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0. Introduction

It is a well-known fact that Hesse’s cubic curve in P
2:

X3 + Y 3 + Z3 = 3µXY Z

gives a defining equation of an elliptic curve E with level 3 structure whenever µ 6= ∞, 1, ω and ω2 (ω =
e2πi/3). Write E = C/(Zτ + Z) (τ ∈ H1), then the coefficient µ can be regarded as a modular function in τ .
More precisely we define two functions:

ϑ(τ) =
∑

l∈Z2

exp πi(

(
2 3
3 6

)
[l]τ),

χ(τ) =
∑

l∈Z2

exp πi(

(
2 3
3 6

)
[l +

1

3

(
0
1

)
]τ)

in the space M1(Γ(3)) of modular forms of weight 1. Moreover ϑ and χ generate the graded ring of modular
forms of level 3

∞⊕

k=0

Mk(Γ(3)) = C[ϑ, χ]

(cf. [G, Theorem 1.1]). Then we can show

µ(τ) =
ϑ(τ)

χ(τ)
.

In this paper, we consider the case of abelian surfaces with level 3 structure. The cubic theta relations
are already given by Ch. Birkenhake and H. Lange ([BL]), and it is possible to consider their coefficients as
functions on Siegel upper half space. One might expect that all the coefficients of the defining equation are
Siegel modular forms of level 3, but the naive hope is not true. However we find some of the coefficients are
modular forms of level 3.

We have two main results in this paper. One is the generalization of Hesse’s cubic curve:

Theorem 0.1 (Theorem 4.1). We give an explicit form of the degree 3 part of defining equations for a

principally polarized abelian surface.

The other result corresponds to the coefficients of the defining equation, which are considered as gener-
alizations of µ.

Theorem 0.2 (Theorem 3.2). We specify the coefficients of defining equations which are written by theta

functions of quadratic forms, that belong to the space of Siegel modular forms of degree 2, level 3.

In the previous paper ([G]), the author gives the dimensions and the generators of the space of Siegel
modular forms of degree 2 and level 3 for low weights. The generators are all given by theta functions, and
we see that they appear in the coefficients of the defining equations. Therefore one can regard this paper as
an enhancement of the previous paper [G].
Acknowledgement: The author thanks Professor Takayuki Oda for his constant support and much advice
to this work.
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Notations: We write the space of holomorphic Siegel modular forms of weight k associated to the congruence
subgroup Γ ⊂ Sp(g, Z) by Mk(Γ). For a holomorphic function f on Siegel upper half space Hg and γ ∈
Sp(g, Z), we put f |kγ(τ) = det(Cτ + D)−kf(γ〈τ〉), here C (resp. D) is the lower-left (resp. lower-right)
g × g block of γ, and γ〈τ〉 is a standard action.

For matrices X and Y , we write Y [X ] = tXY X . We put ω = e2πi/3.

1. Defining equations of abelian varieties

Let A = V/Λ be a g-dimensional abelian variety over C, that is, V is a complex vector space of dimension
g and Λ is a Z-lattice of rank 2g. Let L0 be an ample line bundle on A. Then by the theorem of Koizumi([Ko,
Corollary 4.7]), L = L3

0 is normally generated, i.e. the natural map

Symn H0(A, L) −→ H0(A, Ln)

is surjective for each n ≥ 1. In particular L is very ample.

Theorem 1.1 ([Ke, Theorem 2]). Let L = L3
0 be an ample line bundle on A. Then the kernel of the natural

map
∞⊕

n=0

Symn H0(A, L) −→

∞⊕

n=0

H0(A, Ln)

is generated by the elements of degree 2 and 3.

All the relations of theta functions of degree 3 is already given by Birkenhake and Lange ([BL]). Now we
explain their theorem.

Let L = L(H, α) be an ample line bundle on A = V/Λ. Here H is a positive definite Hermitian form on
V , such that for E = Im H , E(Λ, Λ) ⊂ Z; α is a semicharacter of Λ, that is, a map from Λ to the group C

×
1

of complex number of absolute value 1 which satisfies

α(λ1 + λ2) = α(λ1)α(λ2) expπiE(λ1, λ2), λ1, λ2 ∈ Λ.

Then L(H, α) is given by the quotient of the trivial line bundle C × V by Λ according to the action

Λ × (C × V ) 3 (λ, (x, v)) 7−→ (eλ(v)x, v + λ) ∈ C × V,

eλ(v) = α(λ) exp(πH(v, λ) +
π

2
H(λ, λ)).

Since H is positive definite, E is a non-degenerate alternating form on Λ. Then we can take Frobenius base
of Λ e1, . . . , eg, f1, . . . , fg, that is, E is represented by this basis as

E =

(
0 D

−D 0

)
, D = diag(d1, . . . , dg), di > 0, di|di+1.

We fix such basis and decompose Λ = Λ1 ⊕ Λ2, further V = V1 ⊕ V2 as real vector spaces.
For λ = λ1 + λ2 as above decomposition, we define semicharacter α0 : Λ → C

×
1 by

α0(λ) = exp πiE(λ1, λ2).

We call L = L(H, α0) a line bundle of characteristic zero. Then L is symmetric i.e. (−1)∗L ∼= L.
Next for x ∈ A, let Tx : A → A, y 7→ x + y be a translation of x. We put

K(L) = ker{φL : A −→ Â = Pic0(A), x 7−→ T ∗
xL ⊗ L−1}

= Λ(L)/Λ, Λ(L) = {v ∈ V | E(v, Λ) ⊂ Z}.

We decompose K(L) = K(L)1 ⊕ K(L)2 according to the above decomposition. Then by Riemann-Roch
theorem,

]K(L)1 = ]K(L)2 = dim H0(A, L).

Now since the Z-basis of Λ2, f1, . . . , fg generates V over C, we define a symmetric form B on V by
C-linear extension of H restricted on V2. We put for x ∈ K(L)1,

(1) ϑL
x (v) = exp

(π

2
B(v, v) −

π

2
(H − B)(x + 2v, x)

) ∑

λ∈Λ1

exp
(
π(H − B)(x + v, λ) −

π

2
(H − B)(λ, λ)

)
,
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then {ϑL
x}x∈K(L)1 form a basis of H0(A, L) of characteristic zero.

We assume that L = L3
0 for some line bundle L0. Let A6 be the set of 6 divisible point of A and

Z6 = A6 ∩ K(L2)1 (notice K(L2) ⊃ A6).

For ρ ∈ Ẑ6 = Hom(Z6, C
×
1 ), y1 ∈ K(L6)1 and y2 ∈ K(L2)1 we define

(2) θ(y1,y2),ρ(v) =
∑

a∈Z6

ρ(a)ϑL6

y1−a(v)ϑL2

y2−3a(v).

Now we state the theorem of Birkenhake and Lange.

Theorem 1.2 (Cubic theta relations [BL, Theorem 3.3]). Let L be an ample line bundle on A and assume

L is a third power. Then all the cubic theta relations are given as follows.

θ(y1,y2),ρ(0)
∑

b∈Z6

ϑL
y′

1
+y′

2
+y3+2bϑ

L
y′

1
−y′

2
+y3+2bϑ

L
−2y′

1
+y3+2b

= θ(y′

1
,y′

2
),ρ(0)

∑

b∈Z6

ϑL
y1+y2+y3+2bϑ

L
y1−y2+y3+2bϑ

L
−2y1+y3+2b.

Here ρ ∈ Ẑ6, y1, y
′
1 ∈ K(L6)1, y2, y

′
2 ∈ K(L2)1 and y3 ∈ K(L3)1 such that

{
y1 + y2 + y3, y1 − y2 + y3, −2y1 + y3,
y′
1 + y′

2 + y3, y′
1 − y′

2 + y3, −2y′
1 + y3

all belong to K(L)1.

2. Theta constants as modular forms

Let A = V/Λ be an abelian variety of dimension g with principal polarization H . Let L0 = L(H, α0) be a
line bundle of characteristic zero. We decompose Λ = Λ1⊕Λ2 according to Frobenius basis e1, . . . , eg, f1, . . . , fg.
Since f1, . . . , fg generates V over C, we identify V = Cg according to this base. Then Λ = τZg + Zg for
τ ∈ Hg, and the Hermitian form H is given by (Im τ)−1 (cf. [LB, Chapter 8]).

Now for v, w ∈ V , we write

v = v1τ + v2, w = w1τ + w2, v1, v2, w1, w2 ∈ R
g.

Then by definition we have

(3) (H − B)(v, w) = tv(Im τ)−1(w̄ − w) = tv(Im τ)−1(−2i(Im τ)w1) = −2it(τv1 + v2)w1.

Now let L = L3
0. Since L0 is principal, K(Ln

0 ) = An. We write,

K(L6)1 = K(L18
0 )1 3 y1 =

1

18
τη1, K(L2)1 = K(L9

0)1 3 y2 =
1

6
τη2, Z6 3 b =

1

6
τβ,

for η1, η2, β ∈ Zg. Then using (3), theta functions (1) can be rewritten as follows.

ϑL6

y1−b(0) =
∑

m∈Zg

exp 18πi(τ [m +
1

6
β −

1

18
η1])

ϑL2

y2−3b(0) =
∑

m∈Zg

exp 6πi(τ [m +
1

2
β −

1

6
η2])

(4)

Now we use the following.

Proposition 2.1. Let Q ∈ Mm(Z) be a symmetric positive definite matrix with even diagonal entries, and

let q be a level of Q, that is, the minimum positive integer such that qQ−1 is also integral with even diagonal

entries. We put T g(Q) = {T ∈ Mm,g(Z)| QT ≡ 0 mod q}.
We define for τ ∈ Hg and T ∈ T g(Q),

θg(τ, Q|T ) =
∑

N∈Mm,g(Z)

exp πi Tr(Q[N +
1

q
T ]τ).

Then θg(τ, Q|T ) ∈ Mm/2(Γ
g(q)), with principal congurence subgroup Γg(q) ⊂ Sp(g, Z). Moreover the fol-

lowing properties hold.
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θg(
(

V 0
0 tV −1

)
〈τ〉, Q|T ) = θg(τ, Q|TV ) for V ∈ GLg(Z).

θg(( 1 S
0 1 ) 〈τ〉, Q|T ) = exp πi Tr(

1

q2
tTQTS)θg(τ, Q|T ).

θg(
(

0 1
−1 0

)
〈τ〉, Q|T )

= (detQ)−g/2(det(−iτ))m/2
∑

T ′∈T n(Q)
mod q

exp 2πi Tr(
1

q2
tTQT ′)θg(τ, Q|T ′).

For the proof, see [A, Proposition 1.3.14, Exercise 2.2.3]. By this Proposition, we see that above functions
(4) belong to the space of Siegel modular forms of weight 1/2, M1/2(Γ

g(36)) and M1/2(Γ
g(12)) respectively.

Thus the coefficients of the defining equations (2) are given as

θ(y1,y2),ρ(0) =
∑

β∈(Z/6Z)g

ρ(β)
∑

m,n∈Zg

exp πi(18τ [m +
1

6
β −

1

18
η1] + 6τ [n +

1

2
β −

1

6
η2])

=
∑

β∈(Z/6Z)g

ρ(β)
∑

N∈Mg,2(Z)

exp πi Tr(

(
18 0
0 6

) [
N +

1

36

(
6tβ − 2tη1

18tβ − 6tη2

)]
τ).

(5)

By Proposition 2.1, we have θ(y1,y2),ρ ∈ M1(Γ
g(36)).

Example ([BL, §4])
We consider the case g = 1. Since dimSym3 H0(A, L) = 10 and dimH0(A, L3) = 9, there is only one

nontrivial equation. We fix the isomorphism of K(L6)1 to Z/18Z, and denote its elements by {0, 1, . . . , 17}.
The groups K(L)1, K(L2)1 = Z6, K(L3)1 are embedded into this group, and we write K(L)1 = {0, 6, 12},
etc. We write the coordinates of P2 by X0, X6, X12.

Using this notation, the defining equation of elliptic curve is given as

X3
0 + X3

6 + X3
12 = 3

θ(0,0),1(0)

θ(0,6),1(0)
X0X6X12.

By (5), we have

θ(0,0),1(0) =
∑

b∈Z/6Z

∑

l∈Z2

exp πi(

(
18 0
0 6

) [
l +

1

36

(
6b
18b

)]
τ),

θ(0,6),1(0) =
∑

b∈Z/6Z

∑

l∈Z2

exp πi(

(
18 0
0 6

) [
l +

1

36

(
6b

18b − 12

)]
τ),

as functions on τ . Moreover we can show θ(0,0),1 = ϑ and θ(0,6),1 = χ as in the introduction, by comparing
sufficiently many Fourier coefficients, or by the similar method we shall give bellow in the case of g = 2.

3. Modular forms in the coefficients of defining equations of abelian surfaces

Now we shall consider the case of an abelian surface. We use the similar notation as in the example of
elliptic curves in the previous section, that is, K(L6)1 = t(a, b), a, b ∈ {0, 1, . . . , 17} etc. In the defining
equation of Theorem 1.2, we put y3 = t(0, 0) and ρ = 1. As in [BL, §4], we only consider the case
y1, y

′
1 ∈ {0, 1, . . . , 5}2, y2, y

′
2 ∈ {0, 3, . . . , 15}2/{±1}. Then all the elements y1, y2(y

′
1, y

′
2) such that y1 + y2 +
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y3, y1 − y2 + y3,−2y1 + y3 ∈ K(L)1 are as follows.

{y1, y2} =

{(
0
0

)
,

(
0
0

)}
,

{(
0
0

)
,

(
6
0

)}
,

{(
0
0

)
,

(
0
6

)}
,

{(
0
0

)
,

(
6
6

)}
,

{(
0
0

)
,

(
6
12

)}
,

{(
3
0

)
,

(
3
0

)}
,

{(
3
0

)
,

(
3
6

)}
,

{(
3
0

)
,

(
3
12

)}
,

{(
3
0

)
,

(
9
0

)}
,

{(
3
0

)
,

(
9
6

)}
,

{(
0
3

)
,

(
0
3

)}
,

{(
0
3

)
,

(
0
9

)}
,

{(
0
3

)
,

(
6
3

)}
,

{(
0
3

)
,

(
6
9

)}
,

{(
0
3

)
,

(
6
15

)}
,

{(
3
3

)
,

(
3
3

)}
,

{(
3
3

)
,

(
3
9

)}
,

{(
3
3

)
,

(
3
15

)}
,

{(
3
3

)
,

(
9
3

)}
,

{(
3
3

)
,

(
9
9

)}
.

Let X0,0, X0,6, X0,12, X6,0, X6,6, X6,12, X12,0, X12,6 and X12,12 be homogenous coordinates of P8. We write

P(y1,y2,y3)(X) =
∑

b∈Z6

Xy1+y2+y3+2bXy1−y2+y3+2bX−2y1+y3+2b.

We only consider the first row of the above list, since for example we can show

P{( 3
0 ),( 3

0 ),( 0
0 )}(X) = P{( 0

0 ),( 6
0 ),( 0

0 )}(X), θ{( 3
0 ),( 3

0 )},1
= θ{( 0

0 ),( 6
0 )},1

.

Now we shall write

(6) Θ

[
a b
c d

]
(τ) :=

∑

N∈M2(Z)

expπi(

(
18 0
0 6

) [
N +

1

36

(
a b
c d

)]
τ).

And we set

Θ1(τ) = θ{( 0
0 ),( 0

0 )},1
=

∑

a,b∈Z/6Z

Θ

[
6a 6b
18a 18b

]
(τ);

Θ2(τ) = θ{( 0
0 ),( 6

0 )},1 =
∑

a,b∈Z/6Z

Θ

[
6a 6b

18a− 12 18b

]
(τ);

Θ3(τ) = θ{( 0
0 ),( 0

6 )},1
=

∑

a,b∈Z/6Z

Θ

[
6a 6b
18a 18b − 12

]
(τ);

Θ4(τ) = θ{( 0
0 ),( 6

6 )},1 =
∑

a,b∈Z/6Z

Θ

[
6a 6b

18a− 12 18b − 12

]
(τ);

Θ5(τ) = θ{( 0
0 ),( 6

12 )},1
=

∑

a,b∈Z/6Z

Θ

[
6a 6b

18a− 12 18b + 12

]
(τ).

We shall write:

P1(X) = X3
0,0 + X3

0,6 + X3
0,12 + X3

6,0 + X3
6,6 + X3

6,12 + X3
12,0 + X3

12,6 + X3
12,12;

P2(X) = 3(X0,0X6,0X12,0 + X0,6X6,6X12,6 + X0,12X6,12X12,12);

P3(X) = 3(X0,0X0,6X0,12 + X6,0X6,6X6,12 + X12,0X12,6X12,12);

P4(X) = 3(X0,0X6,6X12,12 + X0,6X6,12X12,0 + X0,12X12,6X6,0);

P5(X) = 3(X0,0X6,12X12,6 + X6,6X0,12X12,0 + X12,12X0,6X6,0).

Then we have 4 independent equations: ΘiP1(X) = Θ1Pi(X), (2 ≤ i ≤ 5).
The aim of this paper is to show that Θi belongs to the space of Siegel modular forms M1(Γ

2(3)) of
weight 1 and level 3, for each i. We use the following fact ([G, Lemma 5.2]).
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Lemma 3.1. We define 5 functions:

tj(τ) =
∑

N∈M2(Z)

exp πi(

(
2 3
3 6

)
[N +

1

9
Tj]τ),

T1 =

(
0 0
0 0

)
, T2 =

(
0 0
1 0

)
, T3 =

(
0 0
0 1

)
, T4 =

(
0 0
1 1

)
, T5 =

(
0 0
1 −1

)
.

Then t1, . . . , t5 form a basis of M1(Γ
2(3)). The action of Sp(2, Z) on M1(Γ

2(3)) is irreducible.

Our main theorem is as follows.

Theorem 3.2. We have Θi = ti for each i (1 ≤ i ≤ 5). In particular Θi belongs to M1(Γ
2(3)).

Proof We investigate the action of Γ = Sp(2, Z) to these functions. First we consider the element γ(S) =(
12 S
0 12

)
, tS = S ∈ M2(Z). By Proposition 2.1, for S =

(
s1 s2

s2 s3

)
we have

Θ1|γ(S) = Θ1, t1|γ(S) = t1,

Θ2|γ(S) = ωs1Θ2, t2|γ(S) = ωs1t2,

Θ3|γ(S) = ωs3Θ3, t3|γ(S) = ωs3t3,

Θ4|γ(S) = ωs1−s2+s3Θ4, t4|γ(S) = ωs1−s2+s3t4,

Θ5|γ(S) = ωs1+s2+s3Θ5, t5|γ(S) = ωs1+s2+s3t5.

In particular Θ1, . . . , Θ5 are linearly independent, since any of Θi is non-zero because of Fourier expansion.

Next we consider the action of the element J =

(
0 12

−12 0

)
. By Proposition 2.1, we can show





t1|J
t2|J
t3|J
t4|J
t5|J




= −

1

3





1 2 2 2 2
1 −1 2 −1 −1
1 2 −1 −1 −1
1 −1 −1 −1 2
1 −1 −1 2 −1









t1
t2
t3
t4
t5




.

On the other hand, we have

Θ0|J = det

(
18 0
0 6

)−1

det(i12)
∑

a,b∈Z/6Z

∑

0≤s,u≤17
0≤t,v≤5

exp 2πi Tr(
1

64

(
6a 18a
6b 18b

) (
18 0
0 6

) (
2s 2u
6t 6v

)
)Θ

[
2s 2u
6t 6v

]

= −
1

3 · 62

∑

s,u
t,v

∑

a,b

exp 2πi(
(s + 3t)a + (u + 3v)b

6
)Θ

[
2s 2u
6t 6v

]

= −
1

3

∑

s+3t≡0 mod 6
u+3v≡0 mod 6

Θ

[
2s 2u
6t 6v

]
.

Now all the vectors t(2s, 6t) mod 36 for 0 ≤ s ≤ 17, 0 ≤ t ≤ 5 such that s + 3t ≡ 0 mod 6 are given by
follows. (

0
0

)
,

(
6
18

)
,

(
12
0

)
,

(
18
18

)
,

(
24
0

)
,

(
30
18

)
,

(
0
24

)
,

(
6
6

)
,

(
12
24

)
,

(
18
6

)
,

(
24
24

)
,

(
30
6

)
,

(
0
12

)
,

(
6
30

)
,

(
12
12

)
,

(
18
30

)
,

(
24
12

)
,

(
30
30

)
.
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One can see that the first, second and the third row of this list is equal to the vectors t(6a, 18a), t(6a, 18a−
12), and t(6a, 18a + 12) modulo 36 (0 ≤ a ≤ 5) respectively. Moreover we have

Θ

[
x y
z w

]
= Θ

[
−x −y
z w

]
= Θ

[
x y
−z −w

]

by definition. In particular

Θ

[
6a 6b
18a 18b − 12

]
= Θ

[
6a 6b

−18a −18b + 12

]
= Θ

[
6a 6b
18a 18b + 12

]
.

Using this, we have

Θ1|J = −
1

3
(Θ1 + 2Θ2 + 2Θ3 + 2Θ4 + 2Θ5).

Next we consider Θ2|J . A By the similar calculation, we have

Θ2|J = −
1

3

∑

s+3t≡0 mod 6
u+3v≡0 mod 6

e−2πit/3Θ

[
2s 2u
6t 6v

]

= −
1

3
(Θ1 + Θ3 + Θ3 + ω2Θ2 + ω2Θ4 + ω2Θ5 + ωΘ2 + ωΘ5 + ωΘ4)

= −
1

3
(Θ1 − Θ2 + 2Θ3 − Θ4 − Θ5).

Similarly we have





Θ1|J
Θ2|J
Θ3|J
Θ4|J
Θ5|J




= −

1

3





1 2 2 2 2
1 −1 2 −1 −1
1 2 −1 −1 −1
1 −1 −1 −1 2
1 −1 −1 2 −1









Θ1

Θ2

Θ3

Θ4

Θ5




.

Now we consider the natural immersion M1(Γ
2(3)) → M1(Γ

2(36)). We write the image of this map V .
Since Γ = Sp(2, Z) is generated by γ(S) and J (cf. [Kl, Proposition 6, §3]), the above calculation shows that
the subspace W ⊂ M1(Γ

2(36)) spanned by Θ1, . . . , Θ5 is closed under the action of Γ. We claim V = W .
Indeed we see that V and W are isomorphic as Γ-modules, thus all elements of W , in particular Θ1, . . . , Θ5,
are invariant under the action of Γ2(3); this means V = W . Moreover since the action of Γ on V is irreducible
(Lemma 3.1), we have ti = aΘi, a 6= 0 ∈ C for each i, by Schur’s lemma. We see a = 1 by comparing the
Fourier coefficients. This completes the proof of the theorem. 2

4. List of defining equations of degree 3

Let A be an abelian surface and L0 be a principal ample line bundle. For L = L3
0, since dimSym3 H0(A, L) =

165 and dimH0(A, L3) = 81, the dimension of the kernel of the natural map Sym3 H0(A, L) → H0(A, L3)
is 84. By Theorem 1.1, the kernel of degree 3 is essentially gives all the defining equations. We use the same
notation of §3.

Let W3 = {0, 3, 6}, and Ẑ+
6 be the set of all the character ρ of Z6 such that ρ2 ≡ 1, that is, all the

character of W 2
3 mod 9 ∼= (Z/3Z)2. We define the character ρ1, . . . , ρ4 ∈ Ẑ+

6 by
{

ρ1 ( 3
0 ) = 1,

ρ1 ( 0
3 ) = ω.

{
ρ2 ( 0

3 ) = 1,

ρ2 ( 3
0 ) = ω.

{
ρ3 ( 3

3 ) = 1,

ρ3 ( 0
3 ) = ω.

{
ρ4 ( 3

6 ) = 1,

ρ4 ( 3
0 ) = ω.

For ρ ∈ Ẑ+
6 , we define

θρ

(
x y
z w

)
=

∑

a,b∈Z/6Z

ρ

(
3a
3b

)
Θ

[
6a − 2x 6b − 2z
6a − 2y 6b − 2w

]
,

with Θ given in (6).
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Theorem 4.1. The following list contains all of the 84 linearly independent relations of degree 3.

∑

(a,b)∈K(L)1

X3
a,b = 3

θ1 ( 0 0
0 0 )

θ1 ( 0 6
0 0 )

(X0,0X6,0X12,0 + X0,6X6,6X12,6 + X0,12X6,12X12,12)

= 3
θ1 ( 0 0

0 0 )

θ1 ( 0 0
0 6 )

(X0,0X0,6X0,12 + X6,0X6,6X6,12 + X12,0X12,6X12,12)

= 3
θ1 ( 0 0

0 0 )

θ1 ( 0 6
0 6 )

(X0,0X6,6X12,12 + X0,6X6,12X12,0 + X0,12X12,6X6,0)

= 3
θ1 ( 0 0

0 0 )

θ1 ( 0 6
0 12 )

(X0,0X6,12X12,6 + X6,6X0,12X12,0 + X12,12X0,6X6,0)

X3
0,0 + X3

6,0 + X3
12,0 − X3

0,6 − X3
6,6 − X3

12,6 = 3
θρ1 ( 0 0

0 0 )

θρ1 ( 0 6
0 0 )

(X0,0X6,0X12,0 − X0,6X6,6X12,6)

X3
0,0 + X3

6,0 + X3
12,0 − X3

0,12 − X3
6,12 − X3

12,12 = 3
θρ1 ( 0 0

0 0 )

θρ1 ( 0 6
0 0 )

(X0,0X6,0X12,0 − X0,12X6,12X12,12)

X3
0,0 + X3

0,6 + X3
0,12 − X3

6,0 − X3
6,6 − X3

6,12 = 3
θρ2 ( 0 0

0 0 )

θρ2 ( 0 0
0 6 )

(X0,0X0,6X0,12 − X6,0X6,6X6,12)

X3
0,0 + X3

0,6 + X3
0,12 − X3

12,0 − X3
12,6 − X3

12,12 = 3
θρ2 ( 0 0

0 0 )

θρ2 ( 0 0
0 6 )

(X0,0X0,6X0,12 − X12,0X12,6X12,12)

X3
0,0 + X3

6,6 + X3
12,12 − X3

0,6 − X3
6,12 − X3

12,0 = 3
θρ3 ( 0 0

0 0 )

θρ3 ( 0 6
0 6 )

(X0,0X6,6X12,12 − X0,6X6,12X12,0)

X3
0,0 + X3

6,6 + X3
12,12 − X3

0,12 − X3
6,0 − X3

12,6 = 3
θρ3 ( 0 0

0 0 )

θρ3 ( 0 6
0 6 )

(X0,0X6,6X12,12 − X0,12X6,0X12,6)

X3
0,0 + X3

6,12 + X3
12,6 − X3

6,0 − X3
12,12 − X3

0,6 = 3
θρ4 ( 0 0

0 0 )

θρ4 ( 0 6
0 12 )

(X0,0X6,12X12,6 − X6,0X12,12X0,6)

X3
0,0 + X3

6,12 + X3
12,6 − X3

12,0 − X3
0,12 − X3

6,6 = 3
θρ4 ( 0 0

0 0 )

θρ4 ( 0 6
0 12 )

(X0,0X6,12X12,6 − X12,0X0,12X6,6)

∑

a,b∈W3

ρ

(
a
b

)
X2

2a,6+2bX2a,12+2b =
θρ ( 0 0

4 0 )

θρ( 0 6
4 0 )

(
∑

a,b∈W3

ρ

(
a
b

)
X6+2a,6+2bX12+2a,6+2bX2a,12+2b)

∑

a,b∈W3

ρ

(
a
b

)
X2

6+2a,2bX12+2a,2b =
θρ ( 4 0

0 0 )

θρ( 4 0
0 6 )

(
∑

a,b∈W3

ρ

(
a
b

)
X6+2a,6+2bX6+2a,12+2bX12+2a,2b)

∑

a,b∈W3

ρ

(
a
b

)
X2

2a,6+2bX2a,2b =
θρ ( 0 0

2 0 )

θρ( 0 6
2 0 )

(
∑

a,b∈W3

ρ

(
a
b

)
X6+2a,6+2bX12+2a,6+2bX2a,2b)

∑

a,b∈W3

ρ

(
a
b

)
X2

6+2a,2bX2a,2b) =
θρ ( 2 0

0 0 )

θρ( 2 0
0 6 )

(
∑

a,b∈W3

ρ

(
a
b

)
X6+2a,6+2bX6+2a,12+2bX2a,2b)

∑

a,b∈W3

ρ

(
a
b

)
X2

6+2a,6+2bX12+2a,12+2b =
θρ ( 4 0

4 0 )

θρ( 4 0
4 6 )

(
∑

a,b∈W3

ρ

(
a
b

)
X6+2a,12+2bX6+2a,2bX12+2a,12+2b)

∑

a,b∈W3

ρ

(
a
b

)
X2

6+2a,6+2bX12+2a,2b =
θρ ( 4 0

2 0 )

θρ( 4 0
2 6 )

(
∑

a,b∈W3

ρ

(
a
b

)
X6+2a,12+2bX6+2a,2bX12+2a,2b)

∑

a,b∈W3

ρ

(
a
b

)
X2

6+2a,6+2bX2a,12+2b =
θρ ( 2 0

4 0 )

θρ( 2 6
4 0 )

(
∑

a,b∈W3

ρ

(
a
b

)
X12+2a,6+2bX2a,6+2bX2a,12+2b)
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∑

a,b∈W3

ρ

(
a
b

)
X2

6+2a,6+2bX2a,2b =
θρ ( 2 0

2 0 )

θρ( 2 6
2 0 )

(
∑

a,b∈W3

ρ

(
a
b

)
X6+2a,12+2bX6+2a,6+2bX2a,2b)

Here in the last 8 equations, ρ runs all the characters of Ẑ+
6 .

Proof The generators of the kernel of the map Sym3 H0(X, L) → H0(X, L3) have the form

θ(y′

1
,y′

2
),ρ(0)P(y1,y2,y3),ρ(X) − θ(y1,y2),ρ(0)P(y1,y2,y3),ρ(X).

There are 3 types of generators as:





type I P(y1,y2,y3),ρ(X) = 0 or P(y′

1
,y′

2
,y′

3
),ρ(X) = 0;

type II P(y1,y2,y3),ρ(X) = αP(y′

1
,y′

2
,y′

3
),ρ(X), α ∈ C×;

type III otherwise.

Claim: All the generators of type I and type II are identically zero, that is, θ(y1,y2),ρ = 0 (resp. θ(y1,y2),ρ =
αθ(y′

1
,y′

2
),ρ) for the coefficient of generators of type I (resp. type II).

We shall prove the claim. There are 84 elements of type III as in the above list, and one can show that
any of the coefficients θ(y1,y2),ρ is not identically zero as functions in τ . Let U be the open set in H2 on
which all the coefficients of these elements do not vanish. Then, for all τ ∈ U , these elements of type III
are linearly independent, and the number of the linearly independent generators of the kernel is exactly 84.
Hence, all the generators of type I and II, which are scalar multiple of single P(y1,y2,y3),ρ, must be zero for
τ ∈ U . But θ are holomorphic functions, these equalities hold for all τ ∈ H2, and we prove the claim.

This shows that all the generators are type III, and we complete the proof of the theorem. 2

Open problem Among these cubic relations, one might be interested in finding the relations derived from
quadratic relations in Sym2 H0(A, L). The author tried their problem but did not succeed.
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