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1 Introduction

Consider the case when two semimartingales evolve continuously in time and state-space, but are observed
only at discrete, random times in a nonsynchronous manner. We intend to answer to the question: How do

we measure the covariance of the two processes well in such a situation?

This type of question arises frequently in high-frequency finance. A modern, popular approach for this is

to compute

m

Vam) = » (Pt = P._ )P, = P._), (1.1)

i=1

which is often called the realized covariance (estimator) in the literature. Here, P! and P? are log-prices,
0=ty <t <--- <ty =T are grid points for measuring their respective changes. The popularity of the
estimator comes from its consistency, i.e., as m(m) = maxi<i<m [t; — ti—1| — 0, one has Vi(,,) — V in
probability, not to mention from its ease of implementation. For practical convenience it is standard to take
equal spacing, i.e., t; —t;—1 = T/m (=: h), i > 1. See Andersen, Bollerslev, Diebold, and Labys (2001), for
instance, who studied properties of realized covariances/correlations. (Note that the usual sample covariance
is among alternative approaches. However, its usage may not be justified except for some special cases since
it is not generally consistent in the sense just described. Also, it is not immune to the problem that the
realized estimator has, as described in the next paragraph.)

Actual transaction data are recorded at random times, in a nonsynchronous, irregular manner. This
fact requires one who adopts (1.1) to “synchronize” two time series a priori; choose a common interval
length A first, then impute missing observations by either previous-tick interpolation or linear interpolation.
Inevitably, the value of V}, depends heavily on the choice of A as well as the interpolation method. In fact,
as h gets smaller compared to the (expected) observation intervals, realized covariance estimators (1.1) tend
to be biased (Hayashi and Yoshida (2003)). Such a phenomenon has been reported in the empirical finance

literature, often referred to as the Epps effect (Epps (1979)).

Hayashi and Yoshida (2003) have proposed a new class of estimators which are free of h and of inter-
polation scheme. In the case of diffusion-type processes with independent random observation times, they

showed that their estimators are consistent for the underlying covariations as the size of observation intervals



goes to zero, which is not in general possessed by realized estimators once h is fized (as supposed to be so).

This paper provides a moment bound for the error of the estimators in a general situation—processes
are continuous semimartingales and observation times are stopping times, which covers the case discussed
in the aforementioned paper by Hayashi and Yoshida. As an immediate corollary its consistency, i.e., the
convergence of the estimators to the true, underlying covariation processes as the size of observation intervals

goes to zero, is established.

With a similar motivation in mind, Malliavin and Mancino (2002) have developed a Fourier transform

based estimator for the covariation. However, their approach is completely different from ours.

2 Main results

Let (Q,F, {Ft}t>0, P) be a complete, filtered probability space. Let M*, k = 1,2, be L* continuous martin-
gales, 7F, k = 1,2, i > 0, be stopping times with 7§ = 0, k¥ = 1,2, such that 7} 1 0o as i — oo almost surely.

For each T > 0, let us define the size of the random partition {7 A T,i > 0} over [0,T] by

AT :=max{Tik/\T— z'k_l AT k=1,2,72> 1}

For any interval I = [a,b), 0 < a < b, we denote the increment of M* over I by
AMH(I) .= M*(b) — M*(a), k = 1,2.
Also, the random intervals associated with {7¥,i > 1}, truncated at T, are denoted by

INT) = [tF AT, 7F AT),k=1,2,i > 1.

We define the “modulus of continuity” of a stochastic process X, by

do(e, T5 X) = sup{| X (t) — X(s)[; 5,2 € [0, 7], |t — 5] <€},



for e > 0, T > 0. Also, we define
b1(€, T; X) := sup{[{X) (t) — (X) (s)]5 5,2 € [0, T], |t — 5| <€},

provided that the quadratic variation (-) exists and is finite. We let 8(e, T; X) := do(€, T; X) + 61 (¢, T; X )'/?

whenever the right-hand side is defined.

With the notation at hand, we are now ready to assert the first main result of the paper as follows.

Theorem 2.1 There exists an absolute constant C' such that

E Z AMYIHT) AM? (I (T) 1 (rynez(ryzoy — (M, M?) (T)
,j=1

- 1/2
<CE [5(3AT,T; Ml,Mz)‘*] (E (M1 + B [MQ(T)4]1/2)
for every T > 0, where &(e, T; M, M2) := §(e, T; M) + 6(e, T; M2).

All the proofs are placed in section 4.

Notice that, for continuous and adapted f! and f? with suitable integrability conditions, the stochastic
integrals f'-M" and f?-M?, and their respective approximations, Y, f* (v}, )(M* (7} A-) = M*(1}_; A-)) and
> P77 ) (MP(17 A-) — M?(77_y A-)), may become all L* martingales. So, Theorem 2.1 can be modified
in the way that could broaden applicability of our approach. In particular, we have an immediate corollary

which can be of practical use in statistics.

Corollary 2.1 Let M and N be L® continuous martingales, Ti(") and a(n) be stopping times with T

(n) —

a(()") = 0 such that Tz-(") 1 oo and agn) 1T o0 as i = oo almost surely, for every n > 1. Let f and g be

continuous, adapted processes such that f} € L® and g} € L8, for each t > 0. Let
(n) ._ (n) _ (n) (n) (n)
Ay =sup{|r;" AT IAT|;i > 1} vsup{lo; " AT —o0,°y AT|; i > 1}
For each T > 0 and n > 1, define

Y = 3 F6gle) MG AT) = MG, AT AT) = N, AT)

3,j=1

1{[T}fiAT,T}")AT)n[a§"_)1AT,ag.")/\T);em}'



Then,

r 2
E {Yr}n)—/o f(t)g(t)d(M,N)t} -0 asn— oo

for every T > 0, provided that Agﬁ) — 0 in probability.

What one needs in practice is to find appropriate f and g that are observable (together with M and N)

at {r{™,i >0}, and {o\™,i > 0}.

The results obtained so far can generalize to continuous semimartingales. For a stochastic process X,
for each t > 0, we let |X|(t)(w) denote the total variation of the path s — X (s)(w) on the interval [0, ],
for each w € Q. A process X whose total variation is finite on each interval [0,¢] shall be referred to as a
process of finite variation.

Let S¥ = S*(0) + A* + M* be a continuous semimartingale, where A* is a process of finite variation such
that E [|A*| (T)*] < oo, for every T > 0, and M* is an L* martingale, k = 1,2.

Theorem 2.2 There exists an absolute constant C' such that

E Z Asl(Iil(T))ASZ(IJZ(T))l{I}(T)nIJ?(Tﬁé@} — (8%, 8%)(T)
. 1/2
<CE [S(3AT, T; ", 52)4] (B @] + B [M*D)"]'” + 8E [| 4 (1)) + 8B [| 42| (1)1]"?)

(2.2)

for every T > 0, where 6(e, T; S, 52) := &(e, T; MY) + 6(e, T; M?) + So(e, T; AL) + 8o (e, T; A2).

Then, similarly to Corollary 2.1, the sequence {Y}")}, which bases on stopping times {Ti("),i > 0} and

{01("),1' > 0}, converges in L? to (S*,$?) (T) as n — oo, whenever the mesh size shrinks to zero.

Corollary 2.2 Let Ti(”) and az(n) be defined as in Corollary 2.1. Let f and g be defined as in Corollary 2.1.

For each T >0 and n > 1, define

Y= 3 1@ )g@ ) S ™ AT) - 8" AT))(S? (04 AT) - S2(04™) AT))

3,j=1

1{[ri(f)lAT,r,.(")/\T)n[og’i)l AT, ™ AT)#£0}



Then,
T 2
E {y;,m_ / f(t)g(t)d<51,52)t} 50 asn— oo
0

for every T > 0, provided that A 50 in probability.
T

Finally, by relaxing the L¥ assumptions made above we can derive the following weaker but broader

result.

Corollary 2.3 Let S¥ = S¥(0) + A* + M* be a continuous semimartingale, where A* is a process of finite

variation and MP* is a local martingale, k = 1,2. Suppose f and g are continuous and adapted. Let Ti("),

azg"), and Yr}n) be defined as above. Then, as n — oo,

(n) P r 1 o2
y™ /0 f(Hg()d(st, 82,

for every T > 0, provided that Agﬁ) — 0 in probability.
Remark 2.1. Estimators of the form,

YW = 3" (M AT) = M) AT))(N (0§ AT) = N(o{”) AT))1

= {rZ AT AT 0§ AT, 0 8™ AT) 0}
J=
have been proposed by Hayashi and Yoshida (2003). They have shown the convergence of YT(n) to (M,N)
in probability as n — oo, for diffusion-type processes M and N, when {Ti(n),i > 0} and {agn),i > 0} are
independent of M and N (and when the limit (M, N), is non-random). To be more precise, they have
consider the following observation times: Let Ti(") and Uz(") be independent of M and N, such that

(i) as n — oo, E[AIM] = o(1), or

(i) P [Agfl) > n_q] = o(1) for some q € (0,1).

This sampling scheme covers, for instance, the Poisson random sampling discussed in the same paper;

that is, for two independent Poisson processes N and N2, independent of M and N, with intensity A* = np*,

p* € (0,1),k=1,2, Tz.(") and UJ(") are, respectively, the i-th and j-th jump arrival times of N! and N2, with

Té") = U(g") =0.

Apparently, the independence of observation times is restrictive in financial modeling. The key contri-
bution of the paper is to relax the assumption and to allow observations to be made at arbitrary stopping

times. O



3 Application to finance

The theorems developed can apply to estimation problems in finance. Let I¥(T) := [rF , AT, ¥ AT) be the
ith observation interval of the kth security, as defined previously, such that max; x [I¥(T')| — 0 in probability.
Ezample 3.1. (from Hayashi and Yoshida (2003):) The Black-Scholes model:
Consider a market with d securities, P!, ..., P4, where PF is the price of the k-th stock at ¢ € [0,7],

k=1,...,d. We suppose each P* follows a geometric Brownian motion,
dPf = u*(t)PFdt + o*(t)PFdWF, PF=9pF k=1,..,d,

where W¥s (k = 1,...,d) are Brownian motions with d (W*, W), = p*!(t)dt, p*(t) € (=1,1), p*(t), and

a*(t) > 0 are all (unknown) deterministic and bounded functions, fOT |uk(t)|dt < 0o, k (or 1) =1,...,d.

Put X := (X1!,..., X9), where X} := In PF. Then, the d x d-matrix U,, := (U,’f’l)Kk 1< the (k,1)-th
element of which is defined by
Ukl = ZAXk(Iik(T))AXl(Ié(T))I{If(T)nI;(T);éO}a
%,
is a consistent estimator for the cumulative covariance matrix of returns (X, X), := ((X*, X"),) _, <,
with (X*, X1), = [ o*(t)o! (t)p** (t)dt. O

Example 3.2. Diffusion models:
Consider a market with d securities, P!,..., P%, where P! is the price of the k-th stock at ¢ € [0, 00),

k=1,...,d. We suppose each P* follows the following stochastic differential equation

dPtk = Nk(t, Ptk)dt + Uk(taptk)thka P(f = k(> 0),k=1,...4d,

where (W', ...,W¢) is a Gaussian process with stationary increments with d(W*, W) = o®ldt, p* k =

1,...,d, are constants (possibly unknown), and (v¥?) is a fixed yet unknown, nonnegative definite,

1<k,i<d

symmetric matrix. The (known) coefficients p*(-,-) and o*(-,-)(> 0) are assumed to satisfy certain regularity
conditions.

Then, the d x d-matrix V,, := (VT{"l)K,c <d?
pt oy APG@SPEGD)
" e ok(rf PR Yol(r] P ) WLy
i—1

J Ti_1

the (k,1)-th element of which is defined by

)



is a consistent estimator for the covariance matrix (v%f) _ f1<q B T — 00, O
Example 3.3. Covariance for dynamic portfolios:

Suppose there are two self-financing strategies #' and 2 (the number of shares) for two stocks S! and

S?, yielding two portfolios V! and V2, respectively, i.e.,
dVF = dBf + 6*(t)dSf, k=1,2.

Here B* is a finite variation process representing the holding amount of the liquid riskfree bond, k = 1, 2.
6% (t) is assumed to be sufficiently regular.
The price dynamics of S' and S2? are known to be continuous semimartingales, but not necessarily

specified. Due to the random nature of transaction times, V! and V2 are not marked-to-market concurrently.

Then, both
VAR Z AVHI (D) AV (T) L1 (ryniz )20y
,j=1
and
v = i 6 (1 ATV (7 AT)ASH (I} (T)) AS* (I (T)) 112 (rynz (120
i,j=1

are consistent estimators for the cumulative “covariance” of V! and V2, (V,V?), = fOT ' (t)6*(t)d(S",S?),.

O

4 Proofs

4.1 Preliminaries:
Let o'zlc = Tik AT, k=1,2, J;j := l{Ig(T)ﬁI]?(T)#(B} = 1{0}_1V0?_1<J}A0?}5 and
Uij = AM' (I} (T))AM*(I}(T)) Jij = (M (0}) — M'(0;_,)) (M?(03) — M?(05_,)) Jij,

Aij == (M, M?) (07 Aoj) = (M"',M?) (0;_y V 7;_1)) Tij-

Lemma 4.1 For anyi,j > 1,

E [Uij — Aij|.7-(,11_1v(,]2 =0.

-1



Proof. Fix i; and i5. Decompose

MF(ok) = M*(of ) =TI+ Irp + Ir1, k= 1,2,

in—1
where

Iy = Mk(afk)—Mk(aill/\afz);Ikz = M’“(a%l/\(7?2)—M’“(0-1 1V02 );

1 — 2.271

Iz = M*(o},_ Vol _|) — M* ok ).

il* ikfl
[i] Since o] A o2 =o] or o, either I1; =0 or Ir; = 0; hence, I;;I5; = 0.

51 1 | 2 - - -0 —
[ii] Since o, | Voj, | =0}  or o;, i, either I13 = 0 or Is3 = 0; hence I;3123 = 0.

[iii] Observing that M* is a martingale, one has
E [l Fpy noz | =0,k =1,2
In the meantime, for Y € L,

B YTl For o | = E[B[YIFos poz | Tt

ig—

F 1 2 .
‘71'1—1\/‘7@'2—1]

Therefore, for Y = Iy (I;2 + I;3),

E [Ikl(IIZ + I13) Jiy i, | Fot _yve? ] =0,k1=1,2,

2—1

noting that (Ijs + Ij3)Ji, i, is Fy1 a2 -measurable.
i1 ig
[iv] Observe that

E [Ik2Jz’1iz|7agl_1vU§2_l] =E [Ji1i2 E [Ik2|7(aglAa§2)A(agl_lefz_l)] ‘ Fot wfz_l] =0

i1—1

because

E [Ik2| ‘7:(‘7}1 /\0'1'22)/\(‘7'11_1\/‘71'22—1)]

i

= E I:Mk(o-’}l A 0-122) - Mk ((0-111 A 0-122) A (0-1!-1—1 \Y 0-122—1)) | ‘7:(0'1-11/\0’1-22)/\(0'-1 V0'1-22_1)j|

ip—1

+E [Mk ((Uz'11 A 01'22) A (Uz'11—1 v ‘71'22—1)) - Mk(aill—l v Uz'22—1)| f(a}IAa§2)A(al VG'?Z_I)]

ip—1

=0.



Therefore,

E [Ik2113Jz'1i2|fg.1 Vo2 _1] =IE [Iszi1i2|fa.1 _, Vo2
i1 ig i1 H

o—1

=0,k1=1,2,

noting that Irs is F,1 _ 2 _ -measurable.
1-1Voi, -
With the aid of [i]-[iv] together, one has

E [(111 + Iz + Li3)(I21 + Iz + 123)Ji1i2|-7:g}1_1v(72 ]

ig—1

=F [112122Ji1i2|f0}1_1v‘7'2 ]

ig—1

= B [((MY, M?) (0}, No2) — (M, M2) (0}, V02, 1)) Jinia| Fit

2
il_IVO'

ig—1

as claimed.

Lemma 4.2 Fori <i' and j' < j,

Jij J,'ljr =0.

Proof. Suppose i < i’ and j' < j.

If o;_ Voi_, <o Ao}, then

1 2 1y .2 1, 2
Oy_1V0oj_y20;Vou_y 20; Noj

Hence, J;; = 1 implies Jy;» = 0. Therefore, J;; Jy 5 = 0.

Lemma 4.3 Suppose k < I. The following inequalities are true:
(1) Zl’—k Uij| < |M'(o}) = M (o} )| 6o(3A7, T; M?);

2) |3

(3) [Zjok Aij
(4) |2

i Uij| < |M?(02) — M?(03_,)| 60(3A7, T; MY);

IN

((MY) (o}) = (M) (611))"* 61(Ar, T; M2)V/2;

L Ai| < ((M2) (02) = (M2) (02_))) /2 60 (Mg, T; MY)/2

Proof. We are going to prove (1) and (3) only.



Let 7 be fixed. Let

Jo:=min{j: J;; =1}; ji1:=max{j: J;; =1}.

Note that
Jij=1 <= jo<ji<ij
So,
l Jinl
N Uy= Y Uy=(M'(o})— M (0} ,)) (M*(03,n) = M*(05,y1 1)) -
Jj=k Jj=joVk

In the meantime, note that

which implies

2 2 2 2
T5nl— Ojgvk—1 S 05 — 0501

Therefore,

In the meantime,

l l
ZAi] Z/ 111(T) IIZ(T) d<M M2>
i=k i=k
Z/ Lizeny Oizer) (8) [d (M, M), |
=k
_/a |d(M*, M2>t|

< ((MY) (o) — (MY (o)) ((M2) (1) — (M?) (oL))""®  (Kunita-Watanabe)

< ((MY) (o}) = (M) (61-1)) "% 61(A, T )2,

as asserted.

10



4.2 Proof of Theorem 2.1

Observe that
{ZUij —(M"', M?) (T)} = {Z(Uij —Aij)}

_ZZ ij — z ’LJ _Ai'j’)

i i,

_222 ij — z z] - z] +ZZ ij — z z]’_

—2;:2; +2;]§+2 (;; ZZ> +Zz:%:

However, since (U;; — A;j) = (Ui; — Asj)Jij, the second term vanishes,

> Z i — Aij) Uiy = Awjr) = > Ty (Uij = Aij) (Ui jr = Aijr) =0,

i<i' j'<j i<i' j'<j

thanks to Lemma 4.2.

Since U;; — A;; is Fotvo? -measurable, Lemma 4.1 implies that

Z Z E [ Uij — A’lJ [Ui'j' - Ai'jllf”il/_1v‘732"—1]:| =0,

i<’ j<yg’

{ : Uij — (MI,M2>(T)}2]
)

(Su) + () |+

thus

E

7 i

2B

J

J

(5] (4]

| /\

11

- ZZE [(Ui]- —Ai,-)z] +Y E [(ZU,-,- —AU> ]



With the aid of Lemma 4.3,

vz

J

E |3 (M*(03) - M*(07.,))" - 60(3Ar,T; M*)*
- 97 1/2
<E[{Y (M2(0?) - M2(o2_)))” E [60(3A7, T; MY)4]

J

IN

1/2

. 1/2
< C4E [M 2 (T)4] E [60(3Ar, T; M 1)4]1/ ?  (discrete-time Burkholder’s inequality)

1/2

4
<9 (g) CoE [M*(T)*]"* E [50(3A7, T; M")*]"® (Doob’s inequality),

where C} is a constant for Burkholder’s inequality.
In the meantime,

2B (Z Az’j) > (M?) (0F) = (M?) (071)) - 61 (Ar, T; MY)

J

< BE[(M2) (1) E [, (Ar, T; MY)2]'/?

4
< (%) CoE [M>(T)*]"* E [5:(Ar,T; M")?]'* (Burkholder and Doob).

The theorem has been proved. [ |

4.3 Proof of Corollary 2.1

Preceding the proof of Corollary 2.1, we define auxiliary symbols as follows. It should be noted that in this
proof the system of notation that has been utilized in the Theorem 2.1 will be adopted for ease of writing.
It is not the same as the one used in the statement of the Corollary, which pursues readability. Nevertheless,

this treatment shall be little fear of confusion.

Let M* k = 1,2, be L? continuous martingales. Let ¥, k = 1,2, be continuous, adapted processes such
i —k .
that ft’“* € L8, for each t > 0. Now, for each n > 1, we define the predictable step process f,, of f k associated
with an increasing sequence of stopping times {’Tzk ’("),i > 0}, by

—k n
Fult) == FH0) 110y (¢ +Zf (r 1 (i )@ 20,k =12,

The stochastic integral of fn with respect to M* is denoted as



Similarly, N* := fk. MF.

Set hn(t) == 7,11 (t)fi(t), t > 0, which is the predictable step process of h(t) := f1(t) - f2(t). Note that

T_ . T
(NLND) (@) = [ a0 0 (VLN @) = [ hit)a (3% o).
0 0

2
In order to prove the assertion, it suffices to show that both E [{Yq(,") — (N}, N2) (T)} ] =: A, and

E [{(N},N2) (T) = (N', N?) (T)}’] =: By go to zero as n — oo,

[1] Consider A,, first. Because N, k = 1,2, are L* continuous martingales, Theorem 2.1 implies that A,

is bounded by some constant times
3 1 a2y4]M? 1/7m471/2 2 y471/2
E [53A7, ;N3 N2 (B [NAD)? + B[N2T)]?).
We desire to show that this quantity goes to zero as n — oo. To this end, first note that

E [NKT)*] < CE[(NKT)) (T)?] < CE

T 2
(/ Fn()?d(M*) (t)> ] < CE[f™(T)* (M*)(T)*],
0
which is finite under the given assumptions, k = 1, 2.

In the meantime, recall that o(-,- N1, N2) = 8o(-, s NL) 4 61(-, s N2 4 8o(-, s N2) + 6;(-, s N2)L/2,

Because

So(e, T; NE) < 8o(e,T; N*) + 6(e, T; N* — NF) < do(e, T; N¥) + 2 sup |N*(t) — NF(#)|,
0<t<T

we have

E [60(3A§?’,T; Nﬁ)‘*] <SE [60(3A§?’, T; N’“)‘*] +128E LquT Nk () — NE@)[] . (4.3)
<t<

Due to Burkholder’s inequality, the second term of the r.h.s. is bounded by a constant multiple of

/2

BN - N @] < B| s |40 - 20| B L0 @)

1/2

Since

sup |fH(t) — fh(t)] < 2f%(T),

0<t<T

13



1/2
Lebesgue’s dominated convergence theorem implies that E [SUPogth |fE(t) — £k (t)|8] — 0asn — oo,
hence, so does the second term of the r.h.s of (4.3).

Regarding the first term of the r.h.s. of (4.3), since, for arbitrary € > 0,

E [50(3A(;),T; N’“)‘*] < E[bo(e, T;N)Y + E [50(3A§?),T; NEY A > e]

< E [6o(e, T; N*)1] +E[2 sup |N*¥(t)

|4
0<t<T

;A(T?) > 6/3]
ky4 k 471/2 (n) 1/2
< E[do(e,T; N*)'] + CE [(N*) (1)] % P [ > ¢/3] (4.5)

for some constant C' > 0, we can see that the L.h.s of (4.5) goes to zero as n — oo, hence, so does the Lh.s.

of (4.3), limy o0 B [S0(3AF", T; N£)| = 0.

Besides, a similar argument applied to d; (-, -, T'; N}) yields, for arbitrary e > 0,

%E [51 BAM . T, N}j)“’] <E [51(3A§?),T;N’f)2] +E [51(3A§?>,T;Nk — ij)?]

< B [51(e, T; N9?) + B [(N*) ()% AT > ¢/3] + E[(N* = NE) (T)?].
The inequality (4.4) bounds the third term of the r.h.s. Hence, lim, - E [61(3A£}1), T; Nr’f)2] = 0 is shown.
It follows that 4, — 0 as n — .

[2] Consider By, next. Since
(NN @) = (VN (@) < [ ) = 100 [0 (21", 00%)] )

T 1/2 T 1/2
< { | Tt~ o] a(arty (t)} { | 1t = o] aary (t)}
0 0

thanks to Kunita-Watanabe’s inequality, B,, is bounded by

1/4 1/4

E[ sup {|En(t)—h(t)|4}]1/2E[<M1>(T)4] E[(M2)(T)"]

0<t<T
Now, because

Jsup B (t) = h(t)| < 2f™(T)f**(T)

as well as supg<;<r |En(t) - h(t)| — 0 in probability as n — oo, Lebesgue’s dominated convergence theorem

implies that E [SUPogtST {|En(t) - h(t)|4}] goes to zero, hence, so does B,,. This ends the proof. ]
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4.4 Proof of Theorem 2.2

The same notation defined in the proof of Theorem 2.1 shall be used. Besides, recall that S* = S¥(0) + A +
M* be a continuous semimartingale, where A* is a process of bounded variation such that E [| A*| (T')*] < oo,

T >0, and M* is an L* martingale, k = 1,2.
Beforehand, since AS*(IF) = AA*(IF) + AMF*(IF), one may decompose
oo oo oo o0
Yr =Y Uj+ Y Ruj+ Y Raij+ Y Raij
i,j=1 i,j=1 ,j=1 ,j=1

where

Uij = AMY(I}(T) AM? (I (T)) 112 (rynz (1)20}
Ryij := AM' (I} (T))AA? (Ijz(T))l{I}(T)ﬂIJ?(T);é@}a
Ryij := AANI}(T))AM*(I} (M) Lrr(rynrz ()03

Rsjj »= AANIH(T) AA (I (T))1 13 1)z (1)203 -

Because (S', $%) = (M, M?), one has

{yr —(S',5?) (T)}2 <2 {Z(U, —Aij)} +38 (i Rlij) + (i RQij) + (i Rsm’)

1,5 3,j=1 3,j=1 3,j=1
The moment bound for the first term has been obtained already in Theorem 2.1, hence, in order to prove

(2.2) one only needs to show E[(E;’jzl Ryij)?] are bounded by small constants, k = 1,2, 3. Specifically, one

can prove

Lemma 4.4

E (i Rl,-,-> < E [50(3Ar,T; MY B[ 42 (1)

ij=1

E (i RM) <FE [50(3AT,T;M2)4]1/2E [|A1| (T)4]1/25

ij=1

i (i RB"") < {B[0@ar, 74 B (|42 (1))} A B [0o(300, 7: 42 B [ 4" (1)) ).
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Proof. Similar arguments to Lemma 4.3 can apply. For k& <,

ZAMI (I} (T))AA*(I3(T)) Ty

1
D Py =
i=k

= [(4%(03) — A%(03_,) (M (a}y) = MY (ohys_r))]

< |A%(0}) — A%(07_,)| 60(3A7, T; MY).
Similarly,
< |A' (o)) — A'(o}_1)| 60 (3A7, T; M?),
l
< |A%(0F) — A%(03_,)| 60(BAT, T5 AY); | Raij| < |A'(0]) — A'(0]_1)| 60(3A7, T; A%).
Therefore,

(i Rw>2 :E- ;(;Rh]> 2

< E [6(3A7,T; M*)? Z|A2 20l |

but 3372, |A2(0%) — A%(02_,)| < |A2|(T), which proves the first inequality. The others can be shown by
the same way. [

Therefore, Theorem 2.2 has been proved. |

4.5 Proof of Corollary 2.2

This can be shown by the same argument as that of the proof for Corollary 2.1.

We maintain the same hypotheses as Theorem 2.2 except that M* is an L® martingale, k = 1,2. Let f*,
k = 1,2, be continuous, adapted processes such that ff* € L8 for each ¢t > 0. The symbols defined there
carry over here.

We let P := F+ - Sk denotes the stochastic integral of f. with respect to the continuous semimartingale

Sk k= 1,2. Similarly, P* := f* . Sk,

16



2
To prove the assertion, it suffices to show that both E [{Y}") — (P}, P2) (T)} ] =: A, and
E [{(Pnl, P2)(T) — (P, P?) (T)}2] =: B,, go to zero as n — oo. For the evaluation of A,,, Theorem 2.2 can
apply. For B,, the argument [2] in the proof of Corollary 2.1 can be used, because (PL, P2y = (N}, N2)

and (P!, P?) = (N',N?). [ |

4.6 Proof of Corollary 2.3

Usual localization argument can apply. The symbols defined in the proof above for Corollary 2.2 carry over.
For simplicity we consider the case for f! = f2 = 1; the same argument can apply to the general case. We

introduce, for each K > 1, the stopping time
Tk :=inf {t > 0; |M*(t)| > K or |[A¥|(t) > K or (M*)(t) > K, k=1,2},if |So| < K;

Tk :=0,if |So| > K; Tk := 00, if |Sy| < K and {---} = 0. The finiteness of S; implies that Tx 1 0o a.s., as
K — 0.

Fix arbitrary K > 1. For arbitrary n > 0,

P HYT‘"’ — (8", 82) (T)‘ > n] <P[Tx <T]+P HYT(”) — (8", 8?) (T)‘ >, Tk > T]

<P[Tx <T]+P HY}””K — (LK §2K) (T)‘ > n]

where Sf K= SfATK, t > 0, is the stopped process, k = 1,2, and Yq(s")’K is constructed based on them. On
{Tx > T}, SEK =8F 0<t<T, k=1,2, hence, Y}")’K = Y}"). In particular, |A|¥ and M* are bounded
on the event.

Therefore, in light of Theorem 2.2, for every fixed K,

lim sup P HYT(”) — (8%, 82) (T)‘ > n] < P[Tx <T].

n—oo
Letting K — oo implies

lim P[|v{" - (s',82) (T)] > 0] = 0.

n—o0
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5 Conclusion

Extending Hayashi and Yoshida (2003), the paper provides a methodology to construct an estimator for the
covariation processes of continuous semimartingales based only on samples taken at general stopping times
in a nonsynchronous manner. The estimator is consistent in the sense that it tends to the true covariation
as the sampling interval goes to zero, which is not possessed by the popular approach, realized estimators,
which require to pre-fix a common regular interval h > 0 for “synchronizing” original time series. Because

the setup is general the obtained results can be applicable widely in finance.
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