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Abstract

An inverse problem of the determination of the coefficient p(x) in the equation uy =
V- (p(z)Vu),z € Q C R",t € (0,T) is considered. The main difficulty here as compared
with the previous results is that the function p(z) is involved together with its derivatives.
Lipschitz stability estimate is obtained using the method of Carleman estimates.

1 Introduction

Let 2 C R™ be a bounded domain with a piecewise C'® boundary 952. For a T = const > 0,
denote Qr = Q x (0,T),S7 = 09 x (0,T). Let the coefficient p(z) € C' (Q) and p(z) >
const > 0 in 2. Consider the initial boundary value problem in the cylinder Q1

uy =V - (p(x)Vu) in Qr, (1.1)
u(z,0) = f(z),u(z,0) =01in Q, (1.2)
u lsp= g(x,t). (1.3)

In acoustics, Q C R?, \/p(x) is the speed of sound and u(z,t) is the amplitude of a wave
field, see, e.g., Tikhonov and Samarskii [1], Chapter 2.
Inverse Problem. Determine the coefficient p(x) in Q assuming that the normal deriva-
tive h(zx,t) is given:
ou
o
where v is the outward normal vector at the cylindrical surface Sr.

Remark 1.1. 1In (1.4), it is possinble to adopt % on a suitable subboundary to establish a
Lipschitz stability estimate similar to (1.12). To do this, one should modify the key Carleman
estimate Lemma 2.1 by evaluating more carefully the vector function (i, V). Ideas of such
modifications can be found in [12 - 16]. However, to simplify the presentation, we do not
follow this root.

Choose an o ¢ 2. Without loss of generality, assume that the function p~!(x) is such
that p~'(z) > 1 in Q. Let @ and M be two numbers and a, M = const > 1. Consider a set
of functions W (a, M, x) defined as

(@) e C*(Q) 11 <7 (@) < 0, Iplles () £ M,
A _{ Lt (=20, V() >0 " } (1:5)

!This  preprint is  available also in the pdf format at  http://kyokan.ms.u-
tokyo.ac.jp/users/preprint/preprint2004.html and at http://www.math.uncc.edu/people/research /mklibanv.php3

|ST: h(:b‘,t), (1.4)
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where (,) denotes the scalar product in R™. Denote

1/2
P =P (20,Q) = |max |z — x> — min |z — x|
€N €N
The main result of this paper is B
Theorem 1. Let the function f € C° (Q) and n € [1,13]. Suppose that there exist two
pairs of functions (p1,uy), (p2,us) satisfying (1.1), (1.2) and

0Fp oFp
P1 laa= D2 |sq, 8Ty1 lon= 8T1/2 loa, k=1,2, (1.6)
3ui .
Uy |ST: gl(xat)a 5 |ST: h’l(xat)a 1= ]-727 (17)

for some functions g;, h;. Also, assume that there exist a point xo ¢ Q and numbers a, M > 1
such that the initial condition f(x) satisfies

{vneig (x — 20, Vf(x)) = p(x0) >0 (1.8)

and
p1,p2 € W(a, M, zq) . (1.9)
Denote
. 1 V3
= min , .
Vi da®(1+PM)" \/(n+3)a

Assume that
T>-" (1.10)

u; € C*(Qr) and
luill go g,y < M, (1.11)

where My 1s a positive constant. Then there exists a positive constant
N = N (a, pu(xg), f, M, My,Q, 20, T) such that the following Lipschitz stability estimate is
valid:

I _p2||H2(Q) + s — u2||H5(QT) <N [HDZL (91— QZ)HHI(ST) + HDf (hy — h2)HL2(5T)] :
(1.12)
In particular, suppose that there exist two pairs of functions (p1,uy), (p2, us) satisfying con-
ditions (1.1)-(1.7) and such that functions uy,us € C® (Qr) . Then pi(z) = pa(z) in Q and
uq (z,t) = us(z,t) in Qr.

Remark 1.2. To guarantee that functions u;,uy € C° (@T) , one needs to impose some
compatibility and smoothness conditions on the function f(x) and coefficients p;, po, see,
e.g., Ladyzhenskaya [2], Chapter 4. We are not formulating such conditions in this paper,
since we are focused exclusively on the inverse problem. To simplify the presentation, we are
not concerned here with weakening smoothness conditions. However, the latter might well
be a topic of our next publication.



Remark 1.3. The assumption ||p1||03(§) < M, ||p2||03(ﬁ) < M is going along well with

Tikhonov’s concept of finding a solution of an ill-posed/inverse problem on a priori given
compact set, see Tikhonov and Arsenin [3], Chapter 2. The inequality involving V (p~!)
in (1.5) is a sufficient condition for the validity of the Carleman estimate for the operator
p~'0? — A, see Lemma 2.1. Tt is unknown whether or not that inequality can be significantly
relaxed. Analogously, inequality (1.8) guarantees validity of the Carleman estimates for a
differential operator of the first order, and for an operator of the third order, see Lemmata
3.2 and 3.3.

To prove Theorem 1, we use a modified Bukhgeim-Klibanov (BK) method of Carleman
estimates, see [4-11] and references cited in [11] for this method. Such a modification is
necessary because the unknown coefficient p(z) is involved together with its derivatives. The
latter represents the major difficulty here as compared with the majority of previous works,
in which derivatives of unknown coefficients were not involved. In addition, we explore in
this paper an idea, which was first proposed by Klibanov and Malinsky [12] and modified by
Kazemi and Klibanov [13] then, also see [11], Chapter 2 for more details. This idea, which
is also based on Carleman estimates, allows one to obtain Lipschitz stability estimates for
hyperbolic equations and inequalities with the lateral Cauchy data.

The Lipschitz stability for a similar inverse problem for the equation uy = Au + a(z)u
with the unknown coefficient a(x) was addressed in two papers of Imanuvilov and Yamamoto
[14], [15] via a modification of the BK method. In addition to the absence of derivatives of
the unknown coefficient a(z) in this equation, another important difference with the current
work was that the zero Neumann boundary condition on the function u(x,t) was imposed in
[14], [15]. This is because in [14], [15], Lemma 2.3 is not used, see more details in Subsection
2.3.

There are two publications, which have also addressed this problem, see Imanuvilov and
Yamamoto [16] and Imanuvilov, Isakov and Yamamoto [17]. The data in these references
were assumed to be given in w x (0,7), where w C 2 is a boundary layer. In [16] equation
(1.1) was considered. It was assumed in [16] that functions p;, p, satisfy conditions similar
with (1.9), pi,p2 € C?(Q) and uy,us € W (Qr). Condition (1.8) was also imposed in
[16]. Under these assumptions, a Holder stability estimate was proven in this reference.
A similar result was obtained in [17] for the Lamé system. Note that turning (1.12) in a
Holder stability estimate would mean that the right hand side of this formula would have
the form||Df (g1 — g2) 315,y + 1D (B = ha)l7, s,y for an o € (0,1). This is weaker than
the Lipshcitz stability estimate (1.12). Although the BK method was used in [16], [17], but
H~! norms were explored. However, since Carleman estimates are established in L, norms,
it is natural to use only L, norms when working with these estimates. As a consequence of
our L, approach, stability estimate (1.12) of the present paper is stronger than one in [16]
at the expense of a slightly stronger condition (1.6).

The rest of this paper is devoted to the proof of Theorem 1. We assume below that
conditions of this theorem hold. We prove it in several stages. First, we obtain equations for
functions DF(u; — uy), k = 3,4, because these equations are more convenient to work with.
This is done in Section 2. Also, in this section we formulate our key Carleman estimate
for a hyperbolic operator (Lemma 2.1) and two more lemmata. Next, we prove three new
Carleman estimates. The first one is for the Laplacian (Section 3) and two others are for



differential operators of the first and third orders (Section 4). In Section 5 we complete the
proof of this theorem.

2 Beginning of the proof

2.1 Equations for functions D}(u; — u2) and Dj(u; — us)

In this proof, N = N (a, u(xg), f, M, My,Q, xo,T) denotes different positive constants which
are dependent on a, p(xy), f, M, My, 2, xo, T, but independent of respective choices of py, ps €
Wi(a, M,xy). Also let © = (x1,...,2,), 20 = (Zo1, ..., Ton) € R" and, for a smooth function
F (z), let us denote F; = O,F, F;; = 0;0;F. Let U (x,t) = p(z)u(x,t). Then conditions
(1.1)-(1.4) imply that

L = AU =V (lnp) - VU — (Ap |Vf|2> U in Qr, (2.1)
p p p

U(z,0) =p(z)f(z), Ulz,0)=0, (2.2)

U ls,= p(x) |oa -g9(z,1), (2.3)

O 5= 2 Lo 9l + p(2) o (e, ). (2.4

Let U® (x,t) = DU (x,t). Then using (2.1)-(2.4) and simple algebraic manipulations, we
obtain

1Uéf’) = AU® —V (Inp) - VU® — <% Vol ) in Qr, (2.5)
p p p?

(x,()) (2.6)
U (2,0) = p*A(Vp - V) + p[Ap(Vp - Vf)+2Vp V(Vp- V)

+pA(P°Af) = Vp-V(pVp- V[ +p’Af)
—(pAp — p|VpP*)(Vp- V[ +pAf)

= p*A (Vp- V) + low order terms, (2.7)
Y |ST: p(.'L') |3Q ng(xat)a (28)

ou® 0
= sv= 5. lon -Dig(e,0) + p(a) loa -Dh(a, ). (2.9)

In (2.7) “low order terms” denote polynomials with respect to the function p and its deriva-
tives up to the second order.

Denote
v = Ddu; — Duy, (x,t) € Qp, (2.10)
g(a,t) = p(x) [sa -D} (91 — g2) (x,1), (,t) € Sr, (2.11)
~ %)
h(z,t) = op loa D} (91 — g2) (z,1) + p(¥) |aq D} (b1 — ha), (x,t) € Sy, (2.12)
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q(x) = pi(z) — pa(). (2.13)

By (2.6)
Ov(z,0)
0 = =0
U(ﬂﬁ, ) 0N o |an
Hence,
¢ ¢
g(x,t) = /gt(x,T)dT, ﬁ(x,t) = /ﬁt(x,T)dT,
0 0
which imply that
<N H ‘ <NHh‘ . 9.14
sy < Nl 7,0 <V, 214

Let a1, as, by and by be four numbers, a = a; — as, b= by —by. Then a;b; —axbs = aby +Za2.
Using this formula and relations (2.5)-(2.13), we obtain
Ap, |V]91|2

-1
p; (x)vy =Av—V (Inp)-Vo— | — —
o (np) <p1 L

) v+ ' (z,t)Aq (2.15)

+ Z R (x,t)g; + O (z,t)g in Qr,
i=1

v(z,0) =0, (2.16)
vy(z,0) = p?A (Vg - Vf) + Za(i qZJ+Za z)g; + oV (z)q, (2.17)
ij=1
- v ~
v |5T:g(l',t), 5 |ST: h(l‘,t), (218)
where functions
1D R0 1O € OV (Qy) ;0,0 a® € O (@). (2.19)
Also, .
Hh’chl(@T)v 1i HCI(QT)’ |h(0)Hcl(§T) <N (2.20)
and - _
e e lleq@y  lo®lle@) < M- (2.21)

Denote w(z,t) = v(x,t). Differentiating (2.15) and (2.18) with respect to ¢ and using
(2.16), we obtain

A \V Rk
p1_1($)wtt:Aw_v(1Hp1)-Vw— (ﬁ_ | ])21|
Y41 Dy

) w—+ B (2, 1) Aq (2.22)

n

+ Z P (g + b (x,t)g  in Qr,

i=1
wy(x,0) =0, (2.23)
- 0 ~
w |sp= ge (7,1), a—zj |s5p= hy (1) . (2.24)



2.2 Carleman estimate for a hyperbolic operator

Consider the Carleman Weight Function (CWF) for the hyperbolic operator
C(z,t) =exp [A(|Jz — zo|” — nt*)] = exp [\ (z,t)], n=const € (0,n], (2.25)
where A is a positive parameter. Let

? (zo) = min |z — 2|
z€EN

For a number ¢ € (0, ¢* (x)), consider the domain G defined by
Ge = {(z,t) € Qr : |z — zo|” — nt? > *}.
Choose a sufficiently small positive number ¢ = § (0, ¢* (zo),T) € (0, ¢? (o)) such that
GeN{t=T}=o for & € (¢ (x0) — ,¢" (x0) — §/2) ,n € (0,mp] . (2.26)

Inequality (1.10) guarantees relation (2.26) for sufficiently small . Also, there exists a positive
number & = & (2, zo, T') such that

Q x (0,€) C G2 for ¢ € (¢ (xo) — 6,¢% (w0) —/2), n € (0,m0)]. (2.27)

Thus, the boundary of the domain (> consists of three parts

3
OG> = U 0;G2 for ¢ € (¢ (zo) — 6, ¢ (zg) — 6/2), (2.28)
i=1
where
0Gp = {(x,t) EQr:¢Y(xt)= 02} , (2.29)
01Ge2 = {(z,t) € Sp: ¢ (z,t) > 7}, (2.30)
053Gz = {(z,t) :x € Q,t =0}. (2.31)
These parts of the boundary play an important role in the method of Carleman estimates,
as always.

The following lemma is a reformulation of Theorem 2.2.4 of [11].
Lemma 2.1. Suppose that the function r(zx) € C! (Q) satisfies the following conditions

1<r(z) <a, % + (z — 29, Vr(z)) >0 in Q. (2.32)

Let the 6 (2, x0,T) be a sufficiently small positive constant such that condition (2.26) is

fulfilled. Suppose that the number ¢ € (¢* (xg) — 8, ¢ (x9) — §/2). Then there exist a suffi-
ciently large positive constant Ay = Ao (2, v0,n) > 1 and a positive number C' = C (€2, z9,7)
such that the following pointwise Carleman estimate is valid for all functions u € C? (QT):

r(x)uy — Au)’ C? > OX (|Vul + u2 + Xu?) 2+ V- U4V, in G,
t

6



where the vector function (U, V') satisfies the following estimate:
@, V)] < CA([Vult +u? + \2a?) € in G

In addition, the function V (x,t) can be estimated as

V (2,t)] < CN® [t (|Vu|2 +u? + uZ) + (|Vu| + |u]) - |ut|] . (2.33)
Thus, we have
V(z,0) =0, (2.34)
iof either
u(z,0) =0 (2.35)
or
u(x,0) = 0. (2.36)

Relations (2.34)-(2.36) represent a single new element of this lemma as compared with
previously known Carleman estimates for hyperbolic operators. These relations allow us not
to use the odd extension with respect to ¢ of the function v(z,t) in Q x (=7,0), as it was
done in all previous works on the BK method. In some cases of inverse problems, we need
the even extension, but here we need the odd extension for the function U(z,t), the solution
to (2.1) - (2.4), because of U(z,0) =0 in (2.2).

The assumption r(x) > 1 is made for brevity only. Actually, it is sufficient to assume
that r(x) > const, which would lead to a small change of (2.32).

2.3 Two more lemmata

Lemma 2.2 provides an estimate from the above for an integral, in which the CWF (2.25) is
involved. This lemma was proven in Chapter 3 of [11].

Lemma 2.2. For all functions s € C (Gcz) and for all X > 1, the following estimate
holds:

¢ 2

/ /8(1‘,T)d7 C*(z, t)dzdt < )\i (s°C?) (z, t)dxdt.
G o

nmJaG,

Lemma 2.3 is an analogue of the classical energy estimate for hyperbolic operators of the
second order, see Ladyzhenskaya [2], Chapter 4. A problem with such estimates arises when
a non-homogeneous boundary condition (Dirichlet or Neumann) is in place. This is why the
zero Neumann boundary condition is imposed in references [14], [15]. We handle this problem
in this lemma via using both Dirichlet and Neumann boundary condition simultaneously.
While such a use is unacceptable for the forward problem, it is sufficient for our goal, because
both these conditions are given in our case. Although Lemma 2.3 can certainly be extended
to the case of a general hyperbolic operator of the second order, we restrict our attention to
a specific case of our current interest, for brevity.

Lemma 2.3. Let the function s(z) € C () and s(x) € (so, s1), where so, 51 = const >
0. Also, suppose that the function u(x,t) € C* (@T) satisfies the hyperbolic inequality

|s(x)uy — Au| < B (|Vu| + |ug] + |u] + |2(z,1)]), in Qr, (2.37)
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as well as initial and boundary conditions
uw(z,0) = up(x), wx,0)=u(z),

ou
U |ST: SOU(xat)a % |ST: QOI(:U,t),

where B is a positive constant, the function z € Ly (Qr) and
UOGHI(Q), uleLg(Q), QOOEHI(ST), (,01€L2(ST).

Then there exists a positive constant By = By (Q, T, B, s¢, $1) depending on Q,T, B, sy and
sy such that

llisary < By (Il oy + Noll oy + I0llisgspy + 1011l agsyy + Ieliaian) - (238)

Proof. In this proof, By = By (Q, T, B, sq, s1) denotes different positive constants de-
pending on these parameters. Denote

s(x)uy — Au =Y (z,1). (2.39)

Multiply the both sides of (2.39) by 2u,; and integrate over the cylinder Q; = Q x (0,t) for
an arbitrary ¢t € (0,7). We obtain

/;{/98% (s () o2 (2, 7)] da:} d¢+/0t {/Q%(Wu(x,r)f) dx] dr
- z/ot [/@Q <p0tg01d5] dt+2/tYutdxdt.

Hence, using the Gauss-Ostrogradsky formula and the Cauchy-Bunyakovsky inequality, we
obtain

2 2 2 2 2
/Q (U? + |Vl ) (z,t) dz < By (“uUHHl(Q) + ||U1||L2(Q) + ||900||H1(ST) + ||<P1||L2(ST)> (2.40)

2 2
+ ||ut||L2(Qt) + ||Y||L2(Qt) :
We also have ¢
U(l‘,t) = U ({L‘) —|—/ Uy (fL',T) dr.
0
Hence,

2 2
[ @t < By (Juall o)+ )

Thus, this inequality, (2.37) and (2.40) lead to

/Q (u? + |Vul® + u?) (x,1) dz < By (||vu||i2(Qt) el g,y + ||u||iZ(Qt)) (2.41)

+B, (HUO“ZI(Q) + ||U1||i2(n) + ||900||12Hl(sT) + ||901||iz(sT) + ||Z||L2(QT)) :
Finally, the Gronwall inequality and (2.41) lead to (2.38). O
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3 A new Carleman estimate for the Laplace operator

Lemma 3.2 of this section is a new Carleman estimate for the Laplace operator. The cor-
responding CWF can be obtained from the CWF (2.25) by setting 1 := 0. The difference
with the conventional CWF for the elliptic operators is that the level sets of the latter
are paraboloids (see, e.g., [11], Chapter 2), whereas the level sets of our CWF are spheres
{|x — xo| = const > 0} . It seems that this result can be extended to more general elliptic
operators of the second order. However, we do not need such an extension in this paper.
We first formulate lemma 3.1, which was proven in [10]. In this lemma, only lower order
derivatives are involved in the Carleman estimate (3.1). A result similar to Lemma 3.1 was
recently proven by Hrycak and Isakov [18].
Lemma 3.1. Let n € [1,13], A be a positive parameter and

C(z) = exp Az — x0|2) , x €. (3.1)

Then there ezist a sufficiently large positive constant Aoy = Ao (Q,29) > 1 and a positive
number C' = C (Q,_xo) such that the following pointwise Carleman estimate is valid for all
functions v € C? (Q) :

(Au)?C? > CA (|Vu]> + \2u?) C?+V - U in Q, (3.2)
where the vector function U satisfies the inequality
U| < OX(|Vul* + 22u?) C. (3.3)

To include the second order derivatives in the Carleman estimate, we prove

Lemma 3.2. Let n € [1,13] and C(x) be the function defined by (3.1). Then there exist a
sufficiently large positive constant Ao = X\ (2,29) > 1 and a positive number C' = C (2, xy)
such that the following pointwise Carleman estimate is valid for all functions v € C? (ﬁ)

(Au)?C? > % > ulC?+ CA(|Vu + Xu?) P+ VU in Q, (3.4)

ij=1

where the vector function U satisfies the inequality

U| < % (Z |Vul |ul]|) C?+CA (|Vu|2 + Au?) C> inQ. (3.5)
1,j=1
In particular,
/(Au )2 C2dx > % Z /u?j@dx + C’)\/ (|Vu|2 + A*u?) C?dux (3.6)
Q J=1 Q

for all real valued functions u € H? (Q) satisfying

ou
u |ag= Y lan=0.
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Proof. Note that since the set of functions u € C* () is dense in the space H® (),
estimate (3.6) follows from (3.4), (3.5) and the Gauss-Ostrogradsky formula. Let the function

ue C?(Q). By (3.1)
Zuuc? + Z umuMC2

1,j=1,i#j
= Zuuc? + Z (uiu]] ) Z U; uwC’2 4\ Z — To;) U; u”C’N2
1,j=1,i#7j 1,j=1,i#7j 1,j=1,i#7j
= Z u”C2 — 4\ Z — To; ulu”C + 4\ Z — 205) usuC?
1,j=1 1,j=1,i#7j 1,j=1,i#j
n o~
+ Z (u uJ]C’2> - ( Z uz-uz-jC2> .
7] 1 7';&_7 7’7]:17Z¢] ]
Thus,
Z uUC’2 — 4\ Z — To;) U; u]]C’2 + 4\ Z — Zoj) uz-uz-jCN2 +V- Z?,
1,j=1 1,j=1,i#7j 1,j=1,i#j

(3.7)
where the vector function U satisfies

‘ﬁ‘ <C (Z IV |uz-j|> c?. (3.8)
ig=1
Applying the Cauchy-Bunyakovsky inequality 2ab < ea? + ¢ 10?,2 > 0 to (3.7), we obtain
~ n ~ ~ n ~ ~
(Au)’C*> > ulC” - 2—6>\2 Vu?C* — Ce > ulC’+V-U.
ig=1 ij=1
Choose £ = (20)™". Then
(Au)? C’ Z uZC* — O\ |Vul’C* + V - U.
7,] 1

Divide this inequality by A, sum up with (3.2) and take into account (3.3) and (3.8). Then
we obtain (3.4) and (3.5). O

4 Two additional Carleman estimates

4.1 Carleman estimate for a first order operator

In this subsection we prove

10



Lemma 4.1. Let f € C*(Q) satisfy (1.8). Then there exist a positive constant C' =
C (Q, Ty, ||f||02(§) , (x0)> and a sufficiently large positive constant g = o (2, zo, pt (x0)) >

1 such that for all functions u € C* (ﬁ) the following pointwise Carleman estimate is valid:

n 2
(Z u; fi> C? > ON2C? 4V - W, (4.1)
i=1

where the vector function Wy satisfies
(W1 | < CAu2C2. (4.2)

Remark 4.1. A similar Carleman estimate can be found in [16], [17]. However, in [16]
the term CAu2C? is used instead of CA2u2C2. This additional power of the large parameter
A is crucial for the proof of Theorem 1: compare (5.30) and (5.32) with (5.33).

Proof. Denote & = uC. Then

Hence,
n 2 n 2
i=1 1=1
Z _4)\Zﬁzﬁfz (LU — X, Vf) + 4)\2 (l’ — Zo, vf)QaZ
=1

Z —2\U%f; - x—xo,Vf)]i—i-D\ﬂZZ[fi'(x—xo,Vf)]i—i—ll)\Q(x—xO,Vf)2ﬂ2.

i=1 =1
Hence, for a sufficiently large Ay and A > Ao, by (1.8) we can absorb the second term into
the third term to obtain

n 2
(Z uf) C* > 2 (1) N2u2C* + V - W,
i=1
where the vector function W satisfies estimate (4.2). O

4.2 Carleman estimate for a third order operator

Lemma 4.2. Let the function f € C? (ﬁ) satisfy condition (1.8). Then there ezist a
positive constant C' = C (Q,xg, ||f||c3(ﬁ) s [ (x0)> and a sufficiently large positive constant

Mo = Ao (0, 11 (x0)) > 1 such that for all functions u € C3 (Q) the following pointwise
Carleman estimate is valid:

(A (Vu- V)] C? >C)\Zu C? 4+ ON (|Vul* + \2u?) C? + V - Wy, (4.3)

1,j=1

11



where the vector function Wy satisfies
Wo| < X uf,C? + CX° (|Vul* + \%u?) €. (4.4)
ij=1

In particular,

/[A (Vu-V)]>C? > CA zn: /u§j52dx+m2/ (IVul* + A%u?) C?dx (4.5)

Q hi=lg Q
for all real valued functions u € H? (Q) satisfying

oFu
=— logo=0, k=1,2.
u [aq ok o ) )

Proof. Again, since the set of functions u € C®(Q) is dense in the space H?(Q),
inequality (4.5) follows from (4.3), (4.4) and the Gauss-Ostrogradsky formula. We have

n

A(Vu-VPE = {Z [(Au), - fi+2V () - V(i) + s (Afm} c*

=1

n

2 n
> (Au),- fi] C*—C Y uiC?—C|Vul* C%.

=1

>

ij=1

Applying Lemma 4.1 to the first term, we obtain
[A(Vu-VPPC? > CN (Au)’CP+ V- W,
—C Z u?j52 — C|Vul* C%.

ij=1

The rest of the proof follows from Lemma 3.2. [J

5 Completion of the proof of Theorem 1

Recall that the number ¢? € (¢? (zg) — §, ¢ (z9) — §/2) . Choose a sufficiently small positive
number o such that ¢ + 30 € (¢® (wg) — §,¢? (zo) — §/2). Obviously, Ge2i3, C Ge2yoy C
G2 o C G2. Conditions (2.26) and (2.27) imply that G2 3, # &,

Q% (0,€) = Qe C Gy (5.1)

and
Geize N {t = T} = G2 ﬂ{t = T} = .

Also,

) > oxp[2A (¢ + 30)], if (2,4) € Guy0,
¢ (“){ < exp 2 (€2 + 20)] I (2.4) € Go\Git o (52)

12



Introduce the cut-off function x,(z,t) € C* (Qr) such that

1, lf (x,t) E G02+20-,
Xo (z,t) =< 0, if (z,1) € G2\Ge2yp, (5.3)
between (0 and 1 otherwise.

Denote v(z,t) = xq(x,t) - v(z,t). Then (2.29) and (5.2) imply that
v |31GC2: Uy |31G'62: |V@| |31062: 0. (54)

By (5.1) and (5.3), x,(z,t) = 1 for (z,t) € Qx (0,&). Hence, (x,0) = v(z,0) and 7y(x,0) =
v(z,0). Multiplying (2.15)-(2.18) by the function x,(z,t), using X, = Ty — 2XotVt — XottV
and similar formulas for y,Av and y,v;, we obtain

A Vi |
Py Wy =AU~V (Inp,) - VU — Sn_ | p;' v (5.5)
D1 p1
+201 " Xot Ve D1 Xot t U — 2V X VU — Axp - v+ (V(Inpy) - Vo) - v
+xehPAg+ > xeh Mg + xoh Vg in Qr,
i=1
v(z,0) =0, (5.6)
Ti(2,0) = vy(2,0) = p{A (Vg - V) + > oy + > ol + oy, (5.7)
irj=1 i=1
— ~ ov 7 aXU’ ~
Ulsp= Xo - g (z,1), E» lsp= Xo - h(z,t) + 5 g (z,t). (5.8)
Also, denote w(x,t) = xo(x,t) - w(z,t). Hence, functions
7,we C*(Qr). (5.9)
Using (2.22)-(2.24), we obtain similarly to (5.5)-(5.8)
A Vil
py'wy = Aw — V (Inp) - Vo — (ﬂ _| p;| ) w (5.10)
P1 p1
+2pf1 " Xot - Wt +p;1 * Xott W — QVXO' -Vw — AXO’ WA w - \Y (111101) . VXO'
P xe A+ )Xol g + Xoh g in Qr,
i=1
@, (x,0) = 0, (5.11)
~ aw 7 o~
T lsr=Xo G (@), 50 lse=Xo - (0,8) + 57 G (2,8). (5.12)

ov ov
Note that by (5.3) the derivatives Xot = X1t = Xoi = Xoij = 01n G249,. Also, when applying
the method of Carleman estimates, it is often convenient to replace differential equations

13



with differential inequalities, for brevity, see, e.g., [11], Chapters 2 and 3. Thus, we obtain
from (1.5), (2.19)-(2.21) and (5.5)-(5.8)

™! (@) — AT| < N (IVT| + [0] + |Aq| + V] + |q]) (5.13)

+N (1 = xo) (Vo] + |ve] + o]} in Qr,

(z,0) =0, (5.14)
[Te(,0)| = Jvi(2,0)] > a™* |A (Vg Vf)| = N (Z |4i5] + [Vl + IQI> , (5.15)
1,j=1
o - o, ~ OXo ~
Ulsp= Xo - g (z,1), E» lsp= Xo - h(z,t) + 5 9 (z,1). (5.16)
Also, relations (5.10)-(5.12) lead to
™! (@)W — ATW| < N (VW] + [@] + |Aq| + Vgl + [q]) (5.17)

+N (1= xo) (VW] + [@] + [w])  in Qr,

w(z,0) = 0, (5.18)
— ~ ow 7 aXU’ ~
w |ST: Xo = Gt (xat)aa |ST: X(r'ht (ZU,t) + O * Gt (ZU,t) (519)

Multiply the both sides of (5.13) by the CWF C(x,t), square and integrate over the
domain G. Applying Lemma 2.1, (5.4), (5.9), (5.14) and the Gauss-Ostrogradsky formula,
we obtain for A > Ao (2, g, n) > 1

N (§2+ |V§|2+§”E+E?) C%dS + N (IVol* + v? +v?) C2dxdt
St G 2\G 2y,
+N [ (VT +7%) Cdedt + N | (JAg)” + |Vq]* + ¢*) CPdudt (5.20)
Gc2 Gc2

> CA/ (IVT|* + 77 + \?0%) C2dxdt.
G2

Choose a sufficiently large Ay = Ay (Q, 29,7, N) > Ao (2, 29,7) , and set below A > A;. Since
Ge2i9s C G and U(z,t) = v(x,t) in Ge2ya,, (5.20) leads to

N ('g’z+ |V’§|2+§?+52) C%dS + N (V02 + v? + v2) CPdadt
St G.2a\G.2,5,

+N [ (|Agf + Vg’ + ¢?) CPdxdt (5.21)
G

> CA / (IVol* + v + \20?) C?dudt.
G

c2+20'
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Similarly we obtain from (5.17)-(5.19)

N (g,jf+ |V’g“t|2+§’ft+ﬁf) C%dS + N (IVw]? + w? + w?”) C2dwdt
ST Gcz\Gc2+2a
+N [ (JAg)? + |Va* + ¢%) Cdudt (5.22)
G

> O\ / (IVw|? + w? + N\w?) C*dxdt.
G02+20

For each = € (2, denote

\/|a: — z|” — (2 +20)

te2 420 (SU) -

V1
Then
te2 4o, (T)
/ s(z, t)dzdt = / / s(z,t)dt| dz, Vs € C (Guoyay) - (5.23)
Gc2+20'
Q 0
Hence,
/ (1ag]” + |Vgl* + ¢%) C*dudt = / (12" + |Vql* + ¢°) C*dudt
G’c2 Gcz\Gc2+20'
+/ (IAq)* + |Vq* + ¢°) C*dxdt
Gc2+20'
:/ (1Aq]* + V| + ¢?) C*dadt (5.24)
GCZ\GC2+26
3 t52+25(5’3)
+ // (1Aq]* + |Vq|* + ¢*) (v) C2dtdw + / / (1Aq]* + |V + ¢*) (z) C*dtda.
Q 0 Q 3
Note that
'3 tc2+20-(m)
// (1Aq]* + Vg + ¢*) (v) C2dtdx +/ / (|1Ag]” + |Val* + ¢*) () C2dtdz  (5.25)
Q0 Q 3
3 t52+25($)
— / (1Aq]* + |Va|* + ¢*) (v) (/c%) dx—l—/ (1Aq]* + |Vq|* + ¢*) (v) / C2dt | dx.
Q 0 Q 3
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Also, since the function 6(t) = exp (—2Ant?) is decreasing for ¢ > 0, we have

tc2+20_ (:D) tc2+20 (:L‘)
/ C*dt = exp (2 |z — x0|2) / exp (—2Ant®) dt
£ £

< (tegan (1) — €) exp (2 [z — mo[*) exp (—2n€?)

'3
= (teya,(T) —&)exp (2)\ |z — x0| 1 / 2)\7752
0

£ £
< (tezgao () — &) exp (2X |z — 20]?) g—l/exp (—2Ant?) dt < N/CZdt.
0 0

Hence, (5.24) and (5.25) imply that

/ (|Aq|2 + |Vq|2 + qz) Cldxdt < / (|Aq|2 + |Vq|2 i q2) C2drdt
G Ga\G 2y,
+N/ (|AQ|2 + Vgl + ¢°) (z) C*dxdt.
Qs

Note that
C?(z,t) < exp [2)\ (02 + 20)] in G2\ G290

Hence, applying (5.23), we obtain

/ (|1Aqf + |Vql* + ¢*) C*ddt
G2\Ge2 s,

<exp [2)\ (¢* 4+ 20)] / (1Aq]* + |Vg|? + ¢?) dwdt
GCQ\GCQ+20

< exp [2A (¢* + 20) ] / (|1Aq” + |Vql* + ¢*) dudt

2

c

tCQ(CE)
= exp [2) (¢® + 20) ] / (1Aq]* + |Va|* + ¢*) dm/ dt
Q 0

< Nexp 2 (¢® +20)] / (JAq]* + |Va]* + ¢°) dm/dt
0

0

= Nexp [2) (¢ + 20)] / (1Aq)* + |Va|? + ¢%) dwdt.
Qe

16
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Since
(5.28)

exp[2A(c? + 20)] < exp[2A(c? + 30)] < C%(x,t) in Qy,
the latter estimate implies that

/ (|1Aqf + |Vql* + ¢*) C*dxdt
GCQ\G52+20
< N/ (|1Aq” + |Vq|* + ¢*) C*dudt.
Qe

This and (5.26) lead to

/ (|Ag” +|Vq|* + ¢?) C?dwdt < N/ (|1Aq” +|Vaq|* + ¢?) C*dxd. (5.29)
G, o
Using (5.21), (5.27) and (5.29), we obtain
N (’g’z +|Va)*+ 92+ 32> C?dS + Nexp [2) (¢* + 20)] ||v||ip(QT)
St
+N [ (|Aq) + |Vg|* + ¢?) CPdxdt (5.30)
Q¢
> C’A/ (IVol* + vf + \20?) C?dudt.
G52+20'
Similarly, using (5.22), (5.27) and (5.29), we obtain for the function w
N [ (32 + 9GP + 33+ 0 ) €S + Nexp 22 (¢2 +20)] [[w] s g,
St
+N [ (|Aqf + |V + ¢*) C2dxdt (5.31)
Q¢
> CA\ / (IVw|? + w? + N\2w?) C*dwd.
Gc2+20'
We have
t t
ve(z,t) = vy(z,0) + /Utt(x,T)dT = vy(x,0) + /wt(x, T)dr.
0 0
Hence,

. 2
1
vf(m,t) > §vf(x,0) — /wt(l',T)dT )
0

17



This and (5.15) imply that

a74

vp(z,t) > >

ij=1

Apply Lemma 2.2 to the last term to obtain:

J

Hence, using (5.29), we obtain

2

t
1

</ wt(l‘,T)dT> C2dwdt < e wi (z, 7)C2dxdt.

0 n

c2+20 Gc2+20

%)\ / v2Cldxdt > N)\/|A(Vq-Vf)|262dxdt
Q¢

G52+20'

—NA/ (Z @+ |Va” + q2> C2dxdt — N / w2C?dxdt.

S¢ 1,7=1 Gos o,

Note that

/|A(Vq-Vf)|26’2dxdt:/exp (—2Mt?) dt/|A(Vq-Vf)|252(x)dx.
Q¢

0 Q

Also, by (1.6) and (2.13)
oN 9l/k oN ) Y :

Thus, Lemma 4.2 and (5.32) imply that

C n
R / viCPdxdt > NX* )

ij=1
Gc2+20' J Qg

-N / w;C*dxdt.
Gc2+2a

Therefore, (5.30) implies that

N (’g’z +|Vg|* + g2 +52> C?dS + Nexp [2) (¢* + 20)] ||v||ip(QT)
St

> O\ / (IVol* + v + \20?) C2dxdt
G

c2 +20

18

n t 2
IA(Vq-Vf)|?=N (Z 4+ |Vq|2+q2> - /wt(aj,T)dT :
0

/ ¢4C?dzdt + NN / (IVal* + X%¢%) C*dzdt
Q¢

(5.32)

(5.33)



NN D / ¢ C*dwdt + NA’ / (IVqP + \2¢%) CPdadt — N / w2Cdadt.

i,jle5 Q¢ Gy

Let d = d(20,Q) = max,q |z —20|°. Then by (2.25) C?(z,t) < exp(2\d) in Q.
Hence, summing up (5.31) and (5.33) and taking into account (2.14), we obtain for A >
>\1 (Qa Lo, 1, N)

hy

o 2 2
Y <||gt||H1(ST)+‘ Loy ) TV EP 20 (¢ + 20)] (||v||H1(QT)+||w||?{1(QT>)

= CA/ (IVol + o + Vol +wf + X*v* + Nw?) C2dudt
G52+20'
+N N Z /q?jCdedtJr N3 / (|vq|2 A2 Codudt.
i’jZIQi Q¢

Since by (5.1) Q¢ C Gey3, C Ge2pgy and C?(z,t) > exp[2A (¢ + 30)] in G2, 3,, the latter
estimate and (5.28) imply that

~ 112 ~
Ne? <||gt||H1(ST) + ‘ hi

2
2 2 2
o) Ve A 20)] (Il + lolfon)

> vexp [2 (¢ +30)] (19060 + 10l )

and
2
Ne2Md <||gt||§{1(ST) + HhtHL2(ST)) + Nexp [2X (¢ + 20)] (||v||ip(QT) + ||w||§{1(QT))

> A exp [2)\ (62 + 30)] ||Q||§IQ(Q) :

Dividing these inequalities respectively by Aexp [2A (¢ + 30)] and A\? exp [2A (¢? + 30)], we
obtain

||U||§]1(Gc2+30) + ||w||§p(gcz+3a) < Nexp[-2Ad] (HUH?*{l(QT) + ||w||12Hl(QT)) (5.34)
~ 12
oxd [ 1= (12
+Ne <||gt||H1(ST) + ‘ hi LQ(ST)>
and
2 2 2
lallz72(@) < N exp [~2A0] <||U||H1(QT) + ||w||H1(QT)> (5.35)

hy

o)
La(ST) .

We now use the design of [12] and [13]; also see [11], Chapter 2 for some details. By
(5.1), we can replace the norms of the space H' (G2,3,) in the left hand side of (5.34) with
the norms in the space H' (Q¢). We obtain

~ 12
+Ne*M <||gt||H1(ST) + ‘

1ol (o) + 0l () < N exp[=200] (103 o) + I line)  (5:36)
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hy

2
L2(5T)> .

On the other hand, there exists a number ¢; € (0,&) such that

~ 12
+Ne? <||gt||H1(ST) + ‘

o, t0) gy + 1o, 20170y + w8 sy + lwe(s 2170

< L (100 + Iols(qy))

N =

In fact, otherwise we have

2 2 2 2
oG ) ) + 10 GO ) + 1wl Dl o) + e O], 0

> = (10l ag) + 0l o))

for all t € (0,£). Here by (1.11) we note that the left hand side of the above inequality is
continuous in ¢. Taking the integrals over ¢ € (0, &), we reach a contradiction.
Hence, (5.36) implies that

2 2 - 2 2
||U('at1)||H1(Q) + ||Ut('at1)||L2(Q) < N¢texp [-2)0] <||U||H1(QT) + ||w||H1(QT)> (5.37)
2 )
La(ST)

||w(',t1)||i[1(n) + Hwt('vtl)HiQ(Q) < N¢™exp [—2)0] (“UH?T{l(QT) + ||w||?{1(QT)) (5.38)

2
L2(5T)> '

Consider now hyperbolic equation (2.15) for the function v(x,?) in the cylinder Q x (¢,,7)
with the boundary conditions

hy

+NE e <||§t||izl(sT) + ‘

and

hy

+NE M <||§t||§{1(sT) + ‘

ov

v oax .= 9(z, 1), Y |3S2><(t1,T):%(xat)

and with the initial conditions
U=y =v(x, ), v =y = v, t).

Then Lemma 2.3 and (5.37) imply that

101 ey < N exp[=200] ([0l gy + lelnan (5.39)

2
L2(5T)> )

+Ne* <||§t||§11(sT) + ‘%t
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Change variables (z,t) < (x,7 =t; —t). Then we obtain the same hyperbolic equation
(2.15), in which v(z,7) := v (z,t; — 7) and t is replaced with ¢; — 7 in all coefficients. This
reflects the fact that the hyperbolic equation can be solved in both the positive and negative
directions of time. This new hyperbolic equation is satisfied in the cylinder © x (0,¢;) with
the boundary conditions

~ ov ~
v |8Q><(0,t1): 9(%751 - T), o |an>< (t1,T)= h(:c b1 — T)

and with the initial conditions

v |T=0: U(xatl)v Ur |T=0: _Ut(x’tl)'

Therefore using again Lemma 2.3 and (5.37), we obtain

1o @iy < Nexp [=220] (11l gy + 10 o))

~ 12
+Ne* <||gt||H1(ST) + ‘

hy
L

2
2<ST>> '
1013 0py < N exp[=220] (10l gy + Il an)

ST)> )

2 2 2
el qny < Nexp[-220] (||v||H1(QT) +ull )

ST)> )

{1 = Nesp =201} (0l gr) + 01 0r)) (5.40)

< o )
4 (1l s+ A

Recall that N = N (a, u(xo), f, M, My,Q, x9,T) denotes different positive constants de-
pending on a, u(xg), f, M, My,Q, xy, T and o,7n,C. Choose a sufficiently large Ay = Ay (2, 29,7, N)
such that

Summing up this estimate with (5.39), we obtain

(e

Similarly

(e

Summing up two latter estimates, we obtain

1 — Nexp[—2A0] >

l\')l»—t

Hence, (5.40) implies that

hy

ST)) . (5.41)

2 2
o0 ary + ] < 5 (il +
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Estimates (5.41) and (5.35) lead to

hy

2
L2(5T)> ’

2 ~ 12
lilen < 5 (il +]
which completes the proof. [
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