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1 Introduction

Let Ag be the coarse moduli space Ag,1,1 ⊗ Fp of principally polarized abelian varieties over a
field of characteristic p.

F. Oort and T. Ekedahl defined a stratification on Ag called the Ekedahl-Oort stratification.
Namely, Ag is divided into locally closed subschemes Sϕ determined by elementary series ϕ of
length g. An elementary series ϕ of length g is a map

ϕ : {1, 2, · · · , g} → {0, 1, 2, · · · , g}

satisfying ϕ(i−1) ≤ ϕ(i) ≤ ϕ(i−1)+1 (i = 1, 2, · · · , g) with ϕ(0) = 0. Two principally polarized
abelian varieties X and Y are in the same stratum if and only if there exists an isomorphism
between their p-kernels X [p] and Y [p]. (See [17] for the definition and fundamental theorems.)

A conjecture of F. Oort says that Sϕ is irreducible unless Sϕ is contained in the supersingular
locus Wσ. And this became a theorem by combining a recent result of G. van der Geer and T.
Ekedahl with a criterion of F. Oort: ϕ([(g+ 1)/2]) = 0 if and only if Sϕ ⊂Wσ. See [18, 7.5] for
an exposition on this development.

On the other hand, F. Oort also expected in loc. cit. that the strata Sϕ contained in Wσ

are reducible for large p’s. In this paper, we confirm this in an explicit way.
To describe our main theorem, we need some notations. We choose a supersingular elliptic

curve E defined over Fp ([3] and also see [12, 1.2]). For each integer c with 0 ≤ c ≤ [g/2], we
denote by Λc the set of the equivalence classes of polarizations µ on Eg such that kerµ � α⊕2c

p .
Here αp is the kernel of the Frobenius map F : Ga → Ga. For an element µ ∈ Λc, let Tµ be the
fine moduli scheme of isogenies

ρ : (Eg, µ) → (Y, λ)

of polarized supersingular abelian varieties such that λ is a principal polarization. The moduli
space Tµ turns out to be non-singular irreducible of dimension c(c+ 1)/2 (Corollary 4.10).

Here are the main results proved in this paper (Theorems 5.6 and 6.19):
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1. For any integer c with 0 ≤ c ≤ [g/2], there exists a canonical quasi-finite surjective
morphism

Ψc :
∐

µ∈Λc

Tµ −→
∐

ϕ(g−c)=0

Sϕ.

2. For any elementary series ϕ with ϕ(g − c) = 0 and ϕ(g − c + 1) �= 0, the number of
irreducible components of Sϕ is equal to �Λc. Moreover �Λc equals a class number Hg,c of
a quaternion unitary group (see Definition 5.8).

Since lim
p→∞ �Λc = ∞ (Lemma 5.10), it follows that Sϕ with ϕ([(g+ 1)/2]) = 0 is reducible for

large p’s.
The outline of this paper is as follows. In Section 2, we prepare some notations of Dieudonné

modules and the Ekedahl-Oort stratification. After introducing good symplectic bases of super-
singular Dieudonné modules, we show in Section 3 that the first jumping number of elementary
series is given by an invariant c(N ) (Definition 3.7) ofN = M/pM in a certain class of Dieudonné
modules M .

In Section 4, we investigate the moduli space Tµ mentioned above. We shall construct finite
étale morphisms from the affine open subschemes of Tµ to the spaces Ng,c of matrices.

After these preparations, by proving the equality of the invariant c(N ) and the height of
minimal isogenies, we obtain the above morphism Ψc (Section 5).

In the last section, we investigate more closely the structures of the spaces Ng,c of matrices.
In particular, we can compute the codimension of the a-number locus Sϕ(a) in the Zariski closure
Sϕ of Sϕ. The main theorem follows from these calculations and some technical lemmas.

Acknowledgments. I wish to thank Professor Takayuki Oda for much advice. I am also very
grateful to Professor Frans Oort and Professor Gerard van der Geer for helpful suggestions and
for informing me of their recent results.

2 Preliminaries

2.1 Dieudonné modules over a perfect field

We fix once and for all a rational prime p. Let K be a perfect field of characteristic p. We define
a non-commutative ring A by the p-adic completion of

W (K)[F, V ]/(FV − p, V F − p, Fa− aσF, V a− aσ−1
V, ∀a ∈W (K)).

Here σ is the Frobenius map on K.

Definition 2.1. A Dieudonné module is a leftA-moduleM which is finitely generated asW (K)-
module. If M is free as W (K)-module, we call M free. Two free Dieudonné module M and N
are said to be isogenous if there is an A-homomorphism from M to N with torsion cokernel. We
define a-number of M as

a(M) = dimK M/(F, V )M.

A free Dieudonné module M is called supersingular (resp. superspecial) if M is isogenous (resp.
isomorphic) to A⊕g

1,1 for some g. Here A1,1 := A/(F − V ) and g is called the genus of M .
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Definition 2.2. (1) Assume g ≥ 2. A superspecial abelian variety over K is an abelian variety
Y over K such that there is an isomorphism between Y and Eg over algebraically closed
field K with supersingular elliptic curve E. This definition does not depend on choices
of E as follows from results by Deligne, Ogus and Shioda ([15, Theorem 6.2] and [20,
Theorem 3.5]). Also see [12, 1.6].

(2) An abelian variety X over K is said to be supersingular if and only if there exists an
isogeny from Eg to X over algebraically closed field K.

For an abelian variety over K, we have a free Dieudonné module M := D(X) of genus g by
the covariant Dieudonné functor D. Then the a-number of X :

a(X) := dimK Hom(αp, X)

is equal to a(M) (see [12, 5.2]).
A. Ogus proved the following important theorem, which he called supersingular Torelli’s

theorem ([15, Theorem 6.2]).

Theorem 2.3. Assume that K is algebraically closed. Let Sg(K) be the category of supersin-
gular abelian varieties over K. Assume g ≥ 2. The functor (D, tr) gives a bijection between
the set of isomorphism classes of Sg(K) and the set of supersingular Dieudonné modules M of

genus g with trace map tr :
2g
∧M �−→ W (K). Besides, for two objects X, Y of Sg(K), we have

an isomorphism

Hom(X, Y ) ⊗�Zp � HomA(D(X),D(Y )).

The next lemma will be frequently used.

Lemma 2.4 (Lemma 3.1 in [11]). For a supersingular Dieudonné module M , there exists a
smallest superspecial Dieudonné module S0(M) in M ⊗ fracW (K) containing M , and dually
there is a biggest superspecial Dieudonné module S0(M) contained in M . Here fracW (K) stands
for the field of fractions of W (K).

Corresponding to S0(M) of this lemma, for a supersingular abelian variety X over K, there
exists a superspecial abelian variety Y over K and a K-isogeny ρ : Y → X such that for any
superspecial abelian variety Y ′ over K and any K-isogeny ρ′ : Y ′ → X , there is a unique K-
isogeny φ : Y ′ → Y such that ρ′ = ρ ◦ φ. We denote by S0(X) the pair (Y, ρ). The isogeny ρ is
called minimal isogeny. Dually S0(X) are also defined. See [12, 1.8].

If X has a polarization λ : X → X t, we get the non-degenerate W (K)-bilinear alternating
form

〈 , 〉 : M ⊗W (K) M →W (K),

which satisfies 〈Fx, y〉 = 〈x, V y〉σ by [14, p.101]. We call such an alternating form a quasi-
polarization of M . If λ is principal, then 〈 , 〉 is a perfect pairing.
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2.2 Dieudonné modules over a general base

Let R be an Fp-algebra and S = Spec(R).

Definition 2.5. A Dieudonné module over S is a locally free W (R)-module M with W (R)-
linear homomorphism

F : M (p) →M, V : M → M (p).

Here M (p) stands for the base change of M by the p-th power homomorphism R → R. A
quasi-polarization on M is a W (R)-bilinear alternating form

〈 , 〉 : M ⊗W (R) M →W (R)

satisfying

〈Fx, y〉 = 〈x, V y〉σ

for x ∈M (p) and y ∈M .

2.3 Ekedahl-Oort stratification

In this subsection we give definitions and theorems related to the Ekedahl-Oort stratification
used later on. For the details, see [17]. For brevity, we restrict ourselves to the case of principally
quasi-polarized Dieudonné modules (M, 〈 , 〉) over perfect fields K.

Put N = M/pM , which is equipped with the K[F, V ]-module structure. For a submodule
S of N , we denote by V −1S the submodule V −1(S ∩ V N ) of N . We denote by W be the set of
finite words of F and V −1. It follows that the set

{�N | � ∈ W}

consists of finite elements Ni (i = 0, 1, · · · , 2r) satisfying

0 = N0 ⊂ · · · ⊂ Nr ⊂ · · · ⊂ N2r = N (1)

with Nr = FN . The filtration (1) is called a canonical filtration of N ([17, §2.2]).
Let us set ρ(i) := dimk Ni, FNi = Nv(i) and V −1Ni = Nf(i). Then we have v(i)+f(i) = r+i.

Definition 2.6. The elementary series ϕ of M , noted by ES(M), is the map

ϕ : {1, · · · , g} → {0, 1, · · · , g}

defined inductively as follows: For each i = 1, · · · , r and for all ρ(i− 1) < j ≤ ρ(i),

ϕ(j) =

{
ϕ(j − 1) + 1 if v(i− 1) < v(i),
ϕ(j − 1) if v(i− 1) = v(i)

with ϕ(0) := 0. See [17, §5.6] for this definition. For a principally quasi-polarized Dieudonné
module M over an arbitrary field, we denote by ES(M) the elementary series of a scalar exten-
sion of M to an algebraically closed field.
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The a-number of M is written as

a(M) = g − ϕ(g)

with ϕ = ES(M).

Definition 2.7. For each elementary series ϕ as in the introduction, the Ekedahl-Oort stratum
Sϕ is the set of points of Ag which are associated with Dieudonné modules with the elementary
series ϕ (see [17, §5.11]).

The stratum Sϕ turns out to be a locally closed subscheme of Ag as shown by Oort ([17,
Proposition 3.2]).

For an elementary series ϕ, the sequence

ψ : {1, · · · , 2g} → {0, 1, · · · , g}

defined by {
ψ(i) := ϕ(i),
ψ(2g − i) := g + ϕ(i) − i

for all i = 1, · · · , g is called a final sequence of ϕ. In this paper, for convenience we set

ϕ(i) := ψ(i)

for all i = g + 1, · · · , 2g.
By [17, Theorem 9.4], there exists a filtration refining the canonical filtration {Ni}:

0 = N ′
0 ⊂ · · · ⊂ N ′

g ⊂ · · · ⊂ N ′
2g = N

such that dimK N ′
i = i, FN ′

i = N ′
ϕ(i) and V −1N ′

i = N ′
g+i−ϕ(i) for all i = 1, · · · , 2g. In general,

it is not unique (see [17, Remark 9.22]).

The following theorems are shown by Oort ([17, Theorem 9.4] and [17, §1]).

Theorem 2.8. For two principally quasi-polarized Dieudonné modules M and M ′, the K[F, V ]-
modules N = M/pM and N ′ = M ′/pM ′ are isomorphic over K if and only if ES(M) =
ES(M ′).

Theorem 2.9. For each elementary series ϕ,

(1) the stratum Sϕ is (regular as a stack) quasi-affine and the Zasiski closure Sϕ of Sϕ in Ag

is connected;

(2) the dimension of any irreducible component of Sϕ is equal to |ϕ| =
∑g

i=1 ϕ(i);

(3) we have

Sϕ =
⋃

Sϕ′∩Sϕ �=∅
Sϕ′ .

There are two orderings ≺ and ≤ on the set of elementary series. For two elementary series
ϕ and ϕ′, we write ϕ′ ≺ ϕ if ϕ′(i) ≤ ϕ(i) for all i = 1, · · · , g, and write ϕ′ ≤ ϕ if Sϕ′ ∩ Sϕ �= ∅.
The second one ≤ becomes an order by Theorem 2.9 (3). By [17, Proposition 11.1], it follows
that ϕ′ ≺ ϕ implies ϕ′ ≤ ϕ.
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3 Supersingular Loci

First of all let us investigate structure of the supersingular locus Wσ in Ag. The number
of irreducible components of Wσ and the dimension of each irreducible component of Wσ is
determined in [12]. For our purpose, however, we need to analyze Wσ more explicitly.

3.1 Displays of supersingular Dieudonné modules

First let us recall the fact ([6, Lemma 3.5, 3.6]):

Proposition 3.1. Assume K be an algebraically closed field. Then for any principally quasi-
polarized supersigular Dieudonné module M over W (K), there exist A-generators v0, · · · , vg−1

of M such that

〈vi, Fvg−1−j〉 = εδij , 〈vi, vj〉 = 0, (0 ≤ i, j ≤ g − 1) (2)

for fixed ε = −εσ ∈W (Fp2)× and δij Kronecker’s delta, and

(F − V )vi = τi,i+1vi+1 + τi,i+2vi+2 + · · ·+ τi,g−1vg−1. (3)

Here τij are elements of W (K), which automatically satisfy the symmetry:

τij = τg−1−j,g−1−i. (4)

Conversely, a principally quasi-polarized Dieudonné module which has A-generators

v0, · · · , vg−1

satisfying the equations (2) and (3) is supersigular.

This proposition is paraphrased as follows. We introduce a new basis of M

{X1, · · · , Xg, Y1, · · · , Yg}

defined by

Xi = vi−1, Yi = ε−1V vg−i

for all i = 1, 2, · · · , g. Then {X1, · · · , Xg, Y1, · · · , Yg} is a symplectic basis of M , i.e., a basis as
W (K)-module satisfying

〈Xi, Yj〉 = δij, 〈Xi, Xj〉 = 0, 〈Yi, Yj〉 = 0

for all 1 ≤ i, j ≤ g. The display of M with respect to this basis (see [13] and [16] about displays)
is written as (

T −ε−1w

εw 0

)
(5)

where w = (δi,g+1−j) and T = (tij) with{
tij = τj−1,i−1 if 1 ≤ j < i ≤ g,

tij = 0 otherwise.
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The matrix T is strictly lower triangular and the equation (4) is equivalent to the symmetry
condition:

Tw = t(Tw). (6)

Conversely for an arbitrary perfect field K, and for any strictly lower triangular matrix

T ∈Mg(W (K))

satisfying the symmetry (6), we have a principally quasi-polarized supersingular Diendonné
module, denoted by MT , over W (K) with display as (5). Hence there is a bijection from
the set of strictly lower triangular matrices T satisfying the symmetry (6) with coefficients in
W (K) to the set of principally quasi-polarized supersingular Dieudonné modules over W (K)
with symplectic W (K)-basis {X1, · · · , Xg, Y1, · · · , Yg} satisfying(F − V )Xi =

g∑
j=i+1

tjiXj for some tji ∈W (K),

Yi = ε−1V Xg+1−i.

(7)

It follows ([6, Lemma 3.7]) that

a(MT ) = g − rkT (8)

with T := T mod p.
The semi-linear transformation for Frobenius map F on MT is given by

F :=
(

T −pε−1w

εw 0

)
.

Namely, we have

(FX1, · · · , FXg, FY1, · · · , FYg) = (X1, · · · , Xg, Y1, · · · , Yg)F .

Then Fn corresponds to the matrix F (n) := FFσ · · ·Fσn−1
. Also the matrix for V is equal to

V :=
(

0 −pε−1w

εw wT σ−1
w

)
.

Similarly V n is represented by V (n) := VVσ−1 · · · Vσ−(n−1)
.

3.2 A certain class of supersingular Dieudonné modules

Let K be a perfect field. In this subsection, we investigate a certain class of principally quasi-
polarized supersingular Dieudonné modules, i.e., we treat only those with display as in (5)
satisfying

TT σi
= 0 for all i ∈ Z (9)

for some good choice of symplectic basis {Xi, Yj}. The reason why we investigate a Dieudonné
module with this type of T satisfying the condition (9) for some symplectic basis is that such
and only such a principally quasi-polarized Dieudonné module M satisfies Sϕ ⊂ Wσ with ϕ :=
ES(M) (the proof of this will be completed in Section 5).
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Remark 3.2. For g ≥ 3 there are principally quasi-polarized supersingular Dieudonné modules
which never have displays as in (5) with condition (9).

Lemma 3.3. Assume T satisfies the symmetry (6) and TT σi
= 0 for any i ∈ Z. Then we have

the following:

(1)

F (2n+1) =

(
pn

∑n
j=0 T

σ2j −pn+1ε−1w

pnεw −pnw
∑n−1

j=0 T
σ2j+1

w

)
,

(2)

F (2n+2) =

(
pn+1 pn+1ε−1

∑n
j=0 T

σ2j
w

pnεw
∑n

j=0 T
σ2j+1

pn+1

)
,

(3)

V (2n+1) =

(
−pn

∑n
j=1 T

σ−2j −pn+1ε−1w

pnεw pnw
∑n

j=0 T
σ−2j−1

w

)
,

(4)

V (2n+2) =

(
pn+1 −pn+1ε−1

∑n+1
j=1 T

σ−2j
w

−pnεw
∑n

j=0 T
σ−2j−1

pn+1

)
.

Proof. This lemma immediately follows by induction on n. We note that

pm = F (m)(V (m))σm
= V (m)(F (m))σ−m

for every natural number m.

Corollary 3.4. Let M be a Dieudonné module associated with a T satisfying the symmetry (6)
and TT σi

= 0 for every i ∈ Z. Then for all n ≥ 0,

F 2n+1M ⊂ pnM and V 2n+1M ⊂ pnM.

We need a general lemma to understand ES(M) for each M as in Corollary 3.4. For a
K[F, V ]-submodule S of N = M/pM , there uniquely exists an A-submodule S̃ of M such that
pM ⊂ S̃ ⊂M and S̃/pM = S. Indeed the W (K)-module

S̃ := {x ∈M |xmod p ∈ S}

is stable under the actions of F and V .

Lemma 3.5. We have

(1) Ṽ −1S = 1
p(FS̃ ∩ pM),

8



(2) F̃S = FS̃ + pM . In particular if VM ⊂ S̃, then F̃S = FS̃.

Proof. (1) follows from the direct calculation:

Ṽ −1S = {x ∈M |(xmod p) ∈ V −1S} = {x ∈M |(V xmod p) ∈ S}
= V −1{V x ∈ VM |(V xmod p) ∈ S} = V −1(S̃ ∩ VM) = p−1(FS̃ ∩ pM).

Any element x of F̃S = {x ∈M |xmod p ∈ FS} is of the form

x = pm+ Fs

for some m ∈ M and for some s ∈ S̃. That is to say, F̃S ⊂ FS̃ + pM . Conversely FS̃ + pM is
contained in F̃S by definition.

Proposition 3.6. Let M be as in Corollary 3.4. We have

(1) ˜(V −1F )jN = 1
pj (F 2jM ∩ pF 2j−2M ∩ · · · ∩ pjM),

(2) VM ⊂ ˜(V −1F )jN

for all j ≥ 0.

Proof. First we show (1) implies (2). It suffices to show pjVM ⊂ plF 2j−2lM for all integral
number 0 ≤ l ≤ j. It is equivalent to V 2j−2l+1M ⊂ pj−lM , which holds by Corollary 3.4.

We show (1) by induction on j. For j = 0, there is nothing to prove. Suppose that this

lemma is true for j − 1 with j ≥ 1. Then it follows VM ⊂ ˜(V −1F )j−1N .
Applying the second statement of Lemma 3.5 (2) for S = (V −1F )j−1N , we have

˜F (V −1F )j−1N = F
{

˜(V −1F )j−1N
}

=
1

pj−1
(F 2j−1M ∩ pF 2j−3M ∩ · · · ∩ pj−1FM). (10)

by the hypothesis of induction. Then by Lemma 3.5 (1) and the equation (10), we have

˜(V −1F )jN = p−1(F
{

˜F (V −1F )jN
}
∩ pM)

=
1
pj

(F 2jM ∩ pF 2j−2M ∩ · · · ∩ pjM)

as required.

Since N = M/pM is of finite length, we have a stabilizing filtration

· · · ⊂ (V −1F )2N ⊂ (V −1F )N ⊂ N.

Hence (V −1F )∞N is defined. Let us introduce an invariant of N .

Definition 3.7. We set

c(N ) := dimN/(V −1F )∞N.

Remark 3.8. By Proposition 3.6 (2), we have c(N ) = dimFN/F (V −1F )∞N under the same
assumption as in Proposition 3.6.

9



Let F ′(2n+2) be a g × g-matrix with entries in W (K):

F (2n+2)/pn =

(
p pε−1(T + T σ2

+ · · ·+ T σ2n
)w

εw(T σ + T σ3
+ · · ·+ T σ2n+1

) p

)
. (11)

We denote by ImF ′(m) the W (K)-submodule of M generated by entries of the vector

(X1, · · · , Xg, Y1, · · · , Yg)F ′(m)

Then immediately it follows from Proposition 3.6:

Corollary 3.9. Let M be as in Corollary 3.4 and N be M/pM . Then we obtain

˜(V −1F )jN =
1
p

(
ImF ′(2) ∩ ImF ′(4) ∩ · · · ∩ ImF ′(2j) ∩ pM

)
(12)

and therefore

dim(V −1F )jN = g + dimkerT σ ∩ ker Tσ3

∩ · · · ∩ ker Tσ2j−1

with T := T mod p.

Proof. The first statement is a paraphrase of Proposition 3.6 (1). For the second, we investigate
the composite φ of the natural inclusion and the natural projection:

φ : (V −1F )jN ↪→ N → K < Y1, · · · , Yg > .

By Proposition 3.6 (2) the map φ is surjective, since Yi ∈ VM for all i = 1, · · · , g. By the
equations (11) and (12), the dimension of the kernel of φ is calculated by using only the first g
column vectors of F ′(2i) (i = 1, · · · , j). Explicitly it equals

dimker T σ ∩ ker T σ3

∩ · · · ∩ ker T σ2j−1

as required.

This corollary enable us to calculate the invariant c(N ).

Lemma 3.10. Let c be an integer with 0 ≤ c ≤ [g/2]. For a matrix T = (tij) satisfying
Tw = t(Tw) with tij = 0 for i ≤ g−c or j > c, we consider the Dieudonné module M associated
with T . Then it follows c(N ) ≤ c with N := M/pM .

Proof. For a matrix T as above, it is clear that TT σi
= 0 for all i ∈ Z. Then c(N ) ≤ c follows

immediately from Corollary 3.9.

Proposition 3.11. Let M be as in Corollary 3.4. Set ϕ := ES(M). Then it follows{
ϕ(g − c(N )) = 0,
ϕ(g − c(N ) + 1) = 1.
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Proof. Let j be the minimal integer such that (V −1F )jN = (V −1F )∞N . Then (V −1F )j+1N =
(V −1F )jN implies F 2(V −1F )jN = 0 and therefore ϕ(g − c(N )) = 0.

Suppose ϕ(g − c(N ) + 1) = 0. Then taking a final filtration

0 = N0 ⊂ · · · ⊂ Ng ⊂ · · · ⊂ N2g = N,

we have

FNg−c(N)+1 = 0. (13)

By the definition of j, it follows

N2g−c(N) = (V −1F )jN � N2g−c(N)+1 ⊂ (V −1F )j−1N. (14)

Since FN2g−c(N)+1 = Ng−c(N)+1 by Remark 3.8, the equation (13) implies

(V −1F )N2g−c(N)+1 = N2g−c(N)+1,

which contradicts (14) and (V −1F )jN = (V −1F )(V −1F )j−1N . Hence ϕ(g − c(N ) + 1) has to
be 1.

4 Moduli Space Tµ
In this section, we investigate the fine moduli space Tµ, which has already been introduced in
[12, 9.11]. In particular we construct a finite étale morphism from Tµ (µ ∈ Λc) to the space
Ng,c of some matrices (see Definition 4.8 (i)). By using this morphism, we show that Tµ is
non-singular and irreducible (Corollary 4.10).

For each c ≤ [g/2], let Λc be the set of the equivalence classes of polarizations µ on Eg such
that kerµ � α⊕2c

p .

Definition 4.1. For µ ∈ Λc let Tµ be the fine moduli scheme of isogenies

ρ : (Eg, µ) → (Y, λ)

of polarized supersingular abelian varieties such that

(i) µ = ρ∗λ,

(ii) λ is a principal polarization.

For a given c ≤ [g/2], corresponding to the dual of (Eg, µ), we take a quasi-polarized super-
special Dieudonné module (M1, 〈 , 〉M1) satisfying M1/M

t
1 � K⊕2c, which will be shown to be

unique up to isomorphism in Lemma 4.3 below.

Definition 4.2. For (M1, 〈 , 〉M1) as above, we define the moduli space Nc of isogenies of
quasi-polarized Dieudonné modules

(M, 〈 , 〉) ⊂ (M1, 〈 , 〉M1)

satisfying

11



(i) 〈 , 〉 is the restriction to M of 〈 , 〉M1,

(ii) 〈 , 〉 is a principal quasi-polarization.

For each µ ∈ Λc, there exists a purely inseparable morphism from Tµ to Nc over Fp4 by the
same argument as [12, 7.4, 7.16], which is based on Li’s theory of α-sheaves ([11, §3]).

We define a non-commutative ring

H := W (Fp2)[F, V ]/(F − V ). (15)

Let M̂1 denote the skeleton of M1, i.e.,

M̂1 := {v ∈M1 | (F − V )v = 0}.

Then M̂1 is a H-module and we have M1 = M̂1 ⊗W (�p2) W (K).

Lemma 4.3. The quasi-polarized superspecial Dieudonné module (M1, 〈 , 〉M1) as above has
A-generators x1, · · · , xg with xi ∈ M̂1 such that

〈xi, F
2xg+1−j〉 = εδij , 〈xi, Fxg+1−j〉 = 0 for 1 ≤ i, j ≤ c,

〈xi, Fxg+1−j〉 = εδij , 〈xi, xg+1−j〉 = 0 for c < i, j ≤ [g/2],
〈xi, Fxg+1−j〉 = 0, 〈xi, xg+1−j〉 = 0 otherwise.

(16)

In particular, such (M1, 〈 , 〉M1) are unique up to isomorphism.

Proof. Applying [12, Proposition 6.1] and then [12, Remark 6.1], we haveA-generators x1, · · · , xg

as above.

Definition 4.4. We denote by Φ̃c = Φ̃(M1) the set of (x1, · · · , xg) with xi ∈ M̂1 satisfying (16).
We say two elements (x1, · · · , xg) and (x′1, · · · , x′g) of Φ̃(M1) are equivalent if xi ≡ x′i mod pM1

for all i = 1, · · · , g. Let Φc = Φ(M1) be a set of representatives of equivalence classes of elements
of Φ̃(M1) inductively chosen such that (x1, · · · , xg) ∈ Φ(M1) implies (x2, · · · , xg−1) ∈ Φ(M ′

1) for
the principally quasi-polarized superspecial Dieudonné module M ′

1 generated by x2, · · · , xg−1.

Since M̃1/pM̃1 is a finite set, the set Φc is finite.

Definition 4.5. Let Θ = (x1, · · · , xg) be an element of Φc. For an Fp4-algebra R, let V Θ(R)
be the subset of Nc(R) consisting M which has generators X1, · · · , Xg of the form

Xi = xi +
∑g

j=g−c+1 αijxj for i = 1, · · · , c,
Xi = xi for i = c+ 1, · · · , g− c,

Xi = Fx
(p)
i for i = g − c+ 1, · · · , g

(17)

with αij ∈W (R) and

〈Xi, FX
(p)
g+1−j〉 = δij , 〈Xi, Xj〉 = 0 (18)

for all 1 ≤ i, j ≤ g.

First we show:

12



Lemma 4.6. The functor V Θ is represented by an affine space of dimension c(c+ 1)/2.

Proof. We show that V Θ is represented by

Spec Fp4[ξij]/(ξij − ξg+1−j,g+1−i) (19)

where the ξij are variables corresponding to αij := αij mod p. Here the αij are coefficients of
Xi, see (17). Any element of V Θ is determined only by αij. It suffices to show for any element
of V Θ as in (17) there are only relations αij = αg+1−j,g+1−i. The relations come only from the
conditions (18). The non-trivial relations are

〈Xi, Xg+1−j〉 = 0

for 0 ≤ i ≤ c and g + 1 − c ≤ j ≤ g. Hence the calculation

〈Xi, Xg+1−j〉 = p−1 (αij − αg+1−j,g+1−i)

ends the proof.

Let us denote the affine scheme (19) by the same symbol V Θ.

Lemma 4.7. It follows that

Nc =
⋃

Θ∈Φc

V Θ.

Proof. The case of c = 0 is obvious because c = 0 implies M is a superspecial Dieudonné module.
We suppose that c ≥ 1.

We show this lemma by induction of g. Let R be an arbitrary Fp4 -algebra. Set AR = W (R)H .
Let M ⊂ M1 be an element of Nc(R). Choose a (x′1, · · · , x′g) ∈ Φc. Without loss of generality,
we may assume that there exists a surjective homomorphism

M → ARx
′
1.

Then we have a self-dual complex

C· : ARFx
′
g →M → ARx

′
1

We take the cohomology M ′ := H1(C·) of C·. It is a supersingular Dieudonné module equipped
with the principal quasi-polarization. Moreover if we put M ′

1 := AR < x′2, · · · , x′g−1 >, it follows
that (M ′ ⊂M ′

1) is an element of Nc−1(R) for genus g−2. Then by the assumption of induction,
there exist (x′′2, · · · , x′′g−1) ∈ Φ(M ′

1) and generators X ′
2, · · · , X ′

g−1 of M ′ such that
X ′

i = x′′i +
∑g−1

j=g−c+1 α
′
ijx

′′
j for i = 2, · · · , c,

X ′
i = x′′i for i = c+ 1, · · · , g − c,

X ′
i = Fx′′i

(p) for i = g − c+ 1, · · · , g − 1.

with α′
ij ∈W (R) and

〈X ′
i, FX

′(p)
g+1−i〉 = δij , 〈X ′

i, X
′
j〉 = 0

13



for all 2 ≤ i, j ≤ g − 1.
By the definition of Φ(M1), we can find an element (x1, · · · , xg) of Φ(M1) satisfying x1 ≡

x′1 mod p, xg ≡ x′g mod p and xi = x′′i (2 ≤ i ≤ g − 1).
The Dieudonné module Q generated by xi(i = c+1, · · · , g−c) is a principally quasi-polarized

Dieudonné submodule of M such that M/Q is a free Dieudonné module. We put Xg = Fx
(p)
g .

For each i (2 ≤ i ≤ c), we choose a lift X ′′
i of X ′

i such that the coefficient of xg is in W (R),
since Fx(p)

g is in M . Then there exists an element X ′′
1 of M such that X ′′

1 is mapped to x1

by the map M → ARx1, X ′′
1 have not terms of xi (i = 2, · · · , g − c) and xi-coefficients of

X ′′
1 (i = g − c + 1, · · · , g) are in W (R). We can choose an element β of W (R) such that

X1 := X ′′
1 − βXg satisfies 〈X1, FX

(p)
1 〉 = 0. Set Xi = X ′′

i − 〈FX (p)
1 , X ′′

i 〉Xg for i = 2, · · · , c. For
g − c+ 1 ≤ i ≤ g − 1, we put Xi = Fx

(p)
i . Thus we have generators X1, · · · , Xg of M satisfying

(17) and (18).

From now on, let us take generators X1, · · · , Xg of M satisfying (17) and (18) for each point
(M ⊂ M1) of V Θ. Let R be an Fp4-algebra. For a point (M ⊂ M1) ∈ V Θ(R), let us define a
g × g-matrix T = (tij) by

FX
(p)
i − V X

(p−1)
i =

g∑
j=i+1

tjiXj. (20)

Then tij ∈ W (R). By the equation (18), the matrix Tw is automatically symmetric. We note
that tij = 0 for i ≤ g − c or j > c. This means that M has a symplectic basis

{X1, · · · , Xg, Y1, · · · , Yg}

for which the display of M is given by (
T −ε−1w
εw 0

)
with T of the form 

0 0

tg−c+1,1 · · · tg−c+1,c
...

... 0
tg,1 · · · tg,c


.

For such a M , we can apply all results in Section 3.

Definition 4.8. (i) An affine scheme Ng,c is defined by

Ng,c(R) :=
{
T = (tij) ∈Mg(R)

∣∣ Tw = t(Tw), tij = 0 (i ≤ g − c or j > c)
}

with w = (δi,g+1−j).

(ii) Let hΘ denote the morphism from V Θ to Ng,c sending (M ⊂M1) to T = (tij) defined by
equation (20). Here tij := tij mod p.

14



Proposition 4.9. The morphism hΘ : V Θ → Ng,c is finite and étale.

Proof. With the notation in the proof of Lemma 4.6, the morphism hΘ is given by

V Θ = Spec Fp4[ξij]/(ξij − ξg+1−j,g+1−i) → Ng,c = Spec Fp4[tij]/(tij − tg+1−j,g+1−i)

which on affine rings corresponds to the homomorphism sending tij to ξp2

ij − ξij by the equations
(20).

Corollary 4.10. The moduli space Nc and therefore Tµ (∀µ ∈ Λc) are projective non-singular
geometrically integral varieties of dimension c(c+ 1)/2.

Proof. The moduli space Nc is a closed subvariety of the Grassmann variety Grc,2c, since the
condition of polarization is closed. Hence Nc is projective.

Since Nc is covered by affine space V Θ, it suffices to show Nc is connected. We show this
by induction of g. Indeed by the proof of Lemma 4.7, Nc is a fiber space of Nc−1 for genus
g−2. The fiber of each point is given by the fiber of V Θ → V Θ′

for some Θ = {x1, · · · , xg} with
Θ′ = {x2, · · · , xg−1}. Hence each fiber is identified with the affine space Ac with coordinates α1i

(i = g − c+ 1, · · · , g), which is connected.

We will use the next lemma when we construct the morphism Ψc mentioned in the intro-
duction.

Lemma 4.11. Let c and c′ be integers with c < c′ ≤ [g/2]. For any element ρ : (Eg, µ) → (Y, λ)
of Tµ(K) with µ ∈ Λc, there exists an element ρ′ : (Eg, µ′) → (Y, λ) of Tµ′(K) with µ′ ∈ Λc′.

Proof. It suffices to show this lemma only for c′ = c+1. Let M be the associated quasi-polarized
Dieudonné module D(Y ). By Lemma 4.7, corresponding to ρt : Y t → (Eg)t, we have an inclusion

M ⊂M1

with M1 generated by x1, · · · , xg for an element (x1, · · · , xg) ∈ Φc.
Let us define elements x′i (i = 1, · · · , g) of M1 ⊗ frac(W (K)) by x′c′ = F−1xc′ and x′i = xi

for i �= c′ and denote by M ′
1 the principally quasi-polarized superspecial Dieudonné module

generated by x′1, · · · , x′g. Then M ⊂M ′
1 is an element of Nc′ .

Let f t be the isogeny Eg → Eg corresponding to M1 ⊂M ′
1. Then

ρ ◦ f : (Eg, µ′) → (Y, λ)

with µ′ := (ρ ◦ f)∗λ is an element of Tµ′(K).

Definition 4.12. For an elementary series ϕ, let Tµ(ϕ) be the subspace of Tµ consisting of

(Eg, µ) → (Y, λ)

with ES(Y ) = ϕ.

In the next section, we will show that ϕ([(g + 1)/2]) = 0 if and only if Tµ(ϕ) �= ∅ (µ ∈ Λc)
for some c ≤ [g/2].
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5 Ekedahl-Oort stratification contained in supersingular locus

In this section, we give a lower bound of number of irreducible components of Ekedahl-Oort
strata contained in supersingular locus Wσ .

5.1 Oort’s criterion

In this subsection, we determine which Sϕ is contained in supersingular locus Wσ.

Lemma 5.1. For any principally quasi-polarized Dieudonné module M with ϕ([(g+ 1)/2]) = 0
with ϕ = ES(M), we have

F 2n+1M ⊂ pnM and V 2n+1M ⊂ pnM

for all n ≥ 0. In particular M is supersingular.

Proof. Let M be a principally quasi-polarized Dieudonné module satisfying ϕ([(g + 1)/2]) = 0
with ϕ = ES(M). Put N = M/pM .

We show the next claim by induction of n.
Claim. For any l ≤ n, we have F 2l+1M ⊂ plM . Moreover it follows

(n-i) ˜(V −1F )nFN =
∑n

l=0 p
−lF 2l+1M ,

(n-ii) dim(V −1F )nFN ≤ g + [(g + 1)/2].

Proof of Claim. It is obvious for n = 0. Assume it holds for n. Let us compute ˜(V −1F )n+1FN .
Since ϕ([(g + 1)/2]) = 0 implies

ϕ(g + [(g + 1)/2]) = ϕ(2g − [g/2]) = g + ϕ([g/2]) − [g/2] = [(g + 1)/2],

from (n-(ii)) we get

dimF (V −1F )nFN ≤ [(g + 1)/2]

and therefore F 2(V −1F )nFN = 0. This means

F
{

˜F (V −1F )nFN
}
⊂ pM (21)

with

˜F (V −1F )nFN = pM +
n∑

l=0

p−lF 2l+2M

by Lemma 3.5 (2). In particular, we have F 2(n+1)+1M ⊂ pn+1M . Applying Lemma 3.5 (1) for
S = F (V −1F )nFN , we obtain

˜(V −1F )n+1FN =
n+1∑
l=0

p−lF 2l+1M.

By the inclusion (21), we have

dim(V −1F )n+1FN = g + dimF (V −1F )nFN,

which is at most g + [(g + 1)/2].
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For a Dieudonné submodule Q of M , let us denote by ⊥ Q the Dieudonné submodule of
M ⊗ frac(W (K)):

{v ∈M ⊗ frac(W (K))|〈v, Q〉 ⊂ pM}.

Then by the inclusion F 2n+1M ⊂ pnM , we obtain

V 2n+1M = pn−1V 2n+1(p−n+1M) = pn−1V 2n+1(⊥ pnM)
⊂ pn−1V 2n+1(⊥ F 2n+1M) = pn−1V 2n+1(V −(2n+1) ⊥M)
= pn−1(⊥M) = pnM.

By [2, Chapter IV §5], the property

F 2n+1M ⊂ pnM (∀n = 1, 2, · · ·)

implies that M is supersingular.

The following proposition is due to F. Oort1. Because his proof is not published, we give a
proof here.

Proposition 5.2 (Oort’s criterion). We have ϕ([(g + 1)/2]) = 0 if and only if Sϕ ⊂Wσ.

Proof. If ϕ([(g + 1)/2]) �= 0, then there exists a curve C with generic point in Sϕ and a special
point in Sϕd

with d < [(g + 1)/2], where ϕd is the elementary series with exactly d zeros and
(g − d) ones. Recall the intersection of Sϕd

and Wσ is empty, by the classification of p-divisible
groups with a-number g − 1 in [17, §8]. Since the supersingular locus Wσ is closed, it has to
follow that Sϕ �⊂Wσ .

Suppose ϕ([(g + 1)/2]) = 0. Then every principally quasi-polarized Dieudonné module M
with ES(M) = ϕ is supersingular by Lemma 5.1.

5.2 Construction of the morphism Ψc

Let us construct the morphism Ψc mentioned in the introduction.
Assume K is a perfect field containing Fp4.

Proposition 5.3. Let M be a principally quasi-polarized Dieudonné module over W (K) sat-
isfying ϕ([(g + 1)/2]) = 0 with ϕ := ES(M). Then there exists a quasi-polarized superspecial
Dieudonné module M1 such that (M ⊂M1) is an element of Nc(K) for some c (see Definition
4.2 for Nc). Moreover we can take S0(M) as M1.

Proof. For any M as above, M is supersingular by Proposition 5.2. It suffices to show that
S0(M)/S0(M) is a K-vector space.

Recall that V 2n+1M are contained in pnM for all n ≥ 0 (Lemma 5.1). Then we have

F iV g−1−iM ⊂ F g−2M 0 ≤ ∀i ≤ g − 1. (22)

Indeed F iV g−1−iM ⊂ F g−2M is equivalent to V 2g−3−2i ⊂ pg−2−iM .
Since S0(M) = F 1−g(F, V )g−1M ([11, Corollary 1.7]), we have

FS0(M) ⊂M,

by the inclusion (22). Since S0(M) is the biggest superspecial Dieudonné module contained in
M , we have FS0(M) ⊂ S0(M), which implies that S0(M)/S0(M) is a K-vector space.

1Private communication.

17



Definition 5.4. We define a map γ from the set of principally quasi-polarized supersingular
Dieudonné module over W (K) to Z≥0 by

γ(M) :=
1
2

lengthK S0(M)/S0(M).

Proposition 5.5. Let M be as in Proposition 5.3. Put N = M/pM . Then we have an equation

γ(M) = c(N ).

(See Definition 3.7 for c(N ).) In particular, γ(M) is an invariant of N .

Proof. By Proposition 5.3, we have (M ⊂ S0(M)) ∈ Nc(K) with c = γ(M). By Lemma 4.7, we
can choose A-generators X1, · · · , Xg of M such that

(i) X1, · · · , Xg, Y1, · · · , Yg is a symplectic basis of M with Yi := ε−1V Xg+1−i,

(ii) for an element (x1, · · · , xg) of Φ(S0(M)) (see Definition 4.4), we have
Xi = xi +

∑g
j=g−c+1 αijxj for i = 1, · · · , c,

Xi = xi for i = c+ 1, · · · , g− c,

Xi = Fxi for i = g − c+ 1, · · · , g.

Recall S0(M) = F 1−g(F, V )g−1M . Namely S0(M) is generated over W (K) by F−jV jXi

(0 ≤ j ≤ g − 1 and i = 1, · · · , g). Then

S := {X1, · · · , Xg−c, Fxg−c+1, · · · , Fxg}

and

F−lV l−1(F − V )Xi (1 ≤ l ≤ g − 1, and i = 1, · · · , g)

generate S0(M) over W (K).
By using the equations

(F − V )Xi =
g∑

j=g−c+1

tjiFxj (1 ≤ i ≤ c),

the superspecial Dieudonné module S0(M) is generated by elements of S and

F−lV l−1(F − V )Xi =
g∑

j=g−c+1

tσ
−(2l−1)

ji xj

for all l = 1, · · · , g− 1. Here the matrix T = (tij) is of the form

T =


0 0

tg−c+1,1 · · · tg−c+1,c
...

... 0
tg,1 · · · tg,c


.
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On the other hand, S0(M) is generated by x1, · · · , xg, Fx1, · · · , Fxg over W (K). Hence the
column vectors of all of

T
σ−1

, T
σ−3

, · · · , T σ−(2g−3)

generate a K-vector space of dimension c. This is equivalent to c(N ) = c by Corollary 3.9

Theorem 5.6. For each c ≤ [g/2], there exists a canonical quasi-finite surjective morphism

Ψc :
∐

µ∈Λc

Tµ →
∐

ϕ(g−c)=0

Sϕ.

Here
∐

ϕ(g−c)=0 Sϕ stands for the closed subscheme of the supersingular locus Wσ whose closed
points correspond to abelian varieties Y satisfying ϕ(g − c) = 0 with ϕ = ES(Y ).

Proof. It suffices to show the image of the canonical quasi-finite morphism∐
µ∈Λc

Tµ →Wσ

is precisely equal to ∐
ϕ(g−c)=0

Sϕ.

Let Eg → Y be a point of Tµ(K) (µ ∈ Λc) with a perfect field K. Set M := D(Y ) and
N := M/pM . By Lemma 4.7, there exists a Θ ∈ Φc such that (M ⊂ M1) ∈ V Θ(K). Let
T = (tij) be the associated matrix hΘ(M ⊂ M1) (see Definition 4.8 (ii)). By Proposition 3.11,
we have ϕ(g − c(N )) = 0. Since c(N ) ≤ c (Lemma 3.10), we have ϕ(g − c) = 0.

Let (Y, λ) be a principally polarized abelian variety satisfying ϕ(g−c) = 0 with ϕ := ES(M)
and M := D(Y ). Then the condition c ≤ [g/2] implies ϕ([(g+ 1)/2]) = 0. Applying Proposition
5.3, we get an element of Nγ(M ):

M ⊂ S0(M).

By Proposition 5.5 and Proposition 3.11, we have

γ(M) = c(N ) ≤ c.

Hence (Y, λ) is in the image of Tµ for some µ ∈ Λc by Lemma 4.11.

Lemma 5.7. Let (Y, λ) be a geometric point of Wσ in images of two different Tµ and Tµ′ with
µ, µ′ ∈ Λc. Then we have γ(D(Y )) < c.

Proof. Assume γ(D(Y )) was equal to c. Let us denote by ρ0 the minimal isogeny Eg → Y ,
which is unique up to isomorphism. By the assumption, ρ0 is of degree pc. Set µ0 = ρ∗0λ. Let
ρ : (Eg, µ) → (Y, λ) be a point of Tµ. Then ρ has to factor ρ0 by the minimality of ρ0. Since ρ0

and ρ have the same degree, ρ and ρ0 are the same up to automorphism of Eg, that is to say, µ
is equivalent to µ0. By the same reason, µ′ is equivalent to µ0, which contradicts.
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Let us recall the definition of class numbers of the quaternion unitary group G:

G = {h ∈ GLg(B) | thh = λ(h)1g, λ(h) ∈ Q}

with the quaternion algebra B ramified only at p and ∞ over Q.

Definition 5.8. For 0 ≤ c ≤ [g/2], the class number Hg,c is defined to be

� G(Q)\G(Af)/Pc,f .

Here Pc,f is the product of parahoric subgroups
∏

l:prime Pl defined by

δ−1
l Plδl := {h ∈ GLg(OB,l) | thflh = λ(h)fl}

where fl = 1g, δl = 1g for l �= p and

fp := diag(1, · · · , 1︸ ︷︷ ︸
g−2c

,

(
0 F

−F 0

)
, · · · ,

(
0 F

−F 0

)
︸ ︷︷ ︸

c

) (23)

with an element δp of GLg(OB,p) satisfying tδpδp = fp. For example, it suffices to take

δp = diag(1, · · · , 1︸ ︷︷ ︸
g−2c

,

(
a bF

b aF

)
, · · · ,

(
a bF

b aF

)
︸ ︷︷ ︸

c

)

where a, b ∈W (Fp2) is defined by a = y−1 and b = y−1x with a solution (x, y) ∈W (Fp2)⊕2 of{
xσx = −1,
yσy = xσ + x.

By using the class number Hg,c, we have a lower bound of the number of irreducible compo-
nents of each Ekedahl-Oort stratum Sϕ contained in supersingular locus Wσ.

Proposition 5.9. Assume ϕ(g − c) = 0 and ϕ(g − c+ 1) = 1 with c ≤ [g/2]. Then the number
of irreducible components of Sϕ is greater than or equal to the class number Hg,c.

Proof. For each µ ∈ Λc, there is at least one irreducible component Z of Sϕ such that there is a
surjective map from an irreducible component of Tµ(ϕ) to Z. By Proposition 3.11, Proposition
5.5 and Lemma 5.7, there is no other µ′ ∈ Λc such that there is a surjective map from an
irreducible component of Tµ′(ϕ) to Z. Hence the number of irreducible components of Sϕ is at
least �Λc.

By the same argument as [9, §2] and [12, Chapter 8], we have a canonical bijection

Λc
∼−→ G(Q)\G(Af)/Pc,f .

Hence the number �Λc is equal to the class number Hg,c.
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In the next section, it will be shown that the number of irreducible components of Sϕ equals
the class number Hg,c.

There is an estimate of the class number Hg,c by the mass mg,c of G for genus fp at p:

Hg,c ≥ 2mg,c.

Here the mass mg,c is defined to be∑
h∈G(�)\G(�f )/Pc,f

1
�(hPc,fh−1 ∩G(Q))

,

which in fact termwise equals ∑
µ∈Λc

1
�Aut(Eg, µ)

.

Furthermore we have the mass formula:

Lemma 5.10. The mass mg,c is equal to

g∏
i=1

(2i − 1)!ζ(2i)
(2π)2i

·
(
g

2c

)
p2

·
g−2c∏
i=1

(pi + (−1)i)
c∏

i=1

(p4i−2 − 1)

with the Riemann zeta function ζ(s) and the q-binomial coefficients(
g

r

)
q

:=
∏g

i=1(q
i − 1)∏r

i=1(qi − 1)
∏g−r

i=1 (qi − 1)
∈ Z[q].

Proof. For g = 1, this is none other than Deuring’s mass formula [3] because c has to be 0.
Suppose g ≥ 2. Since the class number Mg(B) is one for g ≥ 2 (Eichler [4] and also see [9,
Theorem 2.1]), the mass mg,c is equal to that associated with the group without similitude

G1 = {h ∈ GLg(B) | thh = 1g}.

Applying Prasad’s mass formula [19] to this group G1, we have

mg,c =
g∏

i=1

(2i− 1)!
(2π)2i

·
∏
l �=p

lg(2g+1)

�Sp2g(Fl)
· p

(dimMp+g(2g+1))/2

�Mp(Fp)
(24)

where Mp(Fp) is the Levi subgroup of P p := Pp mod p. Then Mp(Fp) is isomorphic to the
subgroup of GLg(Fp2) consisting X satisfying

tXσfpX = fp

in Mg(Fp2[F ]/(Fa = aσF, a ∈ Fp2)). Then from the direct computation by using the block
expression of matrices, we have

Mp(Fp) = Ug−2c(Fp2) × Sp2c(Fp2)
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with the unitary group

Um(Fp2) := {A ∈Mm(Fp2)|tAσA = 1m}

in the notation of [1]. In particular we have dimMp = (g − 2c)2 + 2(2c2 + c). By the formulae

�Sp2m(Fq) = qm(2m+1)
m∏

i=1

(1 − q−2i),

�Um(Fq2) = qm2
m∏

i=1

(1 − (−1)iq−i),

(see [1, Chapter 1] for example), we obtain the desired equality.

By Proposition 5.9 and Lemma 5.10, it follows:

Corollary 5.11. For any elementary series ϕ satisfying ϕ([(g + 1)/2]) = 0, the Ekedahl-Oort
stratum Sϕ is reducible for sufficient large p’s.

Remark 5.12. In the notation of [12, 4.6,4.7], Hg,0 is the class number Hg(p, 1) of G for the
principal genus and Hg,[g/2] is the class number Hg(1, p) of G. Also compare Lemma 5.10 with
the computation (Proposition 9 of [7] (I)) of the mass mg,0. Although K. Hashimoto and T.
Ibukiyama explicitly calculate H2,0 and H2,1 in [7], it seems difficult to get the explicit formula
of class numbers Hg,c for higher g’s. See [9], [10] and [8] for closer investigations for g = 2.
However for any elementary series ϕ satisfying ϕ(g − c) = 0 and ϕ(g − c+ 1) = 1, the number
of irreducible components of Sϕ as a stack is equal to the mass mg,c (by using Theorem 6.19
below). In other words, for a natural number n such that (n, p) = 1 and n ≥ 3, the number of
irreducible components of a variant Sϕ,n with level n-structure is equal to �Sp2g(Z/nZ) · mg,c.

5.3 Examples

In this subsection, we give some examples of Sϕ contained in Wσ . By using such examples, we
can give a geometric proof of Proposition 3.11, which was used only in the proof of Theorem
5.6.

Lemma 5.13. For a natural number r less than or equal to [g/2], let M be a supersingular
Dieudonné module associated with a g × g-matrix T = (tij) of rank r with tij = 0 for i ≤ g − r

or for j > r. Then we have

ES(M) = ϕtop
r

with

ϕtop
r := (0, · · · , 0, 1, 2, · · · , r).

Furthermore we have γ(M) = r.

Proof. By rkT = r and Corollary 3.9, we see that F (V −1F )(M/pM ) is generated by

FXr+1, · · · , FXg
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and therefore

dimF (V −1F )(M/pM ) = g − r

F 2(V −1F )(M/pM ) = 0.

Since T is of rank r, we have ϕ(g) = r and therefore ES(M) has to be (0, · · · , 0, 1, 2, · · · , r).

Corollary 5.14. For the generic point (Eg → Y) of Tµ (µ ∈ Λc), we obtain

ES(Y) = ϕtop
c .

Next we investigate, for c ≤ [g/2], the Ekedahl-Oort stratum with elementary series

ϕbot
c := (0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸

c

). (25)

Let T (t1, · · · , tc) be g × g-matrix of rank 1 for t1, · · · , tc ∈W (K) with t1 �= 0:

T (t1, · · · , tc) :=


0 0

tc · · · t1
...

... 0
t2c/t1 · · · tc


. (26)

Also we introduce a polynomial J(t1, · · · , tc) in t1, · · · , tc with ti := ti mod p:

J(t1, · · · , tc) := det


t1 t2 · · · tc

t
σ2

1 t
σ2

2 · · · t
σ2

c
...

...
t
σ2c−2

1 t
σ2c−2

2 · · · t
σ2c−2

c

 . (27)

Lemma 5.15. Assume M = MT for T = T (t1, · · · , tc) and J(t1, · · · , tc) �= 0. Then

(1) dim(V −1F )jN = 2g − j for j = 0, 1, · · · , c,

(2) dimF (V −1F )jN = g − j for j = 0, 1, · · · , c,

(3) dimF 2(V −1F )jN = 1 for j = 0, 1, · · · , c− 1,

(4) F 2(V −1F )cN = 0.

Proof. (1) By Corollary 3.9 and the assumption J(t1, · · · , tc) �= 0, it follows

dim(V −1F )jN = g + dimkerT σ ∩ kerT σ3

∩ · · · ∩ kerT σ2j−1

= 2g − j.

(2) immediately follows from (1) and Proposition 3.6 (2).
(3) Since we have

dimF 2(V −1F )c−1N ≤ dimF 2(V −1F )jN ≤ dimF 2N = 1
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for all 0 ≤ j ≤ c−1, it suffices to show F 2(V −1F )c−1N �= 0. By Lemma 3.5 (2) and Proposition
3.6 (2), we see

˜{F 2(V −1F )c−1N} = ImF ′(2) ∩ ImF ′(4) ∩ · · · ∩ ImF ′(2c) + pM.

This is not contained in pM by the assumption J(t1, · · · , tc) �= 0.
(4) Since F (V −1F )cN is generated by FXc+1, · · · , FXg by Corollary 3.9 and

FXi = VXi

for all i = c+1, · · · , g, we have F (V −1F )cN = V (V −1F )cN and therefore F 2(V −1F )cN = 0.

By the lemma above and Definition 2.6, we obtain:

Proposition 5.16. Let T = T (t1, · · · , tc) and MT be the associated Dieudonné module. If
J(t1, · · · , tc) �= 0, then it follows that

ES(MT ) = ϕbot
c

We also have γ(MT ) = c.

Corollary 5.17. There exists a quasi-finite surjective morphism from T ′
2c defined in the proof

of [12, Proposition 9.11] to each connected component of Sϕbot
c

. Moreover we have a finite étale
morphism from T ′

2c to

SpecFp4

[
x1, x2, · · · , xc,

1
J(x1, x2, · · · , xc)

]
.

Let us re-prove Proposition 3.11.

Lemma 5.18. For an integer n ≥ 3 with (n, p) = 1, let Wσ,n be the supersingular locus in
Ag,1,n. We denote by Ωn the subvariety of Wσ,n consisting abelian varieties with elementary
series ϕ satisfying ϕ([(g + 1)/2]) = 0. Let f be a morphism from an Fp-scheme S to Ωn and
X → S be the corresponding family of principally polarized supersingular abelian varieties with
level n structure. Then the map γ from S to Z≥0 sending s ∈ S to

γ(s) := γ(D(Xs)) =
1
2

deg(S0(Xs) → S0(Xs))

is lower semi-continuous. Here Xs is the abelian variety Xs ⊗k(s) k(s).

Proof. By a version with level structure of Proposition 5.3, there is a proper surjective morphism∐
µ∈Λ[g/2],n

Tµ → Ωn,

where Λ[g/2],n is the set

{polarizations µ on Eg | ker(µ) � α2c
p }/Aut(Eg, θ)

with level n-structure θ. Then it suffices to show that only for families on Tµ.
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By definition, closed points of an affine open subvariety V Θ of N[g/2] correspond to principally
quasi-polarized supersingular Dieudonné modules generated by

Xi =
∑
j≥i

αijF
exj (e = 0 or 1)

with αij ∈ A and αii = 1 (see the equations (17)).
For any quasi-polarized superspecial Dieudonné module N , the condition

M ⊂ N

is equivalent to

Xi ∈ N for all i = 0, · · · , g − 1,

which is a closed condition in the parameter space of αij . Since M ⊂ N implies γ(M) ≤
lengthN/M and for each non-negative integer m there are only finitely many superspecial
Dieudonné modules N satisfying M ⊂ N ⊂M ⊗ fracW (K) and lengthN/M = m, we have the
semi-continuity of γ.

Lemma 5.19. For each elementary series ϕ satisfying

ϕ(g − c) = 0, ϕ(g − c+ 1) = 1, (28)

any generic point η of Sϕ satisfies

γ(η) = c.

Proof. Let ϕ satisfy the equations (28). It follows

ϕbot
c ≺ ϕ ≺ ϕtop

c .

Then by [17, Proposition 11.1], the Zariski closure of any irreducible component of Sϕ contains
an irreducible component of Sϕbot

c
and the Zariski closure of any irreducible component of Sϕtop

c

contains an irreducible component of Sϕ. Using the last statements in Lemma 5.13 and Propo-
sition 5.16, at the generic point η of each irreducible component of Sϕ, we have γ(η) = c, by
Lemma 5.18.

Proposition 5.20. For any point s = (Y, λ) of Sϕ with ϕ satisfying (28), we have γ(s) = c.

Proof. Proposition 5.5 means the invariant γ(s) = γ(D(Y ⊗K K)) of a principally polarized
abelian variety Y over K is determined by the isomorphism class of Y [p]. Then by Proposition
5.19, it follows

γ(s) = γ(η) = c

with η in Proposition 5.19.
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6 The number of irreducible components of Sϕ

In this section, we prove the main theorem (Theorem 6.19) mentioned in the introduction.
Given an elementary series ϕ, we have to determine what kind of matrix T gives MT such

that ϕ = ϕ(MT ). It seems difficult to write down explicitly which T is associated with MT

with ϕ = ϕ(MT ). (It was possible for the two cases: ϕ = ϕbot
c and ϕtop

c . See Lemma 5.13 and
Proposition 5.16.) However it is relatively easy to determine the form of the matrix giving the
Dieudonné module associated with each generic point of Sϕ. This is done by introducing the
subspace Ls of Ng,c. (Here s is a combinatorial data determined by ϕ.) The main theorem
follows from a close investigation of the structure of Ls, for example the a-number stratification
on Ls.

We will use three sets:

Definition 6.1. (i) Ig = {ϕ : elementary series | ϕ([(g + 1)/2]) = 0}.

(ii) Jg = {(r; s1, · · · , sr) |
∑r

i=1 si ≤ [g/2], si ∈ Z≥1 (∀i = 1, · · · , r)}. For an element of
s = (r; s1, · · · , sr) of Jg, we put s0 = g −

∑r
j=1 sj .

(iii) Let Pg be the set of monotonically increasing functions π satisfying π(1) = 0, π(g)−π(g−
1) ≤ [g/2] and for all a = 2, · · · , g− 1

π(a+ 1) − π(a) > π(a) − π(a− 1)

unless π(a) = 0.

There are canonical bijections ν : Ig → Jg and β : Jg → Pg defined as:

Definition 6.2. (i) Let ν denote the map from Ig to Jg sending ϕ to

ν(ϕ) := (r(ϕ); s1(ϕ), · · · , sr(ϕ))

defined by {
r(ϕ) := ϕ(g),
si(ϕ) := � {j ∈ {1, · · · , g} | ϕ(j) = i} .

(ii) Let β be the map from Jg to Pg sending s = (r; s1, · · · , sr) to βs defined by
βs(a) := 0 for a ≤ g − r,

βs(a) :=
a−g+r−1∑

i=0

(a− g + r − i)sr−i for a > g − r.

Let us introduce an invariant of elementary series ϕ.

Definition 6.3. We define a map

α : Ig → Map({1, · · · , g}, Z≥0)

in the following way. For an element ϕ of Ig, we associate αϕ defined by

αϕ(a) := codimSϕ
Sϕ(a)

with a-number loci Sϕ(a) = Sϕ ∩ Ta on Sϕ. Here Ta is the closed subvariety of Ag consisting of
principally polarized abelian variety X with a(X) ≥ a (see [5] for the structure of Ta).
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In this section, we will show that α = β ◦ ν. First we see:

Lemma 6.4. For any ϕ ∈ Ig, we have

αϕ(a) ≤ βν(ϕ)(a) (29)

for all a.

Proof. By [17, Proposition 11.1], Sϕ(a) contains Sϕ′ with elementary series ϕ′ defined by{
ϕ′(j) = ϕ(j) if ϕ(j) ≤ g − a

ϕ′(j) = g − a if ϕ(j) > g − a.

Moreover we have codimSϕ
Sϕ′ = βν(ϕ)(a) by loc. cit.

Definition 6.5. Let V be an Fp-vector space of dimension g. Fix a flag

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vg = V

with dimVl = l and a basis Xg+1−l, · · · , Xg of Vl for each l = 0, · · · , g. For any Fp-algebra R,
we denote by VR and Vl,R by V ⊗R and Vl ⊗R respectively.

(i) For s = (r; s1, · · · , sr) ∈ Jg , we define the closed subscheme Ls of Ng,c as follows. For any
Fp-algebra R, the set Ls(R) of R-valued points consists of T ∈ Ng,c(R) satisfying

dimR/m(Vg−ci,RT modmV ) ≤ i− 1

for any i = 1, · · · , r + 1 and for any maximal ideal m of R with c := c1 and{
ci := si + si+1 + · · ·+ sr (i = 1, 2, · · · , r),
cr+1 := 0

where Vl,RT stands for the image of Vl,R by the right multiplication of the matrix T = (tij):

Xi · T :=
g∑

j=1

tjiXj.

(ii) Let L0
s denote subvariety of Ls whose R-valued points correspond to matrices

T =
r∑

i=1

T (ai1, ai2, · · · , ai,ci)

with ai1 ∈ R× and aij ∈ R for all i, j. Here T (t1, t2, · · · , tc) is the matrix of rank 1 defined
as the equation (26).

Remark 6.6. In general, for each elementary series ϕ, the action of T ∈ L0
s (s = ν(ϕ)) on

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vg

does not coincide with the action of F on the lower half of a final filtration (see §2.3) for M
with ES(M) = ϕ:

0 = N ′
0 ⊂ N ′

1 ⊂ · · · ⊂ N ′
g.

All that we can say is

dim VlT = max{ i | s0 + s1 + · · ·+ si ≤ l } = ϕ(l) = dimFN ′
l .

27



Proposition 6.7. (1) L0
s is dense in Ls.

(2) For any s = (r; s1, · · · , sr) ∈ Jg , the variety Ls is irreducible and of dimension βs(g).

(3) Let Ls(a) be the subvariety of Ls consisting of elements T of rank g − a. Then we have

codimLs Ls(a) = βs(a).

Proof. By definition, L0
s is isomorphic to

r∏
i=1

(Gm × Aci−1).

Hence (2) immediately follows from (1), since we have in general

r∑
i=g−a+1

ci = βs(a).

We show (1) by induction of r. For an element T of L0
s, let l be the maximal integer such

that XlT �= 0. There are two cases.
Case 1: XlT =

∑g
j=g−l+1 tg+1−jXj with tl �= 0. Put

T ′ := T − T (tl, tl−1, · · · , t1).

Then T ′ is in Ls′ with s′ = (r − 1; s2, · · · , sr). By the hypothesis of induction, T ′ has a
generalization T ′

x to L0
s′ (x ∈ K). Namely T ′

0 = T ′ and T ′
x ∈ L0

s′ for x �= 0.
We construct a generalization T ′′

x of T (tl, tl−1, · · · , t1) to L0
(1;c1)

by adding x2 to the (g−c1 +
1, c1)-th entry,

t(0, · · · , 0,
√
tlx,

tl−1√
tl
x, · · · , t1√

tl
x)

to the c1-th column vector and

(
t1√
tl
x, · · · , tl−1√

tl
x,

√
tlx, 0, · · · , 0)

to the (g − c1 + 1)-th row vector.
Then we have a generalization Tx := T ′

x + T ′′
x of T to L0

s.
Case 2: XlT =

∑g
j=g−l′+1 tg+1−jXj with t′l �= 0 and l′ < l. Then l′ has to be at most c2. Let

T (t1, · · · , tl′ ; tl′+1, · · · , tl′+l−1)

be the matrix of rank 2 with the form:

0 0
t1 · · · tl′

...
tl′+l−1 · · · tl · · · tl′

...
... 0

tl′+l−1 t1


.
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Set T ′ = T − T (t1, · · · , tl′ ; tl′+1, · · · , tl′+l−1).
As a generalization of T (t1, · · · , tl′ ; tl′+1, · · · , tl′+l−1), we can take matrix T ′′

x of rank 2 with
the same (i, j)-th entries at i ≤ g − l′ + 1 or j ≥ l′ as

T (t1, · · · , tl′ ; tl′+1, · · · , tl′+l−1) + xT (tl′ , tl′+1, · · · , tl−1, 0, · · · , 0︸ ︷︷ ︸
l′

).

Then we have a generalization Tx := T ′ + T ′′
x of T to matrices of Case 1.

Let us prove (3). For any s = (r; s1, · · · , sr) ∈ Jg, by the proof of (1), any matrix T of rank
g − a in Ls has a generalization to a family of elements of L0

s′ with

s′ := (g − a; s1, · · · , sg−a−1, s
′
g−a), s′g−a :=

r∑
j=g−a

sj.

Hence

codimLs Ls(a) = dimLs − dimLs′ = βs(a).

Definition 6.8. For an element s = (r; s1, · · · , sr) of Jg, we define an elementary series ES(s)
as the elementary series of the generic point of Ls. Then we have a well-defined map

ES : Jg → Ig.

We will use the important fact:

Proposition 6.9. Let ϕ′ = ES(s) for s ∈ Jg. Then all Dieudonné modules with elementary
series ϕ′ have displays (

T̃ −ε−1w
εw 0

)
for some T ∈ L0

s where T̃ is a lift of T . Moreover the set of such T ’s is dense in L0
s.

In order to show this proposition, we need two lemmas:

Lemma 6.10. Let (M ⊂ M1) be an element of V Θ(K) which is mapped to T ∈ Ng,c(K)
through the map in Definition 4.8 (ii). With the notation of Definition 4.5, the first cohomology
M ′ := H1(C·) of the self-dual complex

C· : AFxg →M → Ax1,

which is a principally quasi-polarized supersingular Dieudonné module of genus g−2, is associated
with the matrix T̃ ′ which is obtained by removing the first and the last column vectors and the
top and the bottom row vectors from T̃ .

Proof of Lemma 6.10. It obviously follows from the definition of the morphism hΘ : V Θ → Ng,c

(Definition 4.8).
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In the next lemma, for a principally quasi-polarized supersingular Dieudonné module M , if
we say

C· : Ay →M → Ax

is a self-dual complex, it is supposed to satisfy, in addition to the self-duality,

(i) (F − V )x = 0 and (F − V )y = 0,

(ii) M → Ax is surjective and Ay →M is injective,

(iii) H1(C·) is a free Dieudonné module.

Lemma 6.11. For given elementary series ϕ of length g and ϕ′ of length g − 2, assume there
exist a principally quasi-polarized supersingular Dieudonné module M and a self-dual complex

C· : Ay →M → Ax

such that we have {
ES(M) = ϕ,

ES(H1(C·)) = ϕ′.

Then for any principally quasi-polarized supersingular Dieudonné module M0 with ES(M0) = ϕ,
there exists a self-dual complex

C·
0 : Ay0 →M0 → Ax0

such that

ES(H1(C·
0)) = ϕ′.

Proof of Lemma 6.11. For any M0 as above, since ES(M0) = ϕ, we have an isomorphism

M0/pM0 �M/pM.

By the existence of complex C· : Ay →M → Ax, we have a self-dual complex

C·
0,p : Ay/pAy →M0/pM0 → Ax/pAx.

Taking a lift M0 → Ax0 of M0/pM0 → Ax/pAx and combining its dual, say Ay0 → M0, we
have a self-dual complex

C·
0 : Ay0 →M0 → Ax0,

which is a lift of C·
0,p. Since H1(C·

0) mod p = H1(C·
0,p), we have ES(H1(C·

0)) = ϕ′.

Proof. Let us show Proposition 6.9 by induction of g. For the generic point of L0
s, the associated

Dieudonné module M has the elementary series ϕ′ = ES(s) by definition. We have a self-dual
complex

C· : AFxg → M → Ax1

30



for some (x1, · · · , xg) ∈ Φc1 and the matrix of M′ := H1(C·) gives the generic point of L0
s′ with{

s′ := (r; s1, · · · , sr−1, sr − 1) if sr > 1,
s′ := (r − 1; s1, · · · , sr−1) if sr = 1,

where r = ES(M)(g), by Lemma 6.10. By the hypothesis of induction, all principally quasi-
polarized supersingular Dieudonné modules M ′ with the same elementary series as M′ corre-
spond to elements of L0

s′ .
By Lemma 6.11, for any principally quasi-polarized supersingular Dieudonné module M with

the same elementary series as M, there exists a self-dual complex

C·
0 : Ay →M → Ax

such that H1(C·
0) is associated with an element of L0

s′ .
Then, by Lemma 6.10 and the fact that ES(MT̃ )(g) = rk T for any T , the Dieudonné module

M has to be associated with a matrix in L0
s for a certain element (x1, · · · , xg) ∈ Φc1 with x1 = x

and Fxg = y,

The task we should do is to show that ν(ϕ′) = s in Proposition 6.9, that is, ν ◦ ES = idJg .
The next is the key for this purpose.

Proposition 6.12. We have an equality: β = α ◦ ES.

Proof. For s ∈ Jg , let ϕ′ := ES(s). By Theorem 5.6 and Definition 4.12, there is a quasi-finite
surjective morphism ∐

µ∈Λc′

Tµ(ϕ′) → Sϕ′

with c′ satisfying ϕ′(g − c′) = 0 and ϕ′(g − c′ + 1) = 1, and a finite étale morphism

V Θ → Ng,c′

for an affine covering Nc′ := ∪Θ∈Φc′V
Θ. Let V Θ

ϕ′ be the inverse image of the closed subscheme
Ls of Ng,c′ . Corresponding to V Θ

ϕ′ , we have a subscheme UΘ
µ,ϕ′ of Tµ for each µ ∈ Λc′ . By

Proposition 6.9, we have a quasi-finite surjective morphism∐
µ∈Λc′

∐
Θ∈Φc′

UΘ
µ,ϕ′ → Sϕ′ .

Hence in order to see the codimension αϕ′(a) of Sϕ′(a) in Sϕ′ , it suffices to investigate that of the
a-number locus V Θ

ϕ′ (a) in V Θ
ϕ′ and therefore that of Ls(a) in Ls. It has already been calculated

in Proposition 6.7 (3). Namely it follows

αϕ′(a) = codimLs Ls(a) = βs(a)

for all a = 1, · · · , g.

Corollary 6.13. (1) The map α is injective and the image of α is Pg .
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(2) ES is a bijection.

By Corollary 6.13, we obtain a commutative diagram of bijections:

Jg
ES−−−→ Ig

α−−−→ Pg

ν

' 'ξ

Jg −−−→
β

Pg

(30)

where ξ is defined to be β ◦ ν ◦ α−1.
In order to prove that ξ is the identity map, we introduce a partial order on Pg .

Definition 6.14. For two element π1, π2 of Pg, we write π1 ≤ π2 if and only if π1(a) ≤ π2(a)
for all a = 1, · · · , g.

Lemma 6.15. We have ξ(π) ≥ π for all π ∈ Pg.

Proof. This is none other than Lemma 6.4, i.e., αϕ ≤ βν(ϕ).

The next obvious lemma says that ξ is the identity map and therefore αϕ = βν(ϕ).

Lemma 6.16. Let (P, <) be a finite partial ordered set. Any bijective map

ξ : P → P

satisfying ξ(π) ≥ π for all π ∈ P , is the identity map.

Proposition 6.17. ν ◦ ES = idJg .

Proof. It immediately follows from Proposition 6.12 and the commutative diagram (30), since ξ
is the identity map.

Corollary 6.18. For a non-negative integer c at most [g/2], let ϕ be an elementary series
satisfying ϕ(g − c) = 0 and ϕ(g − c + 1) = 1. Any principally quasi-polarized supersingular
Dieudonné module M with ES(M) = ϕ has a display(

T̃ −ε−1w
εw 0

)
such that T̃ is a lift of

T ∈ L0
s, s = ν(ϕ)

for a certain symplectic basis. Moreover the set of such T is dense in L0
s.

We denote by Lgen
s the dense subscheme of L0

s consisting of such T as in Corollary 6.18.

Theorem 6.19. Let c be a non-negative integer at most [g/2]. For any elementary series ϕ
satisfying ϕ(g− c) = 0 and ϕ(g− c+ 1) = 1, the number of irreducible component of Sϕ is equal
to the class number Hg,c.
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Proof. For such an elementary series ϕ, we set s := ν(ϕ) ∈ Jg. Let us denote by V Θ,gen
ϕ an

irreducible component of the inverse image of Lgen
s by the morphism hΘ : V Θ → Ng,c, and by

UΘ,gen
µ,ϕ the associated affine subscheme of Tµ for each µ ∈ Λc.

For any generic point η of Sϕ associated with µ ∈ Λc, its display is of the same form by
Corollary 6.18. This means that they are isomorphic as principally quasi-polarized Dieudonné
modules. Then for any η as above, by using the same affine subscheme UΘ,gen

µ,ϕ of Tµ, we have
the diagram:

UΘ,gen
µ,ϕ −−−→ Lgen

s'f

η −−−→ Sϕ

where the image of f is corresponding to η by the second statement of Corollary 6.18. Hence
there is only one η associated with µ ∈ Λc.
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