*(21, 22, 23)), then

given by p(aXo+bX; +cXs)

2 42 2 52 2_ 52, 2 52
a”+p -21-’7 +0 a" =B+~ =46 —\/—_I(Oéﬁ—f—’}/(S)

2 2 2 2 2 2%/_712 2
t(g) = o +L6’2\—/171—6 a®—p 1 +4 afB —~o
VvV—1(avy + (36) ay — (36 ad + By

It follows that ¢ is a homomorphism from SL(2;C) to SO(3;C). The differential
Ly 1 51(2;C) — 50(3; C) is given by 14 (Xo) = —2v/=1X01, 14 (X1) = —V/—1Xp2+X12
and 1,(Xs) = —v/—1Xp2 — X12. Thus ¢ is a local isomorphism which maps F* to
G7, respectively. Since ker: = {#I,}, each leaf of G is doubly covered by a leaf

of F*. Thus ¢ is certainly a required covering map. O

Example 2.3.10. Let g =sp(n+1;C), G =Sp(n+1;C), and go = sp(n+1; R) =
sp(n+ 1) Nsu(2n + 2). Note that

5p(n+1;C):{(é _?A) ‘A,B,C’EM(n—i—l;C’),B:tB andC:tC'},

sp(n+1;R) = {(é _]fA>

o A B __t_ ot
(e[

Let Xi; = Eij — Ejinitn, Yk = Ekktn, Yoo = Ekjign + Bl ktn, Lk = Eprgn i
and Zyp = Ek’—l—n,l’ +El’—|—n,k’7 where 0 <4, <n,0<k<lI<nand0< E <l <

YA+ A=0,B="'B,C="'C andB+t6:0}

J TV S 20TV SR 20 >

sp(n; C) as a Lie subalgebra of sp(n + 1; C) by setting

5p(n; C) = (Xij, Vi, Zow [ 1 <0 j < 1<k <U<m 1<K U <n)

Y

C

then sp(n; R) is also realized as a real Lie subalgebra of sp(n + 1; C) via inclusion
to sp(n; C). Let T""! be the maximal torus generated by /—1X;;, 0 < i < n, over
R, and let T x Sp(n; R) be the real subgroup of Sp(n + 1; C) whose Lie algebra
is generated over R by v/—1Xgo and sp(n; R). Note that 7" C T x Sp(n; R) C
Sp(n+1;C).

In what follows, K is assumed to be a compact connected real Lie subgroup such

that T x Sp(n,R) ODKD Tt Let Wij, Nkl and Ckl be the dual of Xija Y. and
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Zi1, respectively, where n;; = ng; and (i = (g, then
n n
dwij = =Y wis Awsj — > Mit A Gijs
s:O tIO
n n
gt = =) Whs At + Y Mkt A wir,
s=0 t=0

Ay = — Z Crrs N wsir + Z wer A G-
s=0 t=0
Let b = ker (wio, Coj)1<i<n. 0<j<n> then b is a Lie subalgebra of g and

h= <X007Xij;Yk:l7 Ly

1§i§n,0§j§n,0§k§l§n,1§k’§l’§n>.

The foliation induced from b is of complex codimension ¢ = 2n + 1.
Let o : g/h — g be the splitting defined by

o([Xio]) = Xio, 0([Zog]) = Zoj,

then o is Adp1 xgp(n;r)-invariant. An Adpi . gp(n;r)-invariant Hermitian metric g

on g/h is defined by setting g([X],[Y]) = trlo([X])o([Y]), and an orthonormal
basis for g is {\%[Xio], [Zo;]}-
Let w = t(\/§w107 \/§(.U20, ey \/§wn0, 4-007 COlv o 7C0n) and set

w11l — wWoo w12 e Win \/57710 \/57711 s \/inln
w21 w22 — Woo . wan V2120 V2121 - V21025
~ Wnl . Wn,n—1 Wnn — W00 \/577710 \/577711 . \/innn
0= %401 %Coz e %Con —2woo —w10 e —Wn0
%Cll %CIQ . \%Cln —wo1 —W1i1 —wWoo .- —Wnl
1 1 1
ﬁCnl \T2<n2 cee ﬁCnn —Won —Win ... —Wnn — W00

then dw = —0 A w. By Definition 2.1.9 and Corollary 2.1.11, a Bott connection is
given by

w1l — woo w12 cee Win V2110 V2111 cee V2n01n
w21 w22 — Woo e wan V2120 V2121 . V2025
Wn1 e Wnn—1 Wnn —wo0 V20no V20n1 e V20nn
0= 0 0 0 —2w00 0 0
%Cu %Cu e %Cln —wp1  —W1l1 —Woo - -- —wn1
%Cnl %CnQ ce %Cnn —Won —Win ce —Wnn — W00
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Hence

2n + 2 q+1
hi = 5 (woo + Woo) = —— (woo + Woo ),
s 27
v = lew
1= 5 = dwoo-

It follows that

GV (K)

920)! +1 2q+1 L
- (q27r > (woo + @oo) A (dwoo)? A (dwgo)?

= (2¢)! (2—) (woo +woo) A (A woj Awsjo) A (A moj A Coj)
s 7j=1 7=0

A (/\1503' A@jo) A (/\0%3‘ A Coj)-
= j=

Choose {vV—1X;, X1 — Xpj, V-1 X+ Xi;),Yi; — Zij, V—1(Yi; + Z;;) } as a basis
of sp(n + 1; R) and let oy, Bk, Vjk, ik, Yk (0 <3< n, 0 < j <k <n) be their
respective dual forms. Their extension to g by complexification satisfy the following

equations;

wii = V1o, wir = Bjk + V-1V, wij = —Bjr + \/__1%.]“
Nij = Hij + V _1Vija Cij = —U;5; + \/—1Vij.

Hence

g+1

o ) 22972(2¢)! oy A (A ﬁéj A ’Yéj) A( A Méj N Véj)

Jj=1 Jj=

T*K*GVQq(K) = (

n

n
A (/\1 533' N ’ng) N (./\Oﬂgg’ N ng)-
j= j=

Finally, as in the previous examples, the mappings 7 : Sp(n + 1) — Sp(n +
1)/Sp(n) = S?¢*! and 7 : Sp(n + 1)/T"" — Sp(n + 1)/(T* x Sp(n)) = CP1?
(note that ¢ = 2n + 1), induce injective maps on the cohomology, where Sp(n; R)
is simply denoted by Sp(n). Hence GV, (K) is non-trivial. O

The following proposition is obvious from the construction.

Proposition 2.3.11. The foliation of Sp(n+ 1;C) given by Example 2.3.10 is the
pull-back of the foliation of SL(2n + 2;C) given by Example 2.53.6 by the natural

inclusion.
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Hence the foliations of Sp(n + 1;C) and SL(2n + 2;C) are derived from the
same complex ['-structure. In particular, the foliations we constructed on Sp(1; C)
and on SL(2; C) are isomorphic as foliated spaces. Consequently, there is a double
covering map from Sp(1; C) to SO(3; C) as foliated spaces.

On the other hand, the foliations obtained by using SL(¢+1; C) and SO(q¢+2; C)
are distinct if ¢ is an odd integer greater than 1. Denote by V5 the second Chern
character of the complex normal bundle, then V5, = v% — 2v9 and we have the

following

Proposition 2.3.12. If ¢ > 1, then Vo and v} are related as follows;

1
Vo = n lv% for the foliations constructed using SL(q + 1; C) in Example 2.3.6,
q
-2
Vo = q—2?}% for the foliations constructed using SO(q + 2; C) in Example 2.3.8,
q

when evaluated by the Bott connections as in Examples 2.3.6 and 2.3.8.

Proof. Denote by 61 the Bott connection in Example 2.3.6 for SL(q+ 1; C). Recall

that
w11 e wlq

01 = — wO()Iq.
wa DY wqq

Denote by R; = df; + 0, N 61 the curvature form of 61, then

—dwoo — wio A wot —w10 N\ Wo2 e —w10 N\ Wogq
—w20 /\ Wo1 —dwgp — wag Nwoz  * -+ —w20 /\ Woq
R =
—Wq0 VAN wWo1 —Wq0 N wWo2 cee —dwoo — Wq0 N Wogq
Hence
-1 (g+1)
! 2w/ —1 ! 2w/ —1 00
—1 1
Vo = —2tI‘ R% = —2((] + 1)(dw00)2
47

1
Thus V5 = vy
q+1

On the other hand, let 65 be the Bott connection in Example 2.3.8 for SO(q +
2;C), then

vV—lwor  —wez —was 0 —Ww2 41
w23 V—=lwor —ws3s -+ —wW3441

Oy = — )
W2,g+1  W3g+1 0 o V—lwo
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The curvature matrix Ro of 65 is given by

Ry
—+v/—1dwo1 —w20 A wo3 — w21 A w13 st —w20 AWo(g+1) — w21 AWi(g+1)
w20 A wo3 + w21 A w13 —v/—1dwo1 Tt w30 AWo(g+1) — W31 AWi(g41)
w20 A Wo(g+1) T w21 AWi(g4+1) W30 NWo(g+1) T w31 Awigr1) - —v/—1ldwo1.
Hence
1 uR d
U1 ——=r vy Wo1
2/ —1 2 ’
—1 -2
2 2
V2 = mtr R2 = 471_2 (dwgl)
-2
Thus Vo = q—gv% 0
q

Corollary 2.3.13. The foliations obtained by using SL(q+1; C) and SO(q+2; C)

determine distinct real I'-structures if q is an odd integer greater than 1.

Proof. By Theorem 1.5, ¢co = —vg +v101 — U2 holds in WU,,. Assume that V172V, =

kv{ when evaluated by a Bott connection, then

GV2q — 2h16%q_202 (\/ —1)2q_1ﬂ1 (’Ul — 1_)1)2(]_2(1)% — 21}2 + Q_J% — 2’1_12)

2qg —2)! _ _ _
= \/_—1(q—)'u1(v(1117(11 2(02 = 205) + 072 (02 — 209)0Y)

q'(q —2)
2q — 2)! ~
= \/__1q(!(q — 2>)' (2k)uyviv?
k(g —1)
= e GV O

Corollary 2.3.13 implies that even though there is a double covering Sp(2; C') —
SO(5; C), the foliation obtained by using Sp(2; C') as in Example 2.3.10 is not iso-
morphic to the pull-back of the foliation obtained by using SO(5; C) as in Example
2.3.8.

Other classes are also compared as follows when ¢ = 3.

Example 2.3.14. We compare the previous examples constructed by using SL(4; C),
SO(5; C) and Sp(2; C) by examining the secondary classes of degree 13. It is known
that the following classes in H'?(WQg) form the so-called Vey basis [18]; hqcf,

4 3 2 22 3 2
hicica, hicies, hicica, hicics, hicics, hicicacs, hicaca, hicy, hics, hicg, hsca,
28



hsc3, where hic§ = GVg. Among them, the following classes form a basis of its
image in H'3(WUs) [2]: hic3, hicicacs, hicics, hiciea, hicic3, hic§, hacs. On the
other hand, by Theorem 1.5, the ratio of these classes to the Godbillon-Vey class
can be calculated as in Corollary 2.3.13 if there are relations of the form vyvy = av%,
vy = Buv} as differential forms. These values (o, 3) are respectively (273 - 3,27%),
(22.372,2-373), (273.3,271) for SL(4; C), SO(5; C) and Sp(2; C). Thus we have
the following table;

SL(4;C) SO(5;C) Sp(2; C)
hic§ 1 1 1
hicico 272.32.571 | 271.372.571.43 | 272.32.57!
hicics 275.571.19 373.571.19 275.571.19
hic3cs 276.13 2-1.374.37 276.13

hicicocs | 278-3-571.23 | 2.375.571.41 278.3.571.23
hic3 279.571.37 2.376.571.37 279.571.37
hscd | 2711.5-1.11.23| 271.377.5-1.709 | 2711.571.11.23

Here the values in the table are the ratio to GVg, for example, hicicy = 272.32.
57 1hyc for SL(4; C). From these tables and formulae in [2], one can see that if w is
a member of the Vey basis of H'®*(WOQg) as above, the ratio of w to GVg = hyc§ is

always less than 1 (except the ratio to GVy itself), for which we have no explanation.

By Proposition 2.3.11, the foliations of SL(4; C) and that of Sp(2; C) are essen-
tially the same at least on the Lie algebra level. On the other hand, it is clear that
the ratios of the classes to GVg are already determined on the Lie algebra level.

Therefore the ratios in the table are identical.

Foliations with non-trivial Godbillon-Vey class can be also constructed by using

an exceptional Lie group.

Example 2.3.15. Let GG be the exceptional complex simple Lie group G. Let go
be the Lie algebra of G, then as found in [16],

Z3 =21+ 3%Z2, Zy =272+ 322,
92:<Zi>Xz‘>Yi§1§i§6 Zs = Z1+ Za, Ze = Z1 + 223, >
(X, Yil = Z;, [Z:, Xa] = 2X5, [Z:,Yi] = =2Yi/ &

Let v;, a;, B; be the dual of Z;, X;, Y;, respectively, then they satisfy the following
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relations, namely,

dy1 = —a1 NP1 —az A B3 —2a4 A\ By — a5 A Bs — ag A S,
dye = —ag A B2 —3ag A B3 —3ag A By — a5 A\ B5 — 206 A G,
dog = =2y1 Nag +v2 Nag + Ba ANas + 2083 Ao — Ba N as,
das = 371 Nag — 2y ANag — 301 A as — (5 A ag,

daz = —ay Nag +v1 ANag — Y2 Aag — 201 ANayg — Ba N ag,
day = =201 Nag —y1 ANag + B1 A as + (3 A ag,

das = 3a1 A ag — 3v1 A as + v Aas + P2 A ag,

dag = 3az N\ ag + as A as — 2 A ag,

dpr =2 A B —2 NP1 —az A B3 —2a3 A By + ag A Bs,
dfBz = =371 A B2+ 292 A B2 + 3an A B3 + a5 A B,
dfs = P1 NP2 —71 A B3+ 72 A B3+ 201 A By + ag A S,
dBs =201 A\ Bs+71 A Ba— a1 A Bs —az A Pe,

dfBs = =381 A Ba+ 311 ABs — 72 A B5s — az A P,

dfBs = =303 A\ Ba — P2 N\ Bs + 72 A De.

It is known that the following real Lie subalgebra gg is a compact real form of

92, nameIY7

go = <\/—IZZ',X¢ - )/ia V _1(Xi +)/i)>R'

The compactness can be shown by verifying that the Killing form restricted on gg
is negative definite.

Let (;, A\; and p; be the dual of /—=1Z;, (X; —Y;), vV—=1(X; +Y;), respectively,
and denote again by the same symbol their extension to go by complexification,
then v; = /=1¢;, o = A + vV =1py, and f; = =\ +v/=1p;.

Let h; and hs be complex Lie subalgebras of go defined respectively as follows;

hl = ker <62763754:657ﬁ6> ) hQ = ker <617ﬁ3aﬁ47ﬁ57ﬁ6> .

They are easily seen to be Lie subalgebras. Let ¢ be either 1 or 2, and let H;
be the Lie subgroup whose Lie algebra is h;, then H; contains the maximal torus
T? generated by Z; and Zs. Set su(2); = (v/—1Z;,(X; = Y;),v/-1(X; +Yi)>R
and let dw; be the inclusion of su(2); into go, then dw; induces an embedding
of SU(2) into Gg, which is denoted by w;. Denote the image of w; by SU(2);.

Similarly, let u(2); = <\/—1Zl, V=175, (X; = Y;),v—1(X; + YZ-)>R and repeat the
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same construction. Denote the image by U(2);, then U(2); is isomorphic to U(2).
Note that SU(2); C U(2); C GE, where GE is the compact real form of G5 whose
Lie algebra is gg. In what follows, K; is assumed to be a compact connected Lie
subgroup such that T? C K; C U(2); when the foliation induced by b; is considered.

First we study the foliation induced by bh;. In order to apply Theorem 2.1.7, let
o1 : g§2/h1 — g2 be the section defined by

O-I(D/z]) = ifi; 1= 2737475767

then o1 is Adyg),-invariant. The Hermitian metric g; with respect to which
{V3[Ya], [Ya], [Ya], V3[Y5), [Y6]} is an orthonormal basis is Adyz),-invariant. This

is shown by direct calculations, for example,
g1([X1 = Y1, Ya], Y3) + g1 (Yo, [X1 — Y1, Y3]) = g1(Y3,Y3) + g1(Ya, —3Y2) = 0.

Set w1 = t(%ﬁ2,ﬁ3uﬁ47 \/Lgﬁbfgﬁ)a then dwl = _51 /\wh where

371 — 272 —V3a 0 0 —\/Lg%
~ —V30 m-7 2 0 —ay
01 = 0 261 - V3ay a3

0 0 V3B —3v1 + 2 \%O@

0 0 303 V30 —2

By Definition 2.1.9 and Lemma 2.1.10, the gl(5; C)-valued 1-form
311 — 272 —V3x 0 0 —\/Lg%

—V38 m—7 —2m 0 —Qy

01 = 0 =261 —m V3ay as

0 0 V3B —=3m1 + e \%062

0 0 0 0 —Ys

is a Bott connection. Hence h; = 2—(72 +72) and v, = dvs. Since
T

3
2mv—1

dys = —ag A\ B2 — 3z A B3 — 3oy A\ By — a5 A\ B5 — 206 A B

and since GVqg = 51!—05!!1111)?17{’,
g\ 1! 6 6 B
GVio(01,81) = (o ) (25 (0 n +T) A Alaih B A (@A)
28 X 317 X 52 o 6 6 -
= W(% +72) A A (i ABi) AN (@G A Bi),
i=2 i=2
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where GV1¢(h1, K1) denotes the Godbillon-Vey class of the foliation given by the
quadruplet (Go, Hy1, K1, "), where I" is any cocompact lattice of G2/ K;. By Propo-
sition 2.2.7,

918 . 317 . 52

T*/{*leo(hlaKl) = (277')11

6 6
V=G A A A A N Ap).
i=2 i=2

6 6

It is clear that (3 A A (AL Apl) and A (M Apl) are the volume forms of GE/SU(2),
i=2 i=2

and GE/U(2)1, respectively, where G is the compact Lie group with Lie algebra

go. Then by Lemma 2.3.16 below, 7*k*GV1¢(h1, K1) is non-trivial.

The foliation induced by hs can be studied in a similar way. Define o3 : g2 /b2 —
g2 by setting o2([Y;]) =Y}, j = 1,3,4,5,6, then 03 is Ady(g),-invariant. Let g be
the Hermitian metric on go/h2 with respect to which {[Y1], [Y3], [Ya], [Y5], [Ys]} is

an orthonormal basis, then go is Ady(2),-invariant.

Set Wo = t(ﬁ17637ﬁ47ﬁ5766) and

—2v1 + 72 Qo 203 —Qy 0
_ B2 M =2 —2m 0 —ay
o = 0 =261 -m a1 ag |,
0 0 361 =3+ a
0 0 303 B2 =72
then dwy = —52 A wa. Hence
—2v1 + 72 Qg 203 —Qy 0
&) M= 20 0 —oy
92 = 0 0 -1 a1 (0%
0 0 0 —3’71 + Y2 (6%)
0 0 0 B2 —72

induces a Bott connection. The characteristic homomorphism is calculated as fol-

lows. Firstly, one has

5%
hy = 2—(71 + 1),
T

5}
R
= 271_5?(—041 NP1 —azABs—2a4A\By—as A\ Ps —ag A [Bs).
Hence
11
GVio(hz, K2) = (;) (2502 (n + ) A A (@i AB) A A @ AB)
m 17#2 i#2
26 A 32 X 513 o .
- W(% +71) A 4\2(@@- A Bi) A 4\2(% AB;).
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By Proposition 2.2.7,
216 . 32 . 513 1 1 5 5
Tk GVio(h2, K2) = V-1 —11711 ANNOG A AN A ).
(2m) i#2 i#2
As in the previous case, this is the product of the volume forms of G£/SU(2), and
GE/U(2),. Hence 7°k*GV1g(h2, K2) is non-trivial by Lemma 2.3.16.
The foliations defined by h; and by are derived from distinct real I'-structures.

2
Let R(A) be the curvature form of 6, then v? — 2vy = (ﬁ) tr R(0)%. Hence

1
v} (v] = 2v2) (b1, K1) = ﬁv?(thﬂ,

v} (v — 202)(h2, K2) = %U?(b%Kz)-

These relations are shown as follows by using the curvature matrices R(6;) and
R(02) presented after Lemma 2.3.16. Set [4, j, k] = a; A B; A aj A B A ag A B, and
define the symbols [i, j] and [4, j, k, [, m] in the same way. When 6 = 6;, one has

trR(@l) = 3as A B2 + 9a3 A B3 + 9auy N By + 3as A 5 + 6ag A Sg,
(tr R(01))® = 3% -6(9[2,3,4] + 3[2,3,5] + 6[2,3,6] + 3[2,4,5] + 6[2,4, 6]
(tr R(6,))° = 3% -5!-2-3%[2,3,4,5,6] = 2*-3%.5[2,3,4,5,6].
Let tr'R(61)? be the terms of tr R(f1)? which contain [I,m], then it is clear that
(tr R(01))3tr R(01)* = (tr R(61))3tr' R(61)%. One has
tr' R(01)? =2[2,3] + 2[2,4] — 6[2, 5] + 8[2, 6] — 54[3, 4]
+ 2[3, 5] + 24[3,6] + 2[4, 5] + 24[4, 6] + 85, 6].
Hence
(trR(01))%trR(6,)? = 2* - 3% - 5[2,3,4,5,6] = 373(trR(01))°.
When 6 = 65, calculations of the same kind show that

(trR(02))trR(62)2 = 3 - 5~ 2(trR(02))°.

Hence the normal bundles associated with h; and hy are not isomorphic as complex
vector bundles. Moreover, they determine distinct I'-structures as real foliations.

Indeed, by repeating the proof of Corollary 2.3.13, one has

hici®(h1, K1) — 2hiciea (b1, K1) = 2% - 37°hici®(h1, K1),

hici®(ba, K2) — 2hicica(ha, Ko) = 22 - 371 - 572h1c1%(ha, K>).
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Rewriting these relations, one obtains

hicBeo(by, K1) =271 -37°.239GV (b1, K1),
hacea(ha, K3) =2 371572 . T1GVyg(ba, Ko).

Hence these foliations are distinct as real foliations. Note that the foliation induced
by by is distinct also from the foliations of SL(6; C') and of SO(7; C) by Proposition
2.3.12 and Corollary 2.3.13. Indeed,

th?CQ = 2_1 : 3_3 -5 GVlO for SL(G, C),
hicBeo =2 -371.572.71GVy,  for SO(7;C).
On the other hand, the foliation induced by hs is obtained from the foliation of

SO(7; C) at least on the Lie algebra level. This is shown as follows. Let i : go —
s0(7; C) be the inclusion of Lie algebra determined by requiring

i(Z1) = —V—1(Xo1 — 2X23 + Xu5),
i(Z2) = —V—1(X23 — Xu5),

i(X,) = % ((Xos + X14 — 2X36) — V—1(Xoa — X15 + 2X06)) ,
i(Y1) = % (—(Xos + X14 — 2X36) — V—1(Xoa — X15 + 2X26)) ,
i(Xa) = 3 (~(Xas — Xa0) = V=1(Xas + Xa3))

i(Y2) = 3 ((Xas = Xat) = VT (X1 + Xs5))

then i*(h*) = ha, where h* and X;; are as in Example 2.3.8.

The proof of non-triviality of the Godbillon-Vey class is completed by the fol-

lowing lemma.

Lemma 2.3.16. We retain the notations in Example 2.3.15.
1) The pull-back of the volume forms of GIt/SU(2);, i = 1,2, are non-trivial

in H*(GR).
6
2) The classes represented by N (A A i) and N\ (A A i) are non-trivial in
=2 i#2
H*(G/T?).

Proof. First we show 2). The equation

dCr = —2XA Ay — 2XA3 A pug — 4Ag A g — 2205 A s — 206 A pe,
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6
implies that d¢; determines a class in H2(GE/T?). The product (d¢i) A A (A A ;)
=2
is easily seen to be a non-zero multiple of the volume form of GE/T2. Therefore
6
A (\i A ;) is non-trivial in H*(G%/T?). The non-triviality of /A (A; Ap;) is shown

i=2 i#2
by considering the product with the class represented by d(s.

In order to show 1), we define w; and wy by setting
wi = Ca—i N\ (A5 A py),
J#i

where i = 1,2, and show that [o] U [w;] # 0 for some [0] € H3(go; R). First note
that we may work on g because H3(go; C) = H3(go; R) ® C =2 H3(g2; C). Define
o’ € (g3)* by setting 0(X,Y, Z) = tr(adix,yjadz), then by the proof of Theorem
21.1 in [13], ¢’ is a cocycle representing a non-trivial class in H3(go; C). Up to

multiplication of a non-zero constant, ¢’ is of the form
o' =—=902v — ) Aar ABL + 3371 —272) Aas A B +9(11 —72) Aas A B3
— 9 Nag A By —3(3y1 —v2) ANas A Bs — 3y2 N ag A Bs
+ (terms not involving ~;).

On the other hand, w;, when complexified, is a non-zero multiple of

Ya—i A N\ (o A Bj).
J#
Hence [0'] U [w;] is represented by a non-zero multiple of
6
Y AY2 AN (o ABj). O
j=1
Remark 2.3.17. By following [14], one can show that the above o’ is in fact as

follows;
o' =671 Ady1 — 371 Adya — 32 Adyr + 272 Adye
+3a1 AdBy + 381 Adaq + as AdBs + By Adas + 3as A dBs + 303 A das
+ 3ag ANdfBy 4+ 304 N dag + as AdBs + Bs A\ das + ag A dBs + Bs N dag.
This follows from the fact that
37F — 37172 + 72 + 3181 + B + 3azf3 + 3auBy + asBs + e

is a primitive element of I(g), where I(g) is the set of left invariant symmetric
polynomials invariant also under the adjoint action. Note also that H3(gs; C) is in

fact isomorphic to C.

The curvature matrices R(61) and R(f3) are presented in the next page.
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The matrices R(6;) and R(62) are as follows;

NNA%HV =db, + 601 N0,

36

+o4 A Ba+as A Bs

3a1 A B3+ as A Gs

—a1 A P1+ 2as3 A B3
+as A Ba+as A Bs

—4083 N aa + 204 N as

a1 A B+ a3 A B3

+2a4 A Bs + as A Bs
+ag A Bs

0

263 Nag — Ba N as

3a1 A B1 + 3 A Ba
+2as5 A Bs + as A Bs

31 A B3+ as A Be

-3 A
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Remark 2.3.18. Some other foliations G2 with non-trivial Godbillon-Vey class can
be obtained by considering the action of the Weyl group. Let o1 be the auto-
morphism of Gy which maps (21, Z2) to (221 + 325, —Z1 — Z3), and let o2 be the
automorphism which maps (Z1, Zs) to (Z1, —Z1 — Z3), then they generate the Weyl
group. On the other hand, set

w1 = (B2, 03, B4, B5, B6), w) ="
w2:t ﬁ ﬂ37ﬁ4aﬁ57 6)7 wé:

t

Of2,0[3,0[4,0!5,0[6),

~+

a1, 03,04, 05, 6)7
)

( (
( (
( (
“ (
( (
( (

ws = "(B1, a2, B4, B5,06), wh="(cu,Be,u,as,ag),
wy = (B, a2, a3, B5,a6), wy ="(cu, B2, B3, a5, Bs),
W5 = ¢ ﬁ 042,043,044,046), wé =1 alvﬁ27ﬁ3aﬁ4 ﬁﬁ)v

= (B, 00,03, 84,05), wg="(c, B, 03, 4,a5),

and set h; = kerw; and b, = kerw], then they are Lie subalgebras of go. First
consider the action of oq1. From b, one obtains b}, b4, h1, ha, b3 and then h; again.
From by, one obtains b%, bhg, bh, b5, he and then ho again. On the other hand,

under the action of oy, one obtains b} from by and b5 from ho, respectively.

The examples constructed using A, = SL(¢ + 1;C), B,, = SO(2m + 1;C)
(g =2m—1), Cphy1 = Sp(n+ 1;C) (¢ = 2n+ 1) and G5 (¢ = 5) have certain
common properties. Denote by X,, one of these groups, and let X,‘fff be the compact

real form of X, as in the above examples, then
TCKCT'x X, cT'x X,_1 C HC X,

where T is the maximal torus realized as above. The inclusion of X,,_; into X, is
realized by considering the inclusion of corresponding Dynkin diagrams. Hence we
regard G1 = SL(2; C).

The Lie algebra b defining the leaves can be described as follows. Let r,, be the
Lie algebra of X,, and set T,,_1 = t' ® r,,_1, then there is a splitting r, = th_1 ® a
as complex vector spaces so that one can find a decomposition a = a™ @ a~ such
that the both T,,_; ® at are complex Lie subalgebras. These subalgebras are b as
above. Finally, the Godbillon-Vey class is realized as the pull-back of the product
of the volume forms of X /X, and X /(T! x X¢)).

The construction using SO(q + 2; C') in Example 2.3.8 was not successful if ¢ is

even. In fact, we have the following
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Proposition 2.3.19. Assume that T' x SO(2n — 2; C) and the mazimal torus T™
are realized as in Example 2.3.8. If n > 2, then there is no Lie subalgebra b of
s50(2n; C) with the following properties:
1) b contains t' @ so0(2n — 2;C).
2) The Godbillon-Vey class of the foliation of I'\SO(2n; C)/T™ defined by b is
non-trivial as an element of H**!(s0(2n; C), t"; C).

Proof. We retain the notations in Example 2.3.8. Set Yy, = Xo; + v—1X7; and
Zo;i = Xoi —/—1Xy; for i > 2. Denote by € the Lie subalgebra t! @ so(2n — 2; C).
Let h be a Lie subalgebra having the properties 1) and 2), then h/¢ is invariant

under the action of ade. Define linear subspaces a* of b/ by setting
a” = ((Yoz, Y03, - -, Yo,2n-1) + £)/8,
a = (<Z027 ZO37 ey ZO,27’L—1> + E)/E,

then h/¢ = at @ a~. Denote by i* the inclusions of a* to h/€ and denote by
pT the projections from h/€ to a® corresponding to the above direct sum. Since
adx,, Yo; = v—1Yy; and adx,, Zo; = —v/—1Z0;, h/€ = iTpT(h/8)@i~p~(h/¢). Thus
it suffices to study invariant subspaces of a*.

Assume that a’ is an invariant subspace of a™. Fix integers 7, j such that 2 <
i < j < 2n,and set Vi = Yp; & /=1Yg;. Set bt = CV;; and 3 = (Yor |k # 4, j),
then a* = b" @ b~ @ 3. Let «* and ¢; be the inclusions to a™, and let 7% and
7; be the corresponding projections from a* to b* and 3, then o/ = 1 7, (a/) @
vom_(a') & yymy(a’). If tamy(a’) = {0} for any pair (i,7), then o’ = {0}. Assume
that vy 7y (a’) # {0} for a pair (i,7), then tymy(a') = CV,L;r In particular Yp; +
v—1Yy; € a’. Noticing that n > 2, choose an integer k distinct from i, j and such
that 2 < k < 2n — 1. For such a k, adx,, (adx,, Yo; + \/—_lYoj) = —Yy; and thus
Yo; € . Since ady,, Yo; = — Yo for k > 2, k # i, and adx,, Yo; = —Y1;, this implies
that ' = a™.

By the same argument, (h/€) Na~ is either {0} or a=. Hence b is either t* x
50(2n —2; C), s0(2n; C) or the Lie algebras h* defined in Example 2.3.8. It is easy
to show that the Godbillon-Vey class of the foliation induced by t' x so(2n — 2; C)
is trivial. We have already shown in Example 2.3.8 that the Godbillon-Vey classes
of the foliations induced respectively by h* are trivial. Thus the proposition is

proved. [J
Remark 2.3.20. 1t is well-known that so(4; C) = 51(2; C) & sl(2; C) and so(6;C) =
5[(4; C). Hence it is possible despite Proposition 2.3.19 to construct foliations with

non-trivial Godbillon-Vey classes at least on the Lie algebra level.
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As already remarked, the Godbillon-Vey class is realized as the product of volume
forms of X /(T! x X)) and X&'/ X . Hence if the Godbillon-Vey class is

n—1-
non-trivial, then the image of the volume form of X¢f/Xf remains non-trivial
when pulled back to X&f. On this line, we have the following. Recall that the
inclusion of X,,_; into X,, is realized via the inclusion of corresponding Dynkin
diagrams.

Proposition 2.3.21. The mapping =" H* (XS /X ) — H*(XS) annihilates

the volume if the pair (X,,, X,—1) is one of (Fy,Sp(3; C)), (F4,S0(7;C)), (Fs,SL(6; C)),
(Fs,S0(10;C)), (E7, Eg) or (Es, E7). Hence examples of the same kind as in this

article cannot be constructed for these pairs.

Proof. 1t is known the cohomology of these groups are as follows [14]:
H(f4)
H"(es)
H*(e7) = N\
H™(es)

/\ 63,611,6157623];

[
[637 €9, €11, €15, €17, 623],

[637 €11, €15, €19, €23, €27, 635]7
[

€g /\ €3, €15, €23, €27, €35, €39, €47, 659]7

where e; denotes the generators of degree i. The dimensions of Sp(3;C) (or
SO(7;C)) and Fy are 21 and 52, respectively. However, H3!(f4) = {0}. In or-
der to prove the claim for Eg, first consider E5 = SL(6;C). Then H*(sl(6;C)) =
Ales, es, e7,e9,e11]. Since the embedding is induced from the inclusion of corre-
sponding Dynkin diagrams, we may assume that the image of e; under 7, is again
e; if and only if e; is non-trivial in the image. If 7* does not annihilate the volume
form, there is a non-trivial class in H 43(26) written in terms of e;5 and es3. It is
clearly impossible. If Ej5 is considered as SO(10; C), the proof is done simply by
counting dimension as in the case of Fj. The claim for other groups are also shown

in this way. U

More systematic treatment seems appropriate for examining all possible pairs

(X, Xn—1). We will not pursue it here.

3. RELATION WITH THE RESIDUE THEORY

The examples considered in the previous section are related to Heitsch’s residue
[21] as follows.
Let F be the foliation of M = SL(2; C) x C? whose leaves are the orbits of the

right action of SL(2;C') on M given by (90,v0) - 9 = (90g9,9 *vg). Let T be the
39



holomorphic vector field on C? defined by T = z% + w%, where (z,w) is the
natural coordinate of C2. Since the natural left action of SL(2; C') on C? preserves
T, F and T induce a foliation G of M* = SL(2;C) x (C?\ {0}). Morcover, as
these foliations are invariant under the natural left action of SL(2;C) on M and
M*, we have foliations Fr of F\M and G of F\M* for any cocompact lattice I
of SL(2;C). The original construction of the residue in [21],[23] applied to these
foliations is as follows. Let ¢ : I'\SL(2; C) x $% — I'\M* be the inclusion, then
t* is an isomorphism. Moreover, since ¢ is transversal to G}, there is a natural
foliation L*GVF of I'\SL(2;C) x S3. Since the normal bundles of §F and L*QNF are
trivial, the Bott classes uiv1(Gr) and wyvy (:*Gr) are defined. Let H*(I'\M) be
the cohomology of I" \ﬂ compactly supported in the direction of C?, then we have

the following sequence, namely,

HH(D\D*) & H*H(D\M, P\D®) < H=F(I\M) '€ 1+=3(1\sL(; 0)),
where 0 is the boundary homomorphism, ¢ is the natural mapping and |, c2 s the
integration of compactly supported 4-forms on C2. Tt is shown by Heitsch [21],[23]
that there is a natural choice of a Bott connection for Fr adapted to T and that if
we denote by v? (.7:: r,T) the differential form v? calculated by this Bott connection,
then v2(Fp,T) is of compact support and it represents i(8(u1v1(Gr))). The image
of v2(Fp,T) under Jg- is by definition the residue of v2(Fp) with respect to T,
Since ulvl(L*gp) = *uqvy (G}), this class is seen to be non-trivial if the residue of
v? is non-trivial (which is indeed the case).

On the other hand, there is a following relation between the Bott class and
the Godbillon-Vey class (Theorem 2.3 in [4]). Let [, : H*(I'\SL(2;C) x S?) —
H*~1(I'\SL(2; C) x CP') be the integration along the fiber of the Hopf fibration,
then ulvl(L*gp)alﬁl(L*(jp) is mapped to a non-zero multiple of GVl(ﬁp), where
Hp is the foliation of I"\SL(2; C) x C'P! obtained by taking the quotient by the
natural S' action along the fibers. Composing with the integration on the fibers of
I'\SL(2; C) x CP! — I'\SL(2; C), one obtains the following commutative diagram;

H*(I\M*) 2. mHYI\M,I\M*) s HY\M)
L ll fC’QJ/
fsl

H*(I'\SL(2;C) x S§3) == H* Y(I'\SL(2;C) x CP') — H*73(I"'\SL(2; C)).
However, the image of uqvq (gp)ﬂlﬁl (G}) under 7 o 0 is trivial because
70 8(U1’01(§F>’L_L1’l_)1 (gp)) = — ul’l)l@%(./%p) + ﬂﬂjfl)%(ﬁp)

=d(u1 @071 (Fr,T)),
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where wjt1v1701 (]? r,T) is the compactly supported differential form calculated in
the same way as calculating v? (.7:: r,T). Tt is relevant here that u; and wu; are
well-defined for F T.

Take now the quotient of the above foliations by SU(2) acting on M and M*
from the right via the inclusion to SL(2;C). Set M = SL(2;C) x C? and M* =

SL(2; C')S x (C?\ {0}), then the foliations as above induce foliai?(iil)s Fr of MM,
Gr of F\JL\IJ(%"), 1*Gr of I'\SL(2;C) x S3 and Hp of I'\SL(2;C) x CP!, where I' is
now a cocompact lattice of SL(2;S 27()2} SU(2). The diagram is aSsUf(jilows, namely,
H*(I'\M*) 2wy (n\M,\MY) L H:Y(I'\M)
) o
H*(I'\SL(2;C) x )53) Jst, H*YI'\SL(2;C) x CPY) — H*73(I'\SL(2;C)/SU(2)),

SU(2 SU(2)

where fC2 is the integration along the fiber. The image of ujv; (Q})ral@l(ép) under
Jgz 0100 is a non-zero multiple of the volume form of I'\SL(2; C)/SU(2) and
non-trivial. It is well-known that the foliation H is isomorphic to the foliation
given in Example 2.3.6. The fact that GVy(H ) become trivial when pulled back
to F\SL(2;C’)SU><(2)53 corresponds to 1) of Remark 2.3.7. We remark that if 7 :

I'\SL(2;C) x CP' — I'\SL(2;C)/SU(2) is the projection, then 7* o [, 04 0
SU(2)

d(u1v1(Gr)u101(Gr)) is a non-zero multiple of the imaginary part of the Bott class
§&1(Hr).

The same kind of construction can be done in higher codimensional cases. It is
also possible to apply this construction to other examples involving SO(2n + 1; C),
Sp(n; C) and G2 by using the Iwasawa decomposition and naturally associated
Sl-bundles. Thus we can still say that all the known examples of transversely holo-
morphic foliations with non-vanishing secondary classes can be obtained through

the residue theory as pointed out in [25] by Hurder.

4. THE RIGIDITY THEOREM AND INFINITESIMAL DERIVATIVES

In this section, infinitesimal derivatives of secondary classes are introduced by
following Heitsch [22]. It will be shown that complex secondary classes determined
by the image of H*(WU,11) under the natural mapping to H*(WU,) are rigid
under actual and infinitesimal deformations. In particular, the Godbillon-Vey class

is shown to be rigid in the category of transversely holomorphic foliations. On
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the other hand, there are classes in H*(WU,) such as the imaginary part of the
Bott class which admit continuous deformations. These classes are called variable
classes. Heitsch introduced in [22] the infinitesimal derivatives for cocycles in WU,
which represent variable classes of lowest degree. In the same paper, the infinitesi-
mal derivatives for any classes in H*(WO,) were also introduced. The most of this
section will be devoted to completing Heitsch’s construction by defining the infin-
itesimal derivatives for any classes in H*(WU,). The construction seems known
for specialists, indeed, the most of the definitions and the proofs are only small
modifications of Heitsch’s in [22] using notions in [15]. However, we give the details
for completeness and for their importance.

We follow Heitsch’s line of arguments for easy comparison. When definitions
and theorems are given, the number of corresponding statements in [22] will be
also given so far as possible. Finally, we remark that infinitesimal deformations are

also discussed by Girbau, Haefliger and Sundararaman [17].

§ 1. Definitions and Statement of results.
The following mapping from H*(WU,11) to H*(WU,) is relevant. It is an analog
to the real case [19].

Definition 4.1.1. Let p be the DGA-homomorphism from WU, to WU, defined

by the following formulae:

p(u;) = .
0 ifi=q+1
p<vl): e ) (U’L) = eos
0 ifi=q+1 0 ifi=q+1

We denote by p, the induced homomorphism from H*(WU,4+1) to H*(WU,).
The mapping p. is induced by the standard inclusion of C? into C9+1.

Definition 4.1.2. Let {F;} be a family of transversely holomorphic foliations of
fixed complex codimension, of a fixed manifold M. Then {F;} is said to be a con-
tinuous deformation of Fy if {F;} is a continuous family as integrable distributions.

If the family is in fact smooth, it is said to be smooth.

1) If there exists a smooth family of diffeomorphisms which conjugate each F;
to Fop, then we call such a {F;} as deformations preserving the diffeomor-
phism type.

2) Particularly if F; is identical to Fy when the transverse holomorphic struc-
tures are forgotten, the family {F;} is called as a deformation of transverse

holomorphic structures.
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The following theorems are the main results in this section.

Theorem B1l. The secondary classes defined by H*(WU,) is rigid under smooth
deformations if they belong to the image of p.. More precisely, let {Fs} be a smooth
family of transversely holomorphic foliations of complex codimension q and let w
be an element of p.(H*(WUy11)), then w(Fs) = w(F;) as elements of H*(M) for

any s and t.

Given a transversely holomorphic foliation F of M, infinitesimal deformations
are elements of H'(M;©z) (see Definition 4.3.3 for details). The infinitesimal
derivatives of elements of H*(WU,) are given by the mapping

D.(-): H(M;0%) x H*(WU,) — H*(M;C)

in Definition 4.3.11. It will be shown that a smooth family {F,} as above determines

0
a natural infinitesimal derivative 8 € H'(M;© ) such that Dg(w) = aw(]—"s)
s=0

for w € H*(WU,) (Theorem 4.3.25). The infinitesimal version of Theorem Bl is as

follows.

Theorem B2. The image of H'(M;05) x (p. H*(WUy11)) under the above map-
ping D.(-) is {0}.
Theorems B1 and B2 will be proved in steps. Before beginning the proof, we

present an important

Corollary 4.1.3. The Godbillon-Vey class is rigid under both smooth and infini-

testimal deformations in the category of transversely holomorphic foliations.

Proof. Let q be the codimension of the foliations, then the equation

2q)! _ 2q)! ~ g
GVaq = ps (—( 'q)' 41 - chf 1) - (q'?])l \/—_1u1v‘11v‘11

holds in H4TY(WU,41), where 41 is defined in Definition 1.4. [
The following corollary follows from Corollary 4.1.3 and Theorem 1.5.

Corollary 4.1.4. Let Fs be a smooth family of transversely holomorphic foliations
of codimension q, then the product of chi(Fy)? and %f(}—s) is identically equal
to zero. (Note that chy(Fs)? is independent of s.) Similarly, for any infinitesimal
deformation 5 of F, Dg(&;)(F)chi(F)? = 0 holds for the infinitesimal derivative

Dg(&y)(F) of & with respect to 5.
43



Let Fs be a smooth family of transversely holomorphic foliations of codimension
q and assume that GV, (F;) is non-trivial, then chy (F()? is non-trivial by Theorem
1.5. Assume that the mapping Uch(Fy)9 : H*(M; C) — H*T24(M; C) is injective,
then %gq(]—;) is trivial because d%Gng(}"s) = %fq(]:s) chy (Fp)? = 0 by Theorem
B1. This implies that the class &, is in fact rigid in such a case. So far as we know,
any smooth family {F,} such that {,(Fs) varies continuously has trivial first Chern

class. In this line, we have the following

Question 4.1.5. Is there a smooth family of transversely holomorphic foliations
for which the imaginary part of the Bott class varies continuously and the first

Chern class of the complex normal bundle is non-trivial?
The infinitesimal version of this question can be also asked.

§ 2. Rigidity under smooth deformations.

The aim of this section is to prove Theorem B1. We begin with some definitions.

Definition 4.2.1. Let {F,} be a smooth deformation of transversely holomorphic
foliations. Noticing that the complex normal bundles of the foliations remain iso-
morphic, denote them by ) and consider the same unitary connection 6 for some

Hermitian metric on (. Let 67 be a smooth family of complex Bott connections of

Fs and denote by 1), its differential with respect to s, namely, ¥, = %9?. Let f be
a homogeneous polynomial of degree 2k in v; and v;, then define differential forms
Ay and V as follows. First set 67 = t6; + (1 —t)6y and denote by €27 its curvature,
then set

1
Bs(65.00) =k [ F65 ~ 00,0, )i
0

1
V;(03,0) = / L (0,07 — B0, 2, ..., Q).
0

The following formulae are shown in [19];

0

(42:22)  —(Af(65,60)) = K(k — 1V (65,60) + b (6, 95, 9), and
0 0

where ()7 denotes the curvature form of the connection 67 and the the exterior

derivative is considered only on M, namely, along the fibers of M x R — R.

The following auxiliary definition will be convenient.
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Definition 4.2.3. Set WU, = A[ii1, ...,y ® Clvy,...,vy ® C[ty,...,7,] and
equip \/N\ﬁq with the differential d by requiring givﬂz = v; — v; and givvi = Jz‘;i = 0.
Let fq be the ideal of \7\7\[/}(1 generated by cochains of the form wyv;vx with |J| > ¢
or |K| > g. Note then that WU, = WTJq/fq. If ¢ is a cochain in WU, then the
natural lift of ¢ is the cochain in W\[/Jq obtained by representing ¢ as the linear

combination of cochains of the form urv;ox with |J| < ¢ and |K| < q.

These WTJq and d correspond to WU, but the Bott vanishing is ignored. It is
easy to verify the equation dod=0. In other words, jj& is exactly equal to O for
any ¢ € \7\7\6(]. This simple property is frequently used in what follows.

The following differential form is significant.

Definition 4.2.4. Let #“ and 6 be a unitary connection and a Bott connection
on Q(F), respectively. Let 6’ be a derivative of a family of Bott connections or an
infinitesimal derivative of a Bott connection which will be introduced in Definition

4.3.7, or a certain matrix valued function which will appear in proving Theorem
4.3.17. For ¢ € \/N\ﬁq, define a differential form Ap(6*,0,60") as follows. Firstly,

when ¢ = uyv vk, set
0()(0",0,0") = (|J] + [K[)vsox (0, Q)ir (0, 6"),
where (2 is the curvature form of . Set now
AZ(0",0,0") = 6(dp)(0",6.0').

We extend ¢ and A to the whole \7\7\[/}(1 by linearity.
If ¢ =urv vk Eﬁq and I = {i1,...,4;} with i1 < i < -+ <y, then

AZ(6",0,0")
=D (DTN K|+ @) (vt (v, = 03)) (8, Q)iara) (0,6%),
l

where I(l) =1\ {i;}.

Remark 4.2.5. We have the following formulae;

(4.250) (1] + K] (0s0i0)(0', Q) = 7] 0, (0, Quic () + [ K v, (Quic (8, Q),

vy(0',Q) =0 as differential forms if |J| > g+ 1,
(4.2.5b)

vk (0',9Q) =0 as differential forms if |K| > ¢+ 1.

Theorem B1 will follow from the following
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0

Proposition 4.2.6. Let ¢ € WU, be a cocycle, then a—xs(go) s represented by
s

Ap(bo,65,1s), where ¢ is any lift of p to WU,.

Proof. Let ¢ be a cocycle in WU, and compute %Xs (p). For each i (1 <i <gq),
there are elements o; and 3; of WU, which do not involve u; and such that ¢ =
u;c; + ;. Note that «; is closed because ¢ is closed.

In the rest of the proof, we adopt the following notations, namely, u;(05,0o),
v;(27) and v, (£27) are simply denoted by u;(s), v;(s) and vx(s), respectively. The
differential form v; (15, 27) is denoted by w;(s), and v (15, 27) is denoted by wy(s).
Denote V., (05, 00) and V., (65, 6,) simply by V; and V;, respectively. Finally, we set
Vi = V; = V; and @;(s) = w;(s) — w;(s). Thus %ﬂi(s) = i(i — 1)dV; + i(wi(s) —
wi(s)) = i(i — 1)dV; + iw;.

Let

0 -
be the differential operator obtained by applying s only to u;(6%,6o),
s
0

v;(07) and v;(05), then % is decomposed as % = O + ot 813(1' In order to

(p), write a;; = ZU j,k and (3; = Zv’vkbj  So that neither

84

comput

aé., ;; Dor b; ;. involves v; and v;. Then we have the followmg equation, namely,

0 0 -
6—&Xs(90) —6—&Xs(uz'0<i + Bi)

_ <z’(i —1)dV; + z’%(s)) vl (s)07 (s)af 1 (s)

i
n ;W(s)vg—l( )dw;(5)0f (5)aj i (s)
n ézkul(s)vg (s)0F =" (s)dw;(s)al 1, (s)
T ézjvg Y(s)dw;(s)0F (s)b 1 (s)
+ ézkvi (s)0F ™" (s)dw; (s)b" 1. (s)

The first term is equal to

i(i — 1)d17;;ai(s) + Z ziDz(s)vf (s)@f(s)aé’k(s).

j7k:

Note that dV;a;(s) = d(V;oi(s)) because o is closed. The second term is cohomol-
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ogous to

where ai_l is understood to be zero. Similarly, the third term is cohomologous to
=Y kv (s)of (s)wi(s)aj i (s) + D ko] (s)o5 ~ wi(s)a)_y 4 (s)
gk gk
= S il ()5 (s ) (5) . ),
3.k
where ai_l’ i = 0. The fourth and fifth terms are respectively cohomologous to

Z ijvl = (s)oF (s)wi(s)db’ ;. (s), and

gk

> ikv] (s)0 T (s)wi(s)dbl 1 (s).

J)k
Hence we have the following equalities modulo exact terms, namely,

0
8_$Z'XS(S0)

=20+ D) (8) = 32k + ek ) () o)
=2 ) +Zm )0k bmi(s)aiy 4 (s)

- 2 il (s s)vk<s>ui<s>daj,k<s> = 2 ol 57t o)) )
+ZW ()08 (s)uwi ()05 . (s) +ijikzz<s>vf—1(s)w(s)dbz‘-,k(s)

= ZW H()orwils) (af_1 x(5) — @ g1 (5) + dbf 4 (s) — Wis)daj 4 (s))

+ szv VOE T i () (—al p_y (8) + al_y g (s) + dbl (s) — Uys(s)dal; 4 (s)) -
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On the other hand, if ¢ is the natural lift of ¢, then one has the following equation

for each 7, namely,

C?QE = ((U — 1_}')04' — ﬂzdal -+ dﬁl)
= Z i — U)v) vl ajk+z kdbik —Zﬂivgﬁfda;-’k
J.k

—Z gl 1+db — Uydal ).

Proposition 4.2.6 for this choice of ¢ now follows from (4.2.5a). In order to show
the proposition for other choices, it suffices to show that A(c?& + B)(eo,ef,¢s)
is exact for 62,5 € WTJq, where B € fq. Firstly, one has A(J&)(GO,GT,@ES) =
§(d(d)) (8o, 05, 1bs) = 0. On the other hand, let § = ;v 0k with [J| > ¢. If I = ¢,
then A(v vk ) (6o, 05,1s) = 0 because J(UJ/T}K) = 0. If I # ¢, then the following

equation holds, namely,

A(urvvg ) (0o, 07,s)
= (=D + K| + i)t (vi, — Bi,) (s, Q7)1 (65, 60)

l
— Z —1 =1 |<]| UJ(¢57 QS)@KT)il (Qs)ﬂ-’(l)(gi’ 90)
l

—d (7] 05 (s, )0 (i1 (67, 60))

Here the second equality holds for v;(Q®) = 0 and vy (s, 2°)v;,(2°) = 0 by the
Bott vanishing. The last equality follows from (4.2.2b) and dv (15, 2°) = 0.

Finally, 82 Xs(p) is closed as xs(¢p) is closed independent of s. [J
s

Proof of Theorem B1. Let ¢ be a cocycle in WU, and let ¢ be any lift of ¢ to
W\[/Jq—i—l, then &;5 is the linear combination of the monomials of the form w;v ;0
with |[J| > ¢+ 1 or |K| > ¢+ 1. Hence A(pp)(6y, 03, ¢s) identically vanishes by
(4.2.5b). O

Compared with the real case, the space H*(WU,) and the cokernel of p, are

rather complicated. For example, we have the following.
Proposition 4.2.7 (cf. Theorem 1.8 in [2]). In the lower codimensional cases, the
cokernel of p. is described as follows:

q = 1: coker p, is generated by uy(v1 + v1).
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q = 2: coker p, is generated by vy + vy, U% + vg + 201071 + 17% + Ug and the classes
in H*(WUs) of degree 5, 10 or 12, namely, the following classes:

5 ﬂl(v% + v101 + @%),ﬂl(vg + @2) + 172(2}1 + @1)

10 611721}11_}1 (1)1 + 1_11)

~ <~ 9 9 ~ ~ o5 ~ ~ 5 ~ ~ " _
12 | uqueui vy, U1 U0 V2, U1 UgV2 VT, Ul U2V2V2

Here the number in the left column stands for the degree of the classes in the same

row.

The examples of Baum and Bott in [6],[10] show that the classes of the lowest

degree can vary. We do not know if the classes of higher degree can vary.

§ 3. Infinitesimal deformations, infinitesimal derivatives and rigidity un-
der infinitesimal deformations.

Recall that Tc M denotes the complexified tangent bundle TM ® C' of M and
that E is the complex vector bundle locally spanned by 7T'F and the transverse

antiholomorphic vectors 8i_ The complex normal bundle is then defined by setting
Zi

Q(F)=TcM/E. Let V be a Bott connection on Q(F).

Definition 4.3.1 (1.4). Define a derivation dy defined on I'* (A" E* @ Q(F)) with

values in '™ (AP E* @ Q(F)) by setting

de'(XO, Ce ,Xp)
= > (-1)'Vx,0(Xo,.... X, ..., Xp)

0<i<p
+ > (V)Ho([Xi, Xj) Koy X X Xy,

0<i<j<p
where 0 € I'°(A"E* @ Q(F)), X; € I'*°(E) and the symbol ‘™’ means omission.

A local description of dy is given in [15], where dy is denoted by dg. A section o
of Q(F) is said to be foliated and transversely holomorphic if Lxo =0 for X € E.
In other words, ¢ is foliated and transversely holomorphic if ¢ is locally constant
along the leaves and transversely holomorphic. The following fact can be found in
the proof of Theorem 1.27 of [15].

Lemma 4.3.2. Let O be the sheaf of germs of foliated transversely holomorphic
vector fields, then dy ody =0 and

0— 07 — I'*(\"E" © Q(F)) = I'**(N'E" © Q(F)) = -
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is a resolution of O .

We do not give a proof here but simply remark that the equation dy o dy = 0
follows from the fact that Vx, Vx, —Vx, Vx, — V[thj] = 0 for sections X;, X; of

F because V is a Bott connection.

Definition 4.3.3. Let ©r be the sheaf of germs of foliated transversely holomor-
phic vector fields. We denote by H*(M;©z) the cohomology of (I'™(A\"E* ®

Remark 4.3.4. It is shown in [15] (Theorem 1.27) that H*(M;Ox) is of finite di-

mension.

The infinitesimal derivative of secondary classes will be given as a mapping from
HY'(M;0z) x H*(WU,) to H*(M;C). In what follows, we follow the conventions
as in [22] but Bott connections on Q(F) instead of Q(F)* are used.

Let P be the principal bundle associated to Q(F)* with projection m. Let F
be the lift of 7 to P. If w is an element of P, then w is a g-tuple of linearly
independent elements of Q(F)* at m(w). For a vector X in T, P, set w(X) =

tHwl(meX),...,w!(mX)) and call this w as the canonical form. The differential
forms w® are considered as components of w and we denote w = *(w!,... w?). Note
that the connection form 6 of any Bott connection V satisfies dw = —6 A w (Here

the sign is opposite due to convention when compared with [22]). Let Q = d0+0A0
be the curvature form of V, then Q A w = 0.

Now let 8 € HY(M;Ox) and let o’ be a representative of 3. Such a o’ is a
section of E* ® Q(F) with dyo’ = 0. By arbitrary extending, ¢’ can be regarded as
a section of T& M @ Q(F). On the other hand, by pulling back to P and considering
the horizontal lifts in value, a section of /\kTéM ® Q(F) is considered as a section
of A*P* © Q(F). Furthermore, a section of A"P* @ Q(F) can be considered as
a C-valued k-form on P by composing with the canonical form w. A section of
AkP*®Q(ﬁ ) is always considered as a C'9-valued k-form in this way and represented
in columns. On the contrary, a section o projects down to a section o’ of /\kTE.M ®
Q(F) if and only if

1) o is horizontal, that is, o(X1,..., Xx) = 0 if 7. (X;) = 0 for some 7,
2) L:o = ao for a € GL(q; C), where L, is the left action of GL(¢; C) on P.

Thus the above section o’ can be viewed as a section of P* @ Q(F) satisfying the

conditions 1), 2) and

3) do 4+ 6 Ao =0 when restricted to 7*E.
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Let Z(w) be the ideal generated by w',...,w? in the space of differential forms on
P, then 3) is equivalent to do + 0 Ao € Z(w).

Definition 4.3.5 (Definition 3.8). Let 3 be an element of H'(M;© ) and let o
be a representative of 3 as a C%valued 1-form on P. The derivative w’ of the

canonical form w with respect to o is given by

It follows from the condition 3) above that dw’ + 6 AW’ € Z(w). Let 6’ be a
gl,C-valued 1-form on P such that

(4.3.6) dw' + 0N = -0 Nw.

Definition 4.3.7 (Definition 3.10). Any gl C-valued 1-form 6" on P satisfying

(4.3.6) is called an infinitesimal derivative of § with respect to o.

If 6, and 0] are two infinitesimal derivatives of 6 with respect to o, then (6] —
0,) ANw = 0. Hence

(4.3.8) (0] — 60" Z AL

for some C-valued functions )\1 . on P satistying AL k= )\’

Lemma 4.3.9 (Lemma 2.12). If 0" is an infinitesimal derivative of 0, then

i) 0" is horizontal,

ii) 0 is tensorial of type ad modulo w, namely, L:0' —af'a™! € T(w).

Proof. i) Let X € T, P such that m,X = 0, then w(X) = 0. As «’ is horizontal, one
has also w'(X) = 0. Let X be a vector field such that X,, = X. Now choose vector
fields Y;, 7 = 1,...,q which are equivariant under the left action and such that
wh(Vi)w) = 1 and w*((Y;),) = 0if j # k. Set a = w’ — Aw, where A is a matrix
valued function defined by settling A = (w'(Y1) ... w/(Y})), then a is horizontal.
Note that XA = 0 because the both Y} and w’ are equivariant and 7, X = 0. Then
a(Y) =0 and w(Y) is the identity matrix. One has by (4.3.6)

do=—-0NJ -0 ANw—dANw+ A Aw

= ONhNa—O0Nw—-—dANw+ AONw—0 N Aw.
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Asda(X,Y) = Xa(Y)-Ya(X)—a([X,Y]) = 0 because m.[X, Y] = 0, the following

equation holds, namely,

0'(X)=0"(X)w(Y)
(0 Aw)(X,Y)
=(—0Na—dANw+AONw—0 N Aw)(X,Y)
— _dA(X) + AB(X) — 6(X)A.

Since dA(X) = X(A) = 0, it suffices to show that #(X) = 0. This follows from
the equations 0(X) = (X)w(Y) = (0 Aw)(X,Y) = —dw(X,Y) and dw(X,Y) =
Xw/)—-YwX)-w(X,Y]) =0.

ii) One has L0 = afa™?', Liw = aw and L*w' = '. Applying L* to (4.3.6) one
has —L¥0' ANaw = adw’ +afa1! Aaw’. The right hand side is equal to —af’a™! A aw
again by (4.3.6). O

Definition 4.3.10. Let ¢ € WTJQ be a lift of a cocycle ¢ in WU, and let 8 €
HY(M;©x) be represented by o. Let 0* be a unitary connection for some Hermitian
metric on Q(F) and let # be a Bott connection. Let Q be the curvature form of 6,
and let 6’ be an infinitesimal derivative of  with respect to o. Define a differential

form on P then by setting
D, (¢) = Ag(6™,0,0"),
where the right hand side is defined in Definition 4.2.4.

We will show that D, (@) projects down to a closed form on M, and that its
cohomology class depends only on [p] € H*(WU,) and 3 € H'(M;O£). Then the

following definition is justified.

Definition 4.3.11. For f € H*(WU,) and 8 € H'(M;Ox), choose representa-
tives ¢ of f and o of 5. Set Dg(f) = [Ds(¢)], where ¢ is any lift of ¢ to WTJq,

and call it the infinitesimal derivative of f with respect to j.

Remark 4.3.12. If ¢ = w;, v, ... 05, + Vi, WinViy ... Vi + -+ + U4y ... Vs, _, Uy, , then
Dgs(p) coincides with the one given by Definition 3.14 of [22], where this kind of ¢
is denoted by hc;y.

Remark 4.3.13. Taking (4.2.5b) into account, Definition 4.3.11 can be seen as a
complex version of (2.15) in [22]. Indeed, if one begins with the cocycles of the form
hrcy € WOy, the same differential forms are obtained by following the construction

in this paper.
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Proof of Theorem B2. Once well-definedness is established, the theorem follows
from Definition 4.3.10 by using (4.2.5b). O

We come back to show the well-definedness of infinitesimal derivatives.

Lemma 4.3.14 (Theorem 3.17). The differential form D, () in Definition 4.3.10
projects down to a well-defined closed form on M which depends on o, 0, 8% and
the choice of the lift .

Proof. (a) D, () is independent of the choice of ¢’.

Let 6], and 6] be infinitesimal derivatives of § with respect to o and let g be a
monomial in vy,...,v, and ?1,...,04. Since 8] — 6, = Iw by (4.3.8), ¢g(0],) —
9(0,Q) = g(Aw,Q). As ¢ is a lift of a cocycle, d3 is the linear combination of
cochains in Z,. It follows that AG(6%,0,0,) — AG(0",0,0}) € T(w)"+ UT(w)" =
{0}.

(b) D, (@) projects down to M.
It suffices to show v Uk (v, — v;,) (6, Q) projects down to M. We have
L (vyvg (v, —0;,)(0,Q)) — vyok (vi, — 15,)(0',Q)

=vs0 (vi, — 05, )(LX0',aQa™") — vyok (v, — v5,)(ad a™t, aQa™ )

= vk (v, — 03,) (L5 —ab'a™t, aQa™1).
It follows that L:Ap(6™,0,0) = Ap(0",0,0") from Lemma 4.3.9 ii) and an argu-
ment as in the proof of (a).
(¢) Dy(p) is closed.

Recall that c?gZ is the linear combination of cochains of the form wyv ;v with
|J| > q or |K| > ¢q. Since D,(3) = A@(0%,6,0') = 6(dp)(6*,6,0) and since
d(d@) = 0, D,($) is closed by the following Lemma 4.3.16. This completes the
proof of Lemma 4.3.14. [

Before completing the proof of Lemma 4.3.14 by giving Lemma 4.3.16, we intro-

duce the following differential form.

Definition 4.3.15. Let 0 and 6} be unitary connections (not necessarily with
respect to the same Hermitian metric), and let w;v 0K € \7\7\6(1. Decompose I =
I, U1, so that I; consists only of indices less than or equal to 7, and I5 consists only
of indices greater than i, then set a?(e, 0y,0%) = ur, (0,04 )ur,(0,07). Finally, set

8 (v o) (0, 07,0,0') = (|| + |K |)vor (0, )@\ (0, 0, 07).
We extend ¢; to the whole \7\7\6(1 by linearity.
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Lemma 4.3.16. Let ¢ € WTJQ such that dp = 0. Assume that & € 7, U1,
then 0;(9)(0y,01,0,60") is closed. In particular, v;uk(0',Q) is closed if |J| > q or
K| >q.

Proof. Assume first that |J| > ¢ and show that v;(¢’,Q) is closed. Write Q} =
ZF}yk/\wk and set ) = Z k/\w’k then Q Aw’ = —’ Aw. On the other hand,
k

one obtains from the extemor derivative of (4.3.6), the equations Q = df + 6 A 0,
dw = —0 AN w and (4.3.6) itself the equation

QAW = (d0' +10,0']) Nw

where [0,0'] =0 N0+ 60" A 6. Hence v;(dd’ + [0,60'],Q) = v (', Q).

Let Z,(w) be the ideal of differential forms on P generated by w! +sw't, ... w7+
sw'?, then Z,(w)?™ = {0} independent of s. Set Q(s) = Q+ s, then Q(s) € Zs(w)
because (€(s))} Z Iy A A (w* + swF). One has now the following equation;

4050, ) = 05(d0',9) — (7] — 1os(0',d2,2)
— 0 (d8',2) + (7] = Dos(0',[6,9,)
= vy (d0’ +10,0'],Q)

vy (2, Q)
= Digs|_ v
=0.

The last equality holds because v;(€2(s)) is identically zero. On the other hand, by
(4.2.5b),

(|J| + |K)vyv (0',Q) = [T v (0, Q)0 (Q) + | K| v (Q) vk (6,9)

and v;(§2) = 0 because |J| > ¢q. Hence v 0k (6',2) is closed. Similarly, v ;o (6',)
is also closed if |K| > q.

Assume now that ¢ = > z,u5,v7,0k,, where z; € C. We may assume that the
t
number of elements of I; are constant, which is denoted by #1. If #I = 0, then

3i()(0y,0%,0,0") is already shown to be closed. If #I > 0, then one has

= Z )z, |Jt| + K)o, B, (07, ) (vi, — B, ) (Q)T{ Y, (6, 05, 61).
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Since |J| > q or | K| > q, vy, (0/,Q)v;, (Q)0k, () = vy, (Q)vk, (0',Q)v;,(2) = 0.
Hence

4.(5:(3)(05,6%,0,8) =3~ (= 1)y [ 1 w5, (6, Q)7ic, ()5, (), (6" 6)

£l

+ 3 (1) Ko v, (Q)vi, (), (0, Q) (67, 6).

Now by (4.2.5a) and (4.2.5Db),
([ Je| 4 | K| + ir)vs, 0k, 04, (67, ) = | J¢| v, (0, Q) 0k, 0;, (Q), and
([ Je| 4 K| + ir)v 05,0k, (0", Q) = | K¢ vg,05 (Q) Tk, (6, 9).
Thus

d(@(@(eg,e%,e,a'))—z (=)o (1] + K| + i), Tre, 3, (0, Q) (0%,6)
+Z Vae(1Te] + el + i)v, 05,0k, (0, Q)i (0%, 60)

= 5i(d90)(037 01,6,0)

=0
because J@ = 0. This completes the proof of Lemma 4.3.16. [
Theorem 4.3.17 (cf. Theorem 3.17). For f € H*(WU,) and 3 € H'(M;0x),
choose representatives ¢ of f and o of B. Let ¢ be any lift of ¢ to WU,. Then the

cohomology class [Dy ()] is independent of the choice of representatives and lifts.

Proof. Let 6%, 0, 0’, Q be as in Definition 4.3.10.

(a) [D,(®)] is independent of the choice of the Bott connection 6.

Let 6y and 6, be Bott connections and choose their infinitesimal derivatives 6, and
0] with respect to o. Note that D, () is independent of the choice of infinitesimal
derivatives by Lemma 4.3.14. Set 6; = 0y + t(61 — 0y), then 0, is also a Bott

connection and one of its infinitesimal derivatives is given by 6; = 6 + (67 — 6[)).
Let €2; be the connection form of #;, and we will show that gAgo(H“ 0;,0;) is exact.
Recalling that Agp(0™, 6;,6;) is calculated by evaluating dp e Iq, first we show the
claim when dg does not involve any u;. One has
d(vjug (01,01 — 00, Q)) =v0K(dby, 01 — 00, Q) — v0K (0, d0r — dOo, )
— (| J| + | K| = 2)vsvk (0}, 601 — 0o, [0, ], )
= v 0k (dO; + [04,0;], 601 — 6o, )

— U(]@K(H;,del — d¢90 —|— [Ht,Hl — 90], Qt)
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Note that each of the differential forms in the above equation projects down to M.
On the other hand,

0
EUJEK(QQ;QQ
=v 0k (0] — 00, %) + (|J] + | K| — Dvsok(0;,d(01 — 00) + [0r,01 — 0], ).

Hence

0
57070k (0, 2) + (| ]+ K| = 1)d (005 (67, 61 — b0, 1))

=v 0k (0] — 04, %) + (|J]| + | K| — 1)vsok(d; + [0, 0:],01 — 00, Q).
As in the proof of Lemma 4.3.16, write (€,)} = ZF;k A wk and set Q)% =
k

SN w'®. Then Q) Aw = (df), + [0;,0}]) ANw. Since gy Aw = 0; ANw = —dw,
k

(01 — o) Nw = 0. Hence (0; — ) = Z)\;’kwk for some )\;k Now by (4.3.6)

e

one has (6] —0)) Nw = —(Aw) Aw' = (M) Aw. Set Q(s,t) = Q; + s, 0(s) =
(61 —0p) + sAw’ and Zs(w) = Z(w' + sw't, ... w?+ sw'?), then Q(s,t),0(s) € Zs(w).
Thus v;0x(0(s),Q2(s,t)) = 0 if |J| > q or |K| > ¢. Differentiating with respect to

s and setting s = 0, one obtains
VUK (AW, Q) + ([ T] + [ K] = 1oy (01 — 0o, 23, Q) = 0.

As the left hand side is equal to v o ((0] — 00,2) + (|J| + | K| — Dok (61 —
0o, dO; + [0:,0;], ),
0
EUJ@K(% Q) = —(|J] + [K| = 1)d (vs0K (0,01 — 6o, %))
if |J| > q or |K| > q.
If c?{o' involves some of w;’s, write &5 =Y x;v;,0k,ur,, where |J;| > q or |K;| > ¢,

(3

and x; € C. By definition,

AG(0",6:,6;) = Y wil| il + [ Kil)vs, U, (6, ), (6,6

Hence
9\~
&A@(e ,Qt,eé)

==Y @[]+ Kl (|| + K| = 1) (v, 0k, (67, 61 — 60, ) Tr, (01, 6%)

+ Y @il + Kl )os, 0, (05, Q) (=)' iy = 1)dVi, (0r, 6 Viky, 1y (65, 0*)

il

) @[]+ [Kil)og, 0k, (07, Q) (= 1) i, (01 — o, )iz, 1) (0:,0"),
,l
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where I;(l) = I; \ {4;}. Fix now an integer k and rewrite J@ as glv@ = upay, + By so
that ay and S do not involve wy, then c?(c?{pf) = 0 implies that day = 0. Hence

Y @il il + K)o, 0, (05, Q) (= 1) Via(i — 1)dVi, (61, 6“ Viky, 1 (65, 6*)

il
=k

= k(k — 1)d(Vi(6:,6")5 (k) (6", 61, 6}))

because 6(ay) (0", 0:,0;) is closed by Lemma 4.3.16. Thus %A@(Q“, 0, 0;) is coho-

mologous to R, where
R==> "ai(|Ji| + [K:)(|Ji] + | Ki| = 1)d ((vs,0, (6}, 61 — b0, %)) Ur, (62, 6")

+ ) @[] + K)o, 0, (07, Q) (=1 i, (61 — B0, )iy, 1) (01, 6").

il

It suffices to show that R is exact. This is indeed done as follows, namely, by (A.6b)

one has the following equation;

— (| + K (| 3| 4 | K| = 1)d (v, 0, (03,01 — 0o, 24)) Ur, (01, 60")
=(1Ji] + K ) (|Ji] + [ K| = 1)vy, 0k, (03, 01 — 0o, Qi) diiy, (0, 0%)
= (1] + K (1] + | K3l = D)oy, 0k, (07,61 — 00, ) (= 1) (vi, — 03,) ()7, 1 (0, 0)
l

= 1T (1] = L)v, (0,61 — 0o, )0k, () (—1)' 10y, () g, 1) (0, 0")
l

= 1Tl K| v, (67, Q20)0k, (61 — 00, Q) (— 1) 05, () ig, 1) (62, 6™)
l

= 1Tl Kl v, (61 — 60, Q)vi, () 0xc, (6, Q) (1)~ i, 0 (0, 6")
l

+ ) G KG | = Dy, (4w, () Dk, (67,61 — B0, Q) (—1) g, 1) (61, 6"),
l

where the symbol ‘=" means that the equality holds modulo exact forms. On the
other hand,

(1] + | Kl )v, s, (67, Q) (=)' ig0i, (61 — B0, )i, 1) (6, 6*)
= — | Ji| v, (0;, )k, () (—1) " Viy0;, (61 — 60, Q)tr, 1y (01, 6")

- |KZ| vJ; (Qt)vil (‘91 — bo, Qt)@Ki (927 Qt)(_l)l_lilafi(l)(et, eu)
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Therefore, one has
R==a;|[Ji| (1i] = 1)vs, (0], 01 — 00, ) 0x, ()05, () (—1)' iz, (0, 6")

il

=i | Tl (1Ki| + in)vs, (67, Q) 0k, B, (61 — B0, ) (— 1) g, 1) (62, 6%)

il

= wi(| il + i) | K| v,vi, (61 — 00, )k, (8, ) (—1)' Vg, 1) (62, 6*)

il
+ )i K| (1KG] = 1w, (Q4)vi, (Q)0x, (67, 61 — B0, ) (—1)! iy, 1) (64, 6%).
il

Denote by R’ the right hand side of the above equation. Now by (A.6b),

(|Ji| + | K| + i)vg,vi, 0k, (05,01 — 6o, 2t)
= — (|Jil + 1) | Kil vy,05, (01 — 00, Q) 0k, (67, )
+ |KZ| (|K1| - 1)UJiUil<Qt)/UKi (91/57 01 - ‘907 Qt)a

and
(|J1| + |KZ| + il)in@Kiﬁiz (gzltagl - HO,Qt)
=|Ji| (|Ji| = 1)vs, (07,61 — 6o, )Tk, Vs, ()
+ |Ji| (1K + i) v, (07, Q) Uk, U5, (61 — 0o, ).
Thus

R/ :le(’Jl’ + ‘Kz| + il)UJi'Uil@Ki (92,91 — ‘90, Qt)(—l)l_lﬂli(l)(et,gu)
4,1
" @i (5] 4 VK| 4 i0)vs, O, B, (6, 61 — 80, 20) (—1)! Vg, 1 (61, 6%)
2,0
= 5((’{(’{@/) (9u7 9757 97/5)
=0.

This completes the proof of (a).
(b) [Ds(@)] is independent of the choice of the unitary connection 6.

We first admit the fact that @;(6,0%) — u;(0,0%) = dV/ for some differential
form V/ for two unitary connections A% and 0%. Let & € W\I/J’q be the natural lift
of ¢ and define «; and [; by requiring that 5@ = wu;o; + B; and that a; and (3;

do not involve w;. Then Ap(0},0,0") = 50(676)(08,0%,9,9’) and Ap(0Y,0,0") =
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dq (J@)(Gé‘, 0%,0,6"). Thus it suffices to show that 5;.3_1(676)(93‘, 03,0,6") is cohomol-

ogous to 8,(dp)(6%,0%,6,6’) for each k. Since 85 does not involve iy,

Ok-1(d) (65, 01,0, 0')
- - ak(ga 91{)5k—1<ak)(087 9%7 97 0/) + 5/6—1(6/6)(087 0%7 97 01)
= — Uy (07 9%)5143—1(0516)(987 0%7 0, 91) + Ok, (ﬂk)(ega 97{7 0, 9/)

On the other hand, d&; = 0 because dd@ = 0. It follows that déj_1 (o) (0y,07,0,0") =
0 by Lemma 4.3.16. Hence

-1(d3) (0,01,0,0') + d (Vo1 (cn) (05, 07, 0.0))
= — k0, 0)0k—1 () (65, 03, 0,0') + 6k (Bi) (05, 07,6, 6)
= — (0, 05)0k (o) (03, 03, 0,0') + 01 (Bi) (03, 01,0,0")
=01(d@) (05,64, 0,0")

because «j, does not involve ;.

Thus it suffices to find a differential form V; such that (6, %) —u; (0, 0%) = dV/
for each i. First fix a Hermitian metric on Q(F) and let 6§ and 6} be unitary
connections. Apply (4.2.2a) after setting f = v; = v; — v;, 05 = 6 + s(0} — 6) and

0o = 0, then integrating it with respect to s, one obtains the equation
Az, (07, 05) — A3, (0,05) = k(k — 1)dW5, (67, 05) + Az, (67, 0),
1
where W5, (67, 65) :/ V5, (01,05 )ds. Hence
0

Set 07 = 0§ +t(6} — 6§), then by (4.2.2a),

0 _
575 (61,6) = k(k — 1)dVz, (67 60) + KT (0 — 0, Q... ).

Since 0y and 0} are unitary and since Vg, = V;,

O Ao, (05.03) = k(k — )aVi(0}, 00).

Hence u; (6, 07) — u; (6, 0y) is exact if 0 and 0} are unitary connections for a fixed

Hermitian metric.
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Let now hg and hy be Hermitian metrics on Q(F) and let 63 and 6} be unitary
connections for h and k', respectively. The equation (4.3.18) is also valid so that
it suffices to show that A;(6¢,6f) is exact for f = v; = v; — v;. Denote by ¢; the
natural isomorphism from M to M x {t} and by = the projection from M x R
to R. Consider then the foliation F x R of M x R whose leaves are given by
L x R, where L is a leaf of F. Let 0% be a unitary connection on Q(F x R) for
some Hermitian metric such that 6}' = 6§ for ¢ < 0 and 0} = 0} for t > 1, where
0 = 16", Now write Ay, (6", 70y) = A+ uAdt, where A, p do not involve dt, and
define a differential form V/ (0%, 0%) on M by setting

1
Voo = - [ nat,
0
then dV/(6%,0%) = Ay, (6*,0%). This is shown as follows. First,
a0, 700) = (vi(8") — 7 0i(08)) — (0:(0") — 7" 5:l05) ) = 0.

A
Hence o + dpr e = 0, where dj; denotes the exterior derivative along the fiber of
m: M x R — R. On the other hand, one has

~ ! Lo
av; (6%, 03) = — / dyapdt = [ Pt = 2(1) = A(0)
0 0

and A(t) = i\ = (f Ay, (6%, 770,) = Az, (08, 6p). Finally, A\(1) = Ay, (0},64) and
A0) = Ay, (64,68) = 0.
(¢) [Dy(9)] is independent of the choice of representative of .

Recall that representatives of 3 are by definition sections of E* ® Q(F). They
are considered as C'?-valued 1-forms on P by extending them arbitrary to sections
of TEM @ Q(F) and then lifted to P.

We first show that [D, ()] is independent of extensions as above. Suppose that
oo and o are representatives of 4 and assume that oy = o1 when restricted to 7* F,
where 7w : P — M is the projection, then o; — 0y = pw for some matrix valued

function p. Let 6 and 6] be corresponding derivatives of 6, then by (4.3.6),
(07 —00) Aw =d(o1 — 00) + O A (01 —00) = (du+ [0, pu]) ANw
Hence
’UJ@K(H/DQ) UJUK(HO,Q) —’UJUK(d,uJ—f— [Q,ILL] )
:UJ'DK(d,ua )_I_(’J‘_‘_’K’_l) ( 7_[979])
— vy (g, Q) + (1] + K] — 1oy (1, d)
= d(vs0k (1, Q) -
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Let ;v 0k be an element of WTJQ such that |J| > ¢, then

(|J| + | K)vyvk (07, Q)ur(0,0%) — vyok (0, Q)ur(6,0%)
=d ((|J] + [K)vsor (1, Q) ur(0,6")
=d(|J|vs(p, Q)oK () ur(6,6%)
= — [J]vs(k, Q)oK (Q)dur(0,6%)
=—|J]| ;(—1)’5_1@,(”, Q)vk () (v, — 0;,)(Q)ur(r)(6,60%)

=171 Y (=1 o (i, Q) ()7, (s (6. 6*)

=]+ K| +0) Y (=1 osor0i, (1, Qi) (6, 6")

t

= 8(d(rv 7)) (0", 0, ).

Similarly,

(T] + | K)o (87, Q)iur(8,0%) — vsog (6, Q)ir(8,0%) = 6(d(arv k) (6", 0, 1)
if |K| > q. Hence
5(dp)(0%,0,0,) — 5(dp) (0", 0,0)) = 6(ddp) (6,0, 1) = 0.

In order to complete the proof of (c), it suffices to show that D, () is exact for
sections o corresponding to dyvy, v € I'°Q(F), because Dyy10,(p) = Doy (@) +
D, (¢), where dy is as in Definition 4.3.1. Recall briefly how such a o is obtained.
Choose a lift Y of v to TeM and let Y be its horizontal lift. Define a function

-~

g on P by setting g(w) = w(Y). Then dg + 0g can be chosen as 0. By definition
w' = —dg — 6¢g. An infinitesimal derivative 6’ with respect to o is by definition a
gl(q; C)-valued 1-form satisfying §’ A w = —dw’ — 0 A w’. The right hand side is
now equal to dfg — O Adg+ 0 ANdg+ 60 A6Og=Qg. Let {I't} be a family of matrix

valued 1-forms such that Q = Y I't Aw”, then Qg = 3" I'tg Aw¥. Note that writing
% k
Iy, = (I'}}), one has I'!, = Iy ; and hence (3 Iww*(Y)) Aw = (X Ikg®) Aw =
% %

S TjgAw! = Qg and (3 I(Y)w*) Aw = 0. Thus by setting 6’ = —ip €2,
J k

0 Aw=> (L{Y)w)wk + (O Mk (V) Aw = Qg.
k k
Therefore, for this choice of ',
1

UJ@K(QI, Q) == —WZ?UJ@K(Q) =0
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if [J| > q or |K| > ¢. Hence 8(d@)(6*,0,0') = 0 if ¢ is closed in WU,.

(d) [Ds(@)] is independent of the choice of ¢ and its lift @.

It suffices to show that D,(d@ + ) is exact, where @ € \7\7\6(1 and a € Z,. First,
D, (d@) = 0 because d(d@) = 0. In order to show that Dy (c) is exact for o € fq,
first show the claim for o = uyv 0k with |J| > ¢. If I is empty, then da = 0 so
that D, (o) = Aa(0%,0,0") = 0. Suppose that I is nonempty, then by using the
equations v;(2) = 0 and v (0", Q)v;, () = 0 one obtains the following equalities;

D,(a) = Aa(@u 0,0")
= ) TN+ K]+ i) (vrom (v, = 7,)) (67, Q) (0", 0)

::jg: V1T v (8, Q)5 ()55, ()i (6%, 6)
l
d(|J|vs (0", Q) vk (Q)ur(0%,0)) .

The last equality holds because v;(6’,Q) is closed by Lemma 4.3.16. Similarly,
D, («) is exact if |[K| > g. This completes the proof. [

Finally we show that the infinitesimal derivative of secondary classes coincide
with the actual derivative when there is an actual deformation realizing the infini-

tesimal derivative.

Definition 4.3.19 (Definition 2.7 in [20]). Let {Fs} be a smooth deformation of
transversely holomorphic foliations of M. Denote by 75 the projection from T M
to Q(Fs). Fix a Riemannian metric on TcM which is transversely Hermitian.
Assuming that s is small if necessary, one can find by using the metric as above a
smooth family of splittings Te M = Es @ v,, where vy = Q(Fs). Denote by 7l the
projection from TeM to vs. The infinitesimal deformation o associated to Fs is
the smooth section o of Ef ® Q(Fy) defined by
)

Lemma 4.3.20 (Lemma 2.8 in [20]). o does not depend on the choice of the split-

dﬂ:—m(%@a)

ting.

Proof. It suffices to work in a foliation chart. Let {e1,...,e,} be a local frame of
Q(Fo), Fix a splitting as above and let {€1,...,¢e,} be the lift of {e1,...,e,} to
Tc M. We may assume that there is a smooth family of frames {€1(s),...,€e,(s)} of

q
vs such that €;(0) = ¢;,i=1,...,q. Given X € Ep, write 7.(X) = > fi(X,s)ei(s),
i=1
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where f;’s depend on X and s but are independent of the splitting in the following
sense; choose another splitting Tc M = Es © v; and let {€](s),...,€;(s)} be the

family of frames of v, such that ws€l(s) = mse;i(s) € Q(Fs). If one writes the

q
projection of X to v, as > gi(X,s)€i(s), then g; = f;.
i=1

0 .
On the other hand, a—ei(s) € Ey. Indeed, 7 o 7, =« implies that
s

s=0
2 / / / 2 A 2 /

(4.3.21) <85ﬂ-8> Ty + Ty <8S7Ts = 557
Thus

0 - o ,. 0,

6)S7rsez(s) + 7 (aswsez(s)) =3 i (s)

0 - 0 ofi -
1Y _ Y _

Hence 7, (asﬂse,(s) s:()) 0. It follows that aSWS(X) » Z; s (X,0)e;(0)

Therefore, g (%W;(X )‘ ) Zl %fZ (X,0)e;. Since f;’s are independent of
s=0 1

splittings, we are done. [
Lemma 4.3.22 (Corollary 2.11 in [20]). dyo = 0.
Proof. Let X,Y € Ey, then VxZ = my[X, Z] for Z € Q(F), where Z is any lift of
Z to Tc M. Hence
dyo(X,Y)=Vxo(Y) - Vyo(X) - ﬂ Y])
=7To([X»U(Y)])—7To([ (X)) - o([X, Y],

([t
SZJ |

0
— | X, Y
+m(%%[,]
If v € E;, then 7! gw "(v) = =7l (v) by (4.3.21). Thus gw’ (v) € vs. Hence
> *0s 05 ° y RS2t ds ° >

% ([ oi(r)

Similarly,




On the other hand,

0 ! / ’
Eﬂ-s [X - WS(X),Y - Ws(Y)]

s=0
= ol X =m0, Y - m(Y)
Js s=0
/ [ 8 / / / / a /
+ 7 | = 527 (X) Y —m(Y)| + 7o | X — mo(X), — 7-m(Y)
| Os J Os <=0
J 0 0
= — X,Y]—7m) | =—7l(X Y| -7y | X, =7l (Y
| V)= | S| ] - | gmm)| ]
because X,Y € E. Thus dyo(X,Y) = gwg (X — 7l (X),Y —7.(Y)]| . Noticing
§ s=0
that X — 7,(X),Y —7.(Y) € Es and E; is integrable, dyo(X,Y)=0. O

Remark 4.3.23. For deformations {Es} of Fy not necessarily integrable, dyo is

called the integrability tensor in [20].

Definition 4.3.24. Let {F,} be a smooth family of transversely holomorphic fo-
liations of M and let o be as above. The element [o] in H!(M;©£) is also called

the infinitesimal deformation associated to {Fs}.

Theorem 4.3.25 (Theorem 3.23). Let {Fs}scr be a differential family of trans-
versely holomorphic foliations of M, of complex codimension q. Let 3 € H*(M;© )
be the infinitesimal deformation of Fo determined by {Fs}, then

Dy(f) = —-f(F)

s=0
for f e H*(WU,).

Proof. Let Ps be the principal bundle associated with Q(Fs)*. We may assume
that s is small so that P, is canonically isomorphic to Fy. Hence there are families

of canonical forms ws and complex Bott connections 65 on Q(Fs) such that dws =

Wy and 98 = 205

—0, N\ wg. Setting wy = —
& 0s |, 0s

, one has
s=0

dirg = =04 Aws — 05 A ws.

On the other hand, if o is the infinitesimal deformation associated to {Fs}, then a

1-form & on P representing o is given as follows. Let Py be the principal bundle

—

associated to Q(F)* and let Q(Fs) be the pull-back of Q(Fs) by the projection to

—

M. Let ws = Y(wl,...,w?) be the canonical form on Q(Fs), then

ER)
).
s=0

5(8) =~ ( AR+ + L007()
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where €;(s) denotes the horizontal lift of €;(s) as in the proof of Lemma 4.3.20.

belongs to the kernel of 7, one has
s=0

Since 2T:Z-(ss)

0s

a(0)+ -+ Lur(x)

. Eq(0)>

Os <=0 Os
_ 9 1 9 q
- 83 ws (X) oo €1 88 ws (X) o0 eq
= —w(X).

It follows that 6, can be chosen as an infinitesimal derivative of 8, along [o]. Thus
Theorem 4.3.25 follows from Proposition 4.2.6. [J

5. A REVIEW OF RASMUSSEN’S EXAMPLES

The following statements with several examples are presented in [36] by Ras-

mussen;

1) There are transversely holomorphic foliations of which the Godbillon-Vey
class and some other classes are non-trivial.
2) There are smooth families of transversely holomorphic foliations which re-

alizes a continuous variation of the Godbillon-Vey class.

Our Theorem B contradicts 2). We will study the reason by reviewing examples in
[36]. The part 2) is shown in §4 of [36]. The examples given there involve an action
of C* on CP™ defined by (t1,...,t5) 20 : -+ : 2] = eMBTFMbez ooy 2]
where (A1,...,\¢) # (0,...,0) parametrizes the variation. This action is always
trivial so that the foliations are independent of these parameters. In addition, those
foliations are constructed on a fiber bundle over M x T2 with fiber CP" x CP™
for some k, n and m, where T?* = (C*\ {0})/(t1,...,tx) ~ (M1,..., M) for some
A € C such that |A| # 0,1. The variation of the Godbillon-Vey class is claimed to
be realized by the variation of |A|. Indeed, the Godbillon-Vey class is the multiple
of a volume form on T2* by \)\\%. However, this does not imply the variation of the
Godbillon-Vey class because the term |)\|2]C vanishes after normalizing the volume
of T?%. Hence thus constructed foliation and its Godbillon-Vey class remain the
same.

On the other hand, the examples showing non-triviality are essentially the same
as ours. In fact, our construction is motivated by these examples as mentioned in
Introduction, in particular, the examples in the first part of § 3 of [36] coincides with

Example 2.3.6 after taking the quotient by cocompact lattices. However, at the last
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part of §3 [36] (page 163), locally homogeneous spaces such as I'\SL(n; C)/SL(n —
1; C) are considered. Cocompact lattices for this kind of homogeneous spaces do

not exist in general (e.g. Example 5.21 in [28] and references there).

APPENDIX

Some common materials used in this article are presented in this Appendix for
completeness. Most of these can be found in Kobayashi-Nomizu [27] but they are
modified by following the convention in Matsushima [31]. Differences appear in

coefficients, for example, w A n = %Alt(w ® n) for a p-form w and a g-form 7,
where Alt stands for the alternizer. Another example is the formula dw(X,Y) =
X(w(Y)) = Y(w(X)) - (X, Y]).

1. Invariant Polynomials.

Let G be a Lie group and let g be its Lie algebra. Denote by I*(G) be the set

of invariant polynomials of degree k.

Definition A.1. Let f € I*(G) and let ¢y, ..., ¢ be g-valued differential forms

of degree q1,...,qx, respectively. Define a (¢ + - -+ + qr)-form f(¢1,...,0k) as

follows. First choose a basis {F1,..., E,.} for g and write p; = E; go;z Set then
=1

J

flonnon) = D (B, Bi)el A Agpk.
jla"wjkzl
Notation A.2 (Chern convention). Let f € I*(G) and let 1, ..., p; be g-valued

differential forms as above. If [ < k, then set

f(solv"wgol):f((pl?"'vQpl;"'vgpl)'
————
k—I+1 times

Definition A.3. Let f : gl(n;C) — C be a multilinear mapping which is invari-
ant under the adjoint action. The polarization of f is the unique element J? of
I*(GL(n; C)) such that

~

fX, X,....X) = f(X)

for any X € gl(n;C), where k is the degree of f as a polynomial. By abuse of

~

notation, f is denoted again by f.

Remark A.J. The polarization is compatible with the Chern convention, namely,

one has
FQ,...,0) = f(Q)

for any even form () and any multilinear mapping f.
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Definition A.5. Let f € I*(G), g € I'(Q), define fg € I**(G) by setting
fg (X1,X2, ooy Xt

k + l Z f o(1)s+ > U(k))g(XU(k+1)7 s 7Xa(k+l))'

U€6k+l

Lemma A.6. Let f € I*(G) and g € IY(G). If 0,70 are of odd degree and if Q is

of even degree, then

(A.6a) (k+0)f9(0,2) = kf(6,2)9(2) + 1f()g(6,€)

(A.6b) (k+0D)(k+1—-1)fg(0,n,Q)
=k(k —1)f(0,1,Q) A g(Q) + klLf(0,2) A g(n2, )
—klf(n,Q) Ag(0,Q) +1(1 = 1)f(2) A g(8,m2,Q).

Proof. The formula (A.6a) is easy. Let Eq,..., E, be a basis for g and write =
S Ej07,n=> E;n’ and Q = > E;Q7, then

f9(0,n,Q) = Z fg(Ejl,...,Eij)le /\77j2 A QI3 A .../\ij+l7

J1sJ2s - Jk+1

where

fg(Ej17 <o 7Ejk+l = ]{7 _|_ l Z f Jo(1)?r """ Jo(k))g(Ejo(k+1)7 ce 7Ejg(k+l))‘

UEGkJrL

Set w(jl,jg, . ajk-i-l) =071 A 77j2 AQIBA - A ij“‘l, then

(k+D!fg(0,n,Q)
=(k+0! Y f9(Ej, . By )w(in das - det)

J15J25 -3 Jk+1

= Z Z f Jo(1)r jo’(k))g(Ejo'(k+1)7"'7Ejg(k+l))w(j17j27"'7jk+l)

J1,J253Jk+1 0E€EG k1

Elements of Gy, are divided into four types, namely,

1) o(1),0(2) <k,

2) o(1) <k <0o(2),

3) 0(2) <k <o(1),

4) k<o(l),0(2).
The number of such elements are (k+1—2)!k(k —1), (k+1—2)kl, (k+1—2)kl,
(k+1—2)1(l —1), respectively. The formula (A.6b) follows from this. O
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