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Abstract

We define new curvilinear integrals along paths of Feynman path integral. In
order to define curvilinear integrals along paths on a path space, Itô integrals use
initial points of line segments of broken line paths, and Stratonovich integrals use
middle points of them. However, our new curvilinear integrals use classical curvilin-
ear integrals along broken line paths. Therefore, the classical fundamental theorem
of calculus holds in Feynman path integral.

1 Introduction

In this paper, using the theory of the time slicing approximation in [4], we give
a mathematically rigorous definition of new curvilinear integrals along paths of
Feynman path integral [2]. It is a mathematical problem how to define curvilinear
integrals along paths on a path space. Itô integrals [1] and Stratonovich [5] integrals
are enormously successful in stochastic analysis.

Fix x0 ∈ Rd and x ∈ Rd. Let ∆T,0 is an arbitrary division of the interval [0, T ]
into subintervals, i.e.,

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 . (1.1)

Set xJ+1 = x. Let xJ , xJ−1, · · ·, x1 be arbitrary ponits of Rd. Let γ∆T,0
be the

broken line path which connects (Tj , xj) and (Tj−1, xj−1) by a line segment for any
j = 1, 2, . . . , J + 1, i.e., γ∆T,0

(Tj) = xj . Let 0 ≤ T ′ ≤ T ′′ ≤ T .
Roughly speaking, when the Brownian motion B(τ) is equal to the broken line

path γ∆T,0
(τ), Itô integrals are defined by initial points of line segments of the

broken line path γ∆T,0
, i.e.,

∫ T ′′

T ′
f(τ,B(τ))dB(τ) ≈

∑
j

f(Tj−1, xj−1)(xj − xj−1) , (1.2)
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and Stratonovich integrals are defined by middle points of line segments of the
broken line path γ∆T,0

, i.e.,∫ T ′′

T ′
f(τ,B(τ)) ◦ dB(τ) ≈

∑
j

f

(
Tj + Tj−1

2
,
xj + xj−1

2

)
(xj − xj−1) . (1.3)

However, our new curvilinear integrals are the classical curvilinear integrals
themselves along the broken line path γ∆T,0

, i.e.,∫ T ′′

T ′
f(τ, γ∆T,0

(τ))dγ∆T,0
(τ) . (1.4)

Therefore, the classical fundamental theorem of calculus holds in Feynman path
integral

∫
e
i
h̄
S[γ] ∼ D[γ] in [4].

2 Results

In order to state our results, we recall the notations of Chapter 2 in [4].
For a path γ : [0, T ] → Rd which starts from x0 ∈ Rd at time 0 and reaches

x ∈ Rd at time T , i.e. γ(0) = x0 and γ(T ) = x, we define the action S[γ] along the
path γ by

S[γ] =
∫ T

0

1
2

∣∣∣dγ
dt

∣∣∣2 − V (t, γ)dt . (2.1)

Let F [γ] be a functional on the path space C([0, T ] → Rd) and 0 < h̄ < 1 be a
parameter.

Let ∆T,0 be an arbitrary division of the interval [0, T ] into subintervals, i.e.,

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 . (2.2)

Set xJ+1 = x. Let xJ , xJ−1, . . ., x1 be arbitrary points of Rd. Let γ∆T,0
be the

broken line path which connects (Tj , xj) and (Tj−1, xj−1) by a line segment for any
j = 1, 2, . . . , J + 1, i.e., γ∆T,0

(Tj) = xj . Set tj = Tj − Tj−1. Let |∆T,0| be the size of
the division defined by |∆T,0| = max

1≤j≤J+1
tj .

We define the Feynman path integral by∫
e
i
h̄
S[γ]F [γ]D[γ]

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S[γ∆T,0

]
F [γ∆T,0

]
J∏
j=1

dxj . (2.3)

Definition 1 We say that a functional F [γ] is path integrable, if and only if the
right-hand side of (2.3) converges.

Our assumption for the potential V (t, x) is the following:

Assumption 1 V (t, x) is a real-valued function of (t, x) ∈ R × Rd, and for any
multi-index α, ∂αxV (t, x) is continuous in R × Rd. For any integer k ≥ 2, there
exists a positive constant Ak such that

|∂αxV (t, x)| ≤ Ak , (|α| = k) . (2.4)
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Using the assumption which was first found by D. Fujiwara [3], we defined Fu-
jiwara’s class F of functionals, and proved the following result. (See Theorem 2 in
[4].)

Proposition 1 Under Assumption 1, assume that T is sufficiently small. Then, for
any F [γ] which belongs to Fujiwara’s F , the right-hand side of (2.3) really converges
uniformly on any compact set of the configuration space (x, x0) ∈ R2d, i.e., F [γ] is
path integrable.

Now we are ready to state theorems of this paper. First, we state a sufficient
condition to define our new curvilinear integrals along paths of Feynman path inte-
gral.

Assumption 2 Let m be non-negative integer. Z(t, x) is a vector-valued function
of (t, x) ∈ R ×Rd into Rd. For any multi-index α, ∂αxZ(t, x) and ∂αx ∂tZ(t, x) are
continuous on [0, T ]×Rd, and there exists a positive constant Cα such that

|∂αxZ(t, x)|+ |∂αx ∂tZ(t, x)| ≤ Cα(1 + |x|)m . (2.5)

Furthermore, ∂xZ(t, x) is a symmetric matrix, i.e.,

t(∂xZ) = ∂xZ . (2.6)

Theorem 1 Let 0 ≤ T ′ ≤ T ′′ ≤ T . Under Assumption 1 and Assumption 2, the
curvilinear integral along paths of Feynman path integral

F [γ] =
∫ T ′′

T ′
Z(τ, γ(τ)) · dγ(τ) , (2.7)

belongs to F . Therefore, if T is sufficiently small, F [γ] is path integrable.
Here Z · dγ is the inner product of Z and dγ in Rd.

Remark 1 The domain of the functional F [γ] defined by (2.7) contains all of broken
line paths at least.

Next, we state a fundamental theorem of calculus for our new curvilinear in-
tegrals in Feynman path integral. This theorem is different from Itô’s formula in
stochastic analysis. However this theorem is the same as the classical fundamental
theorem of calculus.

Assumption 3 Let m be non-negative integer. f(t, x) is a function of (t, x) ∈ R×
Rd. For any multi-index α, ∂αx f(t, x) and ∂αx ∂tf(t, x) are continuous on [0, T ]×Rd,
and there exists a positive constant Cα such that

|∂αx f(t, x)|+ |∂αx ∂tf(t, x)| ≤ Cα(1 + |x|)m . (2.8)

Theorem 2 Let 0 ≤ T ′ ≤ T ′′ ≤ T . Under Assumption 1 and Assumption 3, the
curvilinear integral along paths of Feynman path integral

F [γ] =
∫ T ′′

T ′
(∂xf)(τ, γ(τ)) · dγ(τ) , (2.9)

belongs to F . Therefore, if T is sufficiently small, F [γ] is path integrable.
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Furthermore, the classical fundamental theorem of calculus

f
(
T ′′, γ(T ′′)

)
− f

(
T ′, γ(T ′)

)
=
∫ T ′′

T ′
(∂xf)(τ, γ(τ)) · dγ(τ) +

∫ T ′′

T ′
(∂tf)(τ, γ(τ))dτ . (2.10)

holds in the Feynman path integral
∫
e
i
h̄
S[γ] ∼ D[γ].

Remark 2 If g = g(t, x) also satisfies Assumption 3, then the classical formula of
integration by parts

[
f(τ, γ)g(τ, γ)

]T ′′
T ′
−
∫ T ′′

T ′
f(τ, γ)(∂xg)(τ, γ) · dγ −

∫ T ′′

T ′
f(τ, γ)(∂tg)(τ, γ)dτ

=
∫ T ′′

T ′
g(τ, γ)(∂xf)(τ, γ) · dγ +

∫ T ′′

T ′
g(τ, γ)(∂tf)(τ, γ)dτ , (2.11)

holds in the Feynman path integral
∫
e
i
h̄
S[γ] ∼ D[γ].

3 Proofs

Proof of Theorem 1. For simplicity, we prove the case when 0 = T ′ < T ′′ < T .
(1) Let ∆T,0 be an arbitrary division of the interval [0, T ] into subintervals, i.e.,

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 . (3.1)

Let γ∆T,0
be the broken line path which connects (Tj , xj) and (Tj−1, xj−1) by a

line segment for any j = 1, 2, . . . , J + 1, i.e., γ∆T,0
(Tj) = xj . Set tj = Tj − Tj−1.

Then there exist an integer M and 0 < ϑ ≤ 1 such that

T ′′ = ϑtM + TM−1 . (3.2)

Therefore we can write

F [γ∆T,0
] =

∫ T ′′

0
Z(τ, γ∆T,0

(τ)) · dγ∆T,0
(τ)

=
M−1∑
j=1

∫ 1

0
Z(θtj + Tj−1, θxj + (1− θ)xj−1) · (xj − xj−1)dθ

+
∫ ϑ

0
Z(θtM + TM−1, θxM + (1− θ)xM−1) · (xM − xM−1)dθ . (3.3)

We set

bj(x, y) =
∫ 1

0
Z(θtj + Tj−1, θx+ (1− θ)y) · (x− y)dθ ( 1 ≤ j ≤M − 1 ) ,

bM (x, y) =
∫ ϑ

0
Z(θtM + TM−1, θx+ (1− θ)y) · (x− y)dθ ,

bj(x, y) = 0 ( j > M ) . (3.4)
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(2) We consider ∂ybM (x, y).

∂ybM (x, y) = −
∫ ϑ

0
Z(θtM + TM−1, θx+ (1− θ)y)dθ

+
∫ ϑ

0

t(∂xZ)(θtM + TM−1, θx+ (1− θ)y)(1− θ)(x− y)dθ . (3.5)

Since t(∂xZ) = (∂xZ), we have

∂ybM (x, y) = −
∫ ϑ

0
Z(θtM + TM−1, θx+ (1− θ)y)dθ

+
∫ ϑ

0
∂θ
(
Z(θtM + TM−1, θx+ (1− θ)y)

)
(1− θ)dθ

−tM
∫ ϑ

0
(∂tZ)(θtM + TM−1, θx+ (1− θ)y)(1− θ)dθ . (3.6)

Integrating by parts, we get

∂ybM (x, y) = Z(ϑtM + TM−1, ϑx+ (1− ϑ)y)(1− ϑ)− Z(TM−1, y)

−tM
∫ ϑ

0
(∂tZ)(θtM + TM−1, θx+ (1− θ)y)(1− θ)dθ . (3.7)

(3) We consider ∂ybM (y, z). In a similar way to (2), we get

∂ybM (y, z) = Z(ϑtM + TM−1, ϑy + (1− ϑ)z)ϑ

−tM
∫ ϑ

0
(∂tZ)(θtM + TM−1, θy + (1− θ)z)θdθ . (3.8)

(4) We consider ∂ybj(x, y) for 1 ≤ j ≤M − 1. In a similar way to (2), we get

∂ybj(x, y) = −Z(Tj−1, y)

−tj
∫ 1

0
(∂tZ)(θtj + Tj−1, θx+ (1− θ)y)(1− θ)dθ . (3.9)

(5) We consider ∂ybj(y, z) for 1 ≤ j ≤M − 1. In a similar way to (3), we get

∂ybj(y, z) = Z(Tj , y)

−tj
∫ 1

0
(∂tZ)(θtj + Tj−1, θy + (1− θ)z)θdθ . (3.10)

(6) By (2)− (5), we have the following.
If 1 ≤ j ≤M − 2,

∂y
(
bj+1(x, y) + bj(y, z)

)
= −tj+1

∫ 1

0
(∂tZ)(θtj+1 + Tj , θx+ (1− θ)y)(1− θ)dθ

−tj
∫ 1

0
(∂tZ)(θtj + Tj−1, θy + (1− θ)z)θdθ . (3.11)
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If j = M − 1,

∂y
(
bM (x, y) + bM−1(y, z)

)
= Z(ϑtM + TM−1, ϑy + (1− ϑ)z)(1− ϑ)

−tM
∫ ϑ

0
(∂tZ)(θtM + TM−1, θx+ (1− θ)y)(1− θ)dθ

−tM−1

∫ 1

0
(∂tZ)(θtM−1 + TM−2, θy + (1− θ)z)θdθ . (3.12)

If j = M ,

∂y
(
bM+1(x, y) + bM (y, z)

)
= Z(ϑtM + TM−1, ϑy + (1− θ)z)ϑ

−tM
∫ ϑ

0
(∂tZ)(θtj + Tj−1, θy + (1− θ)z)θdθ . (3.13)

If j > M ,
∂y
(
bj+1(x, y) + bj(y, z)

)
= 0 . (3.14)

We set uj = tj ( 1 ≤ j ≤M − 1 ), uM = 1 + tM and uj = 0 ( j > M ). Then we
have

J+1∑
j=1

uj ≤ T + 2 . (3.15)

In a similar way to Chapter 10 in [4], we can prove that F [γ] satisfies Assumption
5 in [4]. Therefore F [γ] ∈ F . 2

Proof of Theorem 2. By t(∂2
xf) = (∂2

xf) and Theorem 1, we have

F [γ] =
∫ T ′′

T ′
(∂xf)(τ, γ(τ)) · dγ(τ) ∈ F . (3.16)

We set

F1[γ] = f
(
T ′′, γ(T ′′)

)
− f

(
T ′, γ(T ′)

)
, (3.17)

F2[γ] =
∫ T ′′

T ′
(∂xf)(τ, γ(τ)) · dγ(τ) +

∫ T ′′

T ′
(∂tf)(τ, γ(τ))dτ . (3.18)

By Theorem 3 in [4], we have

f(τ, γ(τ)) ∈ F ,
∫ T ′′

T ′
(∂tf)(τ, γ(τ))dτ ∈ F . (3.19)

By Theorem 1 in [4], we have

F1[γ] ∈ F , F2[γ] ∈ F . (3.20)

Now, using the classical fundamental theorem of calculus, we have

F1[γ∆T,0
] = F2[γ∆T,0

] , (3.21)
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for any broken line path γ∆T,0
. Therefore we get∫

e
i
h̄
S[γ]F1[γ]D[γ]

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S[γ∆T,0

]
F1[γ∆T,0

]
J∏
j=1

dxj

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S[γ∆T,0

]
F2[γ∆T,0

]
J∏
j=1

dxj

=
∫
e
i
h̄
S[γ]F2[γ]D[γ] . (3.22)
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