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Abstract. We discuss an inverse problem of finding a sound speed ¢(z) and a damp-
ing coefficient o(z) in a second order hyperbolic equation from two boundary observations.
The coefficients are assumed to be unknown inside a ball in R™ with n > 2. On a suitable
bounded part of the cylindrical surface, Cauchy data for solutions to a hyperbolic equation
with zero initial data and a source located on the plane {(z,t) € R"*!z.v = 0,t = 0},
are supposed to be given for two different unit vectors v = v k = 1,2. We obtain

a conditional stability estimate under a priori assumptions on smallness of ¢(x) — 1 and

o(z).

§1. Statement of the inverse problem and main results

In Glushkova [3], Romanov [11] - [13], Romanov and Yamamoto [14], [15], a
new method for obtaining conditional stability estimates in determining coef-
ficients for linear hyperbolic equations, has been proposed. This method uses
a single observation for finding one unknown coefficient. An analysis shows
that the problem with several unknown coefficients under the derivatives of
the first order can also be successfully studied by this method (see [12, 13,
15]). However, when we apply such a method to determination of multiple

coefficients under derivatives of different orders, we meet some difficulties.
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Recently the problem of finding a damping coefficient and a potential from
two measurements was considered in Glushkova and Romanov [4].

In this article, we consider an inverse problem of determining unknown
coefficients of the leading term and the term of the first order derivative
in time, by means of two measurements. The technique of this article is
essentially different from the former one but keeps some common features
with the papers [11], [14].

Let u = u(x,t), v € R", n > 2, be the solution to the equation
Uy — AU+ ouy = 26(8) 6(x - v), (x,t) € R™ (1.1)
satisfying the zero initial condition:
uleco = 0. (1.2)

Here ¢ is the Dirac delta function supported on the specified point or the
hyperplane, v is a unit vector and the symbol - v means the scalar product
of the vectors x and v. The solution to problem (1.1) and (1.2) depends on the
parameter v, i.e., u = u(x,t,v). Physically ¢(x) describes the sound speed,
while o () is the damping coefficient of the medium which is inhomogeneous
in «. In (1.1), the external force term is impulsive which we operate for
determining ¢ and o.

Let us set
B={zcR"|z -2 <r}, dB={xrcR"|z—2°|=r},

and assume that B C { € R"|z - v > 0}. Throughout this paper, we set

B n—1 Ly
m = 5 ,




and [(n — 1)/2] denotes the integer part of (n —1)/2.

Furthermore we assume that the supports of coefficients o(x), c¢(x) — 1
are located strictly inside the ball B. Suppose also that o(z), ¢(x) > 0 and
o € C(R"), c € CPHY(R™).

Introduce the function 7(x,r) as the solution to the following problem

for the eikonal equation:
Vr(e, )P = ¢ 2(2),  Tloweo = 0. (1.3)
Let G(v) be the cylindrical domain:
Gv) = {(z, )|z € B,r(x,v) <t < T +7(2,0)},

where T' be a positive number. Denote by S(v) the lateral boundary of this
domain and by Xo(r) and Y7 (v) the lower and upper basements, respectively,

le.,

Sw) :={(x,t)|x € 0B, 7(x,v) <t < T+ 7(x,v)},
Yo(v) :={(z,t)|x € B,t =7(a,v)},

Yr(v) ={(x,t)]e € Byt =T+ 7(x,v)}.

Consider the problem of determination of o(x) and ¢(z). Let the following
information be known. We choose two unit vectors ") and (3 arbitrarily
such that B C {z € R"z-v® > 0} for k = 1,2. For v = v®, &k = 1,2,
the traces of functions 7(x,*) on B and the traces on S(¥) of solutions

and its normal derivatives to problem (1.1) - (1.2) are given, that is,

u(l’,t,y(k)) — f(k)(x7t), agu(l',t,lj(k)) — g(k)(l',t), (l’,t) c S(I/(k)),
n

T(l’,l/(k)) = T(k)(l'), r€eIB; k=1,2. (1.4)
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Here and henceforth n denotes the unit outward normal vector to B and
we set g—Z:Vu-n.

We discuss
Inverse Problem. Find o(z) and ¢(z) from data f*), g% 7" k=1 2.

For constants ¢o > 0 and d > 0, let A(qo, d) be the set of functions (o, ¢)

satisfying the following two conditions:

There exists a domain {2 such that

suppo Usupp (c—1) CQ C B, dist(0B,Q) > d, (1.5)
and

H0'H03m+2(Rn) S qo, HC - 1HCSm+4(Rn) S qo- (16)

Throughout this article, we regard A(qo,d) as an admissible set where

unknown o and ¢ are assumed to vary.

Let (0;,¢;) € A(qo, d) and {f](k),g](k)7 T],(k)} be the data of the correspond-

k)

ing solutions to (1.1) - (1.2) with 0 = o;(x), ¢ = ¢j(z) and v = vl

k,7 =1,2. We here prove the following stability and uniqueness theorems.

Theorem 1.1.  Let the condition 4r/T < 1 be satisfied. Then there
exist positive numbers qo and C, depending on T, r and |[v™) — v 3|, such

that the following inequality holds:

oy — a2llizemy + ller — callfrmy
2
k k k k
< O (7Y = B + I = Bl s
k=1

~(k ~(k k k
+ 1@ = E sy + 17 = N o) )
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for any (01701)7 (0-2702) S A(qovd) Here

Pt = 10+ 7P @), g0t = g+ 7).

J J J

Theorem 1.2. Let the conditions in Theorem 1.1 be fulfilled. Then one
can find a number gy > 0 such that if (o;,q;) € A(q,d), j = 1,2, and the

corresponding data partly coincide, namely,
() =), 2 € 9B, [(a.t) = [(a,0). (2.) € 9B x (0,T)
for k = 1,2, then o1(x) = o9(x) and ¢1(x) = ez2(x), € B.

For establishing the stability in our inverse problem, we have to change
suitable external forces twice. Our formulation is not overdetermining, unlike
most of the Dirichlet-to-Neumann map approaches. As such a formulation,
we can refer to the method by the Carleman estimate which proves the
uniqueness and the conditional stability by a finite number of observations.
See for example, Bukhgeim [1], Bukhgeim and Klibanov [2], Imanuvilov and
Yamamoto [5], Isakov [6], Khaidarov [7], Klibanov [§], Klibanov and Tim-
onov [9]. For applications of Carleman estimates to the inverse problems,
we have to assume that the inputs such as initial values or external forces,
should satisfy some positivity conditions, which means that we are required
to control the unknown media, and these conditions are restrictive for many
practical applications. Therefore it is very desirable to prove the unique-
ness and the stability without any positivity of inputs. However this is an

open problem. In our formulation given by (1.1), we need not assume any



positivity of the external forces. On the other hand, for our method, it is
necessary to assume the smallness, that is, unknown functions ¢ and ¢—1 are
sufficiently small (see (1.6)). If we could omit such a smallness assumption,
then the corresponding result would solve the open problem completely. For
the moment, we do not know whether or not it is possible. As for other
formulations of inverse problems, we refer to Isakov [6], Romanov [10], for
example.

Theorem 1.1 and Theorem 1.2 are proven in Sections 2 and 4, respectively.
In Section 3, we prove the following lemma which gives some properties of

solution to problem (1.1), (1.2) and is used for proofs of the theorems.

Lemma 1.1. For each fixed Ty > 0, there exists a positive number
go = qo(To) such that for (o, ¢) € A(qo, d) the solution to problem (1.1), (1.2)
in the domain

K(To,v) :={(x, )|t <Top —7(x,v)}

can be represented in the form

m

u(x,t,v) = Z ap(x,v) 0p(t — 7(x, 1)) + Un (2, t,v). (1.7)

k=0
Here m = [(n—1)/2] + 4, 04(1) is the Heaviside function: y(t) =1 fort >0
and Oy(t) = 0 for t < 0, Ox(t) = t"0o(¢)/k!, the coefficients ay(z,v) are given

in the form

ag(x,v) = exp(e(z,v)), plz,v) = —= / (0(&) + F(EAT(E,v)) ds,

ag(z, v

- ao(z,v) / A€ Aak_1(&,v) ds

B 2 050(57 V) ’
[(z,v)



['(x,v) is the geodesic line joining x with the plane {y € R"| y-v = 0},
ds is the element of the Riemannian length: ds = ¢ Y(2)(Y1_, d2?)V/?, 7 =

7(z,v) € C*™H(Q(To, v)), ar = ap(z,v) € CH2=2K(QO(Ty, v)),
Q(To,v) :={z € R"|7(x,v) < To/2}

and the function U, (x,t,v) vanishes for t < 7(x,v) and belongs to the func-
tion space H™ T (K (T, v)) for fixed v.
Moreover there exists a positive number C', which depends on T, r and

qo and does not increase if qy decreases, such that the following inequalities

hold:

|lu = 1[am+1@cey < Cq,  ||T(z,v) — 2 - v||cemtsy < Cqo. (1.9)

Corollary. Let g0 > 0 be sufficiently small. If (c,¢) € A(qo,d), then the
function u(x,t,v) is continuous on the closure of domain G(v) together with

all the derivatives up to the third order.

§2. Proof of Theorem 1.1

Introduce a function v(x,t,v) = u(x,t + 7(x,v),v). Then the function
v(a,t,v) for (x,t) € B x (0,T], satisfies

A(2Vv, - V1 — Av) + (0 + AAT)v, = 0,
(2.1)

Vle=to = ao(7,v),  vifi=yo = an(z,v),
where V = (9/0xy,...,0/0x,) and we recall that ¢(x,v) = Inag(z,r) from
(1.8).



Then we have differential equations of the first order (compare with cor-

responding formulae (3.3) below):

2V - V1 40+ AT =0,

(2.2)
2¢*Vay - V1 4+ ay(0 + AAT) — *Aag = 0.
The second equation can be rewritten in the form
2(Vay - V1 —a Ve - V1) — ag(A¢ + [Ve|’) =0 (2.3)
and equations (2.1) as follows
2Vu, - V71— Av—=2(Vp - V1)v, =0, (x,t)€ B x(0,T],
V=10 = ao(z,v), Vili=ro = ar(z, 1), (2.4)

Let (0j,¢;) € A(qo,d) for 7 = 1,2. Denote the functions u, v, ¢, ag, ay,

7 with the coefficients (o5, ¢;) by u;, v, ¢;j, ozéj), oz(lj), 7; and introduce the
differences:
U=1U — Up, V=01 — Vg, p = — o =al) — o
=u 2, V=11 2, P = ¥P1— P2, 0 = Gy Qg
ﬁ:oz(ll)—oz(lz),?271—72,5201—02,5201—02.

Then we can obtain

QV?J/t'VTl —A/ﬁ+ a15t+a2 V?—I— as Vc;ov: 0, (l’,t) € B x (O,T],

Vli=go = &(51?7’/)7 Vtlt=10 = g(l'a’/)a (2-5)
where

a1 = —Z(Vc,ol . VTl), oy = QV(UQ)t - Q(UQ)tV<,91, a3 = _2(U2)tv7—2.



It follows from equations (2.2) and (2.3) that the functions a(x,v), f(x,v),

@(x,v) satisfy the relations

&:blgﬁv, vg@vbQ+V?bg+g+C%A?+b4g:0,
_ _ (2.6)
Ap+V@-hy =V3-hy+ Bhs+ VT hy+ ahs,

where

1

by = /exp[c,og(l —5) +pis]ds, by =2ciVT, by =2c]Vi,,
0

b4 = (Cl —|— CQ)I:ZVSOQ . VTQ —|— ATQ], hl = V(@l —|— 992) —|— 20é(12)v7'1/0é82),
hg == QVTl/Oééz), h3 == —QVQOl . VTl/OéEJZ),

hy =2(Val? —aP'Vey)/al), hs = —(Agr + [V ) /o).

Introduce the function w(x,t,v) := vy(x,t,r). This function for (z,t) €
B x (0,T] satisfies

2Vw; - V1 — Aw + ay wy + (az)e - V7 4 (as): - Vo =0,
(2.7)

w|t=+0 :5(1‘7’/)-

In view of Lemma 1.1 and the embedding theorem, we have

max(||lai|c), [[(a2)illcmxom) [[(as)idlcBxor)) < C,
max(||bi|lc), |b2ller)) < €, max(||bs]lcm), |bsllcr)) < Cqo,  (2.8)
|hollesy < €, max(||hillcsy, |hsllem) [halles), |hsllesy) < Cgo.

Here and henceforth ' > 0 denotes a generic constant which depends on T,

r, go and does not increase when ¢y decreases. Therefore relations (2.6) —



(2.8) lead to the following inequalities:

181f28) < ClZIT2(m),
HAS‘ZH%P(B) <C <C]3(H§5H%{1(3) + H?H%Il(B)) + HgH%P(BO ;
12V, - Vi — Awl[f2 gy o) < ng(HwH%Il(Bx(O,T])
o + I1P0e). (29

Let us use the following lemma which is derived from Lemma 4.3.6 in [13]

(see also [11]).

Lemma 2.1. Let ¢ € A(qo,d), 4r/T < 1 and z € H*(B x (0,T]). Then
for sufficiently small qy, there exists a positive constant (', depending on r,

T, qo, such that the following inequality holds:

HZH%U(BX(O,T]) + HZH%-Il(Bx{O}) < O(|)2Vz - Vr — AZH%P(BX(O,T])

izl @nxpor + 1V2 0z @pxp.m)- (2.10)

Applying this lemma to the function w(x,t) with 7 = 7 and using the

third inequalities in (2.9), we obtain

HwHill(Bx(O,T]) + HwH%-Il(Bx{O})

< ClagUlwlle xo,mp + 17 sy + 1210 ) + 7 ()], (2.11)

where

() = 1(fr = f2)ellin oo,y + 1@ = B2)elliz o5 p0.10)

file,t) = file,t+mi(2,0)), Gile,t) = gila,t + (2, v)) (2.12)
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for j = 1,2. By relation (2.11) for sufficiently small ¢o, we derive the inequal-
ity
lwllt s gon < ClaoUlT s + 18115 5)) +* ()] (2.13)
Since w(x,40) = g(:p,y) by (2.7), we find
18130 () < Cla(1Izn ) + 1181130 5) + 2> ()] (2.14)
Then from the second inequality in (2.9), it follows that

18G5y < € (BB ) + Flum) + %)) . (215)

Let us estimate the H*(B)-norm of the function @(x,v) through the
L*(B)-norm of its Laplacian and boundary values of the second order deriva-

tives. For this, use the identity:

(AS‘Z)Q = Z S‘/Exixz‘&l’]l’] = Z [(&m&%%)m - (&m&xzx])wg + gova?,xj] (2'16)
7,75=1 7,75=1

Integrating this identity over the domain B and applying the divergence

formula, we obtain

[$ 5 fisere

—/[(M)(V&-n)—(V|vg5|2-n)/2] ds.  (2.17)

Hence the following estimate follows:

12 1) < C {188 NEmy + D 107G IEom) | - (2.18)

[v|<2

where

ohl
V= l=nt ot

Oz ... Oz’
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By the assumptions that suppo; Usupp(¢; — 1) C Q2 C B for j = 1,2 and
dist(0B, ) > d, we see that I'(x, ) does not intersect Q if & € B, := {x €
OB|v - (z — 2°) > \/r2 — (r — d)?}, so that the function @(z,v) and all its
derivatives vanish on 9B\ dB,. Similarly we can verify that the function
7(x,v) and its derivative vanish on 9B\ dB,. By supp o;Usupp (¢;—1) C B
for j = 1,2, (1.3) and (2.6), we have

and

VT - V(Tl —|-7'2) =0

outside of B, so that all the derivatives of ¢ and 7 on dBy can be expressed

by the corresponding derivatives along dBy. Therefore we have

%34 1977 L2 0m) < ClIT lEsom):
Y=

(2.19)
= 107G oy < € (13 asomy + IF luson) -

[v|<2

Moreover, since by (1.4) and (2.12), we have

5(x,t,y) = ul(xvt + Tl(l’,l/),l/) - u2(x7t + 7'1(:1;,1/),1/)

= file,t+7i(e,0) = fola t+ 7(a,0)) = file,t) — fala,1),
(x,t) € S(v),

it follows from (2.1) and (2.6) that ¢ = a/b; and a(x,v) = v(x,+0,v) =
(]/C\l - J/C\g )(2,0). Therefore we obtain

Y 0G| < Ceilv), (2.20)

[v|<2
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where
efv) = lf - f pr(an{o}) + H?H%{‘l(aB)'
Taking into account inequalities (2.15), (2.18) and (2.20), we find an estimate:
1Bl < € (@017 )+ Fliugey) + 200+ 200) . (221)
Hence, for sufficiently small ¢o, we have
183 < € (@lFlnm + 20) +10)) (2.22)

Consider inequality (2.22) and the second of relations (2.6) for v = v*),
k=1,2. Set

or(x,t) = c,?(x,t,y(k)), Th(x) = Tl(l’,l/(k)) — TQ(J},I/(k)),
bin(z) = bi(z,vW), G =S W) +el(w™), j=1,234, k=12

Inequality (2.22) leads to
1Eulem) < € (@17l +81), k=12 (2.23)

In terms of (2.6), we have
0 =—V@g by — VT - by, — AT, — bye, k=1,2. (2.24)

Furthermore, eikonal equation (1.3) yields

22
C1Cy

V7 rp+c=0, ()= Vim +m)(z,v®), k=1,2. (2.25)

Hence there exists a positive constant C' = C(qo, r) such that
lella sy < Cll7kllme), kB =1,2. (2.26)
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By (2.24), (2.26) and (2.8), we obtain
11223 < € (1Gelnce) + Filliem) » k=12, (2.27)

with a positive constant C' = C(r, T, o). Taking into account estimate (2.23),

we obtain
11228 < € (17l + ), k=12 (2.28)

Hence, in view of (2.26) and (2.28), in order to complete the proof of
Theorem 1.1, it suffices to estimate HﬁH%Q(B). For this goal, use (2.24) again.
Subtracting the expression for & = 2 from the corresponding expression for

k =1, we can estimate:

2
AT = 7o) i (s < CZ <Q3(Wk’\%{2(3) + el ) + ’\@H%{?(B)) -(2.29)
k=1

Using (2.23) and (2.26), we can rewrite (2.29) by

[}

IAG =7l < C Y (@7l + ) - (2:30)
k=1
On the other hand, we have
V(71 —7) -+ V7 (rp —ry) = 0. (2.31)
By (1.9) and Lemma 1.1, for sufficiently small ¢o, we have
]\Vrj(:z;,z/(k)) — I/(k)HCSm+2(B) < Cqo, 7, k=12

Consequently, by the second inequality in (1.6), one can easily prove

(= 72) = (0 = ) esmesii) < Ca (2:32)
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By v £ v inequality (2.32) implies that the function (r; — ry)(z) does
not vanish anywhere in B if ¢p is small. For sufficiently small ¢o > 0 and

x € B, introduce the curve

L(z) :={£ e R =E&(s,2),8 € (—0,0)},

where the function £(s,x) is the solution of the following Cauchy problem

for the ordinary differential equation:

¢ (ri—m)(§)

ds ma f|s:0 =T (2-33)

Here s is the Euclidean length of the curve starting at «. The function £(s, x)
possesses the same smoothness as the function (r; — ry)(x). It follows from
(2.32) that for small ¢y, the curve L(z) N B is close to a segment of the
straight line which passes the point # in the direction v() — (3. Hence each
L(x) intersects OB at some negative s = s(x). By #* = {(s,s(x)) € dB and
L'(x) respectively, we denote the intersection point and the segment of L(x)

which is in the domain B. Integrating equation (2.31) along L’(x), we obtain

- V(7 7'1 —72)(&) - r1(&)
(x) = To(x / (= > (§)| ds. (2.34)

Therefore the estimate follows:

1l < € (17 = Rollde @ + 1Rliees) (2.35)

with a constant C' = C(r,qo, vV —v@|). By 7, = 7o + (71 — 72), a similar

estimate is valid for 71(x), so that
1l < € (17 = Bllkew + 1Blkees ), k=12 (236)
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Substituting (2.36) in (2.30), we find
IAG - Bl < € (@17~ Fllie +2+2). (237

Now we can estimate the H*(B)-norm of (7, — 72)(z) through the H'(B)-
norm of its Laplacian and boundary values similarly to the previous estimate

of p(x,v):

17 = Rellis ) < C [ AR = 72) i + D 107(F =) i @on)

lv|<3
< (HA(H —72) [l (s + Z 17 ez o ) : (2.38)

Using the same arguments which we have used for obtaining the first estimate

n (2.19), we have

Z 1077 Hi?(aB) < C|7% H%F(aB)v k=12 (2.39)

lv|<3

Substitution of (2.39) into (2.38) yields

17 = 72 llfre ) < € (HA(H — )l s + Z 175 I5xs (05 ) - (240

Combining inequalities (2.37) and (2.40), we derive
17 = %2l < € (17— Fallies) + 2) (2:41)
where
2
=8l +&+ Z 7% H%I3(8B)'

k=1

Hence, for ¢y small enough, we have
17— 72 e ) < CE2 (2.42)
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Then from (2.36) we obtain

17l 25y < CE2 k=1,2, (2.43)
and from (2.26) and (2.28), we find the estimate

elf ) + 1100 E2 ) < CE (2.44)

which is the conclusion of Theorem 1.1. Thus the proof is complete. O

§3. Proof of Lemma 1.1

Consider first problem (1.3). Set p(x,v) := V7 (x,r). Without loss of gener-
ality, we here assume that v = (1,0,...,0). Then 7(x,v) = —a; for x; < 0.
To find 7(x,v) for 1 > 0, consider equations for the geodesic lines. Let
x = F(r,7)and p = P(7,7) be the solution to the following Cauchy problem

for the system of ordinary differential equations:

d d
% =pc*(z), d—i = —Vine(x), x|s=0=1(0,7), pls=o=r, (3.1)
where v = (72,...,7v,) and s is the Riemannian length which coincides with

the travelling time from the plane z; = 0 to the point z. The equality
x = F(s,7) is the equation of the geodesic line crossing the plane 1 = 0
orthogonally at the point (0,v). For each domain D := {(s,7)|0 < s <
s0, |y| < R} with given so > 0 and R > 0, it is easy to prove that there
exists a unique solution & = F(s,7) and p = P(s,7) to problem (3.1) in D,
F, P € C***3(D) and one can find a positive constant C' = ('(qo, S0, R) such

that

HF - (0,’}/) - I/SHCSm+3(D) S qu, HP — VHC37"+3(D) S qu. (32)
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It means that each geodesic line and p are close to a straight line and the
unite vector v respectively if ¢o is small. For any given bounded domain
Qy C R™, there exist so > 0, large R > 0 and small ¢o > 0 such that {z €

R 2 = F(s,7), (5,7) € D} D Qo. By means of (3.2), one can check also
O(x1, @2, ..., 2Ty)

8(57727 s 7771)
in D. Therefore for ¢y small enough, the equation « = F\(s,~v) is solvable

that for small ¢, the Jacobian does not vanish anywhere

with respect to s and v, i.e., s = s(x) and v = (), where s = s(x),
v = v(x) € C**3(Qy). Moreover, because V7(z) := p(z) = P(s(z),v(z))
is in C3*3(Q), we find that 7 € C®>"+4(Q). Note that for a given w,
the geodesic line I'(x) passing through a and crossing the plane x; = 0
orthogonally, is given by the equation £ = F(s,v(x)),s € [0, s(x)]. Estimate
(1.9) for 7(x) follows immediately from the first inequality in (3.2)
Substituting representation (1.7) into equation (1.1) and equating the
terms of 6(t — 7(x,v)), Ox(t — 7(x,v)), k =0,1,...,m —1, we find equations

for ag(x,r) and the initial data of the form:

2¢*Vag - VT 4+ ag(c + FAT) =0,  aglew=o = 1,
2¢*Vay - V1 + ag(o 4+ AT) — *Aap_1 =0,  agle=o =0, (3.3)
E=1

sy M.

Since along the geodesic lines, according to (3.1), one has *Vay - V7 =
day/dr, the equations can be integrated in an explicit form. The result-
ing expressions are given by formulae (1.8). From the definition of the set
A(qgo,d) and formulae (1.8), one can obtain |lag — 1||lcomt2(qm.) < Cdo
and ||ag||camez—2rqery ey < Cqo, & = 1,...,m, with a positive constant

C = C(qo,Tp). Here we recall that Q(To,v) := {x € R*|7(a,v) < Ty/2}.
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Then the function @, (x,t, ) solves
(U)ot — AUy, + 0(Up)e = Fulx,t,v),  (2,8) €R™L U |ico = 0, (3.4)

where

B (z,t,v) = (@) Aay,(z,v) 0,(t — 7(x,v)).

It is obvious that the function F,(x,t,r) vanishes for ¢ < 7(x,rv) and be-
longs to H™*' (K (Ty,v)). Here we recall that K(Tp,v) := {(z,t)|t < Ty —
T(x,v)} for fixed Ty, v. Then the energy estimates method implies that
U (2, t,v) belongs to H™ ™ (K (T, v)), vanishes for ¢ < 7(z,v) and the esti-
mate ||t |[amt1 k(1)) < Cqo holds. Since G(v) C K(To,v) for sufficiently

large Tp, the first inequality in (1.9) follows. O

§4. Proof of Theorem 1.2

Let (0j,¢;) € A(qo,d) and wj(x,t,v), 7;(x,v), ozéj)(x,l/) for j = 1,2, be the
same as in Section 2. In terms of Theorem 1.1, in order to complete the proof
of Theorem 1.2, it suffices to prove

Lemma 4.1. If r(a,v) = n(x,v) := 7(x,v) on OB and uy(x,t,v) =
uy(z,t,v) on S(v) == {(z,t)|x € OB, 7(x,v) < t < T + 7(x,v)}, then
(Vuy -n) = (Vug-n) on S(v). Here n is the unit outward normal vector to
S(v).

Proof of Lemma 4.1. Under the assumption, we have 7 (x,v) = n(x,v) :=
7(x,v) and ozél)(:zj,l/) = ozé2)(:1;,l/) outside of B. Hence u = u; — uy is a
continuous function across the characteristic surface t = 7(x,v) if ¢ B. It

follows from Lemma 1.1 that u € H'(P) for any compact domain P which
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is located outside of {(x,t)|x € B,t > 0}. Now apply the energy estimate
method to demonstrate that uw = 0 inside an external domain adjoining to
S(v).

Take again v = (1,0,...,0), and assume that z° = (29,0,...,0) and
go < 1/2. Then the cone {(x,t)|t < Ty — |x|} contains S(v) if To > T +
3(2Y + r). Suppose that this condition is satisfied. Consider the domain
P(To) = {(z,t)| |t —2° > r,0 < t < min(T+7(x,v), To—|z|)}. This domain
is bounded by the piecewise smooth characteristic surface S; = {(x, )| |z —
2°| > ryt = min(T+7(x,v), To—|z|)}, the lateral boundary Sy = {(=,¢)| |z —
| =r0<t<T+7(x,v)} and S3 = {(z,t)]|z| < To, | — 2% > r, ¢ = 0}.
We have u(xz,t,v) = 0 for (x,t) € Sy U S;. Moreover u(z,t,v) € H'(P(1p))

and satisfies
Ou=0, (a,t)€ P(Ty). (4.1)

Let tg € (0,7Ty) be arbitrary. Set S(tg) = {(x,t) € P(Ty)|t = to} and
Sk(to) :={(x,t) € Sk|0 <t < to}, k = 1,2. Note that S(ty) is the intersec-
tion of P(Tp) by the plane t =ty and is the empty set if ¢ is close to Ty. Set
T; = sup{to} over all ¢y such that S(ty) is not empty.

Multiplying the both sides of equation (4.1) by 2u;, using the identity
2u,0u = (u? + |Vu|?), — div(2u, V), integrating the resulting equality over
the domain P(Tpy,to) := {(x,t) € P(15)|0 <t < tg < Tp} and applying the
divergence formula, we obtain

/ (u? + |Vul?) de

S(to)

+ / {(ﬁf + |Va|?) cos(n, t) — 2u; Z U, cos(n, ;)| dS =0,

—1
S1 (to)USg(to)USg, J
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where dS 1s the area element.

Because u vanishes on Sy and @ = 0, w; = 0 for (x,t) € Ss, the integrals
over Sy(tg) U S5 vanish. One can easily check that the integral over Si(%o) is
nonnegative. Therefore

/ (u; + |Vul?)dx <0, o€ (0,T7).

S(to)
Then we obtain u(x,t,v) = 0 for (x,t) € P(Ty). Hence Vu-n = 0 and

Vuy-n =Vuz-n on S(v). Thus the proof of Lemma 4.1 is complete. O
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